1
|
Fan W, Chen H, Li M, Fan X, Jiang F, Xu C, Wang Y, Wei W, Song J, Zhong D, Li G. NRF2 activation ameliorates blood-brain barrier injury after cerebral ischemic stroke by regulating ferroptosis and inflammation. Sci Rep 2024; 14:5300. [PMID: 38438409 PMCID: PMC10912757 DOI: 10.1038/s41598-024-53836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Arterial occlusion-induced ischemic stroke (IS) is a highly frequent stroke subtype. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that modulates antioxidant genes. Its role in IS is still unelucidated. The current study focused on constructing a transient middle cerebral artery occlusion (tMCAO) model for investigating the NRF2-related mechanism underlying cerebral ischemia/reperfusion (I/R) injury. Each male C57BL/6 mouse was injected with/with no specific NRF2 activator post-tMCAO. Changes in blood-brain barrier (BBB)-associated molecule levels were analyzed using western-blotting, PCR, immunohistochemistry, and immunofluorescence analysis. NRF2 levels within cerebral I/R model decreased at 24-h post-ischemia. NRF2 activation improved brain edema, infarct volume, and neurological deficits after MCAO/R. Similarly, sulforaphane (SFN) prevented the down-regulated tight junction proteins occludin and zonula occludens 1 (ZO-1) and reduced the up-regulated aquaporin 4 (AQP4) and matrix metalloproteinase 9 (MMP9) after tMCAO. Collectively, NRF2 exerted a critical effect on preserving BBB integrity modulating ferroptosis and inflammation. Because NRF2 is related to BBB injury regulation following cerebral I/R, this provides a potential therapeutic target and throws light on the underlying mechanism for clinically treating IS.
Collapse
Affiliation(s)
- Wei Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Meng Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Fangchao Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Chen Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yingju Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Wan Wei
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Jihe Song
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
- Department of Neurology, Heilongjiang Provincial Hospital, 82 Zhong Shan Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
2
|
Yadav R, Kumar Y, Dahiya D, Bhatia A. Claudins: The Newly Emerging Targets in Breast Cancer. Clin Breast Cancer 2022; 22:737-752. [PMID: 36175290 DOI: 10.1016/j.clbc.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Claudin-low breast cancers are recently described entities showing low expression of certain claudins and cell adhesion molecules. Claudins constitute the backbone of tight junctions (TJs) formed between 2 cells. Their dysregulation plays a vital role in tumorigenesis. First part of the article focuses on the role of claudins in the TJ organization, their structural-functional characteristics, and post-transcriptional and translational modifications. The latter part of the review attempts to summarize existing knowledge regarding the status of claudins in breast cancer. The article also provides an overview of the effect of claudins on tumor progression, metastasis, stemness, chemotherapy resistance, and their crosstalk with relevant signaling pathways in breast cancer. Claudins can act as 2-edged swords in tumors. Some claudins have either tumor-suppressive/ promoting action, while others work as both in a context-dependent manner. Claudins regulate many important events in breast cancer. However, the intricacies involved in their activity are poorly understood. Post-translational modifications in claudins and their impact on TJ integrity, function, and tumor behavior are still unclear. Although their role in adverse events in breast cancer is recognized, their potential to serve as relevant targets for future therapeutics, especially for difficult-to-treat subtypes of the above malignancy, remains to be explored.
Collapse
Affiliation(s)
- Reena Yadav
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
3
|
Multiple-Vessel-Based Blood Gas Profiles Analysis Revealed the Potential of Blood Oxygen in Mammary Vein as Indicator of Mammary Gland Health Risk of High-Yielding Dairy Cows. Animals (Basel) 2022; 12:ani12121484. [PMID: 35739820 PMCID: PMC9219519 DOI: 10.3390/ani12121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
The blood gas profile is a routine method in the rapid disease diagnosis of farm animals, yet its potential in evaluating mammary health status of dairy cows remains to be investigated. This study was conducted to learn the potential of the blood gas parameter regarding the mammary gland health status in lactating dairy cows. Twenty animals were divided into two groups, the H-SCC group (milk SCC > 122 k/mL) and L-SCC group (milk SCC < 73.8 k/mL), to compare blood gas profiles from different blood vessels and to identify the key parameters associated with milk somatic cell count. H-SCC cows are higher in malondialdehyde content, but lower in SOD and T-AOC activities in the milk, compared to the L-SCC group. In terms of blood gas parameters, most differ across the three vessels, including K+, CO2 pressure, O2 pressure, HCO3−, base excess in the extracellular fluid compartment, and saturation of O2. The Pearson correlation analysis showed that oxygen-related variables in the mammary vein, including oxygen concentrations, O2 pressure, and saturation of O2, are negatively correlated with levels of malondialdehyde, lactate dehydrogenase, and plasmin in the milk. Our study revealed that oxygen-related variables in the mammary vein can be a marker in suggesting mammary-gland health status in high-yielding cows.
Collapse
|
4
|
Hufthy Y, Bharadwaj M, Gupta S, Hussain D, Joseph PJS, Khan A, King J, Lahorgue P, Jayawardena O, Rostami-Hochaghan D, Smith C, Marson A, Mirza N. Statins as antiepileptogenic drugs: analysing the evidence and identifying the most promising statin. Epilepsia 2022; 63:1889-1898. [PMID: 35582761 PMCID: PMC9541605 DOI: 10.1111/epi.17303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Many brain insults and injuries are “epileptogenic”: they increase the risk of developing epilepsy. It is desirable to identify treatments that are “antiepileptogenic”: treatments that prevent the development of epilepsy, if administered after the occurrence of an epileptogenic insult. Current antiepileptic drugs are not antiepileptogenic, but evidence of antiepileptogenic efficacy is accumulating for a growing number of other compounds. From among these candidate compounds, statins are deserving of particular attention because statins are reported to be antiepileptogenic in more published studies and in a wider range of brain insults than any other individual or class of compounds. Although many studies report the antiepileptogenic effect of statins, it is unclear how many studies provide evidence that statins exhibit the following two essential features of a clinically viable antiepileptogenic drug: the drug must exert an antiepileptogenic effect even if it is initiated after the epileptogenic brain insult has already occurred, and the antiepileptogenic effect must endure even after the drug has been discontinued. In the current work, we interrogate published preclinical and clinical studies, to determine if statins fulfill these essential requirements. There are eight different statins in clinical use. To enable the clinical use of one of these statins for antiepileptogenesis, its antiepileptogenic effect will have to be established through future time‐ and resource‐intensive clinical trials. Therefore, it is desirable to review the published literature to determine which of the statins emerges as the most promising candidate for antiepileptogenic therapy. Hence, in the current work, we also collate and analyze published data—clinical and pre‐clinical, direct and indirect—that help to answer the question: Which statin is the most promising candidate to take forward into an antiepileptogenesis clinical trial?
