1
|
Ansa‐Addo EA, Pathak P, McCrossan MV, Volpato Rossi I, Abdullahi M, Stratton D, Lange S, Ramirez MI, Inal JM. Monocyte-derived extracellular vesicles, stimulated by Trypanosoma cruzi, enhance cellular invasion in vitro via activated TGF-β1. J Extracell Vesicles 2024; 13:e70014. [PMID: 39611395 PMCID: PMC11605483 DOI: 10.1002/jev2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
During cell invasion, large Extracellular Vesicle (lEV) release from host cells was dose-dependently triggered by Trypanosoma cruzi metacyclic trypomastigotes (Mtr). This lEV release was inhibited when IP3-mediated Ca2+ exit from the ER and further Ca2+ entry from plasma membrane channels was blocked, but whilst any store-independent Ca2+ entry (SICE) could continue unabated. That lEV release was equally inhibited if all entry from external sources was blocked by chelation of external Ca2+ points to the major contributor to Mtr-triggered host cell lEV release being IP3/store-mediated Ca2+ release, SICE playing a minor role. Host cell lEVs were released through Mtr interaction with host cell lipid raft domains, integrins, and mechanosensitive ion channels, whereupon [Ca2+]cyt increased (50 to 750 nM) within 15 s. lEV release and cell entry of T. cruzi, which increased up to 30 and 60 mpi, respectively, as well as raised actin depolymerization at 60 mpi, were all reduced by TRPC inhibitor, GsMTx-4. Vesicle release and infection was also reduced with RGD peptide, methyl-β-cyclodextrin, knockdown of calpain and with the calpain inhibitor, calpeptin. Restoration of lEV levels, whether with lEVs from infected or uninfected epithelial cells, did not restore invasion, but supplementation with lEVs from infected monocytes, did. We provide evidence of THP-1 monocyte-derived lEV interaction with Mtr (lipid mixing by R18-dequenching; flow cytometry showing transfer to Mtr of R18 from R18-lEVs and of LAP(TGF-β1). Active, mature TGF-β1 (at 175 pg/×105 in THP-1 lEVs) was detected in concentrated lEV-/cell-free supernatant by western blotting, only after THP-1 lEVs had interacted with Mtr. The TGF-β1 receptor (TβRI) inhibitor, SB-431542, reduced the enhanced cellular invasion due to monocyte-lEVs.
Collapse
Affiliation(s)
- Ephraim A. Ansa‐Addo
- School of Human Sciences, Cell Communication in Disease PathologyLondon Metropolitan UniversityLondonUK
- Pelotonia Institute for Immuno‐Oncology, Department of Internal MedicineThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Paras Pathak
- School of Human Sciences, Cell Communication in Disease PathologyLondon Metropolitan UniversityLondonUK
- Medical Research Council HarwellHarwell Science and Innovation Campus, Genotyping CoreOxfordshireUK
| | | | - Izadora Volpato Rossi
- School of Human Sciences, Cell Communication in Disease PathologyLondon Metropolitan UniversityLondonUK
- School of Life and Medical Sciences, Biosciences Research GroupUniversity of HertfordshireHatfieldUK
- Carlos Chagas InstituteFundacao Oswaldo Cruz, (FIOCRUZ‐PR)CuritibaBrazil
- Postgraduate Program in Cellular and Molecular BiologyFederal University of ParanáCuritibaBrazil
| | - Mahamed Abdullahi
- School of Human Sciences, Cell Communication in Disease PathologyLondon Metropolitan UniversityLondonUK
- National Mycobacterium Reference Service‐South (NMRS‐South) ColindaleLondonUK
| | - Dan Stratton
- School of Life, Health & Chemical SciencesThe Open UniversityMilton KeynesUK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life SciencesUniversity of WestminsterLondonUK
- University College London, Institute of Women's HealthLondonUK
| | - Marcel I. Ramirez
- Carlos Chagas InstituteFundacao Oswaldo Cruz, (FIOCRUZ‐PR)CuritibaBrazil
| | - Jameel M. Inal
- School of Human Sciences, Cell Communication in Disease PathologyLondon Metropolitan UniversityLondonUK
- School of Life and Medical Sciences, Biosciences Research GroupUniversity of HertfordshireHatfieldUK
| |
Collapse
|
2
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ferreira AZL, de Araújo CN, Cardoso ICC, de Souza Mangabeira KS, Rocha AP, Charneau S, Santana JM, Motta FN, Bastos IMD. Metacyclogenesis as the Starting Point of Chagas Disease. Int J Mol Sci 2023; 25:117. [PMID: 38203289 PMCID: PMC10778605 DOI: 10.3390/ijms25010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024] Open
Abstract
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.
Collapse
Affiliation(s)
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Isabela Cunha Costa Cardoso
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Amanda Pereira Rocha
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
4
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Alvim JM, Venturini G, Oliveira TGM, Seidman JG, Seidman CE, Krieger JE, Pereira AC. mTOR signaling inhibition decreases lysosome migration and impairs the success of Trypanosoma cruzi infection and replication in cardiomyocytes. Acta Trop 2023; 240:106845. [PMID: 36709791 DOI: 10.1016/j.actatropica.2023.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi (T. cruzi) and, among all the chronic manifestations of the disease, Chronic Chagas Cardiomyopathy (CCC) is the most severe outcome. Despite high burden and public health importance in Latin America, there is a gap in understanding the molecular mechanisms that results in CCC development. Previous studies showed that T. cruzi uses the host machinery for infection and replication, including the repurposing of the responses to intracellular infection such as mitochondrial activity, vacuolar membrane, and lysosomal activation in benefit of parasite infection and replication. One common signaling upstream to many responses to parasite infection is mTOR pathway, previous associated to several downstream cellular mechanisms including autophagy, mitophagy and lysosomal activation. Here, using human iPSC derived cardiomyocytes (hiPSCCM), we show the mTOR pathway is activated in hiPSCCM after T. cruzi infection, and the inhibition of mTOR with rapamycin reduced number of T. cruzi 48 h post infection (hpi). Rapamycin treatment also reduced lysosome migration from nuclei region to cell periphery resulting in less T. cruzi inside the parasitophorous vacuole (PV) in the first hour of infection. In addition, the number of parasites leaving the PV to the cytoplasm to replicate in later times of infection was also lower after rapamycin treatment. Altogether, our data suggest that host's mTOR activation concomitant with parasite infection modulates lysosome migration and that T. cruzi uses this mechanism to achieve infection and replication. Modulating this mechanism with rapamycin impaired the success of T. cruzi life cycle independent of mitophagy.
Collapse
Affiliation(s)
- Juliana M Alvim
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil
| | - Gabriela Venturini
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Department of Genetics, Harvard Medical School, United States.
| | - Theo G M Oliveira
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Fundação Pró-Sangue Hemocentro de São Paulo, Brazil
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, United States; Brigham and Women's Hospital, Harvard Medical School, United States; Howard Hughes Medical Institute (HHMI), United States
| | - José E Krieger
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil
| | - Alexandre C Pereira
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Department of Genetics, Harvard Medical School, United States
| |
Collapse
|
6
|
Ferri G, Musikant D, Edreira MM. Host Cell Rap1b mediates cAMP-dependent invasion by Trypanosoma cruzi. PLoS Negl Trop Dis 2023; 17:e0011191. [PMID: 36897926 PMCID: PMC10032529 DOI: 10.1371/journal.pntd.0011191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/22/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Trypanosoma cruzi cAMP-mediated invasion has long been described, however, the detailed mechanism of action of the pathway activated by this cyclic nucleotide still remains unknown. We have recently demonstrated a crucial role for Epac in the cAMP-mediated invasion of the host cell. In this work, we gathered evidence indicating that the cAMP/Epac pathway is activated in different cells lines. In accordance, data collected from pull-down experiments designed to identify only the active form of Rap1b (Rap1b-GTP), and infection assays using cells transfected with a constitutively active mutant of Rap1b (Rap1b-G12V), strongly suggest the participation of Rap1b as mediator of the pathway. In addition to the activation of this small GTPase, fluorescence microscopy allowed us to demonstrate the relocalization of Rap1b to the entry site of the parasite. Moreover, phospho-mimetic and non-phosphorylable mutants of Rap1b were used to demonstrate a PKA-dependent antagonistic effect on the pathway, by phosphorylation of Rap1b, and potentially of Epac. Finally, Western Blot analysis was used to determine the involvement of the MEK/ERK signalling downstream of cAMP/Epac/Rap1b-mediated invasion.
