1
|
Lolicato F, Steringer JP, Saleppico R, Beyer D, Fernandez-Sobaberas J, Unger S, Klein S, Riegerová P, Wegehingel S, Müller HM, Schmitt XJ, Kaptan S, Freund C, Hof M, Šachl R, Chlanda P, Vattulainen I, Nickel W. Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space. eLife 2024; 12:RP88579. [PMID: 38252473 PMCID: PMC10945597 DOI: 10.7554/elife.88579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergGermany
- Department of Physics, University of HelsinkiHelsinkiFinland
| | | | | | - Daniel Beyer
- Heidelberg University Biochemistry CenterHeidelbergGermany
| | | | | | - Steffen Klein
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | | | | | - Xiao J Schmitt
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Shreyas Kaptan
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | | | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergGermany
| |
Collapse
|
2
|
Lolicato F, Saleppico R, Griffo A, Meyer A, Scollo F, Pokrandt B, Müller HM, Ewers H, Hähl H, Fleury JB, Seemann R, Hof M, Brügger B, Jacobs K, Vattulainen I, Nickel W. Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. J Biophys Biochem Cytol 2022; 221:213511. [PMID: 36173379 PMCID: PMC9526255 DOI: 10.1083/jcb.202106123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Alessandra Griffo
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Annalena Meyer
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Federica Scollo
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Hähl
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Ralf Seemann
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
3
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
4
|
Unconventional secretion mediated by direct protein self-translocation across the plasma membranes of mammalian cells. Trends Biochem Sci 2022; 47:699-709. [PMID: 35490075 DOI: 10.1016/j.tibs.2022.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.
Collapse
|
5
|
Lolicato F, Nickel W. A Role for Liquid-Ordered Plasma Membrane Nanodomains Coordinating the Unconventional Secretory Pathway of Fibroblast Growth Factor 2? Front Cell Dev Biol 2022; 10:864257. [PMID: 35433697 PMCID: PMC9010882 DOI: 10.3389/fcell.2022.864257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a tumor cell survival factor that belongs to a subgroup of extracellular proteins lacking N-terminal signal peptides. Whereas this phenomenon was already recognized in the early 1990s, detailed insights into the molecular mechanisms underlying alternative pathways of protein secretion from eukaryotic cells were obtained only recently. Today, we know about a number of alternative secretory mechanisms, collectively termed unconventional protein secretion (UPS). FGF2 belongs to a subgroup of cargo proteins secreted by direct translocation across the plasma membrane. This feature has been classified as type I UPS and is shared with other unconventionally secreted proteins, such as HIV-Tat and Tau. FGF2 translocation across the membrane is initiated through sequential interactions with the Na,K-ATPase, Tec kinase, and phosphoinositide PI(4,5)P2 at the inner plasma membrane leaflet. Whereas the first two are auxiliary factors of this pathway, the interaction of FGF2 with PI(4,5)P2 triggers the core mechanism of FGF2 membrane translocation. It is based on a lipidic membrane pore that is formed by PI(4,5)P2-induced oligomerization of FGF2. Membrane-inserted FGF2 oligomers are recognized as translocation intermediates that are resolved at the outer plasma membrane leaflet by glypican-1, a heparan sulfate proteoglycan that captures and disassembles FGF2 oligomers on cell surfaces. Here, we discuss recent findings suggesting the molecular machinery mediating FGF2 membrane translocation to be highly organized in liquid-ordered plasma membrane nanodomains, the core process underlying this unusual pathway of protein secretion.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
6
|
Sparn C, Dimou E, Meyer A, Saleppico R, Wegehingel S, Gerstner M, Klaus S, Ewers H, Nickel W. Glypican-1 drives unconventional secretion of Fibroblast Growth Factor 2. eLife 2022; 11:75545. [PMID: 35348113 PMCID: PMC8986318 DOI: 10.7554/elife.75545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fibroblast Growth Factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse sub-classes consisting of syndecans, perlecans, glypicans and others, Glypican-1 (GPC1) is the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin
| | | |
Collapse
|
7
|
Pujals M, Resar L, Villanueva J. HMGA1, Moonlighting Protein Function, and Cellular Real Estate: Location, Location, Location! Biomolecules 2021; 11:1334. [PMID: 34572547 PMCID: PMC8468999 DOI: 10.3390/biom11091334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the High Mobility Group A1 (HMGA1) chromatin remodeling protein is upregulated in diverse cancers where high levels portend adverse clinical outcomes. Until recently, HMGA1 was assumed to be a nuclear protein exerting its role in cancer by transcriptionally modulating gene expression and downstream signaling pathways. However, the discovery of an extracellular HMGA1-RAGE autocrine loop in invasive triple-negative breast cancer (TNBC) cell lines implicates HMGA1 as a "moonlighting protein" with different functions depending upon cellular location. Here, we review the role of HMGA1, not only as a chromatin regulator in cancer and stem cells, but also as a potential secreted factor that drives tumor progression. Prior work found that HMGA1 is secreted from TNBC cell lines where it signals through the receptor for advanced glycation end products (RAGE) to foster phenotypes involved in tumor invasion and metastatic progression. Studies in primary TNBC tumors also suggest that HMGA1 secretion associates with distant metastasis in TNBC. Given the therapeutic potential to target extracellular proteins, further work to confirm this role in other contexts is warranted. Indeed, crosstalk between nuclear and secreted HMGA1 could change our understanding of tumor development and reveal novel therapeutic opportunities relevant to diverse human cancers overexpressing HMGA1.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
| | - Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Medicine (Hematology), Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology, Cellular and Molecular Medicine and Human Genetics Graduate Programs, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
8
|
Wang H, Zhang M, Ge L. Crosslinking and Mass Spectrometry to Identify Regulators in Unconventional Secretion. Trends Biochem Sci 2021; 46:701-702. [PMID: 33879368 DOI: 10.1016/j.tibs.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Haodong Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Vitale DL, Caon I, Parnigoni A, Sevic I, Spinelli FM, Icardi A, Passi A, Vigetti D, Alaniz L. Initial Identification of UDP-Glucose Dehydrogenase as a Prognostic Marker in Breast Cancer Patients, Which Facilitates Epirubicin Resistance and Regulates Hyaluronan Synthesis in MDA-MB-231 Cells. Biomolecules 2021; 11:biom11020246. [PMID: 33572239 PMCID: PMC7914570 DOI: 10.3390/biom11020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
UDP-glucose-dehydrogenase (UGDH) synthesizes UDP-glucuronic acid. It is involved in epirubicin detoxification and hyaluronan synthesis. This work aimed to evaluate the effect of UGDH knockdown on epirubicin response and hyaluronan metabolism in MDA-MB-231 breast cancer cells. Additionally, the aim was to determine UGDH as a possible prognosis marker in breast cancer. We studied UGDH expression in tumors and adjacent tissue from breast cancer patients. The prognostic value of UGDH was studied using a public Kaplan–Meier plotter. MDA-MB-231 cells were knocked-down for UGDH and treated with epirubicin. Epirubicin-accumulation and apoptosis were analyzed by flow cytometry. Hyaluronan-coated matrix and metabolism were determined. Autophagic-LC3-II was studied by Western blot and confocal microscopy. Epirubicin accumulation increased and apoptosis decreased during UGDH knockdown. Hyaluronan-coated matrix increased and a positive modulation of autophagy was detected. Higher levels of UGDH were correlated with worse prognosis in triple-negative breast cancer patients that received chemotherapy. High expression of UGDH was found in tumoral tissue from HER2--patients. However, UGDH knockdown contributes to epirubicin resistance, which might be associated with increases in the expression, deposition and catabolism of hyaluronan. The results obtained allowed us to propose UGDH as a new prognostic marker in breast cancer, positively associated with development of epirubicin resistance and modulation of extracellular matrix.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Ilaria Caon
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Arianna Parnigoni
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Fiorella M. Spinelli
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
- Correspondence: (D.V.); (L.A.); Tel.: + 39-332-307170 (D.V.); +54-236-4-407750 (ext. 11625) (L.A.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
- Correspondence: (D.V.); (L.A.); Tel.: + 39-332-307170 (D.V.); +54-236-4-407750 (ext. 11625) (L.A.)