Collapse
Affiliation(s)
- Yousif Hufthy
- School of Medicine, University of Liverpool, Liverpool, UK
| | | | - Shubhi Gupta
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Delwar Hussain
- School of Medicine, University of Liverpool, Liverpool, UK
| | | | - Alizah Khan
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Jessica King
- School of Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | - Chloe Smith
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Anthony Marson
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nasir Mirza
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Zhang Y, Ding J, Liu C, Luo S, Gao X, Wu Y, Wang J, Wang X, Wu X, Shen W, Zhu J. Genetics Responses to Hypoxia and Reoxygenation Stress in Larimichthys crocea Revealed via Transcriptome Analysis and Weighted Gene Co-Expression Network. Animals (Basel) 2021; 11:ani11113021. [PMID: 34827754 PMCID: PMC8614329 DOI: 10.3390/ani11113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia, which occurs frequently in aquaculture, can cause serious harm to all aspects of the growth, reproduction and metabolism of cultured fish. Due to the intolerance of Larimichthys crocea to hypoxia, Larimichthys crocea often floats head or even dies under hypoxic environment. However, the molecular mechanism of hypoxia tolerance in Larimichthys crocea has not been fully described. Therefore, the aim of this study was to explore the hub regulatory genes under hypoxic stress environment by transcriptome analysis of three key tissues (liver, blood and gill) in Larimichthys crocea. We identified a number of important genes that exercise different regulatory functions. Overall, this study will provide important clues to the molecular mechanisms of hypoxia tolerance in Larimichthys crocea. Abstract The large yellow croaker (Larimichthys crocea) is an important marine economic fish in China; however, its intolerance to hypoxia causes widespread mortality. To understand the molecular mechanisms underlying hypoxia tolerance in L. crocea, the transcriptome gene expression profiling of three different tissues (blood, gills, and liver) of L. crocea exposed to hypoxia and reoxygenation stress were performed. In parallel, the gene relationships were investigated based on weighted gene co-expression network analysis (WGCNA). Accordingly, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that several pathways (e.g., energy metabolism, signal transduction, oxygen transport, and osmotic regulation) may be involved in the response of L. crocea to hypoxia and reoxygenation stress. In addition, also, four key modules (darkorange, magenta, saddlebrown, and darkolivegreen) that were highly relevant to the samples were identified by WGCNA. Furthermore, some hub genes within the association module, including RPS16, EDRF1, KCNK5, SNAT2, PFKL, GSK-3β, and PIK3CD, were found. This is the first study to report the co-expression patterns of a gene network after hypoxia stress in marine fish. The results provide new clues for further research on the molecular mechanisms underlying hypoxia tolerance in L. crocea.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Cheng Liu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Shengyu Luo
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Yuanjie Wu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xuelei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Xiongfei Wu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Weiliang Shen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| |
Collapse
|
6
|
Barretto TA, Park E, Telliyan T, Liu E, Gallagher D, Librach C, Baker A. Vascular Dysfunction after Modeled Traumatic Brain Injury Is Preserved with Administration of Umbilical Cord Derived Mesenchymal Stromal Cells and Is Associated with Modulation of the Angiogenic Response. J Neurotrauma 2021; 38:2747-2762. [PMID: 33899499 DOI: 10.1089/neu.2021.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Vascular dysfunction arising from blood-brain barrier (BBB) breakdown after traumatic brain injury (TBI) can adversely affect neuronal health and behavioral outcome. Pericytes and endothelial cells of the neurovascular unit (NVU) function collectively to maintain strict regulation of the BBB through tight junctions. Secondary injury mechanisms, such as pro-angiogenic signals that contribute to pericyte loss, can prolong and exacerbate primary vascular injury. Human umbilical cord perivascular cells (HUCPVCs) are a source of mesenchymal stromal cells (MSCs) that have been shown to reduce vascular dysfunction after neurotrauma. We hypothesized that the perivascular properties of HUCPVCs can reduce vascular dysfunction after modeled TBI by preserving the pericyte-endothelial interactions. Rats were subjected to a moderate fluid percussion injury (FPI) and intravenously infused with 1,500,000 HUCPVCs post-injury. At acute time points (24 h and 48 h) quantitative polymerase chain reaction (qPCR) analysis demonstrated that the gene expression of angiopoietin-2 was increased with FPI and reduced with HUCPVCs. Immunofluorescent assessment of RECA-1 (endothelial cells) and platelet-derived growth factor receptors (PDGFR-β) (pericytes) revealed that capillary and pericyte densities as well as the co-localization of the two cells were decreased with FPI and preserved with HUCPVC administration. These acute HUCPVC-mediated protective effects were associated with less permeability to Evan's blue dye and increased expression of the tight junction occludin, suggesting less vascular leakage. Further, at 4 weeks post-injury, HUCPVC administration was associated with reduced anxiety and decreased β-amyloid precursor protein (β-APP) accumulation. In summary, HUCPVCs promoted pericyte-endothelial barrier function that was associated with improved long-term outcome.
Collapse
Affiliation(s)
- Tanya A Barretto
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eugene Park
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | - Tamar Telliyan
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | - Elaine Liu
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Baker
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Diaz A, Martin-Jimenez C, Xu Y, Merino P, Woo Y, Torre E, Yepes M. Urokinase-type plasminogen activator-mediated crosstalk between N-cadherin and β-catenin promotes wound healing. J Cell Sci 2021; 134:jcs255919. [PMID: 34085693 PMCID: PMC8214757 DOI: 10.1242/jcs.255919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA; encoded by Plau) is a serine proteinase that, in the central nervous system, induces astrocytic activation. β-Catenin is a protein that links the cytoplasmic tail of cadherins to the actin cytoskeleton, thus securing the formation of cadherin-mediated cell adhesion complexes. Disruption of cell-cell contacts leads to the detachment of β-catenin from cadherins, and β-catenin is then degraded by the proteasome following its phosphorylation by GSK3β. Here, we show that astrocytes release uPA following a scratch injury, and that this uPA promotes wound healing via a plasminogen-independent mechanism. We found that uPA induces the detachment of β-catenin from the cytoplasmic tail of N-cadherin (NCAD; also known as CDH2) by triggering its phosphorylation at Tyr654. Surprisingly, this is not followed by degradation of β-catenin because uPA also induces the phosphorylation of the low density lipoprotein receptor-related protein 6 (LRP6) at Ser1490, which then blocks the kinase activity of GSK3β. Our work indicates that the ensuing cytoplasmic accumulation of β-catenin is followed by its nuclear translocation and β-catenin-triggered transcription of the receptor for uPA (Plaur), which in turn is required for uPA to induce astrocytic wound healing.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yang Xu
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
8
|
Shi L, Jiang M, Li M, Shang X, Li X, Huang M, Wu Y, Qiao C, Wang X, Tian X, Shi Y, Wang Z. Regulation of HIF-1α and p53 in stress responses in the subterranean rodents Lasiopodomys mandarinus and Lasiopodomys brandtii (Rodentia: Cricetidae). ZOOLOGIA 2021. [DOI: 10.3897/zoologia.38.e58607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The response mechanism and interaction patterns of HIF-1α and p53 in animals in an hypoxic environment are crucial for their hypoxic tolerance and adaptation. Many studies have shown that underground rodents have better hypoxic adaptation characteristics. However, the mechanism by which HIF-1α and p53 in underground rodents respond to hypoxic environments compared with in ground rodents remains unclear. Further, whether a synergy between HIF-1α and p53 enables animals tolerate extremely hypoxic environments is unclear. We studied HIF-1α and p53 expression in the brain tissue and cell apoptosis in the hippocampal CA1 region during 6 hours of acute hypoxia (5% oxygen) in Lasiopodomys mandarinus (Milne-Edwards, 1871) and Lasiopodomys brandtii (Radde, 1861), two closely related small rodents with different life characteristics (underground and aboveground, respectively), using a comparative biology method to determine the mechanisms underlying their adaptation to this environment. Our results indicate that HIF-1α and p53 expression is more rapid in L. mandarinus than in L. brandtii under acute hypoxic environments, resulting in a significant synergistic effect in L. mandarinus. Correlation analysis revealed that HIF-1α expression and the apoptotic index of the hippocampal CA1 regions of the brain tissues of L. mandarinus and L. brandtii, both under hypoxia, were significantly negatively and positively correlated, respectively. Long-term existence in underground burrow systems could enable better adaptation to hypoxia in L. mandarinus than in L. brandtii. We speculate that L. mandarinus can quickly eliminate resulting damage via the synergistic effect of p53 and HIF-1α in response to acute hypoxic environments, helping the organism quickly return to a normal state after the stress.
Collapse
|
9
|
Zheng YF, Zhou X, Chang D, Bhuyan DJ, Zhang JP, Yu WZ, Jiang XS, Seto SW, Yeon SY, Li J, Li CG. A novel tri-culture model for neuroinflammation. J Neurochem 2020; 156:249-261. [PMID: 32891068 DOI: 10.1111/jnc.15171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/29/2023]
Abstract
Neuroinflammation is believed to play a primary role in the pathogenesis of most neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and schizophrenia. Currently, suitable in vitro neuroinflammation models for studying cellular interactions and inflammatory mechanisms at the neurovascular unit are still scarce. In this study, we established an experimentally flexible tri-culture neuroinflammation model combining murine microglial cells (N11), mouse neuroblastoma Nuro2A cell lines and brain microvascular endothelial MVEC(B3) cells in a transwell co-culture system stimulated with lipopolysaccharides. Neuroinflammation was induced in this tri-culture model as manifested by activated N11 cells via toll-like receptor 4, resulting in increased release of proinflammatory mediators (nitric oxide, interleukin-6 and tumour necrosis factor-α) through the activation of nuclear factor-κB signalling pathway. The released inflammatory cytokines from N11 in turn, damaged the tight junction in microvascular endothelial MVEC(B3) cells, increased permeability of endothelial barrier, and induced tau phosphorylation and up-regulated caspase-3 expression in mouse neuroblastoma Nuro2A cell lines, leading to neuroinflammation injury. In summary, this tri-culture inflammation model mimics the microenvironment, the cellular crosstalk and the molecular events that take place during neuroinflammation. It provides a robust in vitro model for studying neuroinflammation mechanisms and screening for potential therapeutics to treat various neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Fang Zheng
- College of Pharmacy, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China.,NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jie Ping Zhang
- College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Wen-Zhen Yu
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia.,College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Xia-Sen Jiang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Seung Yeon Yeon
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jia Li
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
10
|
Gerhartl A, Pracser N, Vladetic A, Hendrikx S, Friedl HP, Neuhaus W. The pivotal role of micro-environmental cells in a human blood-brain barrier in vitro model of cerebral ischemia: functional and transcriptomic analysis. Fluids Barriers CNS 2020; 17:19. [PMID: 32138745 PMCID: PMC7059670 DOI: 10.1186/s12987-020-00179-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Background The blood–brain barrier (BBB) is altered in several diseases of the central nervous system. For example, the breakdown of the BBB during cerebral ischemia in stroke or traumatic brain injury is a hallmark of the diseases’ progression. This functional damage is one key event which is attempted to be mimicked in in vitro models. Recent studies showed the pivotal role of micro-environmental cells such as astrocytes for this barrier damage in mouse stroke in vitro models. The aim of this study was to evaluate the role of micro-environmental cells for the functional, paracellular breakdown in a human BBB cerebral ischemia in vitro model accompanied by a transcriptional analysis. Methods Transwell models with human brain endothelial cell line hCMEC/D3 in mono-culture or co-culture with human primary astrocytes and pericytes or rat glioma cell line C6 were subjected to oxygen/glucose deprivation (OGD). Changes of transendothelial electrical resistance (TEER) and FITC-dextran 4000 permeability were recorded as measures for paracellular tightness. In addition, qPCR and high-throughput qPCR Barrier chips were applied to investigate the changes of the mRNA expression of 38 relevant, expressed barrier targets (tight junctions, ABC-transporters) by different treatments. Results In contrast to the mono-culture, the co-cultivation with human primary astrocytes/pericytes or glioma C6 cells resulted in a significantly increased paracellular permeability after 5 h OGD. This indicated the pivotal role of micro-environmental cells for BBB breakdown in the human model. Hierarchical cluster analysis of qPCR data revealed differently, but also commonly regulated clustered targets dependent on medium exchange, serum reduction, hydrocortisone addition and co-cultivations. Conclusions The co-cultivation with micro-environmental cells is necessary to achieve a functional breakdown of the BBB in the cerebral ischemia model within an in vivo relevant time window. Comprehensive studies by qPCR revealed that distinct expression clusters of barrier markers exist and that these are regulated by different treatments (even by growth medium change) indicating that controls for single cell culture manipulation steps are crucial to understand the observed effects properly.