Collapse
Affiliation(s)
- Gabriel Ferri
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
- Laboratorio de Biología Molecular de Trypanosomas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina
| | - Daniel Musikant
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
- Laboratorio de Biología Molecular de Trypanosomas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina
| | - Martin M Edreira
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
- Laboratorio de Biología Molecular de Trypanosomas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
7
|
De Alba-Alvarado MC, Torres-Gutiérrez E, Reynoso-Ducoing OA, Zenteno-Galindo E, Cabrera-Bravo M, Guevara-Gómez Y, Salazar-Schettino PM, Rivera-Fernández N, Bucio-Torres MI. Immunopathological Mechanisms Underlying Cardiac Damage in Chagas Disease. Pathogens 2023; 12:pathogens12020335. [PMID: 36839607 PMCID: PMC9959418 DOI: 10.3390/pathogens12020335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
In Chagas disease, the mechanisms involved in cardiac damage are an active field of study. The factors underlying the evolution of lesions following infection by Trypanosoma cruzi and, in some cases, the persistence of its antigens and the host response, with the ensuing development of clinically observable cardiac damage, are analyzed in this review.
Collapse
Affiliation(s)
- Mariana Citlalli De Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Elia Torres-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Olivia Alicia Reynoso-Ducoing
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Edgar Zenteno-Galindo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Yolanda Guevara-Gómez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
- Correspondence: (N.R.-F.); (M.I.B-T.)
| | - Martha Irene Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
- Correspondence: (N.R.-F.); (M.I.B-T.)
| |
Collapse
|
8
|
Macaluso G, Grippi F, Di Bella S, Blanda V, Gucciardi F, Torina A, Guercio A, Cannella V. A Review on the Immunological Response against Trypanosoma cruzi. Pathogens 2023; 12:282. [PMID: 36839554 PMCID: PMC9964664 DOI: 10.3390/pathogens12020282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Chagas disease is a chronic systemic infection transmitted by Trypanosoma cruzi. Its life cycle consists of different stages in vector insects and host mammals. Trypanosoma cruzi strains cause different clinical manifestations of Chagas disease alongside geographic differences in morbidity and mortality. Natural killer cells provide the cytokine interferon-gamma in the initial phases of T. cruzi infection. Phagocytes secrete cytokines that promote inflammation and activation of other cells involved in defence. Dendritic cells, monocytes and macrophages modulate the adaptive immune response, and B lymphocytes activate an effective humoral immune response to T. cruzi. This review focuses on the main immune mechanisms acting during T. cruzi infection, on the strategies activated by the pathogen against the host cells, on the processes involved in inflammasome and virulence factors and on the new strategies for preventing, controlling and treating this disease.
Collapse
Affiliation(s)
| | | | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | | | | | | | | |
Collapse
|
9
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
10
|
Lafon-Hughes L, Fernández Villamil SH, Vilchez Larrea SC. Tankyrase inhibitors hinder Trypanosoma cruzi infection by altering host-cell signalling pathways. Parasitology 2021; 148:1680-1690. [PMID: 35060470 PMCID: PMC11010053 DOI: 10.1017/s0031182021001402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/25/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
Chagas disease is a potentially life-threatening protozoan infection affecting around 8 million people, for which only chemotherapies with limited efficacy and severe adverse secondary effects are available. The aetiological agent, Trypanosoma cruzi, displays varied cell invading tactics and triggers different host cell signals, including the Wnt/β-catenin pathway. Poly(ADP-ribose) (PAR) can be synthetized by certain members of the poly(ADP-ribose) polymerase (PARP) family: PARP-1/-2 and Tankyrases-1/2 (TNKS). PAR homoeostasis participates in the host cell response to T. cruzi infection and TNKS are involved in Wnt signalling, among other pathways. Therefore, we hypothesized that TNKS inhibitors (TNKSi) could hamper T. cruzi infection. We showed that five TNKSi (FLALL9, MN64, XAV939, G007LK and OULL9) diminished T. cruzi infection of Vero cells. As most TNKSi did not affect the viability of axenically cultivated parasites, our results suggested that TNKSi were interfering with parasite–host cell signalling. Infection by T. cruzi induced nuclear translocation of β-catenin, as well as upregulation of TNF-α expression and secretion. These changes were hampered by TNKSi. Further signals should be monitored in this model and in vivo. As a TNKSi has entered cancer clinical trials with promising results, our findings encourage further studies aiming at drug repurposing strategies.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto, Uruguay
| | - Silvia H. Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ‘Dr. Héctor N. Torres’, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Salomé C. Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ‘Dr. Héctor N. Torres’, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Parasite-Mediated Remodeling of the Host Microfilament Cytoskeleton Enables Rapid Egress of Trypanosoma cruzi following Membrane Rupture. mBio 2021; 12:e0098821. [PMID: 34154418 PMCID: PMC8262949 DOI: 10.1128/mbio.00988-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chagas’ disease arises as a direct consequence of the lytic cycle of Trypanosoma cruzi in the mammalian host. While invasion is well studied for this pathogen, study of egress has been largely neglected. Here, we provide the first description of T. cruzi egress documenting a coordinated mechanism by which T. cruzi engineers its escape from host cells in which it has proliferated and which is essential for maintenance of infection and pathogenesis. Our results indicate that this parasite egress is a sudden event involving coordinated remodeling of host cell cytoskeleton and subsequent rupture of host cell plasma membrane. We document that host cells maintain plasma membrane integrity until immediately prior to parasite release and report the sequential transformation of the host cell’s actin cytoskeleton from normal meshwork in noninfected cells to spheroidal cages—a process initiated shortly after amastigogenesis. Quantification revealed gradual reduction in F-actin over the course of infection, and using cytoskeletal preparations and electron microscopy, we were able to observe disruption of the F-actin proximal to intracellular trypomastigotes. Finally, Western blotting experiments suggest actin degradation driven by parasite proteases, suggesting that degradation of cytoskeleton is a principal component controlling the initiation of egress. Our results provide the first description of the cellular mechanism that regulates the lytic component of the T. cruzi lytic cycle. We show graphically how it is possible to preserve the envelope of host cell plasma membrane during intracellular proliferation of the parasite and how, in cells packed with amastigotes, differentiation into trypomastigotes may trigger sudden egress.
Collapse
|
12
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
13
|
Onofre TS, Rodrigues JPF, Shio MT, Macedo S, Juliano MA, Yoshida N. Interaction of Trypanosoma cruzi Gp82 With Host Cell LAMP2 Induces Protein Kinase C Activation and Promotes Invasion. Front Cell Infect Microbiol 2021; 11:627888. [PMID: 33777840 PMCID: PMC7996063 DOI: 10.3389/fcimb.2021.627888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
The surface molecule gp82 of metacyclic trypomastigote (MT) forms of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, mediates the host cell invasion, a process critical for the establishment of infection. Gp82 is known to bind to the target cell in a receptor-dependent manner, triggering Ca2+ signal, actin cytoskeleton rearrangement and lysosome spreading. The host cell receptor for gp82 was recently identified as LAMP2, the major lysosome membrane-associated protein. To further clarify the mechanisms of MT invasion, we aimed in this study at identifying the LAMP2 domain that interacts with gp82 and investigated whether target cell PKC and ERK1/2, previously suggested to be implicated in MT invasion, are activated by gp82. Interaction of MT, or the recombinant gp82 (r-gp82), with human epithelial HeLa cells induced the activation of Ca2+-dependent PKC and ERK1/2. The LAMP2 sequence predicted to bind gp82 was mapped and the synthetic peptide based on that sequence inhibited MT invasion, impaired the binding of r-gp82 to HeLa cells, and blocked the PKC and ERK1/2 activation induced by r-gp82. Treatment of HeLa cells with specific inhibitor of focal adhesion kinase resulted in inhibition of r-gp82-induced PKC and ERK1/2 activation, as well as in alteration of the actin cytoskeleton architecture. PKC activation by r-gp82 was also impaired by treatment of HeLa cells with inhibitor of phospholipase C, which mediates the production of diacylglycerol, which activates PKC, and inositol 1,4,5-triphosphate that releases Ca2+ from intracellular stores. Taken together, our results indicate that recognition of MT gp82 by LAMP2 induces in the host cell the activation of phosholipase C, with generation of products that contribute for PKC activation and the downstream ERK1/2. This chain of events leads to the actin cytoskeleton disruption and lysosome spreading, promoting MT internalization.