| |
Collapse
|
10
|
Freiin von Hövel F, Kefalakes E, Grothe C. What Can We Learn from FGF-2 Isoform-Specific Mouse Mutants? Differential Insights into FGF-2 Physiology In Vivo. Int J Mol Sci 2020; 22:ijms22010390. [PMID: 33396566 PMCID: PMC7795026 DOI: 10.3390/ijms22010390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2), ubiquitously expressed in humans and mice, is functionally involved in cell growth, migration and maturation in vitro and in vivo. Based on the same mRNA, an 18-kilo Dalton (kDa) FGF-2 isoform named FGF-2 low molecular weight (FGF-2LMW) isoform is translated in humans and rodents. Additionally, two larger isoforms weighing 21 and 22 kDa also exist, summarized as the FGF-2 high molecular weight (FGF-2HMW) isoform. Meanwhile, the human FGF-2HMW comprises a 22, 23, 24 and 34 kDa protein. Independent studies verified a specific intracellular localization, mode of action and tissue-specific spatiotemporal expression of the FGF-2 isoforms, increasing the complexity of their physiological and pathophysiological roles. In order to analyze their spectrum of effects, FGF-2LMW knock out (ko) and FGF-2HMWko mice have been generated, as well as mice specifically overexpressing either FGF-2LMW or FGF-2HMW. So far, the development and functionality of the cardiovascular system, bone formation and regeneration as well as their impact on the central nervous system including disease models of neurodegeneration, have been examined. This review provides a summary of the studies characterizing the in vivo effects modulated by the FGF-2 isoforms and, thus, offers a comprehensive overview of its actions in the aforementioned organ systems.
Collapse
Affiliation(s)
- Friederike Freiin von Hövel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany;
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
| | - Ekaterini Kefalakes
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
| | - Claudia Grothe
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-532-2897; Fax: +49-511-532-2880
| |
Collapse
|
11
|
Pallotta MT, Nickel W. FGF2 and IL-1β – explorers of unconventional secretory pathways at a glance. J Cell Sci 2020; 133:133/21/jcs250449. [DOI: 10.1242/jcs.250449] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT
Fibroblast growth factor 2 (FGF2) and interleukin 1β (IL-1β) were among the earliest examples of a subclass of proteins with extracellular functions that were found to lack N-terminal secretory signal peptides and were shown to be secreted in an ER- and Golgi-independent manner. Many years later, a number of alternative secretory pathways have been discovered, processes collectively termed unconventional protein secretion (UPS). In the course of these studies, unconventional secretion of FGF2 and IL-1β were found to be based upon distinct pathways, mechanisms and molecular machineries. Following a concise introduction into various pathways mediating unconventional secretion and transcellular spreading of proteins, this Cell Science at a Glance poster article aims at a focused analysis of recent key discoveries providing unprecedented detail about the molecular mechanisms and machineries driving FGF2 and IL-1β secretion. These findings are also highly relevant for other unconventionally secreted cargoes that, like FGF2 and IL1β, exert fundamental biological functions in biomedically relevant processes, such as tumor-induced angiogenesis and inflammation.
Collapse
Affiliation(s)
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg 69120, Germany
| |
Collapse
|
12
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
13
|
Zhang M, Liu L, Lin X, Wang Y, Li Y, Guo Q, Li S, Sun Y, Tao X, Zhang D, Lv X, Zheng L, Ge L. A Translocation Pathway for Vesicle-Mediated Unconventional Protein Secretion. Cell 2020; 181:637-652.e15. [PMID: 32272059 DOI: 10.1016/j.cell.2020.03.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qing Guo
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxin Sun
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuan Tao
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiachen Lv
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zheng
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Legrand C, Saleppico R, Sticht J, Lolicato F, Müller HM, Wegehingel S, Dimou E, Steringer JP, Ewers H, Vattulainen I, Freund C, Nickel W. The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P 2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol 2020; 3:141. [PMID: 32214225 PMCID: PMC7096399 DOI: 10.1038/s42003-020-0871-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
FGF2 is a tumor cell survival factor that is exported from cells by an ER/Golgi-independent secretory pathway. This unconventional mechanism of protein secretion is based on direct translocation of FGF2 across the plasma membrane. The Na,K-ATPase has previously been shown to play a role in this process, however, the underlying mechanism has remained elusive. Here, we define structural elements that are critical for a direct physical interaction between FGF2 and the α1 subunit of the Na,K-ATPase. In intact cells, corresponding FGF2 mutant forms were impaired regarding both recruitment at the inner plasma membrane leaflet and secretion. Ouabain, a drug that inhibits both the Na,K-ATPase and FGF2 secretion, was found to impair the interaction of FGF2 with the Na,K-ATPase in cells. Our findings reveal the Na,K-ATPase as the initial recruitment factor for FGF2 at the inner plasma membrane leaflet being required for efficient membrane translocation of FGF2 to cell surfaces. Legrand et al. identify two lysine residues on molecular surface of Fibroblast Growth Factor 2 (FGF2) essential for its interaction with α1 subunit of the Na,K-ATPase. They further conclude that this interaction precedes interaction of the FGF2 with PI(4,5)P2 and facilitates its unconventional secretion across the membrane, which is impaired by Ouabain, an Na,K-ATPase inhibitor.
Collapse
Affiliation(s)
- Cyril Legrand
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Roberto Saleppico
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Jana Sticht
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.,Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.,Department of Physics, University of Helsinki, FL-00014, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Fl-33100, Tampere, Finland
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Sabine Wegehingel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Eleni Dimou
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FL-00014, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Fl-33100, Tampere, Finland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
ATP Binding Cassette Transporter A1 is Involved in Extracellular Secretion of Acetylated APE1/Ref-1. Int J Mol Sci 2019; 20:ijms20133178. [PMID: 31261750 PMCID: PMC6651529 DOI: 10.3390/ijms20133178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation of nuclear apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is associated with its extracellular secretion, despite the lack of an N-terminal protein secretion signal. In this study, we investigated plasma membrane targeting and translocation of APE1/Ref-1 in HEK293T cells with enhanced acetylation. While APE1/Ref-1 targeting was not affected by inhibition of the endoplasmic reticulum/Golgi-dependent secretion, its secretion was reduced by inhibitors of ATP-binding cassette (ABC) transporters, and siRNA-mediated down-regulation of ABC transporter A1. The association between APE1/Ref-1 and ABCA1 transporter was confirmed by proximal ligation assay and immunoprecipitation experiments. An APE1/Ref-1 construct with mutated acetylation sites (K6/K7R) showed reduced co-localization with ABC transporter A1. Exposure of trichostatin A (TSA) induced the acetylation of APE1/Ref-1, which translocated into membrane fraction. Taken together, acetylation of APE1/Ref-1 is considered to be necessary for its extracellular targeting via non-classical secretory pathway using the ABCA1 transporter.