Collapse
Affiliation(s)
- Anna Gerhartl
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Nadja Pracser
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Alexandra Vladetic
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Sabrina Hendrikx
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Heinz-Peter Friedl
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria.
| |
Collapse
|
11
|
Liang Q, Zhang L, Wood RW, Ji RC, Boyce BF, Schwarz EM, Wang Y, Xing L. Avian Reticuloendotheliosis Viral Oncogene Related B Regulates Lymphatic Endothelial Cells during Vessel Maturation and Is Required for Lymphatic Vessel Function in Adult Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2516-2530. [PMID: 31539516 DOI: 10.1016/j.ajpath.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
NF-κB signals through canonical transcription factor p65 (RelA)/p50 and noncanonical avian reticuloendotheliosis viral oncogene related B (RelB)/p52 pathways. The RelA/p50 is involved in basal and inflammatory lymphangiogenesis. However, the role of RelB/p52 in lymphatic vessel biology is unknown. Herein, we investigated changes in lymphatic vessels (LVs) in mice deficient in noncanonical NF-κB signaling and the function of RelB in lymphatic endothelial cells (LECs). LVs were examined in Relb-/-, p52-/-, or control mice, and the gene expression profiles in LECs with RelB knockdown. Relb-/-, but not p52-/-, mice exhibited multiple LV abnormalities. They include the following: i) increased capillary vessel diameter, ii) reduced smooth muscle cell (SMC) coverage of mature vessels, iii) leakage, and iv) loss of active and passive lymphatic flow. Relb-/- mature LVs had thinner vessel walls, more apoptotic LECs and SMCs, and fewer LEC junctions. RelB knockdown LECs had decreased growth, survival, and adhesion, and dysregulated signaling pathways involving these cellular events. These results suggest that Relb-/- mice have abnormal LVs, mainly in mature vessels with reduced SMC coverage, leakage, and loss of contractions. RelB knockdown in LECs leads to reduced growth, survival, and adhesion. RelB plays a vital role in LEC-mediated LV maturation and function.
Collapse
Affiliation(s)
- Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ronald W Wood
- Department of Obstetrics and Gynecology, Urology, and Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York
| | | | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
12
|
Tian C, Asghar S, Hu Z, Qiu Y, Zhang J, Shao F, Xiao Y. Understanding the cellular uptake and biodistribution of a dual-targeting carrier based on redox-sensitive hyaluronic acid-ss-curcumin micelles for treating brain glioma. Int J Biol Macromol 2019; 136:143-153. [DOI: 10.1016/j.ijbiomac.2019.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/21/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
|
13
|
Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, Wolburg H, Blasig IE, Haseloff RF. Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci 2019; 76:1987-2002. [PMID: 30734065 PMCID: PMC11105330 DOI: 10.1007/s00018-019-03030-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.
Collapse
Affiliation(s)
- Philipp Berndt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lars Winkler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Jimmi Cording
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Olga Breitkreuz-Korff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - André Rex
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Valentina Rausch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Rosel Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Matthias Richter
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anje Sporbert
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Hartwig Wolburg
- Institut für Pathologie und Neuropathologie, Universität Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Ingolf E Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Reiner F Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
14
|
Yang Y, Liu L, Fang M, Bai H, Xu Y. The chromatin remodeling protein BRM regulates the transcription of tight junction proteins: Implication in breast cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:547-556. [PMID: 30946989 DOI: 10.1016/j.bbagrm.2019.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Claudins are a group of cell tight junction proteins that play versatile roles in cancer biology. Recent studies have correlated down-regulation of Claudins with augmented breast cancer malignancy and poor prognosis. The mechanism underlying repression of Claudin transcription in breast cancer cells is not well understood. Here we report that expression levels of Brahma (BRM) were down-regulated in triple negative breast cancer cells (MDA-231) compared to the less malignant MCF-7 cells and in high-grade human breast cancer specimens compared to low-grade ones. TGF-β treatment in MCF-7 cells repressed BRM transcription likely through targeting C/EBPβ. BRM over-expression suppressed whereas BRM knockdown promoted TGF-β induced migration and invasion of MCF-7 cells. BRM down-regulation was accompanied by the loss of a panel of Claudins in breast cancer cells. BRM directly bound to the promoter region of Claudin genes via interacting with Sp1 and activated transcription by modulating histone modifications. Together, our data have identified a novel epigenetic pathway that links Claudin transcription to breast cancer metastasis.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Hui Bai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Nierwińska K, Nowacka-Chmielewska M, Bernacki J, Jagsz S, Chalimoniuk M, Langfort J, Małecki A. The effect of endurance training and testosterone supplementation on the expression of blood spinal cord barrier proteins in rats. PLoS One 2019; 14:e0211818. [PMID: 30742658 PMCID: PMC6370194 DOI: 10.1371/journal.pone.0211818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to estimate the effect of endurance training, two doses of testosterone, and the combination of these stimuli on the level of the endothelial proteins claudin, occludin, JAM-1, VE-cadherin, ZO-1, ZO-2, and P-glycoprotein in rat spinal cords. Adult male Wistar rats were trained using a motor-driven treadmill for 6 weeks (40-60 min, 5 times per week) and/or were treated for 6 weeks with two doses of testosterone (i.m.; 8 mg/kg or 80 mg/kg body weight). Spinal cords were collected 48 hours after the last training cycle and stored at -80°C. The levels of selected proteins in whole tissue lysates of the spinal cord were measured by western blot. Testosterone-treated trained rats had significantly lower claudin levels than vehicle-treated trained rats. High doses of testosterone resulted in a significant decrease in claudin-5 in untrained rats compared to the control group. Both doses of testosterone significantly reduced occludin levels compared to those in vehicle-treated untrained rats. The JAM-1 level in the spinal cords of both trained and untrained animals receiving testosterone was decreased in a dose-dependent manner. The JAM-1 level in the trained group treated with high doses of testosterone was significantly higher than that in the untrained rats treated with 80 mg/kg of testosterone. VE-cadherin levels were decreased in all groups receiving testosterone regardless of endurance training and were also diminished in the vehicle-treated group compared to the control group. Testosterone treatment did not exert a significant effect on ZO-1 protein levels. Testosterone and/or training had no significant effects on ZO-2 protein levels in the rat spinal cords. Endurance training increased P-glycoprotein levels in the rat spinal cords. The results suggest that an excessive supply of testosterone may adversely impact the expression of endothelial proteins in the central nervous system, which, in turn, may affect the blood-brain barrier function.