Collapse
Affiliation(s)
- Thiago Souza Onofre
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Paulo Ferreira Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina Tiemi Shio
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silene Macedo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Nájera CA, Batista MF, Meneghelli I, Bahia D. Mixed signals - how Trypanosoma cruzi exploits host-cell communication and signaling to establish infection. J Cell Sci 2021; 134:134/5/jcs255687. [PMID: 33692153 DOI: 10.1242/jcs.255687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chagas disease (American trypanosomiasis) is a 'neglected' pathology that affects millions of people worldwide, mainly in Latin America. Trypanosoma cruzi, the causative agent, is an obligate intracellular parasite with a complex and diverse biology that infects several mammalian species, including humans. Because of genetic variability among strains and the presence of four biochemically and morphologically distinct parasite forms, the outcome of T. cruzi infection varies considerably depending on host cell type and parasite strain. During the initial contact, cellular communication is established by host-recognition-mediated responses, followed by parasite adherence and penetration. For this purpose, T. cruzi expresses a variety of proteins that modify the host cell, enabling it to safely reach the cytoplasm. After entry into the host cell, T. cruzi forms a transitory structure termed 'parasitophorous vacuole' (PV), followed by its cytoplasmic replication and differentiation after PV rupture, and subsequent invasion of other cells. The success of infection, maintenance and survival inside host cells is facilitated by the ability of T. cruzi to subvert various host signaling mechanisms. We focus in this Review on the various mechanisms that induce host cytoskeletal rearrangements, activation of autophagy-related proteins and crosstalk among major immune response regulators, as well as recent studies on the JAK-STAT pathway.
Collapse
Affiliation(s)
- Carlos Acides Nájera
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 486, Brazil
| | - Marina Ferreira Batista
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 486, Brazil
| | - Isabela Meneghelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 486, Brazil
| | - Diana Bahia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 486, Brazil
| |
Collapse
|
15
|
Ferri G, Edreira MM. All Roads Lead to Cytosol: Trypanosoma cruzi Multi-Strategic Approach to Invasion. Front Cell Infect Microbiol 2021; 11:634793. [PMID: 33747982 PMCID: PMC7973469 DOI: 10.3389/fcimb.2021.634793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
T. cruzi has a complex life cycle involving four developmental stages namely, epimastigotes, metacyclic trypomastigotes, amastigotes and bloodstream trypomastigotes. Although trypomastigotes are the infective forms, extracellular amastigotes have also shown the ability to invade host cells. Both stages can invade a broad spectrum of host tissues, in fact, almost any nucleated cell can be the target of infection. To add complexity, the parasite presents high genetic variability with differential characteristics such as infectivity. In this review, we address the several strategies T. cruzi has developed to subvert the host cell signaling machinery in order to gain access to the host cell cytoplasm. Special attention is made to the numerous parasite/host protein interactions and to the set of signaling cascades activated during the formation of a parasite-containing vesicle, the parasitophorous vacuole, from which the parasite escapes to the cytosol, where differentiation and replication take place.
Collapse
Affiliation(s)
- Gabriel Ferri
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
| | - Martin M Edreira
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina.,Laboratorio de Biología Molecular de Trypanosoma, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Libisch MG, Rego N, Robello C. Transcriptional Studies on Trypanosoma cruzi - Host Cell Interactions: A Complex Puzzle of Variables. Front Cell Infect Microbiol 2021; 11:692134. [PMID: 34222052 PMCID: PMC8248493 DOI: 10.3389/fcimb.2021.692134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
Chagas Disease, caused by the protozoan parasite Trypanosoma cruzi, affects nearly eight million people in the world. T. cruzi is a complex taxon represented by different strains with particular characteristics, and it has the ability to infect and interact with almost any nucleated cell. The T. cruzi-host cell interactions will trigger molecular signaling cascades in the host cell that will depend on the particular cell type and T. cruzi strain, and also on many different experimental variables. In this review we collect data from multiple transcriptomic and functional studies performed in different infection models, in order to highlight key differences between works that in our opinion should be addressed when comparing and discussing results. In particular, we focus on changes in the respiratory chain and oxidative phosphorylation of host cells in response to infection, which depends on the experimental model of T. cruzi infection. Finally, we also discuss host cell responses which reiterate independently of the strain, cell type and experimental conditions.
Collapse
Affiliation(s)
- María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Carlos Robello,
| |
Collapse
|
17
|
Salassa BN, Cueto JA, Gambarte Tudela J, Romano PS. Endocytic Rabs Are Recruited to the Trypanosoma cruzi Parasitophorous Vacuole and Contribute to the Process of Infection in Non-professional Phagocytic Cells. Front Cell Infect Microbiol 2020; 10:536985. [PMID: 33194787 PMCID: PMC7658340 DOI: 10.3389/fcimb.2020.536985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma cruzi is the parasite causative of Chagas disease, a highly disseminated illness endemic in Latin-American countries. T. cruzi has a complex life cycle that involves mammalian hosts and insect vectors both of which exhibits different parasitic forms. Trypomastigotes are the infective forms capable to invade several types of host cells from mammals. T. cruzi infection process comprises two sequential steps, the formation and the maturation of the Trypanosoma cruzi parasitophorous vacuole. Host Rab GTPases are proteins that control the intracellular vesicular traffic by regulating budding, transport, docking, and tethering of vesicles. From over 70 Rab GTPases identified in mammalian cells only two, Rab5 and Rab7 have been found in the T. cruzi vacuole to date. In this work, we have characterized the role of the endocytic, recycling, and secretory routes in the T. cruzi infection process in CHO cells, by studying the most representative Rabs of these pathways. We found that endocytic Rabs are selectively recruited to the vacuole of T. cruzi, among them Rab22a, Rab5, and Rab21 right away after the infection followed by Rab7 and Rab39a at later times. However, neither recycling nor secretory Rabs were present in the vacuole membrane at the times studied. Interestingly loss of function of endocytic Rabs by the use of their dominant-negative mutant forms significantly decreases T. cruzi infection. These data highlight the contribution of these proteins and the endosomal route in the process of T. cruzi infection.
Collapse
Affiliation(s)
- Betiana Nebaí Salassa
- Laboratorio de Biología de Trypanosoma cruzi la célula hospedadora, Instituto de Histología y Embriologìa, Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi la célula hospedadora, Instituto de Histología y Embriologìa, Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Julián Gambarte Tudela
- Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi la célula hospedadora, Instituto de Histología y Embriologìa, Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
18
|
Batista MF, Nájera CA, Meneghelli I, Bahia D. The Parasitic Intracellular Lifestyle of Trypanosomatids: Parasitophorous Vacuole Development and Survival. Front Cell Dev Biol 2020; 8:396. [PMID: 32587854 PMCID: PMC7297907 DOI: 10.3389/fcell.2020.00396] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
The trypanosomatid (protozoan) parasites Trypanosoma cruzi and Leishmania spp. are causative agents of Chagas disease and Leishmaniasis, respectively. They display high morphological plasticity, are capable of developing in both invertebrate and vertebrate hosts, and are the only trypanosomatids that can survive and multiply inside mammalian host cells. During internalization by host cells, these parasites are lodged in "parasitophorous vacuoles" (PVs) comprised of host cell endolysosomal system components. PVs effectively shelter parasites within the host cell. PV development and maturation (acidification, acquisition of membrane markers, and/or volumetric expansion) precede parasite escape from the vacuole and ultimately from the host cell, which are key determinants of infective burden and persistence. PV biogenesis varies, depending on trypanosomatid species, in terms of morphology (e.g., size), biochemical composition, and parasite-mediated processes that coopt host cell machinery. PVs play essential roles in the intracellular development (i.e., morphological differentiation and/or multiplication) of T. cruzi and Leishmania spp. They are of great research interest as potential gateways for drug delivery systems and other therapeutic strategies for suppression of parasite multiplication and control of the large spectrum of diseases caused by these trypanosomatids. This mini-review focuses on mechanisms of PV biogenesis, and processes whereby PVs of T. cruzi and Leishmania spp. promote parasite persistence within and dissemination among mammalian host cells.
