1
|
Valdivieso González D, Makowski M, Lillo MP, Cao‐García FJ, Melo MN, Almendro‐Vedia VG, López‐Montero I. Rotation of the c-Ring Promotes the Curvature Sorting of Monomeric ATP Synthases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301606. [PMID: 37705095 PMCID: PMC10625105 DOI: 10.1002/advs.202301606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/07/2023] [Indexed: 09/15/2023]
Abstract
ATP synthases are proteins that catalyse the formation of ATP through the rotatory movement of their membrane-spanning subunit. In mitochondria, ATP synthases are found to arrange as dimers at the high-curved edges of cristae. Here, a direct link is explored between the rotatory movement of ATP synthases and their preference for curved membranes. An active curvature sorting of ATP synthases in lipid nanotubes pulled from giant vesicles is found. Coarse-grained simulations confirm the curvature-seeking behaviour of rotating ATP synthases, promoting reversible and frequent protein-protein contacts. The formation of transient protein dimers relies on the membrane-mediated attractive interaction of the order of 1.5 kB T produced by a hydrophobic mismatch upon protein rotation. Transient dimers are sustained by a conic-like arrangement characterized by a wedge angle of θ ≈ 50°, producing a dynamic coupling between protein shape and membrane curvature. The results suggest a new role of the rotational movement of ATP synthases for their dynamic self-assembly in biological membranes.
Collapse
Affiliation(s)
- David Valdivieso González
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
| | - Marcin Makowski
- Instituto de Medicina MolecularFacultade de MedicinaUniversidade de LisboaLisbon1649‐028Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - M. Pilar Lillo
- Departamento Química Física BiológicaInstituto de Química‐Física “Blas Cabrera” (CSIC)Serrano 119Madrid28006Spain
| | - Francisco J. Cao‐García
- Departamento de Estructura de la MateriaFísica Térmica y ElectrónicaUniversidad Complutense de MadridPlaza de Ciencias 1Madrid28040Spain
- Instituto Madrileño de Estudios Avanzados en NanocienciaIMDEA NanocienciaC/ Faraday 9Madrid28049Spain
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Víctor G. Almendro‐Vedia
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
| | - Iván López‐Montero
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
- Instituto PluridisciplinarPaseo Juan XXIII 1Madrid28040Spain
| |
Collapse
|
2
|
Yang X, Yuan Z, Cai X, Gui S, Zhou M, Hou Y. The ATP Synthase Subunits FfATPh, FfATP5, and FfATPb Regulate the Development, Pathogenicity, and Fungicide Sensitivity of Fusarium fujikuroi. Int J Mol Sci 2023; 24:13273. [PMID: 37686077 PMCID: PMC10487771 DOI: 10.3390/ijms241713273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
ATP synthase catalyzes the synthesis of ATP by consuming the proton electrochemical gradient, which is essential for maintaining the life activity of organisms. The peripheral stalk belongs to ATP synthase and plays an important supporting role in the structure of ATP synthase, but their regulation in filamentous fungi are not yet known. Here, we characterized the subunits of the peripheral stalk, FfATPh, FfATP5, and FfATPb, and explored their functions on development and pathogenicity of Fusarium Fujikuroi. The FfATPh, FfATP5, and FfATPb deletion mutations (∆FfATPh, ∆FfATP5, and ∆FfATPb) presented deficiencies in vegetative growth, sporulation, and pathogenicity. The sensitivity of ∆FfATPh, ∆FfATP5, and ∆FfATPb to fludioxonil, phenamacril, pyraclostrobine, and fluazinam decreased. In addition, ∆FfATPh exhibited decreased sensitivity to ionic stress and osmotic stress, and ∆FfATPb and ∆FfATP5 were more sensitive to oxidative stress. FfATPh, FfATP5, and FfATPb were located on the mitochondria, and ∆FfATPh, ∆FfATPb, and ∆FfATP5 disrupted mitochondrial location. Furthermore, we demonstrated the interaction among FfATPh, FfATP5, and FfATPb by Bimolecular Fluorescent Complimentary (BiFC) analysis. In conclusion, FfATPh, FfATP5, and FfATPb participated in regulating development, pathogenicity, and sensitivity to fungicides and stress factors in F. fujikuroi.