Collapse
|
16
|
Vitale DL, Spinelli FM, Del Dago D, Icardi A, Demarchi G, Caon I, García M, Bolontrade MF, Passi A, Cristina C, Alaniz L. Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression. Oncotarget 2018; 9:36585-36602. [PMID: 30564299 PMCID: PMC6290962 DOI: 10.18632/oncotarget.26379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan, the main glycosaminoglycan of extracellular matrices, is concentrated in tissues with high cell proliferation and migration rates. In cancer, hyaluronan expression is altered and it becomes fragmented into low-molecular-weight forms, affecting mechanisms associated with cell proliferation, invasion, angiogenesis and multidrug resistance. Here, we analyzed the effect of low-molecular-weight hyaluronan on the response of T lymphoma, osteosarcoma, and mammary adenocarcinoma cell lines to the antineoplastic drug doxorubicin, and whether co-treatment with hyaluronan and doxorubicin modified the behavior of endothelial cells. Our aim was to associate the hyaluronan-doxorubicin response with angiogenic alterations in these tumors. After hyaluronan and doxorubicin co-treatment, hyaluronan altered drug accumulation and modulated the expression of ATP-binding cassette transporters in T-cell lymphoma cells. In contrast, no changes in drug accumulation were observed in cells from solid tumors, indicating that hyaluronan might not affect drug efflux. However, when we evaluated the effect on angiogenic mechanisms, the supernatant from tumor cells treated with doxorubicin exhibited a pro-angiogenic effect on endothelial cells. Hyaluronan-doxorubicin co-treatment increased migration and vessel formation in endothelial cells. This effect was independent of vascular endothelial growth factor but related to fibroblast growth factor-2 expression. Besides, we observed a pro-angiogenic effect on endothelial cells during hyaluronan and doxorubicin co-treatment in the in vivo murine model of T-cell lymphoma. Our results demonstrate for the first time that hyaluronan is a potential modulator of doxorubicin response by mechanisms that involve not only drug efflux but also angiogenic processes, providing an adverse tumor stroma during chemotherapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Daiana Del Dago
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Gianina Demarchi
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Ilaria Caon
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Mariana García
- Laboratorio de Terapia Génica, IIMT-CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcela F Bolontrade
- Laboratorio de Células Madre-Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Carolina Cristina
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| |
Collapse
|
17
|
Lee J, Ye Y. The Roles of Endo-Lysosomes in Unconventional Protein Secretion. Cells 2018; 7:cells7110198. [PMID: 30400277 PMCID: PMC6262434 DOI: 10.3390/cells7110198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Protein secretion in general depends on signal sequence (also named leader sequence), a hydrophobic segment located at or close to the NH2-terminus of a secretory or membrane protein. This sequence guides the entry of nascent polypeptides into the lumen or membranes of the endoplasmic reticulum (ER) for folding, assembly, and export. However, evidence accumulated in recent years has suggested the existence of a collection of unconventional protein secretion (UPS) mechanisms that are independent of the canonical vesicular trafficking route between the ER and the plasma membrane (PM). These UPS mechanisms export soluble proteins bearing no signal sequence. The list of UPS cargos is rapidly expanding, along with the implicated biological functions, but molecular mechanisms accountable for the secretion of leaderless proteins are still poorly defined. This review summarizes our current understanding of UPS mechanisms with an emphasis on the emerging role of endo-lysosomes in this process.
Collapse
Affiliation(s)
- Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Kolarova M, Sengupta U, Bartos A, Ricny J, Kayed R. Tau Oligomers in Sera of Patients with Alzheimer's Disease and Aged Controls. J Alzheimers Dis 2018; 58:471-478. [PMID: 28453485 DOI: 10.3233/jad-170048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although tau protein was long regarded as an intracellular protein with several functions inside the cell, new evidence has shown tau secretion into the extracellular space. The active secretion of tau could be a physiological response of neurons to increased intracellular amounts of tau during the progression of tau pathology. We looked for potential differences in the serum levels of toxic tau oligomers in regards to cognitive impairment of subjects. We detected tau oligomers in the serum of Alzheimer's disease (AD) patients, but they were also present to some extent in the serum of healthy older subjects where the levels positively correlated with aging (Spearman r = 0.26, p = 0.016). On the contrary, we found lower levels of tau oligomers in the serum of mild cognitive impairment (MCI) (p = 0.033) and MCI-AD (p = 0.006) patients. These results could suggest that clearance of extracellular tau proteins takes place, in part, in the periphery. In the case of MCI patients, the lower levels of tau oligomers could be the result of impaired clearance of tau protein from interstitium to blood and consequent accumulation of tau aggregates in the brain.
Collapse
Affiliation(s)
- Michala Kolarova
- National Institute of Mental Health, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.,Department of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ales Bartos
- National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Ricny
- National Institute of Mental Health, Klecany, Czech Republic
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.,Department of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
Steringer JP, Nickel W. A direct gateway into the extracellular space: Unconventional secretion of FGF2 through self-sustained plasma membrane pores. Semin Cell Dev Biol 2018; 83:3-7. [PMID: 29458182 DOI: 10.1016/j.semcdb.2018.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
Abstract
As illustrated by a diverse set of examples in this special issue, multiple mechanisms of protein secretion have been identified in eukaryotes that do not involve the endoplasmic reticulum (ER) and the Golgi apparatus. Here we focus on the type I pathway with Fibroblast Growth Factor 2 (FGF2) being the most prominent example. Unconventional secretion of FGF2 from cells is mediated by direct protein translocation across the plasma membrane. A unique feature of this process is the ability of FGF2 to form its own membrane translocation intermediate through oligomerization and membrane insertion. This process depends on the phosphoinositide PI(4,5)P2 at the inner leaflet and results in the formation of lipidic membrane pores in the plasma membrane. Various lines of evidence suggest that these pores are characterized by a toroidal architecture with FGF2 oligomers being accommodated in the center of these structures. At the outer leaflet of the plasma membrane, membrane proximal heparan sulfate proteoglycans are required for the final step of FGF2 translocation into the extracellular space. Based upon mutually exclusive interactions of FGF2 with PI(4,5)P2 versus heparan sulfates, an assembly/disassembly pathway has been proposed to be the underlying principle of directional transport of FGF2 across the plasma membrane. Thus, the core mechanism of unconventional secretion of FGF2 is based upon three discrete steps with (i) PI(4,5)P2 dependent oligomerization of FGF2 at the inner leaflet, (ii) insertion of membrane spanning FGF2 oligomers into the plasma membrane and (iii) disassembly at the outer leaflet mediated by heparan sulfates that subsequently retain FGF2 on cell surfaces. This process has recently been reconstituted with an inside-out membrane model system using giant unilamellar vesicles providing a compelling explanation of how FGF2 reaches the extracellular space in an ER/Golgi independent manner. This review is part of a Special Issue of SCDB on "unconventional protein secretion" edited by Walter Nickel and Catherine Rabouille.
Collapse
Affiliation(s)
- Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Park S, Arrell DK, Reyes S, Park EY, Terzic A. Conventional and unconventional secretory proteins expressed with silkworm bombyxin signal peptide display functional fidelity. Sci Rep 2017; 7:14499. [PMID: 29101331 PMCID: PMC5670176 DOI: 10.1038/s41598-017-14833-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/18/2017] [Indexed: 11/10/2022] Open
Abstract
Growth factors are signaling molecules which orchestrate cell growth, proliferation and differentiation. The majority are secreted proteins, exported through the classical endoplasmic reticulum (ER)/Golgi-dependent pathway, but a few are released by unconventional ER/Golgi-independent means. Human fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1), are canonical prototypes secreted by the unconventional and conventional pathway, respectively. We herein examined whether expression of these two growth factors in the Bombyx mori nucleopolyhedrovirus (BmNPV)-based silkworm expression system with its innate signal peptide, bombyxin, secures structural homogeneity at the signal peptide cleavage site regardless of the native secretory route. Proteomic analysis mapped structural microheterogeneity of signal peptide cleavage at the amino terminus of FGF2, whereas IGF1 displayed homogeneous amino-terminal cleavage with complete removal of the bombyxin signal peptide. A cell proliferation assay revealed potent functional activity of both FGF2 and IGF1, suggesting that FGF2 amino-terminal microheterogeneity does not alter mitogenic activity. These findings demonstrate that the occurrence of amino-terminal structural homogeneity may be associated with the original secretion mechanism of a particular growth factor. Furthermore, our results highlight the bombyxin signal peptide as a reliable secretion sequence applicable to mass production of functionally active secretory proteins in a silkworm-based expression platform.