Collapse
Affiliation(s)
| | | | | | - Diana Bahia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Human B cells infected by Trypanosoma cruzi undergo F-actin disruption and cell death via caspase-7 activation and cleavage of phospholipase Cγ1. Immunobiology 2020; 225:151904. [DOI: 10.1016/j.imbio.2020.151904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 02/08/2023]
|
20
|
Cronemberger-Andrade A, Xander P, Soares RP, Pessoa NL, Campos MA, Ellis CC, Grajeda B, Ofir-Birin Y, Almeida IC, Regev-Rudzki N, Torrecilhas AC. Trypanosoma cruzi-Infected Human Macrophages Shed Proinflammatory Extracellular Vesicles That Enhance Host-Cell Invasion via Toll-Like Receptor 2. Front Cell Infect Microbiol 2020; 10:99. [PMID: 32266161 PMCID: PMC7098991 DOI: 10.3389/fcimb.2020.00099] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) shed by trypomastigote forms of Trypanosoma cruzi have the ability to interact with host tissues, increase invasion, and modulate the host innate response. In this study, EVs shed from T. cruzi or T.cruzi-infected macrophages were investigated as immunomodulatory agents during the initial steps of infection. Initially, by scanning electron microscopy and nanoparticle tracking analysis, we determined that T. cruzi-infected macrophages release higher numbers of EVs (50-300 nm) as compared to non-infected cells. Using Toll-like-receptor 2 (TLR2)-transfected CHO cells, we observed that pre-incubation of these host cells with parasite-derived EVs led to an increase in the percentage of infected cells. In addition, EVs from parasite or T.cruzi-infected macrophages or not were able to elicit translocation of NF-κB by interacting with TLR2, and as a consequence, to alter the EVs the gene expression of proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and STAT-1 and STAT-3 signaling pathways. By proteomic analysis, we observed highly significant changes in the protein composition between non-infected and infected host cell-derived EVs. Thus, we observed the potential of EVs derived from T. cruzi during infection to maintain the inflammatory response in the host.
Collapse
Affiliation(s)
| | - Patrícia Xander
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | - Cameron C Ellis
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, United States
| | - Brian Grajeda
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, United States
| | - Yifat Ofir-Birin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Correia Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, United States
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
21
|
Shahiduzzaman M, Ras R, Widmer G. Effect of Ginsenoside-Rh2 and Curcurbitacin-B on Cryptosporidium parvum in vitro. Exp Parasitol 2020; 212:107873. [PMID: 32165146 DOI: 10.1016/j.exppara.2020.107873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/09/2022]
Abstract
Ginsenoside-Rh2 and cucurbitacin-B (CuB) are secondary metabolites of Ginseng (Panax ginseng) and Cucurbitaceae plants respectively. We assessed the anticryptosporidial activity of these two functional compounds in a cell culture model of cryptosporidiosis. The highest concentration of each compound that was not toxic to the host cells was used to assess the activity against C. parvum during infection/invasion and growth in HCT-8 cell monolayers. Monolayers were infected with pre-excysted C. parvum oocysts. Infected monolayers were incubated at 37 °C for 24 h and 48 h in the presence of different concentrations of each test compound. A growth resumption assay was performed by incubating infected monolayers in the presence of compounds for 24 h followed by a second 24-h incubation in the absence of compound. To screen for invasion inhibiting activity, freshly excysted C. parvum sporozoites were pre-treated with different concentrations of compounds prior to adding them to the cell monolayers. Paromomycin, a known inhibitor of C. parvum, and DMSO were used as positive and negative control, respectively. The level of infection was initially assessed using an immunofluorescent assay and quantified by real-time PCR. Both compounds were found to strongly inhibit C. parvum intracellular development in a dose-dependent manner. IC50 values of 25 μM for a 24 h development period and 5.52 μM after 48 h development were measured for Rh2, whereas for CuB an IC50 value of 0.169 μg/ml and 0.118 μg/ml were obtained for the same incubation periods. CuB also effectively inhibited resumption of growth, an activity that was not observed with Rh2. CuB was more effective at inhibiting excystation and/or host cell invasion, indicating that this compound also targets extracellular stages of the parasite.
Collapse
Affiliation(s)
- Md Shahiduzzaman
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA; Department of Parasitology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Refaat Ras
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA; Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| |
Collapse
|
22
|
Duque TL, Siqueira MS, Travassos LH, Moreira OC, Bozza PT, Melo RC, Henriques-Pons A, Menna-Barreto RF. The induction of host cell autophagy triggers defense mechanisms against Trypanosoma cruzi infection in vitro. Eur J Cell Biol 2020; 99:151060. [DOI: 10.1016/j.ejcb.2019.151060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 01/21/2023] Open
|
23
|
Trypanosoma cruzi extracellular amastigotes selectively trigger the PI3K/Akt and Erk pathways during HeLa cell invasion. Microbes Infect 2019; 21:485-489. [DOI: 10.1016/j.micinf.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 11/15/2022]
|
24
|
Mekonnen YA, Gültas M, Effa K, Hanotte O, Schmitt AO. Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Front Genet 2019; 10:1095. [PMID: 31803229 PMCID: PMC6872528 DOI: 10.3389/fgene.2019.01095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the health of livestock. Livestock production in Ethiopia is severely hampered by AAT and various controlling measures were not successful to eradicate the disease. AAT affects the indigenous breeds in varying degrees. However, the Sheko breed shows better trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to be associated with its taurine genetic background but the genetic controls of these tolerance attributes of Sheko are not well understood. In order to investigate the level of taurine background in the genome, we compare the genome of Sheko with that of 11 other African breeds. We find that Sheko has an admixed genome composed of taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) method to discover selective sweeps in the Sheko genome. We identify 99 genomic regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes are selected based on their biological importance described in the literature. We also identify 13 overrepresented pathways and 10 master regulators in Sheko using the TRANSPATH database in the geneXplain platform. Most of the pathways are related with oxidative stress responses indicating a possible selection response against the induction of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present for the first time the importance of master regulators involved in trypanotolerance not only for the Sheko breed but also in the context of cattle genomics. Our finding shows that the master regulator Caspase is a key protease which plays a major role for the emergence of adaptive immunity in harmony with the other master regulators. These results suggest that designing and implementing genetic intervention strategies is necessary to improve the performance of susceptible animals. Moreover, the master regulatory analysis suggests potential candidate therapeutic targets for the development of new drugs for trypanosomiasis treatment.