Collapse
Affiliation(s)
| | | | | | | | | | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (Z.Y.); (X.C.); (S.G.); (M.Z.)
| |
Collapse
|
3
|
Miranda-Astudillo H, Ostolga-Chavarría M, Cardol P, González-Halphen D. Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148569. [PMID: 35577152 DOI: 10.1016/j.bbabio.2022.148569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pierre Cardol
- InBios/Phytosystems, Institut de Botanique, Université de Liège, Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
4
|
Almendro-Vedia V, Natale P, Valdivieso González D, Lillo MP, Aragones JL, López-Montero I. How rotating ATP synthases can modulate membrane structure. Arch Biochem Biophys 2021; 708:108939. [PMID: 34052190 DOI: 10.1016/j.abb.2021.108939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023]
Abstract
F1Fo-ATP synthase (ATP synthase) is a central membrane protein that synthetizes most of the ATP in the cell through a rotational movement driven by a proton gradient across the hosting membrane. In mitochondria, ATP synthases can form dimers through specific interactions between some subunits of the protein. The dimeric form of ATP synthase provides the protein with a spontaneous curvature that sustain their arrangement at the rim of the high-curvature edges of mitochondrial membrane (cristae). Also, a direct interaction with cardiolipin, a lipid present in the inner mitochondrial membrane, induces the dimerization of ATP synthase molecules along cristae. The deletion of those biochemical interactions abolishes the protein dimerization producing an altered mitochondrial function and morphology. Mechanically, membrane bending is one of the key deformation modes by which mitochondrial membranes can be shaped. In particular, bending rigidity and spontaneous curvature are important physical factors for membrane remodelling. Here, we discuss a complementary mechanism whereby the rotatory movement of the ATP synthase might modify the mechanical properties of lipid bilayers and contribute to the formation and regulation of the membrane invaginations.
Collapse
Affiliation(s)
- Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - M Pilar Lillo
- Departamento Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Juan L Aragones
- Departamento de Física Teórica de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Centre (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
5
|
Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165961. [PMID: 32916282 DOI: 10.1016/j.bbadis.2020.165961] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome with multisystem involvement which leads to foetal, neonatal, and maternal morbidity and mortality. This syndrome is characterized by the onset of clinical signs and symptoms and delivery before (early-onset preeclampsia, eoPE), or after (late-onset preeclampsia, loPE), the 34 weeks of gestation. Preeclampsia is a mitochondrial disorder where its differential involvement in eoPE and loPE is unclear. Mitochondria regulate cell metabolism and are a significant source of reactive oxygen species (ROS). The syncytiotrophoblast in eoPE and loPE show altered mitochondrial structure and function resulting in ROS overproduction, oxidative stress, and cell damage and death. Mitochondrial dysfunction in eoPE may result from altered expression of several molecules, including dynamin-related protein 1 and mitofusins, compared with loPE where these factors are either reduced or unaltered. Equally, mitochondrial fusion/fission dynamics seem differentially modulated in eoPE and loPE. It is unclear whether the electron transport chain and oxidative phosphorylation are differentially altered in these two subgroups of preeclampsia. However, the activity of complex IV (cytochrome c oxidase) and the expression of essential proteins involved in the electron transport chain are reduced, leading to lower oxidative phosphorylation and mitochondrial respiration in the preeclamptic placenta. Interventional studies in patients with preeclampsia using the coenzyme Q10, a key molecule in the electron transport chain, suggest that agents that increase the antioxidative capacity of the placenta may be protective against preeclampsia development. In this review, the mitochondrial dysfunction in both eoPE and loPE is summarized. Therapeutic approaches are discussed in the context of contributing to the understanding of mitochondrial dysfunction in eoPE and loPE.
Collapse
|
6
|
Chahed A, Nesler A, Navazio L, Baldan B, Busato I, Ait Barka E, Pertot I, Puopolo G, Perazzolli M. The Rare Sugar Tagatose Differentially Inhibits the Growth of Phytophthora infestans and Phytophthora cinnamomi by Interfering With Mitochondrial Processes. Front Microbiol 2020; 11:128. [PMID: 32117150 PMCID: PMC7015900 DOI: 10.3389/fmicb.2020.00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Rare sugars are monosaccharides with limited availability in nature and their biological functions are largely unknown. Among them, tagatose was developed as a low-calorie sweetener and showed beneficial effects on human health. Tagatose is metabolized by only certain microbial taxa and inhibits the growth of important crop pathogens (e.g., Phytophthora infestans), but its mode of action and the microbial responses are unknown. The aim of this study was to understand the tagatose mode of action against Phytophthora spp., with the final aim of developing new plant protection products. Tagatose inhibited P. infestans growth in vitro and caused severe ultrastructural alterations, with the formation of circular and concentric mitochondrial cristae. Decreased ATP content and reduced oxygen consumption rate (OCR) were found in tagatose-incubated P. infestans as compared to the control, with the consequent accumulation of reactive oxygen species (ROS) and induction of genes related to apoptosis and oxidative stress response. On the other hand, tagatose did not, or only slightly, affect the growth, cellular ultrastructure and mitochondrial processes in Phytophthora cinnamomi, indicating a species-specific response to this rare sugar. The mode of action of tagatose against P. infestans was mainly based on the inhibition of mitochondrial processes and this rare sugar seems to be a promising active substance for the further development of eco-friendly fungicides, thanks to its anti-nutritional properties on some phytopathogens and low risk for human health.