Collapse
Affiliation(s)
- Sungjo Park
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Marriott Heart Disease Research Program, Departments of Cardiovascular Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - D Kent Arrell
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Marriott Heart Disease Research Program, Departments of Cardiovascular Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Santiago Reyes
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Marriott Heart Disease Research Program, Departments of Cardiovascular Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Enoch Y Park
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA. .,Marriott Heart Disease Research Program, Departments of Cardiovascular Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
21
|
Steringer JP, Nickel W. The molecular mechanism underlying unconventional secretion of Fibroblast Growth Factor 2 from tumour cells. Biol Cell 2017; 109:375-380. [PMID: 28799166 DOI: 10.1111/boc.201700036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
Fibroblast Growth Factor 2 (FGF2) is a potent cell survival factor involved in tumour-induced angiogenesis. FGF2 is secreted from cells through an unconventional secretory mechanism based upon direct translocation across the plasma membrane. The molecular mechanism underlying this process depends on a surprisingly small set of trans-acting factors that are physically associated with the plasma membrane. FGF2 membrane translocation is mediated by the ability of FGF2 to oligomerise and to insert into the plasma membrane in a PI(4,5)P2 -dependent manner. Membrane-inserted FGF2 oligomers are dynamic translocation intermediates that are disassembled at the extracellular leaflet mediated by membrane proximal heparan sulphate proteoglycans. This process results in the exposure of FGF2 on cell surfaces as part of its unconventional mechanism of secretion. Although the trans-acting factors and cis-elements in FGF2 required for unconventional secretion have been known for a while, the core mechanism of this mysterious process has now been reconstituted with purified components establishing the molecular basis of FGF2 secretion from tumour cells.
Collapse
Affiliation(s)
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
22
|
Brough D, Pelegrin P, Nickel W. An emerging case for membrane pore formation as a common mechanism for the unconventional secretion of FGF2 and IL-1β. J Cell Sci 2017; 130:3197-3202. [PMID: 28871048 DOI: 10.1242/jcs.204206] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular proteins with important signalling roles in processes, such as inflammation and angiogenesis, are known to employ unconventional routes of protein secretion. Although mechanisms of unconventional protein secretion are beginning to emerge, the precise molecular details have remained elusive for the majority of cargo proteins secreted by unconventional means. Recent findings suggest that for two examples of unconventionally secreted proteins, interleukin 1β (IL-1β) and fibroblast growth factor 2 (FGF2), the common molecular principle of pore formation may be shared. Under specific experimental conditions, secretion of IL-1β and FGF2 is triggered by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]-dependent formation of pores across the plasma membrane. However, the underlying mechanisms are different, with FGF2 known to directly interact with PI(4,5)P2, whereas in the case of IL-1β secretion, it is proposed that the N-terminal fragment of gasdermin D interacts with PI(4,5)P2 to form the pore. Thus, although implemented in different ways, these findings suggest that pore formation may be shared by the unconventional secretion mechanisms for FGF2 and IL-1β in at least some cases. In this Opinion article, we discuss the unconventional mechanisms of FGF2 and IL-1β release with a particular emphasis on recent discoveries suggesting the importance of pore formation on the plasma membrane.
Collapse
Affiliation(s)
- David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Pablo Pelegrin
- Grupo de Inflamación Molecular, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Vanova T, Konecna Z, Zbonakova Z, La Venuta G, Zoufalova K, Jelinkova S, Varecha M, Rotrekl V, Krejci P, Nickel W, Dvorak P, Kunova Bosakova M. Tyrosine Kinase Expressed in Hepatocellular Carcinoma, TEC, Controls Pluripotency and Early Cell Fate Decisions of Human Pluripotent Stem Cells via Regulation of Fibroblast Growth Factor-2 Secretion. Stem Cells 2017. [PMID: 28631381 DOI: 10.1002/stem.2660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC-mediated FGF2 secretion is essential for hPSC self-renewal, and its lack mediates specific differentiation. Following both short hairpin RNA- and small interfering RNA-mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2-mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050-2059.
Collapse
Affiliation(s)
- Tereza Vanova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zaneta Konecna
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Zbonakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Karolina Zoufalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Walter Nickel
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | |
Collapse
|
24
|
Lynes MA, Zaffuto K, Unfricht DW, Marusov G, Samson JS, Yin X. The Physiological Roles of Extracellular Metallothionein. Exp Biol Med (Maywood) 2016; 231:1548-54. [PMID: 17018879 DOI: 10.1177/153537020623100915] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metallothionein (MT) is a low-molecular-weight protein with a number of roles to play in cellular homeostasis. MT is synthesized as a consequence of a variety of cellular stressors, and has been found in both intracellular compartments and in extracellular spaces. The intracellular pool of this cysteine-rich protein can act as a reservoir of essential heavy metals, as a scavenger of reactive oxygen and nitrogen species, as an antagonist of toxic metals and organic molecules, and as a regulator of transcription factor activity. The presence of MT outside of cells due to the Influence of stressors suggests that this protein may make important contributions as a “danger signal” that influences the management of responses to cellular damage. While conventional wisdom has held that extracellular MT is the result of cell death or leakage from stressed cells, there are numerous examples of selective release of proteins by nontraditional mechanisms, including stress response proteins. This suggests that MT may similarly be selectively released, and that the pool of extracellular MT represents an important regulator of various cellular functions. For example, extracellular MT has effects both on the severity of autoimmune disease, and on the development of adaptive immune functions. Extracellular MT may operate as a chemotactic factor that governs the trafficking of inflammatory cells that move to resolve damaged tissues, as a counter to extracellular oxidant-mediated damage, and as a signal that influences the functional behavior of wounded cells. A thorough understanding of the mechanisms of MT release from cells, the conditions under which MT is released to the extracellular environment, and the ways in which MT Interacts with sensitive cells may both illuminate our understanding of an important control mechanism that operates in stressful conditions, and should indicate new opportunities for therapeutic management via the manipulation of this pool of extracellular MT.
Collapse
Affiliation(s)
- Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA.
| | | | | | | | | | | |
Collapse
|
25
|
La Venuta G, Wegehingel S, Sehr P, Müller HM, Dimou E, Steringer JP, Grotwinkel M, Hentze N, Mayer MP, Will DW, Uhrig U, Lewis JD, Nickel W. Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2. J Biol Chem 2016; 291:17787-803. [PMID: 27382052 DOI: 10.1074/jbc.m116.729384] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis.