Collapse
Affiliation(s)
- Yonatan Ayalew Mekonnen
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - Kefena Effa
- Animal Biosciences, National Program Coordinator for African Dairy Genetic Gain, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms amd Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Armin O Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Phan TK, Bindra GK, Williams SA, Poon IK, Hulett MD. Combating Human Pathogens and Cancer by Targeting Phosphoinositides and Their Metabolism. Trends Pharmacol Sci 2019; 40:866-882. [DOI: 10.1016/j.tips.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
|
26
|
Andrade LO. Plasma membrane repair involvement in parasitic and other pathogen infections. CURRENT TOPICS IN MEMBRANES 2019; 84:217-238. [PMID: 31610864 DOI: 10.1016/bs.ctm.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular pathogens depend on specific mechanisms to be able to gain entry and survive into their host cells. For this, they subvert pathways involved in physiological cellular processes. Here we are going to focus on how two protozoan parasites, Trypanosoma cruzi and Leishmania sp, which may cause severe diseases in humans, use plasma membrane repair (PMR) mechanisms to gain entry in host intracellular environment. T. cruzi is the causative agent of Chagas disease, a disease originally endemic of central and South America, but that has become widespread around the globe. T. cruzi is able to invade any nucleated cell, but muscle cells are usually the main targets during chronic disease. During host cell contact, the parasite interacts with proteins at the host cell surface and may cause damage to their membrane, which has been shown to be responsible for inducing intracellular calcium increase and PMR-related events that culminate with parasite internalization. The same was recently observed for Leishmania sp, when infecting nonprofessional phagocytic cells, such as fibroblasts. Other pathogens, such as viruses or bacteria may also use PMR-related events for invasion and vacuole escape/maturation. In some cases, PMR may also be responsible to modulate pathogen intracellular development. These other PMR roles in pathogen infections will also be briefly discussed.
Collapse
Affiliation(s)
- Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
27
|
Rodrigues JPF, Souza Onofre T, Barbosa BC, Ferreira ÉR, Bonfim‐Melo A, Yoshida N. Host cell protein LAMP-2 is the receptor for Trypanosoma cruzi surface molecule gp82 that mediates invasion. Cell Microbiol 2019; 21:e13003. [PMID: 30609224 PMCID: PMC6590364 DOI: 10.1111/cmi.13003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 02/04/2023]
Abstract
Host cell invasion by Trypanosoma cruzi metacyclic trypomastigote (MT) is mediated by MT-specific surface molecule gp82, which binds to a still unidentified receptor, inducing lysosome spreading and exocytosis required for the parasitophorous vacuole formation. We examined the involvement of the major lysosome membrane-associated LAMP proteins in MT invasion. First, human epithelial HeLa cells were incubated with MT in the presence of antibody to LAMP-1 or LAMP-2. Antibody to LAMP-2, but not to LAMP-1, significantly reduced MT invasion. Next, HeLa cells depleted in LAMP-1 or LAMP-2 were generated. Cells deficient in LAMP-2, but not in LAMP-1, were significantly more resistant to MT invasion than wild-type controls. The possibility that LAMP-2 might be the receptor for gp82 was examined by co-immunoprecipitation assays. Protein A/G magnetic beads cross-linked with antibody directed to LAMP-1 or LAMP-2 were incubated with HeLa cell and MT detergent extracts. Gp82 bound to LAMP-2 but not to LAMP-1. Binding of the recombinant gp82 protein to wild-type and LAMP-1-deficient cells, which was dose dependent and saturable, had a similar profile and was much higher as compared with LAMP-2-depleted cells. These data indicate that MT invasion is accomplished through recognition of gp82 by its receptor LAMP-2.
Collapse
Affiliation(s)
- João Paulo Ferreira Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
| | - Thiago Souza Onofre
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
| | - Bruno Couto Barbosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
| | - Éden Ramalho Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
| | - Alexis Bonfim‐Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
| |
Collapse
|
28
|
3D reconstruction of Trypanosoma cruzi-macrophage interaction shows the recruitment of host cell organelles towards parasitophorous vacuoles during its biogenesis. J Struct Biol 2019; 205:133-146. [DOI: 10.1016/j.jsb.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
|
29
|
Abstract
Autophagy is a well-conserved process of self-digestion of intracellular components. T. cruzi is a protozoan parasite with a complex life-cycle that involves insect vectors and mammalian hosts. Like other eukaryotic organisms, T. cruzi possesses an autophagic pathway that is activated during metacyclogenesis, the process that generates the infective forms of parasites. In addition, it has been demonstrated that mammalian autophagy has a role during host cell invasion by T. cruzi, and that T. cruzi can modulate this process to its own benefit. This review describes the latest findings concerning the participation of autophagy in both the T. cruzi differentiation processes and during the interaction of parasites within the host cells. Data to date suggest parasite autophagy is important for parasite survival and differentiation, which offers interesting prospects for therapeutic strategies. Additionally, the interruption of mammalian autophagy reduces the parasite infectivity, interfering with the intracellular cycle of T. cruzi inside the host. However, the impact on other stages of development, such as the intracellular replication of parasites is still not clearly understood. Further studies in this matter are necessaries to define the integral effect of autophagy on T. cruzi infection with both in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Betiana Nebaí Salassa
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" CONICET , Universidad Nacional de Cuyo , Mendoza , Argentina.,b Facultad de Odontología , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - Patricia Silvia Romano
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" CONICET , Universidad Nacional de Cuyo , Mendoza , Argentina.,c Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| |
Collapse
|
30
|
Libisch MG, Faral-Tello P, Garg NJ, Radi R, Piacenza L, Robello C. Early Trypanosoma cruzi Infection Triggers mTORC1-Mediated Respiration Increase and Mitochondrial Biogenesis in Human Primary Cardiomyocytes. Front Microbiol 2018; 9:1889. [PMID: 30166980 PMCID: PMC6106620 DOI: 10.3389/fmicb.2018.01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Chagasic chronic cardiomyopathy is one of the most frequent and severe manifestations of Chagas disease, caused by the parasite Trypanosoma cruzi. The pathogenic and biochemical mechanisms responsible for cardiac lesions remain not completely understood, although it is clear that hypertrophy and subsequent heart dilatation is in part caused by the direct infection of cardiomyocytes. In this work, we evaluated the initial response of human cardiomyocytes to T. cruzi infection by transcriptomic profiling. Immediately after infection, cardiomyocytes dramatically change their gene expression patterns, up regulating most of the genes encoding for respiratory chain, oxidative phosphorylation and protein synthesis. We found that these changes correlate with an increase in basal and maximal respiration, as well as in spare respiratory capacity, which is accompanied by mitochondrial biogenesis pgc-1α independent. We also demonstrate that these changes are mediated by mTORC1 and reversed by rapamycin, resembling the molecular mechanisms described for the non-chagasic hypertrophic cardiomyopathy. The results of the present work identify that early during infection, the activation of mTORC1, mitochondrial biogenesis and improvement in oxidative phosphorylation are key biochemical changes that provide new insights into the host response to parasite infection and the pathogenesis of chronic chagasic cardiomyopathy. The finding that this phenotype can be reversed opens a new perspective in the treatment of Chagas disease, through the identification of host targets, and the use of combined parasite and host targeted therapies, in order to prevent chagasic cardiomyopathy.
Collapse
Affiliation(s)
- M Gabriela Libisch
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Faral-Tello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nisha J Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Intracellular development of Trypanosoma cruzi in the presence of metals. J Parasit Dis 2018; 42:372-381. [PMID: 30166784 DOI: 10.1007/s12639-018-1010-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Trypanosoma cruzi is transmitted to vertebrate hosts during the feeding of blood-sucking insects. After the invasion of host cells, the parasite resides within the parasitophorous vacuole until to escape to host cytoplasm and to proliferate, establishing an infection. Studies demonstrated that some intracellular parasites have to acquire all essential nutrients as well as transition metals from the host cell to be pathogenic, to maintain the homeostasis and to replicate. The present study investigated the progressive steps of the intracellular parasite development and establishment of infection in the presence of ZnCl2, CdCl2 and HgCl2. LLC-MK2 cells were infected with trypomastigotes during 6-84 h to investigate the steps of intracellular parasite development. After the host cells were infected during 12 h and treated with metals during 24 or 60 h or they were treated for 24 h and cultured for 72 h more to observe the reversibility. The results showed that the non-synchronous invasion of trypomastigotes resulted in an increasing number of intracellular parasites in intermediary forms (until 24 h post-infection), the appearance (from 36 h) and proliferation (84 h) of the amastigotes. The 24 h-treatments were not enough to impair parasite escape to the host cytoplasm and reproduction. However, 60 h of incubations led to a significant reduction in parasite numbers, as well as the reversibility assays. In conclusion, new insights about the intracellular T. cruzi development in the presence of metals were provided, and further studies should be performed to investigate the events involved in parasite death and elimination.