Collapse
Affiliation(s)
- Abdessalem Chahed
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Biological Products for Agriculture (Bi-PA), Londerzeel, Belgium.,Department of Plant Induced Resistance and Bioprotection, University of Reims Champagne-Ardenne, Reims, France
| | - Andrea Nesler
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Biological Products for Agriculture (Bi-PA), Londerzeel, Belgium
| | - Lorella Navazio
- Department of Biology, University of Padua, Padua, Italy.,Botanical Garden, University of Padua, Padua, Italy
| | - Barbara Baldan
- Department of Biology, University of Padua, Padua, Italy.,Botanical Garden, University of Padua, Padua, Italy
| | - Isabella Busato
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Biology, University of Padua, Padua, Italy
| | - Essaid Ait Barka
- Department of Plant Induced Resistance and Bioprotection, University of Reims Champagne-Ardenne, Reims, France
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
7
|
Salewskij K, Rieger B, Hager F, Arroum T, Duwe P, Villalta J, Colgiati S, Richter CP, Psathaki OE, Enriquez JA, Dellmann T, Busch KB. The spatio-temporal organization of mitochondrial F 1F O ATP synthase in cristae depends on its activity mode. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148091. [PMID: 31669489 DOI: 10.1016/j.bbabio.2019.148091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
F1FO ATP synthase, also known as complex V, is a key enzyme of mitochondrial energy metabolism that can synthesize and hydrolyze ATP. It is not known whether the ATP synthase and ATPase function are correlated with a different spatio-temporal organisation of the enzyme. In order to analyze this, we tracked and localized single ATP synthase molecules in situ using live cell microscopy. Under normal conditions, complex V was mainly restricted to cristae indicated by orthogonal trajectories along the cristae membranes. In addition confined trajectories that are quasi immobile exist. By inhibiting glycolysis with 2-DG, the activity and mobility of complex V was altered. The distinct cristae-related orthogonal trajectories of complex V were obliterated. Moreover, a mobile subpopulation of complex V was found in the inner boundary membrane. The observed changes in the ratio of dimeric/monomeric complex V, respectively less mobile/more mobile complex V and its activity changes were reversible. In IF1-KO cells, in which ATP hydrolysis is not inhibited by IF1, complex V was more mobile, while inhibition of ATP hydrolysis by BMS-199264 reduced the mobility of complex V. Taken together, these data support the existence of different subpopulations of complex V, ATP synthase and ATP hydrolase, the latter with higher mobility and probably not prevailing at the cristae edges. Obviously, complex V reacts quickly and reversibly to metabolic conditions, not only by functional, but also by spatial and structural reorganization.
Collapse
Affiliation(s)
- Kirill Salewskij
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Bettina Rieger
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Frances Hager
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Tasnim Arroum
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Patrick Duwe
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Jimmy Villalta
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Sara Colgiati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Catania, Spain; Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Andalusia, Spain
| | - Christian P Richter
- University of Osnabrück, School of Biology, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany; Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany
| | - Olympia E Psathaki
- University of Osnabrück, School of Biology, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany; Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany
| | - José A Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Catania, Spain
| | - Timo Dellmann
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Karin B Busch
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany.
| |
Collapse
|
8
|
Fisher JJ, Bartho LA, Perkins AV, Holland OJ. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol 2019; 47:176-184. [PMID: 31469913 DOI: 10.1111/1440-1681.13172] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are central to cell function. The placenta forms the interface between maternal and fetal systems, and placental mitochondria have critical roles in maintaining pregnancy. The placenta is unusual in having two adjacent cell layers (cytotrophoblasts and the syncytiotrophoblast) with vastly different mitochondria that have distinct functions in health and disease. Mitochondria both produce the majority of reactive oxygen species (ROS), and are sensitive to ROS. ROS are important in allowing cells to sense their environment through mitochondrial-centred signalling, and this signalling also helps cells/tissues adapt to changing environments. However, excessive ROS are damaging, and increased ROS levels are associated with pregnancy complications, including the important disorders preeclampsia and gestational diabetes mellitus. Here we review the function of placental mitochondria in healthy pregnancy, and also in pregnancy complications. Placental mitochondria are critical to cell function, and mitochondrial damage is a feature of pregnancy complications. However, the responsiveness of mitochondria to ROS signalling may be central to placental adaptations that mitigate damage, and placental mitochondria are an attractive target for the development of therapeutics to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Joshua J Fisher