Collapse
Affiliation(s)
- Katarzyna Nierwińska
- Department of Physiology, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
- * E-mail:
| | | | - Jacek Bernacki
- Department of Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Sławomir Jagsz
- Department of Biochemistry, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biala Podlaska, Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Józef Langfort
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Andrzej Małecki
- Laboratory of Molecular Biology, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
16
|
Tween 80-modified hyaluronic acid-ss-curcumin micelles for targeting glioma: Synthesis, characterization and their in vitro evaluation. Int J Biol Macromol 2018; 120:2579-2588. [DOI: 10.1016/j.ijbiomac.2018.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/19/2023]
|
17
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
18
|
Luo PL, Wang YJ, Yang YY, Yang JJ. Hypoxia-induced hyperpermeability of rat glomerular endothelial cells involves HIF-2α mediated changes in the expression of occludin and ZO-1. ACTA ACUST UNITED AC 2018; 51:e6201. [PMID: 29791586 PMCID: PMC5972023 DOI: 10.1590/1414-431x20186201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/05/2018] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the role of hypoxia-inducible factor-2α (HIF-2α) in the expression of tight junction proteins and permeability alterations in rat glomerular endothelial cells (rGENCs) under hypoxia conditions. The expression level of HIF-2α and tight junction proteins (occludin and ZO-1) in rGENCs were examined following 5% oxygen density exposure at different treatment times. HIF-2α lentivirus transfection was used to knockdown HIF-2α expression. Cells were divided into four groups: 1) control group (rGENCs were cultured under normal oxygen conditions), 2) hypoxia group (rGENCs were cultured under hypoxic conditions), 3) negative control group (rGENCs were infected with HIF-2α lentivirus negative control vectors and cultured under hypoxic conditions), and 4) Len group (rGENCs were transfected with HIF-2α lentivirus and cultured under hypoxic conditions). The hypoxia, negative control, and Len groups were kept in a hypoxic chamber (5% O2, 5% CO2, and 90% N2) for 24 h and the total content of occludin and ZO-1, and the permeability of rGENCs were assessed. With increasing hypoxia time, the expression of HIF-2α gradually increased, while the expression of occludin decreased, with a significant difference between groups. ZO-1 expression gradually decreased under hypoxia conditions, but the difference between the 24 and 48 h groups was not significant. The permeability of cells increased following 24-h exposure to hypoxia compared to the control group (P<0.01). The knockdown of HIF-2α expression significantly increased occludin and ZO-1 content compared with hypoxia and negative control groups (P<0.01), while permeability was reduced (P<0.01). Hypoxia increased HIF-2α content, inducing permeability of rGENCs through the reduced expression of occludin and ZO-1.
Collapse
Affiliation(s)
- Peng-Li Luo
- Department of Nephrology, Hospital of Qinghai University, Xining, China
| | - Yan-Jun Wang
- Department of Nephrology, Hospital of Qinghai University, Xining, China
| | - Yan-Yan Yang
- Department of Nephrology, Hospital of Qinghai University, Xining, China
| | - Jia-Jia Yang
- Department of Nephrology, Hospital of Qinghai University, Xining, China
| |
Collapse
|
19
|
Mohaddes G, Abdolalizadeh J, Babri S, Hossienzadeh F. Ghrelin ameliorates blood-brain barrier disruption during systemic hypoxia. Exp Physiol 2018; 102:376-382. [PMID: 28078800 DOI: 10.1113/ep086068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is an anti-oedematous effect of ghrelin associated with increased expression of tight junction proteins in the hypoxic brain? What is the main finding and its importance? We showed that injection of ghrelin during acute and chronic systemic hypoxia is associated with increased expression of tight junction proteins and protection of the blood-brain barrier. Ghrelin appears to be a new therapeutic strategy for protection of the blood-brain barrier from disruption and prevention of brain oedema in hypoxic conditions. The blood-brain barrier, which serves to protect the homeostasis of the CNS, is formed by tight junction proteins. Several studies have indicated that systemic hypoxia leads to cerebral oedema through disruption of tight junction proteins, such as occludin and zonula occludens-1 (ZO-1). According to our previous studies, ghrelin attenuates cerebral oedema in the hypoxic brain. However, the mechanism is not completely understood. The present study was designed to determine the effect of ghrelin on occludin and ZO-1 in the hypoxic brain. Adult male Wistar rats were divided into acute and chronic control, acute or chronic hypoxia, and ghrelin-treated acute or chronic hypoxia groups. Hypoxic groups were kept in a hypoxic chamber (10-11% O2 ) for 2 (acute) or 10 days (chronic). Effects of ghrelin on occludin and ZO-1 protein levels were assessed using Western blotting. Western blot analysis revealed that the protein expression of ZO-1 and occludin decreased significantly in acute and chronic hypoxia. Ghrelin significantly increased ZO-1 protein expression in both acute and chronic hypoxia (P < 0.05). Ghrelin also increased occludin protein expression in chronic hypoxia (P < 0.05) but did not effectively change it in acute hypoxia. Our data showed that ghrelin injection maintains occludin and ZO-1 tight junction proteins, which may improve the integrity of the blood-brain barrier in hypoxic conditions.
Collapse
Affiliation(s)
- Gisou Mohaddes
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fezzeh Hossienzadeh
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine Sciences, Sarab, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Yang S, Mei S, Jin H, Zhu B, Tian Y, Huo J, Cui X, Guo A, Zhao Z. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier. PLoS One 2017; 12:e0187017. [PMID: 29059256 PMCID: PMC5653355 DOI: 10.1371/journal.pone.0187017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/11/2017] [Indexed: 11/18/2022] Open
Abstract
To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123) uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol) in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted.
Collapse
Affiliation(s)
- Shu Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Jin
- Institute of Disease Prevention and Control of PLA, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Tian
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiping Huo
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xu Cui
- Neurology Research, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Anchen Guo
- Laboratory of Clinical Medicine Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (ZZ); (AG)
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- * E-mail: (ZZ); (AG)
| |
Collapse
|
21
|
Reinhold AK, Rittner HL. Barrier function in the peripheral and central nervous system-a review. Pflugers Arch 2016; 469:123-134. [PMID: 27957611 DOI: 10.1007/s00424-016-1920-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022]
Abstract
The peripheral (PNS) and central nervous system (CNS) are delicate structures, highly sensitive to homeostatic changes-and crucial for basic vital functions. Thus, a selection of barriers ensures the protection of the nervous system from noxious blood-borne or surrounding stimuli. In this chapter, anatomy and functioning of the blood-nerve (BNB), the blood-brain (BBB), and the blood-spinal cord barriers (BSCB) are presented and the key tight junction (TJ) proteins described: claudin-1, claudin-3, claudin-5, claudin-11, claudin-12, claudin-19, occludin, Zona occludens-1 (ZO-1), and tricellulin are by now identified as relevant for nerval barriers. Different diseases can lead to or be accompanied by neural barrier disruption, and impairment of these barriers worsens pathology. Peripheral nerve injury and inflammatory polyneuropathy cause an increased permeability of BNB as well as BSCB, while, e.g., diseases of the CNS such as amyotrophic lateral sclerosis, multiple sclerosis, spinal cord injury, or Alzheimer's disease can progress and worsen through barrier dysfunction. Moreover, the complex role and regulation of the BBB after ischemic stroke is described. On the other side, PNS and CNS barriers hamper the delivery of drugs in diseases when the barrier is intact, e.g., in certain neurodegenerative diseases or inflammatory pain. Understanding of the barrier - regulating processes has already lead to the discovery of new molecules as drug enhancers. In summary, the knowledge of all of these mechanisms might ultimately lead to the invention of drugs to control barrier function to help ameliorating or curing neurological diseases.
Collapse
Affiliation(s)
- A K Reinhold
- Department of Anesthesiology, University Hospitals Wuerzburg, Oberduerrbacher Str. 6, 97080, Wuerzburg, Germany.
| | - H L Rittner
- Department of Anesthesiology, University Hospitals Wuerzburg, Oberduerrbacher Str. 6, 97080, Wuerzburg, Germany
| |
Collapse
|
22
|
Hao L, Guo X, Zou C, Zhou H, Tian H, Zhang Y, Song C, Liu L. Hyperbaric oxygen preconditioning ameliorates blood-brain barrier damage induced by hypoxia through modulation of tight junction proteins in an in vitro model. Croat Med J 2016; 57:51-7. [PMID: 26935614 PMCID: PMC4800327 DOI: 10.3325/cmj.2016.57.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim To explore the effects of hyperbaric oxygen preconditioning (HBOP) on the permeability of blood-brain barrier (BBB) and expression of tight junction proteins under hypoxic conditions in vitro. Methods A BBB in vitro model was constructed using the hCMEC/D3 cell line and used when its trans-endothelial electrical resistance (TEER) reached 80-120 Ω · cm2 (tested by Millicell-Electrical Resistance System). The cells were randomly divided into the control group cultured under normal conditions, the group cultured under hypoxic conditions (2%O2) for 24 h (hypoxia group), and the group first subjected to HBOP for 2 h and then to hypoxia (HBOP group). Occludin and ZO-1 expression were analyzed by immunofluorescence assay. Results Normal hCMEC/D3 was spindle-shaped and tightly integrated. TEER was significantly reduced in the hypoxia (P = 0.001) and HBOP group (P = 0.014) compared to control group, with a greater decrease in the hypoxia group. Occludin membranous expression was significantly decreased in the hypoxia group (P = 0.001) compared to the control group, but there was no change in the HBOP group. ZO-1 membranous expression was significantly decreased (P = 0.002) and cytoplasmic expression was significantly increased (P = 0.001) in the hypoxia group compared to the control group, although overall expression levels did not change. In the HBOP group, there was no significant change in ZO-1 expression compared to the control group. Conclusion Hyperbaric oxygen preconditioning protected the integrity of BBB in an in vitro model through modulation of occludin and ZO-1 expression under hypoxic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Liu
- Lei Liu, No. 29 Jianxin East Road, Jiangbei District, Chongqing, 400020, China,
| |
Collapse
|
23
|
Chandrasekaran A, Avci HX, Leist M, Kobolák J, Dinnyés A. Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Front Cell Neurosci 2016; 10:215. [PMID: 27725795 PMCID: PMC5035736 DOI: 10.3389/fncel.2016.00215] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have a central role in brain development and function, and so have gained increasing attention over the past two decades. Consequently, our knowledge about their origin, differentiation and function has increased significantly, with new research showing that astrocytes cultured alone or co-cultured with neurons have the potential to improve our understanding of various central nervous system diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, or Alexander disease. The generation of astrocytes derived from pluripotent stem cells (PSCs) opens up a new area for studying neurologic diseases in vitro; these models could be exploited to identify and validate potential drugs by detecting adverse effects in the early stages of drug development. However, as it is now known that a range of astrocyte populations exist in the brain, it will be important in vitro to develop standardized protocols for the in vitro generation of astrocyte subsets with defined maturity status and phenotypic properties. This will then open new possibilities for co-cultures with neurons and the generation of neural organoids for research purposes. The aim of this review article is to compare and summarize the currently available protocols and their strategies to generate human astrocytes from PSCs. Furthermore, we discuss the potential role of human-induced PSCs derived astrocytes in disease modeling.