Collapse
|
32
|
Host triacylglycerols shape the lipidome of intracellular trypanosomes and modulate their growth. PLoS Pathog 2017; 13:e1006800. [PMID: 29281741 PMCID: PMC5760102 DOI: 10.1371/journal.ppat.1006800] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/09/2018] [Accepted: 12/08/2017] [Indexed: 01/12/2023] Open
Abstract
Intracellular infection and multi-organ colonization by the protozoan parasite, Trypanosoma cruzi, underlie the complex etiology of human Chagas disease. While T. cruzi can establish cytosolic residence in a broad range of mammalian cell types, the molecular mechanisms governing this process remain poorly understood. Despite the anticipated capacity for fatty acid synthesis in this parasite, recent observations suggest that intracellular T. cruzi amastigotes may rely on host fatty acid metabolism to support infection. To investigate this prediction, it was necessary to establish baseline lipidome information for the mammalian-infective stages of T. cruzi and their mammalian host cells. An unbiased, quantitative mass spectrometric analysis of lipid fractions was performed with the identification of 1079 lipids within 30 classes. From these profiles we deduced that T. cruzi amastigotes maintain an overall lipid identity that is distinguishable from mammalian host cells. A deeper analysis of the fatty acid moiety distributions within each lipid subclass facilitated the high confidence assignment of host- and parasite-like lipid signatures. This analysis unexpectedly revealed a strong host lipid signature in the parasite lipidome, most notably within its glycerolipid fraction. The near complete overlap of fatty acid moiety distributions observed for host and parasite triacylglycerols suggested that T. cruzi amastigotes acquired a significant portion of their lipidome from host triacylglycerol pools. Metabolic tracer studies confirmed long-chain fatty acid scavenging by intracellular T. cruzi amastigotes, a capacity that was significantly diminished in host cells deficient for de novo triacylglycerol synthesis via the diacylglycerol acyltransferases (DGAT1/2). Reduced T. cruzi amastigote proliferation in DGAT1/2-deficient fibroblasts further underscored the importance of parasite coupling to host triacylglycerol pools during the intracellular infection cycle. Thus, our comprehensive lipidomic dataset provides a substantially enhanced view of T. cruzi infection biology highlighting the interplay between host and parasite lipid metabolism with potential bearing on future therapeutic intervention strategies. The development of human Chagas disease is associated with persistent intracellular infection with the protozoan parasite, Trypanosoma cruzi, which displays tropism for tissues with characteristically high fatty acid flux, such as heart and adipose tissues. Previous studies have highlighted fatty acid metabolism as likely critical to support the growth and survival of this intracellular pathogen, however biochemical data supporting this prediction is currently lacking. Employing an untargeted lipid mass spectrometry approach, we defined the lipidome of intracellular T. cruzi parasites and their mammalian host cells. Comparative analyses revealed that the fatty acid signatures in the triacylglycerol (TG) pools were highly conserved between parasite and host, suggesting a major route of fatty acid acquisition by this pathogen via host TG. Metabolic tracer studies demonstrated intracellular parasite incorporation of exogenous palmitate into both neutral and phospholipid subclasses that was diminished in host cells deficient for TG synthesis. Moreover, parasites grown in these cells displayed reduced proliferation, demonstrating the importance of parasite coupling to host TG pools during the intracellular infection cycle.
Collapse
|
33
|
Lentini G, Dos Santos Pacheco N, Burleigh BA. Targeting host mitochondria: A role for the Trypanosoma cruzi amastigote flagellum. Cell Microbiol 2017; 20. [PMID: 29119655 DOI: 10.1111/cmi.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023]
Abstract
Trypanosoma cruzi is the kinetoplastid protozoan parasite that causes human Chagas disease, a chronic disease with complex outcomes including severe cardiomyopathy and sudden death. In mammalian hosts, T. cruzi colonises a wide range of tissues and cell types where it replicates within the host cell cytoplasm. Like all intracellular pathogens, T. cruzi amastigotes must interact with its immediate host cell environment in a manner that facilitates access to nutrients and promotes a suitable niche for replication and survival. Although potentially exploitable to devise strategies for pathogen control, fundamental knowledge of the host pathways co-opted by T. cruzi during infection is currently lacking. Here, we report that intracellular T. cruzi amastigotes establish close contact with host mitochondria via their single flagellum. Given the key bioenergetic and homeostatic roles of mitochondria, this striking finding suggests a functional role for host mitochondria in the infection process and points to the T. cruzi amastigote flagellum as an active participant in pathogenesis. Our study establishes the basis for future investigation of the molecular and functional consequences of this intriguing host-parasite interaction.
Collapse
Affiliation(s)
- Gaelle Lentini
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
34
|
da Silva AA, Teixeira TL, Teixeira SC, Machado FC, Dos Santos MA, Tomiosso TC, Tavares PCB, Brígido RTES, Martins FA, Silva NSDL, Rodrigues CC, Roque-Barreira MC, Mortara RA, Lopes DS, Ávila VDMR, da Silva CV. Galectin-3: A Friend but Not a Foe during Trypanosoma cruzi Experimental Infection. Front Cell Infect Microbiol 2017; 7:463. [PMID: 29164071 PMCID: PMC5675870 DOI: 10.3389/fcimb.2017.00463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023] Open
Abstract
Trypanosoma cruzi interacts with host cells, including cardiomyocytes, and induces the production of cytokines, chemokines, metalloproteinases, and glycan-binding proteins. Among the glycan-binding proteins is Galectin-3 (Gal-3), which is upregulated after T. cruzi infection. Gal-3 is a member of the lectin family with affinity for β-galactose containing molecules; it can be found in both the nucleus and the cytoplasm and can be either membrane-associated or secreted. This lectin is involved in several immunoregulatory and parasite infection process. Here, we explored the consequences of Gal-3 deficiency during acute and chronic T. cruzi experimental infection. Our results demonstrated that lack of Gal-3 enhanced in vitro replication of intracellular parasites, increased in vivo systemic parasitaemia, and reduced leukocyte recruitment. Moreover, we observed decreased secretion of pro-inflammatory cytokines in spleen and heart of infected Gal-3 knockout mice. Lack of Gal-3 also led to elevated mast cell recruitment and fibrosis of heart tissue. In conclusion, galectin-3 expression plays a pivotal role in controlling T. cruzi infection, preventing heart damage and fibrosis.
Collapse
Affiliation(s)
- Aline A da Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Thaise L Teixeira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Samuel C Teixeira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Fabrício C Machado
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marlus A Dos Santos
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Tatiana C Tomiosso
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paula C B Tavares
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rebecca T E Silva Brígido
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Flávia Alves Martins
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Nadjania S de Lira Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cassiano C Rodrigues
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Maria C Roque-Barreira
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daiana S Lopes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Claudio V da Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
35
|
Cueto JA, Vanrell MC, Salassa BN, Nola S, Galli T, Colombo MI, Romano PS. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development. Cell Microbiol 2017; 19. [PMID: 27992096 DOI: 10.1111/cmi.12713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023]
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development.
Collapse
Affiliation(s)
- Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" CCT CONICET Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" CCT CONICET Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" CCT CONICET Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Sébastien Nola
- Membrane Traffic in Health & Disease, INSERM ERL U950, Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, Paris, France
| | - Thierry Galli
- Membrane Traffic in Health & Disease, INSERM ERL U950, Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, Paris, France
| | - María Isabel Colombo
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" CCT CONICET Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" CCT CONICET Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| |
Collapse
|
36
|
Cooper C, Clode PL, Peacock C, Thompson RCA. Host-Parasite Relationships and Life Histories of Trypanosomes in Australia. ADVANCES IN PARASITOLOGY 2016; 97:47-109. [PMID: 28325373 DOI: 10.1016/bs.apar.2016.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosomes constitute a group of flagellate protozoan parasites responsible for a number of important, yet neglected, diseases in both humans and livestock. The most significantly studied include the causative agents of African sleeping sickness (Trypanosoma brucei) and Chagas disease (Trypanosoma cruzi) in humans. Much of our knowledge about trypanosome host-parasite relationships and life histories has come from these two human pathogens. Recent investigations into the diversity and life histories of wildlife trypanosomes in Australia highlight that there exists a great degree of biological and behavioural variation within and between trypanosomes. In addition, the genetic relationships between some Australian trypanosomes show that they are unexpectedly more closely related to species outside Australia than within it. These findings have led to a growing focus on the importance of understanding parasites occurring naturally in wildlife to (1) better document parasite biodiversity, (2) determine evolutionary relationships and degree of host specificity, (3) understand host-parasite interactions and the role of parasites in the natural ecosystem and (4) identify biosecurity issues of emerging disease in both wildlife and human populations. Here we review what is known about the diversity, life histories, host-parasite interactions and evolutionary relationships of trypanosomes in Australian wildlife. In this context, we focus upon the genetic proximity of key Australian species to the pathogenic T. cruzi and discuss similarities in their biology and behaviour that present a potential risk of human disease transmission by Australian vectors and wildlife.