Collapse
Affiliation(s)
- Giuseppe La Venuta
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Wegehingel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Peter Sehr
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Hans-Michael Müller
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Eleni Dimou
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Julia P Steringer
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mareike Grotwinkel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Nikolai Hentze
- the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias P Mayer
- the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - David W Will
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Ulrike Uhrig
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Joe D Lewis
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany,
| |
Collapse
|
26
|
Prudovsky I, Kacer D, Davis J, Shah V, Jayanthi S, Huber I, Dakshinamurthy R, Ganter O, Soldi R, Neivandt D, Guvench O, Suresh Kumar TK. Folding of Fibroblast Growth Factor 1 Is Critical for Its Nonclassical Release. Biochemistry 2016; 55:1159-67. [PMID: 26836284 DOI: 10.1021/acs.biochem.5b01341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fibroblast growth factor 1 (FGF1), a ubiquitously expressed pro-angiogenic protein that is involved in tissue repair, carcinogenesis, and maintenance of vasculature stability, is released from the cells via a stress-dependent nonclassical secretory pathway. FGF1 secretion is a result of transmembrane translocation of this protein. It correlates with the ability of FGF1 to permeabilize membranes composed of acidic phospholipids. Like several other nonclassically exported proteins, FGF1 exhibits β-barrel folding. To assess the role of folding of FGF1 in its secretion, we applied targeted mutagenesis in combination with a complex of biophysical methods and molecular dynamics studies, followed by artificial membrane permeabilization and stress-induced release experiments. It has been demonstrated that a mutation of proline 135 located in the C-terminus of FGF1 results in (i) partial unfolding of FGF1, (ii) a decrease in FGF1's ability to permeabilize bilayers composed of phosphatidylserine, and (iii) drastic inhibition of stress-induced FGF1 export. Thus, folding of FGF1 is critical for its nonclassical secretion.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute , 81 Research Drive, Scarborough, Maine 04074, United States.,Graduate School of Biomedical Science and Engineering, University of Maine , Jenness Hall, Orono, Maine 04469, United States
| | - Doreen Kacer
- Maine Medical Center Research Institute , 81 Research Drive, Scarborough, Maine 04074, United States
| | - Julie Davis
- Department of Chemistry and Biochemistry, University of Arkansas , Chemistry Building, Fayetteville, Arkansas 72701, United States
| | - Varun Shah
- Department of Chemistry and Biochemistry, University of Arkansas , Chemistry Building, Fayetteville, Arkansas 72701, United States
| | - Srinivas Jayanthi
- Department of Chemistry and Biochemistry, University of Arkansas , Chemistry Building, Fayetteville, Arkansas 72701, United States
| | - Isabelle Huber
- Department of Chemistry and Biochemistry, University of Arkansas , Chemistry Building, Fayetteville, Arkansas 72701, United States
| | - Rajalingam Dakshinamurthy
- Department of Chemistry and Biochemistry, University of Arkansas , Chemistry Building, Fayetteville, Arkansas 72701, United States
| | - Owen Ganter
- College of Pharmacy, University of New England , Pharmacy Building, 716 Stevens Avenue, Portland, Maine 04103, United States
| | - Raffaella Soldi
- Maine Medical Center Research Institute , 81 Research Drive, Scarborough, Maine 04074, United States
| | - David Neivandt
- Graduate School of Biomedical Science and Engineering, University of Maine , Jenness Hall, Orono, Maine 04469, United States
| | - Olgun Guvench
- Graduate School of Biomedical Science and Engineering, University of Maine , Jenness Hall, Orono, Maine 04469, United States.,College of Pharmacy, University of New England , Pharmacy Building, 716 Stevens Avenue, Portland, Maine 04103, United States
| | | |
Collapse
|
27
|
Zhang M, Kenny SJ, Ge L, Xu K, Schekman R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife 2015; 4:e11205. [PMID: 26523392 PMCID: PMC4728131 DOI: 10.7554/elife.11205] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022] Open
Abstract
Recent evidence suggests that autophagy facilitates the unconventional secretion of the pro-inflammatory cytokine interleukin 1β (IL-1β). Here, we reconstituted an autophagy-regulated secretion of mature IL-1β (m-IL-1β) in non-macrophage cells. We found that cytoplasmic IL-1β associates with the autophagosome and m-IL-1β enters into the lumen of a vesicle intermediate but not into the cytoplasmic interior formed by engulfment of the autophagic membrane. In advance of secretion, m-IL-1β appears to be translocated across a membrane in an event that may require m-IL-1β to be unfolded or remain conformationally flexible and is dependent on two KFERQ-like motifs essential for the association of IL-1β with HSP90. A vesicle, possibly a precursor of the phagophore, contains translocated m-IL-1β and later turns into an autophagosome in which m-IL-1β resides within the intermembrane space of the double-membrane structure. Completion of IL-1β secretion requires Golgi reassembly and stacking proteins (GRASPs) and multi-vesicular body (MVB) formation.
Collapse
Affiliation(s)
- Min Zhang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Liang Ge
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
28
|
La Venuta G, Zeitler M, Steringer JP, Müller HM, Nickel W. The Startling Properties of Fibroblast Growth Factor 2: How to Exit Mammalian Cells without a Signal Peptide at Hand. J Biol Chem 2015; 290:27015-27020. [PMID: 26416892 DOI: 10.1074/jbc.r115.689257] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For a long time, protein transport into the extracellular space was believed to strictly depend on signal peptide-mediated translocation into the lumen of the endoplasmic reticulum. More recently, this view has been challenged, and the molecular mechanisms of unconventional secretory processes are beginning to emerge. Here, we focus on unconventional secretion of fibroblast growth factor 2 (FGF2), a secretory mechanism that is based upon direct protein translocation across plasma membranes. Through a combination of genome-wide RNAi screening approaches and biochemical reconstitution experiments, the basic machinery of FGF2 secretion was identified and validated. This includes the integral membrane protein ATP1A1, the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and Tec kinase, as well as membrane-proximal heparan sulfate proteoglycans on cell surfaces. Hallmarks of unconventional secretion of FGF2 are: (i) sequential molecular interactions with the inner leaflet along with Tec kinase-dependent tyrosine phosphorylation of FGF2, (ii) PI(4,5)P2-dependent oligomerization and membrane pore formation, and (iii) extracellular trapping of FGF2 mediated by heparan sulfate proteoglycans on cell surfaces. Here, we discuss new developments regarding this process including the mechanism of FGF2 oligomerization during membrane pore formation, the functional role of ATP1A1 in FGF2 secretion, and the possibility that other proteins secreted by unconventional means make use of a similar mechanism to reach the extracellular space. Furthermore, given the prominent role of extracellular FGF2 in tumor-induced angiogenesis, we will discuss possibilities to develop highly specific inhibitors of FGF2 secretion, a novel approach that may yield lead compounds with a high potential to develop into anti-cancer drugs.
Collapse
Affiliation(s)
| | - Marcel Zeitler
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | - Walter Nickel
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Zeitler M, Steringer JP, Müller HM, Mayer MP, Nickel W. HIV-Tat Protein Forms Phosphoinositide-dependent Membrane Pores Implicated in Unconventional Protein Secretion. J Biol Chem 2015; 290:21976-84. [PMID: 26183781 DOI: 10.1074/jbc.m115.667097] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 12/20/2022] Open
Abstract
HIV-Tat has been demonstrated to be secreted from cells in a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent manner. Here we show that HIV-Tat forms membrane-inserted oligomers, a process that is accompanied by changes in secondary structure with a strong increase in antiparallel β sheet content. Intriguingly, oligomerization of HIV-Tat on membrane surfaces leads to the formation of membrane pores, as demonstrated by physical membrane passage of small fluorescent tracer molecules. Although membrane binding of HIV-Tat did not strictly depend on PI(4,5)P2 but, rather, was mediated by a range of acidic membrane lipids, a functional interaction between PI(4,5)P2 and HIV-Tat was critically required for efficient membrane pore formation by HIV-Tat oligomers. These properties are strikingly similar to what has been reported previously for fibroblast growth factor 2 (FGF2), providing strong evidence of a common core mechanism of unconventional secretion shared by HIV-Tat and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Marcel Zeitler
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Julia P Steringer
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Hans-Michael Müller
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Matthias P Mayer
- the Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Allianz, 69120 Heidelberg, Germany
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| |
Collapse
|
30
|
Müller HM, Steringer JP, Wegehingel S, Bleicken S, Münster M, Dimou E, Unger S, Weidmann G, Andreas H, García-Sáez AJ, Wild K, Sinning I, Nickel W. Formation of disulfide bridges drives oligomerization, membrane pore formation, and translocation of fibroblast growth factor 2 to cell surfaces. J Biol Chem 2015; 290:8925-37. [PMID: 25694424 DOI: 10.1074/jbc.m114.622456] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a key signaling molecule in tumor-induced angiogenesis. FGF2 is secreted by an unconventional secretory mechanism that involves phosphatidylinositol 4,5-bisphosphate-dependent insertion of FGF2 oligomers into the plasma membrane. This process is regulated by Tec kinase-mediated tyrosine phosphorylation of FGF2. Molecular interactions driving FGF2 monomers into membrane-inserted FGF2 oligomers are unknown. Here we identify two surface cysteines that are critical for efficient unconventional secretion of FGF2. They represent unique features of FGF2 as they are absent from all signal-peptide-containing members of the FGF protein family. We show that phosphatidylinositol 4,5-bisphosphate-dependent FGF2 oligomerization concomitant with the generation of membrane pores depends on FGF2 surface cysteines as either chemical alkylation or substitution with alanines impairs these processes. We further demonstrate that the FGF2 variant forms lacking the two surface cysteines are not secreted from cells. These findings were corroborated by experiments redirecting a signal-peptide-containing FGF family member from the endoplasmic reticulum/Golgi-dependent secretory pathway into the unconventional secretory pathway of FGF2. Cis elements known to be required for unconventional secretion of FGF2, including the two surface cysteines, were transplanted into a variant form of FGF4 without signal peptide. The resulting FGF4/2 hybrid protein was secreted by unconventional means. We propose that the formation of disulfide bridges drives membrane insertion of FGF2 oligomers as intermediates in unconventional secretion of FGF2.