Collapse
Affiliation(s)
| | - Hasan X Avci
- BioTalentum LtdGödöllő, Hungary; Department of Medical Chemistry, University of SzegedSzeged, Hungary
| | - Marcel Leist
- Dorenkamp-Zbinden Chair, Faculty of Mathematics and Sciences, University of Konstanz Konstanz, Germany
| | | | - Andras Dinnyés
- BioTalentum LtdGödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan UniversityGödöllő, Hungary
| |
Collapse
|
24
|
Chatard M, Puech C, Roche F, Perek N. Hypoxic Stress Induced by Hydralazine Leads to a Loss of Blood-Brain Barrier Integrity and an Increase in Efflux Transporter Activity. PLoS One 2016; 11:e0158010. [PMID: 27337093 PMCID: PMC4919080 DOI: 10.1371/journal.pone.0158010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/08/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding cellular and molecular mechanisms induced by hypoxic stress is crucial to reduce blood-brain barrier (BBB) disruption in some neurological diseases. Since the brain is a complex organ, it makes the interpretation of in vivo data difficult, so BBB studies are often investigated using in vitro models. However, the investigation of hypoxia in cellular pathways is complex with physical hypoxia because HIF-1α (factor induced by hypoxia) has a short half-life. We had set up an innovative and original method of induction of hypoxic stress by hydralazine that was more reproducible, which allowed us to study its impact on an in vitro BBB model. Our results showed that hydralazine, a mimetic agent of the hypoxia pathway, had the same effect as physical hypoxia, with few cytotoxicity effects on our cells. Hypoxic stress led to an increase of BBB permeability which corresponded to an opening of our BBB model. Study of tight junction proteins revealed that this hypoxic stress decreased ZO-1 but not occludin expression. In contrast, cells established a defence mechanism by increasing expression and activity of their efflux transporters (Pgp and MRP-1). This induction method of hypoxic stress by hydralazine is simple, reproducible, controllable and suitable to understand the cellular and molecular mechanisms involved by hypoxia on the BBB.
Collapse
Affiliation(s)
- Morgane Chatard
- Université de Lyon, UJM-Saint-Etienne, SNA-EPIS, EA4607, F-42023, Saint-Etienne, France
- Université de Lyon, UJM-Saint-Etienne, INSERM, SAINBIOSE U1089 Team DVH, F-42023, Saint-Etienne, France
| | - Clémentine Puech
- Université de Lyon, UJM-Saint-Etienne, INSERM, SAINBIOSE U1089 Team DVH, F-42023, Saint-Etienne, France
| | - Frederic Roche
- Université de Lyon, UJM-Saint-Etienne, SNA-EPIS, EA4607, F-42023, Saint-Etienne, France
- * E-mail:
| | - Nathalie Perek
- Université de Lyon, UJM-Saint-Etienne, INSERM, SAINBIOSE U1089 Team DVH, F-42023, Saint-Etienne, France
| |
Collapse
|
25
|
Kalaiarasi S, Arjun P, Nandhagopal S, Brijitta J, Iniyan AM, Vincent SGP, Kannan RR. Development of biocompatible nanogel for sustained drug release by overcoming the blood brain barrier in zebrafish model. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Gopagondanahalli KR, Li J, Fahey MC, Hunt RW, Jenkin G, Miller SL, Malhotra A. Preterm Hypoxic-Ischemic Encephalopathy. Front Pediatr 2016; 4:114. [PMID: 27812521 PMCID: PMC5071348 DOI: 10.3389/fped.2016.00114] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a recognizable and defined clinical syndrome in term infants that results from a severe or prolonged hypoxic-ischemic episode before or during birth. However, in the preterm infant, defining hypoxic-ischemic injury (HII), its clinical course, monitoring, and outcomes remains complex. Few studies examine preterm HIE, and these are heterogeneous, with variable inclusion criteria and outcomes reported. We examine the available evidence that implies that the incidence of hypoxic-ischemic insult in preterm infants is probably higher than recognized and follows a more complex clinical course, with higher rates of adverse neurological outcomes, compared to term infants. This review aims to elucidate the causes and consequences of preterm hypoxia-ischemia, the subsequent clinical encephalopathy syndrome, diagnostic tools, and outcomes. Finally, we suggest a uniform definition for preterm HIE that may help in identifying infants most at risk of adverse outcomes and amenable to neuroprotective therapies.
Collapse
Affiliation(s)
| | - Jingang Li
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia
| | - Michael C Fahey
- Monash Children's Hospital, Melbourne, VIC, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Rod W Hunt
- The Royal Children's Hospital, Melbourne, VIC, Australia; Murdoch Childrens Research Institute, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Atul Malhotra
- Monash Children's Hospital, Melbourne, VIC, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Orhan N, Ugur Yilmaz C, Ekizoglu O, Ahishali B, Kucuk M, Arican N, Elmas I, Gürses C, Kaya M. Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury. Brain Res 2015; 1631:113-26. [PMID: 26656066 DOI: 10.1016/j.brainres.2015.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/29/2015] [Accepted: 11/23/2015] [Indexed: 12/16/2022]
Abstract
This study investigates the effect of beta-hydroxybutyrate (BHB) on blood-brain barrier (BBB) integrity during traumatic brain injury (TBI) in rats. Evans blue (EB) and horseradish peroxidase (HRP) were used as determinants of BBB permeability. Glutathione (GSH) and malondialdehyde (MDA) levels were estimated in the right (injury side) cerebral cortex of animals. The gene expression levels for occludin, glucose transporter (Glut)-1, aquaporin4 (AQP4) and nuclear factor-kappaB (NF-κB) were performed, and Glut-1 and NF-κB activities were analyzed. BHB treatment decreased GSH and MDA levels in intact animals and in those exposed to TBI (P<0.05). Glut-1 protein levels decreased in sham, BHB and TBI plus BHB groups (P<0.05). NF-κB protein levels increased in animals treated with BHB and/or exposed to TBI (P<0.05). The expression levels of occludin and AQP4 did not significantly change among experimental groups. Glut-1 expression levels increased in BHB treated and untreated animals exposed to TBI (P<0.05). While NF-κB expression levels increased in animals in TBI (P<0.01), a decrease was noticed in these animals upon BHB treatment (P<0.01). In animals exposed to TBI, EB extravasation was observed in the ipsilateral cortex regardless of BHB treatment. Ultrastructurally, BHB attenuated but did not prevent the presence of HRP in brain capillary endothelial cells of animals with TBI; moreover, the drug also led to the observation of the tracer when used in intact rats (P<0.01). Altogether, these results showed that BHB not only failed to provide overall protective effects on BBB in TBI but also led to BBB disruption in healthy animals.