Collapse
Affiliation(s)
- C Cooper
- The University of Western Australia, Crawley, WA, Australia
| | - P L Clode
- The University of Western Australia, Crawley, WA, Australia
| | - C Peacock
- The University of Western Australia, Crawley, WA, Australia; Telethon Kids Institute, Subiaco, WA, Australia
| | | |
Collapse
|
37
|
Cortez C, Real F, Yoshida N. Lysosome biogenesis/scattering increases host cell susceptibility to invasion by Trypanosoma cruzi metacyclic forms and resistance to tissue culture trypomastigotes. Cell Microbiol 2016; 18:748-60. [PMID: 26572924 PMCID: PMC5064668 DOI: 10.1111/cmi.12548] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 01/11/2023]
Abstract
A fundamental question to be clarified concerning the host cell invasion by Trypanosoma cruzi is whether the insect-borne and mammalian-stage parasites use similar mechanisms for invasion. To address that question, we analysed the cell invasion capacity of metacyclic trypomastigotes (MT) and tissue culture trypomastigotes (TCT) under diverse conditions. Incubation of parasites for 1 h with HeLa cells in nutrient-deprived medium, a condition that triggered lysosome biogenesis and scattering, increased MT invasion and reduced TCT entry into cells. Sucrose-induced lysosome biogenesis increased HeLa cell susceptibility to MT and resistance to TCT. Treatment of cells with rapamycin, which inhibits mammalian target of rapamycin (mTOR), induced perinuclear lysosome accumulation and reduced MT invasion while augmenting TCT invasion. Metacylic trypomastigotes, but not TCT, induced mTOR dephosphorylation and the nuclear translocation of transcription factor EB (TFEB), a mTOR-associated lysosome biogenesis regulator. Lysosome biogenesis/scattering was stimulated upon HeLa cell interaction with MT but not with TCT. Recently, internalized MT, but not TCT, were surrounded by colocalized lysosome marker LAMP2 and mTOR. The recombinant gp82 protein, the MT-specific surface molecule that mediates invasion, induced mTOR dephosphorylation, nuclear TFEB translocation and lysosome biogenesis/scattering. Taken together, our data clearly indicate that MT invasion is mainly lysosome-dependent, whereas TCT entry is predominantly lysosome-independent.
Collapse
Affiliation(s)
- Cristian Cortez
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo, 669-6° andar, 04039-032, São Paulo, SP, Brazil
| | - Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo, 669-6° andar, 04039-032, São Paulo, SP, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo, 669-6° andar, 04039-032, São Paulo, SP, Brazil
| |
Collapse
|
38
|
Watanabe Costa R, da Silveira JF, Bahia D. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways. Front Microbiol 2016; 7:388. [PMID: 27065960 PMCID: PMC4814445 DOI: 10.3389/fmicb.2016.00388] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6-7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion.
Collapse
Affiliation(s)
- Renata Watanabe Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jose F da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil
| |
Collapse
|
39
|
Cardoso MS, Reis-Cunha JL, Bartholomeu DC. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front Immunol 2016; 6:659. [PMID: 26834737 PMCID: PMC4716143 DOI: 10.3389/fimmu.2015.00659] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host's immune system, using strategies that can be traced to the parasite's life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi CD8(+) immune response focused on the parasite's immunodominant epitopes controls parasitemia and tissue infection, but fails to completely eliminate the parasite. This outcome is not detrimental to the parasite, as it reduces host mortality and maintains the parasite infectivity toward the insect vectors.
Collapse
Affiliation(s)
- Mariana S Cardoso
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| |
Collapse
|
40
|
Berenstein AJ, Magariños MP, Chernomoretz A, Agüero F. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases. PLoS Negl Trop Dis 2016; 10:e0004300. [PMID: 26735851 PMCID: PMC4703370 DOI: 10.1371/journal.pntd.0004300] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/21/2015] [Indexed: 12/16/2022] Open
Abstract
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature. Neglected tropical diseases are human infectious diseases that are often associated with poverty. Historically, lack of interest from the pharmaceutical industry resulted in the lack of good drugs to combat the majority of the pathogens that cause these diseases. Recently, the availability of open chemical information has increased with the advent of public domain chemical resources and the release of data from high throughput screening assays. Our aim in this work was to make use of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to prioritize and identify candidate drug targets in neglected pathogen proteomes, and drug-like bioactive molecules to foster drug development against neglected diseases. Our approach to the problem relied on applying bioinformatics and computational biology strategies to model large datasets spanning complete proteomes and extensive chemical information from publicly available sources. As a result, we were able to prioritize drug targets and identify potential targets for orphan bioactive drugs.
Collapse
Affiliation(s)
- Ariel José Berenstein
- Laboratorio de Bioinformática, Fundación Instituto Leloir, Buenos Aires, Argentina
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Paula Magariños
- Laboratorio de Genómica y Bioinformática, Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico de Chascomús, Universidad de San Martín–CONICET, Sede San Martín, San Martín, Buenos Aires, Argentina
| | - Ariel Chernomoretz
- Laboratorio de Bioinformática, Fundación Instituto Leloir, Buenos Aires, Argentina
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernán Agüero
- Laboratorio de Genómica y Bioinformática, Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico de Chascomús, Universidad de San Martín–CONICET, Sede San Martín, San Martín, Buenos Aires, Argentina
- * E-mail: ,
| |
Collapse
|
41
|
de Carvalho TMU, Barrias ES, de Souza W. Macropinocytosis: a pathway to protozoan infection. Front Physiol 2015; 6:106. [PMID: 25914647 PMCID: PMC4391238 DOI: 10.3389/fphys.2015.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Abstract
Among the various endocytic mechanisms in mammalian cells, macropinocytosis involves internalization of large amounts of plasma membrane together with extracellular medium, leading to macropinosome formation. These structures are formed when plasma membrane ruffles are assembled after actin filament rearrangement. In dendritic cells, macropinocytosis has been reported to play a role in antigen presentation. Several intracellular pathogens are internalized by host cells via multiple endocytic pathways and macropinocytosis has been described as an important entry site for various organisms. Some bacteria, such as Legionella pneumophila, as well as various viruses, use this pathway to penetrate and subvert host cells. Some protozoa, which are larger than bacteria and virus, can also use this pathway to invade host cells. As macropinocytosis is characterized by the formation of large uncoated vacuoles and is triggered by various signaling pathways, which is similar to what occurs during the formation of the majority of parasitophorous vacuoles, it is believed that this phenomenon may be more widely used by parasites than is currently appreciated. Here we review protozoa host cell invasion via macropinocytosis.