Collapse
Affiliation(s)
- Hans-Michael Müller
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Julia P Steringer
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sabine Wegehingel
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Stephanie Bleicken
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Maximilian Münster
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Eleni Dimou
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sebastian Unger
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Georg Weidmann
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Helena Andreas
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Klemens Wild
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany,
| |
Collapse
|
31
|
Zacherl S, La Venuta G, Müller HM, Wegehingel S, Dimou E, Sehr P, Lewis JD, Erfle H, Pepperkok R, Nickel W. A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J Biol Chem 2014; 290:3654-65. [PMID: 25533462 DOI: 10.1074/jbc.m114.590067] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies proposed a role for the Na/K-ATPase in unconventional secretion of fibroblast growth factor 2 (FGF2). This conclusion was based upon pharmacological inhibition of FGF2 secretion in the presence of ouabain. However, neither independent experimental evidence nor a potential mechanism was provided. Based upon an unbiased RNAi screen, we now report the identification of ATP1A1, the α1-chain of the Na/K-ATPase, as a factor required for efficient secretion of FGF2. As opposed to ATP1A1, down-regulation of the β1- and β3-chains (ATP1B1 and ATP1B3) of the Na/K-ATPase did not affect FGF2 secretion, suggesting that they are dispensable for this process. These findings indicate that it is not the membrane potential-generating function of the Na/K-ATPase complex but rather a so far unidentified role of potentially unassembled α1-chains that is critical for unconventional secretion of FGF2. Consistently, in the absence of β-chains, we found a direct interaction between the cytoplasmic domain of ATP1A1 and FGF2 with submicromolar affinity. Based upon these observations, we propose that ATP1A1 is a recruitment factor for FGF2 at the inner leaflet of plasma membranes that may control phosphatidylinositol 4,5-bisphosphate-dependent membrane translocation as part of the unconventional secretory pathway of FGF2.
Collapse
Affiliation(s)
- Sonja Zacherl
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Giuseppe La Venuta
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Hans-Michael Müller
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Wegehingel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Eleni Dimou
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Peter Sehr
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Joe D Lewis
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Holger Erfle
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Rainer Pepperkok
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany,
| |
Collapse
|
32
|
Steringer JP, Müller HM, Nickel W. Unconventional secretion of fibroblast growth factor 2--a novel type of protein translocation across membranes? J Mol Biol 2014; 427:1202-10. [PMID: 25051502 DOI: 10.1016/j.jmb.2014.07.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022]
Abstract
N-terminal signal peptides are a hallmark of the vast majority of soluble secretory proteins that are transported along the endoplasmic reticulum/Golgi-dependent pathway. They are recognized by signal recognition particle, a process that initiates membrane translocation into the lumen of the endoplasmic reticulum followed by vesicular transport to the cell surface and release into the extracellular space. Beyond this well-established mechanism of protein secretion from eukaryotic cells, a number of extracellular proteins with critical physiological functions in immune surveillance and tissue organization are known to be secreted in a manner independent of signal recognition particle. Such processes have collectively been termed "unconventional protein secretion" and, while known for more than two decades, their underlying mechanisms are only beginning to emerge. Different types of unconventional secretory mechanisms have been described with the best-characterized example being based on direct translocation of cytoplasmic proteins across plasma membranes. The aim of this review is to critically assess our current knowledge of this type of unconventional secretion focusing on fibroblast growth factor 2 (FGF2) as the most established example.
Collapse
Affiliation(s)
- Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Santiago JJ, McNaughton LJ, Koleini N, Ma X, Bestvater B, Nickel BE, Fandrich RR, Wigle JT, Freed DH, Arora RC, Kardami E. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. PLoS One 2014; 9:e97281. [PMID: 24827991 PMCID: PMC4020823 DOI: 10.1371/journal.pone.0097281] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 04/18/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious (pro-fibrotic, pro-inflammatory, and pro-hypertrophic) responses in vitro. Selective targeting of Hi-FGF-2 production may, therefore, reduce pathological remodelling in the human heart.
Collapse
Affiliation(s)
- Jon-Jon Santiago
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leslie J. McNaughton
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xin Ma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Bestvater
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara E. Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert R. Fandrich
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darren H. Freed
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rakesh C. Arora
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
34
|
Okada T, Murata K, Hirose R, Matsuda C, Komatsu T, Ikekita M, Nakawatari M, Nakayama F, Wakatsuki M, Ohno T, Kato S, Imai T, Imamura T. Upregulated expression of FGF13/FHF2 mediates resistance to platinum drugs in cervical cancer cells. Sci Rep 2013; 3:2899. [PMID: 24113164 PMCID: PMC3795355 DOI: 10.1038/srep02899] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/18/2013] [Indexed: 12/22/2022] Open
Abstract
Cancer cells often develop drug resistance. In cisplatin-resistant HeLa cisR cells, fibroblast growth factor 13 (FGF13/FHF2) gene and protein expression was strongly upregulated, and intracellular platinum concentrations were kept low. When the FGF13 expression was suppressed, both the cells' resistance to platinum drugs and their ability to keep intracellular platinum low were abolished. Overexpression of FGF13 in parent cells led to greater resistance to cisplatin and reductions in the intracellular platinum concentration. These cisplatin-resistant cells also showed increased resistance to copper. In preoperative cervical cancer biopsy samples from poor prognoses patients after cisplatin chemoradiotherapy, FGF13-positive cells were detected more abundantly than in the biopsy samples from patients with good prognoses. These results suggest that FGF13 plays a pivotal role in mediating resistance to platinum drugs, possibly via a mechanism shared by platinum and copper. Our results point to FGF13 as a novel target and useful prognostic guide for cancer therapy.
Collapse
Affiliation(s)
- Tomoko Okada
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 2013; 95:2196-211. [PMID: 23880644 DOI: 10.1016/j.biochi.2013.07.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with a substantial potential in human regenerative medicine due to their ability to migrate to sites of injury, capability to suppress immune response and accessibility in large amount from patient's own bone marrow or fat tissue. It has been increasingly observed that the transplanted MSCs did not necessarily engraft and differentiate at the site of injury but might exert their therapeutic effects through secreted trophic signals. The MSCs secrete a variety of autocrine/paracrine factors, called secretome, that support regenerative processes in the damaged tissue, induce angiogenesis, protect cells from apoptotic cell death and modulate immune system. The cell culture medium conditioned by MSCs or osteogenic, chondrogenic as well as adipogenic precursors derived from MSCs has become a subject of intensive proteomic profiling in the search for and identification of released factors and microvesicles that might be applicable in regenerative medicine. Jointly with the methods for MSC isolation, expansion and differentiation, proteomic analysis of MSC secretome was enabled recently mainly due to the extensive development in protein separation techniques, mass spectrometry, immunological methods and bioinformatics. This review describes proteomic techniques currently applied or prospectively applicable in MSC secretomics, with a particular focus on preparation of the secretome sample, protein/peptide separation, mass spectrometry and protein quantification techniques, analysis of posttranslational modifications, immunological techniques, isolation and characterisation of secreted vesicles and exosomes, analysis of cytokine-encoding mRNAs and bioinformatics.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, v.v.i., Rumburska 89, 277 21 Libechov, Czech Republic.
| |
Collapse
|
36
|
Prudovsky I, Kumar TKS, Sterling S, Neivandt D. Protein-phospholipid interactions in nonclassical protein secretion: problem and methods of study. Int J Mol Sci 2013; 14:3734-72. [PMID: 23396106 PMCID: PMC3588068 DOI: 10.3390/ijms14023734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/30/2022] Open
Abstract
Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | - Sarah Sterling
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| | - David Neivandt
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| |
Collapse
|
37
|
Abstract
Many secreted polypeptide regulators of angiogenesis are devoid of signal peptides. These proteins are released through nonclassical pathways independent of endoplasmic reticulum and Golgi. In most cases, the nonclassical protein export is induced by stress. It usually serves to stimulate repair or inflammation in damaged tissues. We review the secreted signal peptide-less regulators of angiogenesis and discuss the mechanisms and biological significance of their unconventional export.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
38
|
Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. J Cell Sci 2012; 125:5251-5. [DOI: 10.1242/jcs.103630] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute for, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Vivek Malhotra
- Centre for Genomic Regulation, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Steringer JP, Bleicken S, Andreas H, Zacherl S, Laussmann M, Temmerman K, Contreras FX, Bharat TAM, Lechner J, Müller HM, Briggs JAG, García-Sáez AJ, Nickel W. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J Biol Chem 2012; 287:27659-69. [PMID: 22730382 DOI: 10.1074/jbc.m112.381939] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate.