Collapse
Affiliation(s)
- Nurcan Orhan
- Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ugur Yilmaz
- Department of Laboratory Animals Science, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Oguzhan Ekizoglu
- Department of Forensic Medicine, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Bulent Ahishali
- Department of Histology and Embryology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mutlu Kucuk
- Department of Laboratory Animals Science, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nadir Arican
- Department of Forensic Medicine, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Imdat Elmas
- Department of Forensic Medicine, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Candan Gürses
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Kaya
- Department of Physiology, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
28
|
Xu B, Chen M, Ji X, Yao M, Mao Z, Zhou K, Xia Y, Han X, Tang W. Metabolomic profiles reveal key metabolic changes in heat stress-treated mouse Sertoli cells. Toxicol In Vitro 2015; 29:1745-52. [PMID: 26165742 DOI: 10.1016/j.tiv.2015.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 05/23/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
29
|
Loftis JM, Janowsky A. Neuroimmune basis of methamphetamine toxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 118:165-97. [PMID: 25175865 DOI: 10.1016/b978-0-12-801284-0.00007-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although it is not known which antigen-specific immune responses (or if antigen-specific immune responses) are relevant or required for methamphetamine's neurotoxic effects, it is apparent that methamphetamine exposure is associated with significant effects on adaptive and innate immunity. Alterations in lymphocyte activity and number, changes in cytokine signaling, impairments in phagocytic functions, and glial activation and gliosis have all been reported. These drug-induced changes in immune response, particularly within the CNS, are now thought to play a critical role in the addiction process for methamphetamine dependence as well as for other substance use disorders. In Section 2, methamphetamine's effects on glial cell (e.g., microglia and astrocytes) activity and inflammatory signaling cascades are summarized, including how alterations in immune cell function can induce the neurotoxic and addictive effects of methamphetamine. Section 2 also describes neurotransmitter involvement in the modulation of methamphetamine's inflammatory effects. Section 3 discusses the very recent use of pharmacological and genetic animal models which have helped elucidate the behavioral effects of methamphetamine's neurotoxic effects and the role of the immune system. Section 4 is focused on the effects of methamphetamine on blood-brain barrier integrity and associated immune consequences. Clinical considerations such as the combined effects of methamphetamine and HIV and/or HCV on brain structure and function are included in Section 4. Finally, in Section 5, immune-based treatment strategies are reviewed, with a focus on vaccine development, neuroimmune therapies, and other anti-inflammatory approaches.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA; Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| | - Aaron Janowsky
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA; Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
30
|
Sun L, Liu S, Bao L, Li Y, Feng J, Liu Z. Claudin multigene family in channel catfish and their expression profiles in response to bacterial infection and hypoxia as revealed by meta-analysis of RNA-Seq datasets. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:60-9. [PMID: 25681604 DOI: 10.1016/j.cbd.2015.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
Abstract
Claudins are one of the major groups of transmembrane proteins that play crucial roles in tight junctions. In addition to their function in the regulation of paracellular permeability, claudins are also involved in a number of biological processes related to pathogen infection, embryonic development, organ development and hypoxia response. Despite its importance, analyses of claudin genes in channel catfish have not been systematically performed. In this study, a total of 52 claudin genes were identified and characterized in channel catfish. Phylogenetic analyses were conducted to determine their identities and identify a number of lineage-specific claudin gene duplications in channel catfish. Expression profiles of catfish claudin genes in response to enteric septicemia of catfish (ESC) disease and hypoxia stress were determined by analyzing existing RNA-Seq datasets. Claudin genes were significantly down-regulated in the intestine at 3h post-infection, indicating that pathogens may disrupt the mucosal barrier by suppressing the expression of claudin genes. A total of six claudin genes were significantly regulated in the gill after hypoxia stress. Among them, the expressions of cldn-11b and cldn-10d were dramatically altered when comparing hypoxia tolerant fish with intolerant fish, though their specific roles involved in response to hypoxia stress remained unknown.
Collapse
Affiliation(s)
- Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
31
|
Lu X, Chen Z, Guo Y, Gao L, Jiang L, Li Z, Fang J. Blood-letting punctures at twelve Jing-Well points of the hand can treat cerebral ischemia in a similar manner to mannitol. Neural Regen Res 2014; 8:532-9. [PMID: 25206696 PMCID: PMC4146051 DOI: 10.3969/j.issn.1673-5374.2013.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/10/2013] [Indexed: 12/25/2022] Open
Abstract
A rat model of middle cerebral artery permanent occlusion was established using the modified Longa method. Successfully established model animals were treated by blood-letting puncture at twelve Jing-Well points of the hand, and/or by injecting mannitol into the caudal vein twice daily. Brain tissue was collected at 24, 48 and 72 hours after modeling, and blood was collected through the retinal vein before Evans blue was injected, approximately 1 hour prior to harvesting of brain tissue. Results showed that Evans blue leakage into brain tissue and serum nitric oxide synthase activity were significantly increased in model rats. Treatment with blood-letting punctures at twelve Jing-Well points of the hand and/or injection of mannitol into the caudal vein reduced the amount of Evans blue leakage into the brain tissue and serum nitric oxide synthase activity to varying degrees. There was no significant difference between single treatment and combined treatment. Experimental findings indicate that blood-letting punctures at twelve Jing-Well points of the hand can decrease blood-brain barrier permeability and serum nitric oxide synthase activity in rats following middle cerebral artery occlusion, and its effect is similar to that of mannitol injection alone and Jing-Well points plus mannitol injection.
Collapse
Affiliation(s)
- Xuan Lu
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zelin Chen
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yi Guo
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Liang Gao
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Liyuan Jiang
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhongzheng Li
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jianqiao Fang
- Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| |
Collapse
|
32
|
Xu B, Chen M, Ji X, Mao Z, Zhang X, Wang X, Xia Y. Metabolomic profiles delineate the potential role of glycine in gold nanorod-induced disruption of mitochondria and blood-testis barrier factors in TM-4 cells. NANOSCALE 2014; 6:8265-8273. [PMID: 24931221 DOI: 10.1039/c4nr01035c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gold nanorods (GNRs) are commonly used nanomaterials with potential harmful effects on male reproduction. However, the mechanism by which GNRs affect male reproduction remains largely undetermined. In this study, the metabolic changes in spermatocyte-derived cells GC-2 and Sertoli cell line TM-4 were analyzed after GNR treatment for 24 h. Metabolomic analysis revealed that glycine was highly decreased in TM-4 cells after GNR-10 nM treatment while there was no significant change in GC-2 cells. RT-PCR showed that the mRNA levels of glycine synthases in the mitochondrial pathway decreased after GNR treatment, while there was no significant difference in mRNA levels of glycine synthases in the cytoplasmic pathway. High content screening (HCS) showed that GNRs decreased membrane permeability and mitochondrial membrane potential of TM-4 cells, which was also confirmed by JC-1 staining. In addition, RT-PCR and Western blot indicated that the mRNA and protein levels of blood-testis barrier (BTB) factors (ZO-1, occludin, claudin-5, and connexin-43) in TM-4 cells were also disrupted by GNRs. After glycine was added into the medium, the GNR-induced harmful effects on mitochondria and BTB factors were recovered in TM-4 cells. Our results showed that even low doses of GNRs could induce significant toxic effects on mitochondria and BTB factors in TM-4 cells. Furthermore, we revealed that glycine was a potentially important metabolic intermediary for the changes of membrane permeability, mitochondrial membrane potential and BTB factors after GNR treatment in TM-4 cells.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol 2014; 171:1210-30. [PMID: 24641185 PMCID: PMC3952799 DOI: 10.1111/bph.12489] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 01/16/2023] Open
Abstract
The blood-brain barrier (BBB) is a complex vascular structure consisting of microvascular endothelial cells that line the vessel wall, astrocyte end-feet, pericytes, as well as the basal lamina. BBB cells act in concert to maintain the characteristic impermeable and low paracellular flux of the brain vascular network, thus ensuring a homeostatic neuronal environment. Alterations in BBB stability that occur during injury have dire consequences on disease progression and it is clear that BBB cell-specific responses, positive or negative, must make a significant contribution to injury outcome. Reduced oxygenation, or hypoxia, is a characteristic of many brain diseases that significantly increases barrier permeability. Recent data suggest that hypoxia-inducible factor (HIF-1), the master regulator of the hypoxic response, probably mediates many hypoxic effects either directly or indirectly via its target genes. This review discusses current knowledge of physiological cell-specific regulation of barrier function, their responses to hypoxia as well as consequences of hypoxic- and HIF-1-mediated mechanisms on barrier integrity during select brain diseases. In the final sections, the potential of current advances in targeting HIF-1 as a therapeutic strategy will be overviewed.
Collapse
Affiliation(s)
- S Engelhardt
- Institute of Veterinary Physiology, University of ZurichZurich, Switzerland
| | - S Patkar
- Institute of Veterinary Physiology, University of ZurichZurich, Switzerland
| | - O O Ogunshola
- Institute of Veterinary Physiology, University of ZurichZurich, Switzerland
| |
Collapse
|
34
|
Gao YH, Xing YW, Yuan ZZ, Zhu LQ, Li PT, Wang SR. [Effects of Qingkailing effective components on nuclear factor-kappa B in an ischemia-reperfusion injury model of rat brain microvascular endothelial cells in vitro]. ACTA ACUST UNITED AC 2014; 7:135-9. [PMID: 19216856 DOI: 10.3736/jcim20090208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To establish an ischemia-reperfusion injury model of rat cerebral microvascular endothelial cells (MVECs) in vitro, and to explore the relationship between nuclear factor-kappa B (NF-kappaB) and the protective effects of Qingkailing effective components (hyocholic acid, taurocholic acid, baicalin, jasminoidin, Pinctada martensii) on MVECs. METHODS Brain MVECs of male rats were digested with trypsin and subcultured, then the content of MVECs was adjusted to 1x10 (5)/mL and the MVECs were divided into normal control group, untreated group, hyocholic acid group, taurocholic acid group, baicalin group, jasminoidin group, Pinctada martensii group and nimodipine group, with six holes in each group. Except for the normal control group, the MVECs in the other groups were exposed in oxygen and glucose deprivation (OGD) circumstance in vitro to simulate ischemia-reperfusion injury. Immunocytochemical staining and image analysis system were used to observe the expression of NF-kappaB protein. RESULTS Under a light microscope, the nuclei of MVECs in the normal control group were blank. Staining intensity of NF-kappaB protein in the nucleus in the untreated group was much deeper than that in the endochylema, with NF-kappaB shifted to nucleus after activation; a small quantity of NF-kappaB protein were expressed in the border of nucleus next to endochylema in groups of Qingkailing effective components, and the NF-kappaB protein expression was weaker than that in the untreated group. With the image analysis, we found that transmittance of nucleus and endochylema in the untreated group was significantly lower than that in the normal control group (P<0.01). Transmittance of nucleus and endochylema in the treated groups was higher than that in the untreated group (P<0.05, P<0.01). CONCLUSION Qingkailing effective components have significant effect in inhibiting NF-kappaB protein transferring from endochylema to nucleus in vitro.