Collapse
Affiliation(s)
- Tecia M U de Carvalho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Bioimagens-CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Emile S Barrias
- Instituto Nacional de Metrologia, Qualidade e Tecnologia-Inmetro Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Bioimagens-CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Fernandes MC, Corrotte M, Miguel DC, Tam C, Andrews NW. The exocyst is required for trypanosome invasion and the repair of mechanical plasma membrane wounds. J Cell Sci 2014; 128:27-32. [PMID: 25380822 DOI: 10.1242/jcs.150573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The process of host cell invasion by Trypanosoma cruzi shares mechanistic elements with plasma membrane injury and repair. Both processes require Ca(2+)-triggered exocytosis of lysosomes, exocytosis of acid sphingomyelinase and formation of ceramide-enriched endocytic compartments. T. cruzi invades at peripheral sites, suggesting a need for spatial regulation of membrane traffic. Here, we show that Exo70 and Sec8 (also known as EXOC7 and EXOC4, respectively), components of the exocyst complex, accumulate in nascent T. cruzi vacuoles and at sites of mechanical wounding. Exo70 or Sec8 depletion inhibits T. cruzi invasion and Ca(2+)-dependent resealing of mechanical wounds, but does not affect the repair of smaller lesions caused by pore-forming toxins. Thus, T. cruzi invasion and mechanical lesion repair share a unique requirement for the exocyst, consistent with a dependence on targeted membrane delivery.
Collapse
Affiliation(s)
- Maria Cecilia Fernandes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| | - Matthias Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| | - Danilo C Miguel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| | - Christina Tam
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| |
Collapse
|
43
|
Thieleke-Matos C, da Silva ML, Cabrita-Santos L, Pires CF, Ramalho JS, Ikonomov O, Seixas E, Shisheva A, Seabra MC, Barral DC. Host PI(3,5)P2 activity is required for Plasmodium berghei growth during liver stage infection. Traffic 2014; 15:1066-82. [PMID: 24992508 DOI: 10.1111/tra.12190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 01/18/2023]
Abstract
Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5-kinase (PIKfyve) that converts phosphatidylinositol 3-phosphate [PI(3)P] into phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2 ] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non-pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2 -dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.
Collapse
Affiliation(s)
- Carolina Thieleke-Matos
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal; IGC, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
An historical perspective on how advances in microscopic imaging contributed to understanding the Leishmania Spp. and Trypanosoma cruzi host-parasite relationship. BIOMED RESEARCH INTERNATIONAL 2014; 2014:565291. [PMID: 24877115 PMCID: PMC4022312 DOI: 10.1155/2014/565291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/10/2014] [Indexed: 12/15/2022]
Abstract
The literature has identified complex aspects of intracellular host-parasite relationships, which require systematic, nonreductionist approaches and spatial/temporal information. Increasing and integrating temporal and spatial dimensions in host cell imaging have contributed to elucidating several conceptual gaps in the biology of intracellular parasites. To access and investigate complex and emergent dynamic events, it is mandatory to follow them in the context of living cells and organs, constructing scientific images with integrated high quality spatiotemporal data. This review discusses examples of how advances in microscopy have challenged established conceptual models of the intracellular life cycles of Leishmania spp. and Trypanosoma cruzi protozoan parasites.
Collapse
|
45
|
The involvement of FAK and Src in the invasion of cardiomyocytes by Trypanosoma cruzi. Exp Parasitol 2014; 139:49-57. [PMID: 24582948 DOI: 10.1016/j.exppara.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
The activation of signaling pathways involving protein tyrosine kinases (PTKs) has been demonstrated during Trypanosoma cruzi invasion. Herein, we describe the participation of FAK/Src in the invasion of cardiomyocytes by T. cruzi. The treatment of cardiomyocytes with genistein, a PTK inhibitor, significantly reduced T. cruzi invasion. Also, PP1, a potent Src-family protein inhibitor, and PF573228, a specific FAK inhibitor, also inhibited T. cruzi entry; maximal inhibition was achieved at concentrations of 25μM PP1 (53% inhibition) and 40μM PF573228 (50% inhibition). The suppression of FAK expression in siRNA-treated cells and tetracycline-uninduced Tet-FAK(WT)-46 cells significantly reduced T. cruzi invasion. The entry of T. cruzi is accompanied by changes in FAK and c-Src expression and phosphorylation. An enhancement of FAK activation occurs during the initial stages of T. cruzi-cardiomyocyte interaction (30 and 60min), with a concomitant increase in the level of c-Src expression and phosphorylation, suggesting that FAK/Src act as an integrated signaling pathway that coordinates parasite entry. These data provide novel insights into the signaling pathways that are involved in cardiomyocyte invasion by T. cruzi. A better understanding of the signal transduction networks involved in T. cruzi invasion may contribute to the development of more effective therapies for the treatment of Chagas' disease.
Collapse
|
46
|
Bastos IMD, Motta FN, Grellier P, Santana JM. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis. Curr Med Chem 2014; 20:3103-15. [PMID: 23514419 PMCID: PMC3778648 DOI: 10.2174/0929867311320250006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/16/2012] [Indexed: 11/22/2022]
Abstract
The trypanosomatids Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp. cause Chagas disease, leishmaniasis and human African trypanosomiasis, respectively. It is estimated that over 10 million people worldwide suffer from these neglected diseases, posing enormous social and economic problems in endemic areas. There are no vaccines to prevent these infections and chemotherapies are not adequate. This picture indicates that new chemotherapeutic agents must be developed to treat these illnesses. For this purpose, understanding the biology of the pathogenic trypanosomatid-host cell interface is fundamental for molecular and functional characterization of virulence factors that may be used as targets for the development of inhibitors to be used for effective chemotherapy. In this context, it is well known that proteases have crucial functions for both metabolism and infectivity of pathogens and are thus potential drug targets. In this regard, prolyl oligopeptidase and oligopeptidase B, both members of the S9 serine protease family, have been shown to play important roles in the interactions of pathogenic protozoa with their mammalian hosts and may thus be considered targets for drug design. This review aims to discuss structural and functional properties of these intriguing enzymes and their potential as targets for the development of drugs against Chagas disease, leishmaniasis and African trypanosomiasis.
Collapse
Affiliation(s)
- I M D Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | | | | |
Collapse
|
47
|
Abstract
Chagas heart disease, the leading cause of heart failure in Latin America, results from infection with the parasite Trypanosoma cruzi. Although T. cruzi disseminates intravascularly, how the parasite contends with the endothelial barrier to escape the bloodstream and infect tissues has not been described. Understanding the interaction between T. cruzi and the vascular endothelium, likely a key step in parasite dissemination, could inform future therapies to interrupt disease pathogenesis. We adapted systems useful in the study of leukocyte transmigration to investigate both the occurrence of parasite transmigration and its determinants in vitro. Here we provide the first evidence that T. cruzi can rapidly migrate across endothelial cells by a mechanism that is distinct from productive infection and does not disrupt monolayer integrity or alter permeability. Our results show that this process is facilitated by a known modulator of cellular infection and vascular permeability, bradykinin, and can be augmented by the chemokine CCL2. These represent novel findings in our understanding of parasite dissemination, and may help identify new therapeutic strategies to limit the dissemination of the parasite.
Collapse
|
48
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
49
|
Machado FC, Cruz L, da Silva AA, Cruz MC, Mortara RA, Roque-Barreira MC, da Silva CV. Recruitment of galectin-3 during cell invasion and intracellular trafficking of Trypanosoma cruzi extracellular amastigotes. Glycobiology 2013; 24:179-84. [DOI: 10.1093/glycob/cwt097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Hendricks MR, Bomberger JM. Who's really in control: microbial regulation of protein trafficking in the epithelium. Am J Physiol Cell Physiol 2013; 306:C187-97. [PMID: 24133062 DOI: 10.1152/ajpcell.00277.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to evolutionary pressure, there are many complex interactions at the interface between pathogens and eukaryotic host cells wherein host cells attempt to clear invading microorganisms and pathogens counter these mechanisms to colonize and invade host tissues. One striking observation from studies focused on this interface is that pathogens have multiple mechanisms to modulate and disrupt normal cellular physiology to establish replication niches and avoid clearance. The precision by which pathogens exert their effects on host cells makes them excellent tools to answer questions about cell physiology of eukaryotic cells. Furthermore, an understanding of these mechanisms at the host-pathogen interface will benefit our understanding of how pathogens cause disease. In this review, we describe a few examples of how pathogens disrupt normal cellular physiology and protein trafficking at epithelial cell barriers to underscore how pathogens modulate cellular processes to cause disease and how this knowledge has been utilized to learn about cellular physiology.
Collapse
Affiliation(s)
- Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|