Collapse
Affiliation(s)
- Julia P Steringer
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kumar M, Chapman SC. Cloning and expression analysis of Fgf5, 6 and 7 during early chick development. Gene Expr Patterns 2012; 12:245-53. [PMID: 22634565 DOI: 10.1016/j.gep.2012.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 02/02/2023]
Abstract
FGFs with similar sequences can play different roles depending on the model organisms examined. Determining these roles requires knowledge of spatio-temporal Fgf gene expression patterns. In this study, we report the cloning of chick Fgf5, 6 and 7, and examine their gene expression patterns by whole mount in situ hybridization. We show that Fgf5's spatio-temporally restricted expression pattern indicates a potentially novel role during inner ear development. Fgf6 and Fgf7, although belonging to different subfamilies with diverged sequences, are expressed in similar patterns within the mesoderm. Alignment of protein sequences and phylogenetic analysis demonstrate that FGF5 and FGF6 are highly conserved between chick, human, mouse and zebrafish. FGF7 is similarly conserved except for the zebrafish, which has considerably diverged.
Collapse
Affiliation(s)
- Megha Kumar
- Clemson University, Biological Sciences, Long Hall, Clemson, SC 29634, USA
| | | |
Collapse
|
41
|
Chirico WJ. Protein release through nonlethal oncotic pores as an alternative nonclassical secretory pathway. BMC Cell Biol 2011; 12:46. [PMID: 22008609 PMCID: PMC3217904 DOI: 10.1186/1471-2121-12-46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nonclassical (unconventional) protein secretion is thought to represent the primary secretion mechanism for several cytosolic proteins, such as HIV-Tat, galectin 1, interleukin-1β, and several proteins that shuttle between the nucleus and cytosol, such as fibroblast growth factor 1 (FGF1), FGF2, and nucleolin. Four nonclassical secretory pathways have been described including direct transport (presumably through transporters in the plasma membrane), secretion via exosomes, lysosomal secretion, and blebbing. The purpose of this study was to gain mechanistic insight into nonclassical protein secretion using phosphoglycerate kinase 1 (PGK1), a previously identified nonclassical secretory protein, as a reporter protein. RESULTS Upon shifting HeLa cells into serum-free media PGK1 was released as a free soluble protein without cell loss. Release occurred in two phases: a rapid early phase and a slow late phase. Using a repertory of inhibitors, PGK1 release was shown not to rely on the classical secretory pathway. However, components of the cytoskeleton partially contributed to its release. Significantly, the presence of serum or bovine serum albumin in the media inhibited PGK1 release. CONCLUSIONS These results are consistent with a novel model of protein release termed oncotic release, in which a change in the colloidal osmotic pressure (oncotic pressure) upon serum withdrawal creates nonlethal oncotic pores in the plasma membrane through which PGK1 - and likely other nearby proteins - are released before the pores are rapidly resealed. These findings identify an alternative mechanism of release for FGF1, HIV-Tat, and galectin 1 whose reported nonclassical secretion is induced by serum withdrawal. Oncotic release may occur in routine cell biological experiments during which cells are washed with serum-free buffers or media and in pathophysiological conditions, such as edema, during which extracellular protein concentrations change.
Collapse
Affiliation(s)
- William J Chirico
- Department of Cell Biology and Molecular & Cellular Biology Program, State University of New York Downstate Medical Center, Brooklyn, 11203, USA.
| |
Collapse
|
42
|
Aktas RG, Kayton RJ. Ultrastructural immunolocalization of basic fibroblast growth factor in endothelial cells: morphologic evidence for unconventional secretion of a novel protein. J Mol Histol 2011; 42:417-25. [PMID: 21830143 DOI: 10.1007/s10735-011-9345-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/23/2011] [Indexed: 11/25/2022]
Abstract
Basic fibroblast growth factor (bFGF) is one of the most potent angiogenic factors. Unlike many other growth factors, bFGF lacks a classic peptide sequence for its secretion. Recent studies suggest that there is an unconventional secretory pathway for this growth factor. The aim of this study was to identify the specific location of bFGF in endothelial cells and to find morphologic evidences concerning its synthesis, storage and release from endothelial cells. The capillaries in hippocampus, adrenal gland, kidney, peripheral nerves as well as the vessels in connective tissues were analysed by using immunogold labeling techniques at electron microscope level. Results show that endogenous bFGF is mainly located in the nuclei of endothelial cells. Slight immunoreactivity is found in the cytoplasm. Immunolabeling is notably absent in pinocytotic vesicles, Golgi complexes, endoplasmic reticulum, nuclear membrane and intercellular junctions. These results provide morphologic evidence suggesting that endothelial cells might export bFGF via unique cellular pathways that are clearly distinct from classical signal peptide mediated secretion and/or release of this protein could be directly through mechanically induced disruptions of these cells. The current study support the recent hypothesis related with unconventional secretory pathway for bFGF as some other "cargo" proteins.
Collapse
Affiliation(s)
- Ranan Gulhan Aktas
- Histology and Embryology, School of Medicine, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.
| | | |
Collapse
|
43
|
Gosk-Bierska I, McBane RD, Wu Y, Mruk J, Tafur A, McLeod T, Wysokinski WE. Platelet factor XIII gene expression and embolic propensity in atrial fibrillation. Thromb Haemost 2011; 106:75-82. [PMID: 21655673 DOI: 10.1160/th10-11-0765] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/25/2011] [Indexed: 12/12/2022]
Abstract
Nearly 15% of patients with non-valvular atrial fibrillation (NVAF) have left atrial appendage thrombus (LAAT) by transesophageal echocardiography (TEE) and yet the annual stroke rate averages 5%. The aim of this study was to identify variables influencing embolic propensity of LAAT. Platelet RNA was extracted from platelet-rich regions within formalin-fixed, paraffin-embedded specimens obtained from NVAF patients during cardiac surgery (26 LAAT from 23 patients) or peripheral embolectomy (51 thrombi from 41 patients). Platelet RNA was also assessed from whole blood from 40 NVAF patients. Expression of six platelet-predominate genes: H2A histone family, A1 domain of factor XIII, integrin α₂bβ₃; glycoprotein IX, platelet factor 4, glycoprotein Ib, was performed using TaqMan MGB-probe based quantitative real-time polymerase chain reaction. Platelet factor XIII subunit A gene expression was significantly lower in embolised compared to non-embolised thrombi as determined by normalised cycle threshold values (4.0 ± 1.2 v 2.8 ± 1.8, p=0.02). Expression of other genes did not differ by embolic status. In conclusion, RNA extracted from formalin-fixed, paraffin-embedded platelet-rich tissues can be used for analysis of platelet-predominate gene expression. Variable factor XIII gene expression in thrombi generated during NVAF may in part explain the propensity to embolisation.
Collapse
|
44
|
Abstract
Unconventional secretory proteins represent a subpopulation of extracellular factors that are exported from eukaryotic cells by mechanisms that do not depend on the endoplasmic reticulum and the Golgi complex. Various pathways have been implicated in unconventional secretion including those involving intracellular membrane-bound intermediates and others that are based on direct protein translocation across plasma membranes. Interleukin 1β (IL1β) and fibroblast growth factor 2 (FGF2) are classical examples of unconventional secretory proteins with IL1β believed to be present in intracellular vesicles prior to secretion. By contrast, FGF2 represents an example of a non-vesicular mechanism of unconventional secretion. Here, the author discusses the current knowledge about the molecular machinery being involved in FGF2 secretion. To reveal both differential and common requirements, this review further aims at a comprehensive comparison of this mechanism with other unconventional secretory processes. In particular, a potentially general role of tyrosine phosphorylation as a regulatory signal in unconventional protein secretion will be discussed.