Collapse
Affiliation(s)
- Yong-Hong Gao
- Key Laboratory for Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| | | | | | | | | | | |
Collapse
|
35
|
Maeda T, Sano Y, Abe M, Shimizu F, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Kanda T. Establishment and characterization of spinal cord microvascular endothelial cell lines. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cen3.12045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Toshihiko Maeda
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Masaaki Abe
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Yoko Kashiwamura
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Tetsuya Terasaki
- Department of Molecular Biopharmacy and Genetics; Graduate School of Pharmaceutical Sciences; Tohoku University; Sendai Japan
| | - Masuo Obinata
- Department of Cell Biology; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | | | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| |
Collapse
|
36
|
Foti Cuzzola V, Galuppo M, Iori R, De Nicola GR, Cassata G, Giacoppo S, Bramanti P, Mazzon E. Beneficial effects of (RS)-glucoraphanin on the tight junction dysfunction in a mouse model of restraint stress. Life Sci 2013; 93:288-305. [DOI: 10.1016/j.lfs.2013.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/30/2013] [Accepted: 07/01/2013] [Indexed: 01/30/2023]
|
37
|
Abstract
Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions.
Collapse
Affiliation(s)
- Dorothee Günzel
- Department of Clinical Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
38
|
Triggers and effectors of oxidative stress at blood-brain barrier level: relevance for brain ageing and neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:297512. [PMID: 23533687 PMCID: PMC3606793 DOI: 10.1155/2013/297512] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/27/2013] [Accepted: 01/31/2013] [Indexed: 01/23/2023]
Abstract
As fundamental research advances, it is becoming increasingly clear that a clinically expressed disease implies a mixture of intertwining molecular disturbances. Oxidative stress is one of such pathogenic pathways involved in virtually all central nervous system pathologies, infectious, inflammatory, or degenerative in nature. Since brain homeostasis largely depends on integrity of blood-brain barrier (BBB), many studies focused lately on BBB alteration in a wide spectrum of brain diseases. The proper two-way molecular transfer through BBB depends on several factors, including the functional status of its tight junction (TJ) complexes of proteins sealing neighbour endothelial cells. Although there is abundant experimental work showing that oxidative stress associates BBB permeability alteration, less is known about its implications, at molecular level, in TJ protein expression or TJ-related cell signalling. In this paper, oxidative stress is presented as a common pathway for different brain pathogenic mechanisms which lead to BBB dysregulation. We revise here oxidative-induced molecular mechanisms of BBB disruption and TJ protein expression alteration, in relation to ageing and neurodegeneration.
Collapse
|
39
|
Singh AK, Jiang Y, Gupta S. Effects of bacterial toxins on endothelial tight junction in vitro: a mechanism-based investigation. Toxicol Mech Methods 2012; 17:331-47. [PMID: 20020957 DOI: 10.1080/15376510601077029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), principal cell wall components of Gram-negative and Gram-positive bacteria, respectively, play a central role in altering the blood-brain barrier and facilitate bacterial infection of the host brain. Despite the significance of bacterial toxins in disease pathogenesis, mechanisms by which toxins impair the barrier are not yet known. This study, using an in vitro cell culture model, showed that LPS and LTA interacted with the endothelial cells and disrupted the tight junction between the cells that increased the barrier's permeability. Both toxins increased inducible nitric oxide synthase (iNOS) mRNA that is indicative of an increase in intracellular NO release, disrupted architecture of the tight junction proteins, suppressed zonula occludens-1 (ZO-1) and occludin (OCL) and junctional adhesive molecules (JAM) mRNA levels, and increased tumor necrosis factor alpha (TNFalpha) and interleukin-1 beta (IL-1beta) mRNA levels. Anti-CD14 antibodies blocked the increase in TNFalpha and IL-1beta mRNA levels but did not affect either changes in the tight junction or iNOS, ZO-1, OCL, and JAM mRNA levels in endothelial cells and astrocytes. Although both toxins did not cross the endothelial barrier, the abluminal neurons exhibited high inflammatory activity characterized by a sequential increase in TNFalpha, IL-1beta, external receptor kinase (ERK), and RelA-p50 that induced inflammation, followed by an increase in anti-inflammatory/apoptotic factors including IL-10 and cysteine-aspartic acid protease-8 (CASPASE-8), which resolve inflammation and induce apoptosis. Anti-CD14 antibodies in luminal buffer blocked the pro- and anti-inflammatory effects of the toxins in neurons. Thus, the CD14-TLR cascade that participates in the inflammatory effects of toxins may not participate in the toxin-induced barrier disruption in vitro. Since the toxins did not cross the endothelial barrier, induction of inflammation in neurons was due to a release of proinflammatory cytokines in the abluminal fluid.
Collapse
Affiliation(s)
- Ashok K Singh
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Twin Cities Campus, St Paul, MN
| | | | | |
Collapse
|
40
|
Cisneros IE, Ghorpade A. HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 2012; 10:392-406. [PMID: 22591363 PMCID: PMC3580828 DOI: 10.2174/157016212802138832] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 02/08/2023]
Abstract
Glutamate, the most abundant excitatory transmitter in the brain can lead to neurotoxicity when not properly regulated. Excitotoxicity is a direct result of abnormal regulation of glutamate concentrations in the synapse, and is a common neurotoxic mediator associated with neurodegenerative disorders. It is well accepted that methamphetamine (METH), a potent central nervous stimulant with high abuse potential, and human immunodeficiency virus (HIV)-1 are implicated in the progression of neurocognitive malfunction. Both have been shown to induce common neurodegenerative effects such as astrogliosis, compromised blood brain barrier integrity, and excitotoxicity in the brain. Reduced glutamate uptake from neuronal synapses likely leads to the accumulation of glutamate in the extracellular spaces. Astrocytes express the glutamate transporters responsible for majority of the glutamate uptake from the synapse, as well as for vesicular glutamate release. However, the cellular and molecular mechanisms of astrocyte-mediated excitotoxicity in the context of METH and HIV-1 are undefined. Topics reviewed include dysregulation of the glutamate transporters, specifically excitatory amino acid transporter-2, metabotropic glutamate receptor(s) expression and the release of glutamate by vesicular exocytosis. We also discuss glutamate concentration dysregulation through astrocytic expression of enzymes for glutamate synthesis and metabolism. Lastly, we discuss recent evidence of various astrocyte and neuron crosstalk mechanisms implicated in glutamate regulation. Astrocytes play an essential role in the neuropathologies associated with METH/HIV-1-induced excitotoxicity. We hope to shed light on common cellular and molecular pathways astrocytes share in glutamate regulation during drug abuse and HIV-1 infection.
Collapse
Affiliation(s)
| | - Anuja Ghorpade
- University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
41
|
Abstract
The chapter provides an introduction and brief overview of currently available in vitro blood-brain barrier models, pointing out the major advantages and disadvantages of the respective models and potential applications. Bovine brain microvessel endothelial cell isolation, culture, and transendothelial permeability measurement procedures are discussed in detail as a model system for a laboratory to begin brain vascular investigations.
Collapse
Affiliation(s)
- Kaushik K Shah
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | | |
Collapse
|
42
|
Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. J Neuroinflammation 2011; 8:162. [PMID: 22112345 PMCID: PMC3248576 DOI: 10.1186/1742-2094-8-162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/23/2011] [Indexed: 02/04/2023] Open
Abstract
The glio-vascular unit (G-unit) plays a prominent role in maintaining homeostasis of the blood-brain barrier (BBB) and disturbances in cells forming this unit may seriously dysregulate BBB. The direct and indirect effects of cytokines on cellular components of the BBB are not yet unclear. The present study compares the effects of cytokines and cytokine-treated astrocytes on brain endothelial barrier. 3-dimensional transwell co-cultures of brain endothelium and related-barrier forming cells with astrocytes were used to investigate gliovascular barrier responses to cytokines during pathological stresses. Gliovascular barrier was measured using trans-endothelial electrical resistance (TEER), a sensitive index of in vitro barrier integrity. We found that neither TNF-α, IL-1β or IFN-γ directly reduced barrier in human or mouse brain endothelial cells or ECV-304 barrier (independent of cell viability/metabolism), but found that astrocyte exposure to cytokines in co-culture significantly reduced endothelial (and ECV-304) barrier. These results indicate that the barrier established by human and mouse brain endothelial cells (and other cells) may respond positively to cytokines alone, but that during pathological conditions, cytokines dysregulate the barrier forming cells indirectly through astrocyte activation involving reorganization of junctions, matrix, focal adhesion or release of barrier modulating factors (e.g. oxidants, MMPs).
Collapse
|
43
|
Hypoxic preconditioning with cobalt ameliorates hypobaric hypoxia induced pulmonary edema in rat. Eur J Pharmacol 2011; 656:101-9. [DOI: 10.1016/j.ejphar.2011.01.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 12/29/2010] [Accepted: 01/17/2011] [Indexed: 11/17/2022]
|
44
|
Hsuchou H, Kastin AJ, Tu H, Joan Abbott N, Couraud PO, Pan W. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells. J Neurochem 2010; 115:1288-98. [PMID: 20977476 DOI: 10.1111/j.1471-4159.2010.07028.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Astrocytic leptin receptors (ObR) can be up-regulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb over-expression in C6 cells increased leptin permeation whereas ObRa over-expression showed no effect when compared with the control group of pcDNA-transfected C6 cells. By contrast, the paracellular permeability to the sodium fluorescein control was unchanged by over-expression of ObR subtypes. Leptin remained intact after crossing the monolayer as shown by HPLC and acid precipitation, and this was not affected by C6 cell co-culture or the over-expression of different ObR subtypes. Thus, increased expression of ObRb (and to a lesser extent ObRe) in C6 cells specifically increased the permeation of leptin across the hCMEC monolayer. Consistent with the evidence that the most apparent regulatory changes of ObR during obesity and inflammation occur in astrocytes, the results indicate that astrocytes actively regulate leptin transport across the blood-brain barrier, a mechanism independent of reduction of paracellular permeability.
Collapse
Affiliation(s)
- Hung Hsuchou
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
45
|
Himadri P, Kumari SS, Chitharanjan M, Dhananjay S. Role of Oxidative Stress and Inflammation in Hypoxia-Induced Cerebral Edema: A Molecular Approach. High Alt Med Biol 2010; 11:231-44. [DOI: 10.1089/ham.2009.1057] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- P. Himadri
- Department of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Sarada S. Kumari
- Department of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - M. Chitharanjan
- Department of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - S. Dhananjay
- Department of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
46
|
Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 2010; 30:837-48. [PMID: 19997118 PMCID: PMC2949161 DOI: 10.1038/jcbfm.2009.248] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Blood-brain barrier (BBB) disruption, resulting from loss of tight junctions (TJ) and activation of matrix metalloproteinases (MMPs), is associated with edema formation in ischemic stroke. Cerebral edema develops in a phasic manner and consists of both vasogenic and cytotoxic components. Although it is contingent on several independent mechanisms, involving hypoxic and inflammatory responses, the single effect of prolonged hypoxia on BBB integrity in vivo was not addressed so far. Exposing mice to normobaric hypoxia (8% oxygen for 48 h) led to a significant increase in vascular permeability associated with diminished expression of the TJ protein occludin. Immunofluorescence studies revealed that hypoxia resulted in disrupted continuity of occludin and zonula occludens-1 (Zo-1) staining with significant gap formation. Hypoxia increased gelatinolytic activity specifically in vascular structures and gel zymography identified MMP-9 as enzymatic source. Treatment with an MMP inhibitor reduced vascular leakage and attenuated disorganization of TJ. Inhibition of vascular endothelial growth factor (VEGF) attenuated vascular leakage and MMP-9 activation induced by hypoxia. In conclusion, our data suggest that hypoxia-induced edema formation is mediated by MMP-9-dependent TJ rearrangement by a mechanism involving VEGF. Therefore, inhibition of MMP-9 might provide the basis for therapeutic strategies to treat brain edema.
Collapse
|
47
|
Hicks K, O'Neil RG, Dubinsky WS, Brown RC. TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. Am J Physiol Cell Physiol 2010; 298:C1583-93. [PMID: 20164382 DOI: 10.1152/ajpcell.00458.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypoxia-induced disruption of the blood-brain barrier (BBB) is the result of many different mechanisms, including alterations to the cytoskeleton. In this study, we identified actin-binding proteins involved in cytoskeletal dynamics with quantitative proteomics and assessed changes in subcellular localization of two proteins involved in actin polymerization [vasodilator-stimulated phosphoprotein (VASP)] and cytoskeleton-plasma membrane cross-linking (moesin). We found significant redistribution of both VASP and moesin to the cytoskeletal and membrane fractions of BBB endothelial cells after 1-h hypoxic stress. We also investigated activation of actin-myosin contraction through assessment of phosphorylated myosin light chain (pMLC) with confocal microscopy. Hypoxia caused a rapid and transient increase in pMLC. Blocking MLC phosphorylation through inhibition of myosin light chain kinase (MLCK) with ML-7 prevented hypoxia-induced BBB disruption and relocalization of the tight junction protein ZO-1. Finally, we implicate the transient receptor potential (TRP)C family of channels in mediating these events since blockade of TRPC channels and the associated calcium influx with SKF-96365 prevents hypoxia-induced permeability changes and the phosphorylation of MLC needed for actin-myosin contraction. These data suggest that hypoxic stress triggers alterations to cytoskeletal structure that contribute to BBB disruption and that calcium influx through TRPC channels contributes to these events.
Collapse
Affiliation(s)
- Kali Hicks
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
48
|
Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann Biomed Eng 2010; 38:1463-72. [PMID: 20087768 DOI: 10.1007/s10439-010-9920-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 01/07/2010] [Indexed: 12/12/2022]
Abstract
Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.
Collapse
|
49
|
Tang Y, Clayburgh DR, Mittal N, Goretsky T, Dirisina R, Zhang Z, Kron M, Ivancic D, Katzman RB, Grimm G, Lee G, Fryer J, Nusrat A, Turner JR, Barrett TA. Epithelial NF-kappaB enhances transmucosal fluid movement by altering tight junction protein composition after T cell activation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:158-67. [PMID: 20008138 DOI: 10.2353/ajpath.2010.090548] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In inflammatory bowel disease (IBD), aberrant activation of innate and adaptive immune responses enhances mucosal permeability through mechanisms not completely understood. To examine the role of epithelial nuclear factor (NF-kappaB) in IBD-induced enhanced permeability, epithelial-specific IkappaBalpha mutant (NF-kappaB super repressor) transgenic (TG) mice were generated. NF-kB activation was inhibited in TG mice, relative to wild-type mice, following T cell-mediated immune cell activation using an anti-CD3 monoclonal antibody. Furthermore, epithelial NF-kappaB super repressor protein inhibited diarrhea and blocked changes in transepithelial resistance and transmucosal flux of alexa350 (0.35 kDa) and dextran3000 (3 kDa). In vivo perfusion loop studies in TG mice revealed reversed net water secretion and reduced lumenal flux of different molecular probes (bovine serum albumin, alexa350, and dextran3000). Cell-imaging and immunoblotting of low-density, detergent-insoluble membrane fractions confirmed that tight junction proteins (occludin, claudin-1 and zona occludens-1) are internalized through an NF-kappaB-dependent pathway. Taken together, these data suggest that IBD-associated diarrhea results from NF-kappaB-mediated tight junction protein internalization and increased paracellular permeability. Thus, reduction of epithelial NF-kappaB activation in IBD may repair defects in epithelial barrier function, reduce diarrhea, and limit protein (eg, serum albumin) losses. Epithelial NF-kappaB activation induced by mucosal T cells, therefore, actively plays a role in opening paracellular spaces to promote transmucosal fluid effux into the intestinal lumen.
Collapse
Affiliation(s)
- Yueming Tang
- Division of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Role of PKCbetaII and PKCdelta in blood-brain barrier permeability during aglycemic hypoxia. Neurosci Lett 2009; 468:254-8. [PMID: 19900507 DOI: 10.1016/j.neulet.2009.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/23/2022]
Abstract
Blood-brain barrier (BBB) dysfunction contributes to the pathophysiology of cerebrovascular diseases such as stroke. In the present study, we investigated the role of PKC isoforms in aglycemic hypoxia-induced hyperpermeability using an in vitro model of the BBB consisting of mouse bEnd.3 cells. PKCbetaII and PKCdelta isoforms were activated during aglycemic hypoxia. CGP53353, a specific PKCbetaII inhibitor, significantly attenuated aglycemic hypoxia-induced BBB hyperpermeability and disruption of occludin and zonula occludens-1 (ZO-1), indicating a deleterious role of PKCbetaII in the regulation of BBB permeability during aglycemic hypoxia. Conversely, rottlerin, a specific PKCdelta inhibitor, exacerbated BBB hyperpermeability and tight junction (TJ) disruption during aglycemic hypoxia, indicating a protective role of PKCdelta against aglycemic hypoxia-induced BBB hyperpermeability. Furthermore, disruption of TJ proteins during aglycemic hypoxia was attenuated by PKCbetaII DN and PKCdelta WT overexpression, and aggravated by PKCbetaII WT and PKCdelta DN overexpression. These results suggest that PKCbetaII and PKCdelta counter-regulate BBB permeability during aglycemic hypoxia.
Collapse
|