Collapse
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
45
|
Chen B, Qin J, Wang H, Magdalou J, Chen L. Effects of adenovirus-mediated bFGF, IL-1Ra and IGF-1 gene transfer on human osteoarthritic chondrocytes and osteoarthritis in rabbits. Exp Mol Med 2011; 42:684-95. [PMID: 20733349 DOI: 10.3858/emm.2010.42.10.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The study investigated the effects of adenovirus-mediated gene transfection of basic fibroblast growth factor (bFGF), bFGF combined with interleukin-1 receptor antagonist protein (IL-Ra) and/or insulin-like growth factor-1 (IGF-1) both in human osteoarthritis (OA) chondrocytes and rabbits OA model. Human OA chondrocytes were delivered by adenovirus-mediated bFGF, IL-Ra and IGF-1 vectors, respectively. Chondrocyte proliferation, glycosaminoglycan (GAG) content, expression of type II collagen, ADAMTS-5, MMP-13, MMP-3 and TIMP-1 were determined. Rabbit OA model was induced by anterior cruciate ligament transaction (ACLT) in knees. Adenoviral vectors encoding human bFGF, IL-Ra and IGF-1 were injected intraarticularly into the knee joints after ACLT. The effects of adenovirus-mediated gene transfection on rabbit OA were evaluated. In vitro, the transfected genes were expressed in cell supernatant of human OA chondrocytes. AdbFGF group significantly promoted chondrocyte proliferation, and increased GAG and type II collagen synthesis than in the OA group. As two or three genes were transfected in different combinations, there was significant enhancement on the GAG content, type II collagen synthesis, and TIMP-1 levels, while ADAMTS-5, MMP-13, and MMP-3 levels were reduced. In vivo, the transfected genes were expressed in synovial fluid of rabbits. Intraarticular delivery of bFGF enhanced the expression of type II collagen in cartilage and decreased cartilage Mankin score compared with the OA control group (P=0.047; P<0.01, respectively). Multiple-gene transfection in different combinations showed better results than bFGF transfection alone. This study suggests that bFGF gene transfection is effective in treating experimental OA. Multiple gene transfection has better biologic effects on OA.
Collapse
Affiliation(s)
- Biao Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
46
|
Zhang X, Rozengurt E, Reed EF. HLA class I molecules partner with integrin β4 to stimulate endothelial cell proliferation and migration. Sci Signal 2010; 3:ra85. [PMID: 21098729 PMCID: PMC3878299 DOI: 10.1126/scisignal.2001158] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among transplant recipients, those who produce antibodies against the donor's human leukocyte antigens (HLAs) are at higher risk for antibody-mediated rejection and transplant vasculopathy, which is a progressive, vasculo-occlusive disease that results in ischemic injury and deterioration of organ function. Antibodies against HLA class I (HLA-I) molecules are thought to contribute to transplant vasculopathy by triggering signals that elicit the activation and proliferation of endothelial cells. Here, we demonstrate a molecular association between HLA-I and the integrin β(4) subunit after the stimulation of endothelial cells with HLA-I-specific antibodies. Knockdown of integrin β(4) in these cells abrogated the ability of HLA-I to stimulate the phosphorylation of the kinases Akt, extracellular signal-regulated kinase (ERK), and Src, as well as cellular proliferation. Similarly, reducing the abundance of HLA-I suppressed integrin β(4)-mediated phosphorylation of ERK and the migration of endothelial cells on laminin-5, a component of the extracellular matrix. These results indicate a mutual dependency between HLA-I and the integrin β(4) subunit to stimulate the proliferation and migration of endothelial cells, which may be important in promoting transplant vasculopathy and tumor angiogenesis.
Collapse
Affiliation(s)
- Xiaohai Zhang
- Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, Center for Ulcer Research and Education, Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Elaine F. Reed
- Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Nickel W. Pathways of unconventional protein secretion. Curr Opin Biotechnol 2010; 21:621-6. [PMID: 20637599 DOI: 10.1016/j.copbio.2010.06.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/07/2010] [Accepted: 06/15/2010] [Indexed: 01/01/2023]
Abstract
The vast majority of extracellular proteins are secreted by the classical endoplasmic reticulum (ER)/Golgi-dependent pathway, however, numerous exceptions have been identified. Unconventional secretory proteins lack signal peptides and their export from cells is not affected by brefeldin A, an inhibitor of protein transport along the classical secretory pathway. Two general types of unconventional secretion exist. First, export mediated by direct translocation across plasma membranes of cytoplasmic proteins such as fibroblast growth factor 2. Second, export involving intracellular transport intermediates as shown for acyl-CoA binding protein. Here, molecular mechanisms and factors involved in unconventional secretion are discussed with a focus on fibroblast growth factor 2 translocation across plasma membranes and the role of autophagosomes in unconventional secretion of acyl-CoA binding protein.
Collapse
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Association of coagulation factor XIII-A with Golgi proteins within monocyte-macrophages: implications for subcellular trafficking and secretion. Blood 2010; 115:2674-81. [DOI: 10.1182/blood-2009-08-231316] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AbstractFactor XIII-A (FXIII-A) is present in the cytosol of platelets, megakaryocytes, monocytes, osteoblasts, and macrophages and may be released from cells by a nonclassical pathway. We observed that plasma FXIII-A levels were unchanged in thrombocytopenic mice (Bcl-xPlt20/Plt20 and Mpl−/−), which implicates nonclassical secretion from nucleated cells as the source of plasma FXIII-A. We, therefore, examined the intracellular targeting of FXIII-A in the THP-1 (monocyte/macrophage) cell line and in human monocyte–derived macrophages. Metabolic labeling of THP-1 cells did not show release of 35S-FXIII-A either under basal conditions or when interleukin 1-β was released in response to cell stress. However, immunofluorescence of THP-1 cells and primary macrophages showed that FXIII-A associated with podosomes and other structures adjacent to the plasma membrane, which also contain trans-Golgi network protein-46 and Golgi matrix protein-130 (GM130) but not the endoplasmic reticulum luminal protein, protein disulphide isomerase. Further, FXIII-A was present in GM130-positive intracellular vesicles that could mediate its transport, and in other contexts GM130 and its binding partner GRASP have been implicated in the delivery of nonclassically secreted proteins to the plasma membrane. Hence, this mechanism may precede FXIII-A release into the extracellular matrix from macrophages and its release into plasma from the cell type of origin.
Collapse
|
49
|
Ebert AD, Laussmann M, Wegehingel S, Kaderali L, Erfle H, Reichert J, Lechner J, Beer HD, Pepperkok R, Nickel W. Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic 2010; 11:813-26. [PMID: 20230531 DOI: 10.1111/j.1600-0854.2010.01059.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi-independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5-biphosphate (PI(4,5)P(2)) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post-translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex.
Collapse
Affiliation(s)
- Antje D Ebert
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cheng FY, Williamson JD. Is there leaderless protein secretion in plants? PLANT SIGNALING & BEHAVIOR 2010; 5:129-31. [PMID: 19923907 PMCID: PMC2884113 DOI: 10.4161/psb.5.2.10304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The sugar alcohol mannitol and it’s catabolic enzyme mannitol dehydrogenase (MTD), in addition to welldocumented roles in metabolism and osmoprotection, may play roles in hostpathogen interactions. Research suggests that in response to the mannitol that pathogenic fungi secrete to suppress reactive oxygen-mediated host defenses, plants make MTD to catabolize fungal mannitol. Yet previous work suggested that pathogen-secreted mannitol is extracellular, while in healthy plants MTD is cytoplasmic. We have presented results showing that the normally cytoplasmic MTD is exported into the cell wall or extracellular space in response to the endogenous inducer of plant defense responses salicylic acid (SA). This SA-induced secretion is insensitive to brefeldin A, an inhibitor of Golgimediated protein transport. Together with the absence of MTD in Golgi stacks and the lack of a documented extracellular targeting sequence in the MTD protein, this suggests MTD is secreted by a non-Golgi, pathogen-activated secretion mechanism in plants. Here we discuss the potential significance of non-Golgi secretion in response to stress.
Collapse
Affiliation(s)
- Fang-yi Cheng
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|