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Lucy A Bartho
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
9
|
Uittenbogaard M, Brantner CA, Fang Z, Wong LJC, Gropman A, Chiaramello A. Novel insights into the functional metabolic impact of an apparent de novo m.8993T>G variant in the MT-ATP6 gene associated with maternally inherited form of Leigh Syndrome. Mol Genet Metab 2018; 124:71-81. [PMID: 29602698 PMCID: PMC6016550 DOI: 10.1016/j.ymgme.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/02/2023]
Abstract
In this study, we report a novel perpective of metabolic consequences for the m.8993T>G variant using fibroblasts from a proband with clinical symptoms compatible with Maternally Inherited Leigh Syndrome (MILS). Definitive diagnosis was corroborated by mitochondrial DNA testing for the pathogenic variant m.8993T>G in MT-ATP6 subunit by Sanger sequencing. The long-range PCR followed by massively parallel sequencing method detected the near homoplasmic m.8993T>G variant at 83% in the proband's fibroblasts and at 0.4% in the mother's fibroblasts. Our results are compatible with very low levels of germline heteroplasmy or an apparent de novo mutation. Our mitochondrial morphometric analysis reveals severe defects in mitochondrial cristae structure in the proband's fibroblasts. Our live-cell mitochondrial respiratory analyses show impaired oxidative phosphorylation with decreased spare respiratory capacity in response to energy stress in the proband's fibroblasts. We detected a diminished glycolysis with a lessened glycolytic capacity and reserve, revealing a stunted ability to switch to glycolysis upon full inhibition of OXPHOS activities. This dysregulated energy reprogramming results in a defective interplay between OXPHOS and glycolysis during an energy crisis. Our study sheds light on the potential pathophysiologic mechanism leading to chronic energy crisis in this MILS patient harboring the m.8993T>G variant.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Christine A Brantner
- GW Nanofabrication and Imaging Center, Office of the Vice President for Research, George Washington University, Washington, DC 20052, USA
| | - ZiShui Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Gropman
- Children's National Medical Center, Division of Neurogenetics and Developmental Pediatrics, Washington, DC 20010, USA
| | - Anne Chiaramello
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
10
|
Appelhans T, Busch KB. Dynamic imaging of mitochondrial membrane proteins in specific sub-organelle membrane locations. Biophys Rev 2017; 9:345-352. [PMID: 28819924 DOI: 10.1007/s12551-017-0287-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are cellular organelles with multifaceted tasks and thus composed of different sub-compartments. The inner mitochondrial membrane especially has a complex nano-architecture with cristae protruding into the matrix. Related to their function, the localization of mitochondrial membrane proteins is more or less restricted to specific sub-compartments. In contrast, it can be assumed that membrane proteins per se diffuse unimpeded through continuous membranes. Fluorescence recovery after photobleaching is a versatile technology used in mobility analyses to determine the mobile fraction of proteins, but it cannot provide data on subpopulations or on confined diffusion behavior. Fluorescence correlation spectroscopy is used to analyze single molecule diffusion, but no trajectory maps are obtained. Single particle tracking (SPT) technologies in live cells, such as tracking and localization microscopy (TALM), do provide nanotopic localization and mobility maps of mitochondrial proteins in situ. Molecules can be localized with a precision of between 10 and 20 nm, and single trajectories can be recorded and analyzed; this is sufficient to reveal significant differences in the spatio-temporal behavior of diverse mitochondrial proteins. Here, we compare diffusion coefficients obtained by these different technologies and discuss trajectory maps of diverse mitochondrial membrane proteins obtained by SPT/TALM. We show that membrane proteins in the outer membrane generally display unhindered diffusion, while the mobility of inner membrane proteins is restricted by the inner membrane architecture, resulting in significantly lower diffusion coefficients. Moreover, tracking analysis could discern proteins in the inner boundary membrane from proteins preferentially diffusing in cristae membranes, two sub-compartments of the inner mitochondrial membrane. Thus, by evaluating trajectory maps it is possible to assign proteins to different sub-compartments of the same membrane.
Collapse
Affiliation(s)
- Timo Appelhans
- Mitochondrial Dynamics Group, School of Biology, University of Osnabrück, 49076, Osnabrück, Germany
| | - Karin B Busch
- Mitochondrial Dynamics Group, School of Biology, University of Osnabrück, 49076, Osnabrück, Germany. .,Institute of Molecular Cell Biology, School of Biology, Westfälische Wilhelms-University of Münster, 48149, Münster, Germany.
| |
Collapse
|
11
|
Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria. Proc Natl Acad Sci U S A 2016; 113:8442-7. [PMID: 27402755 DOI: 10.1073/pnas.1525430113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology.
Collapse
|
12
|
Deng J, Yang M, Chen Y, Chen X, Liu J, Sun S, Cheng H, Li Y, Bigio EH, Mesulam M, Xu Q, Du S, Fushimi K, Zhu L, Wu JY. FUS Interacts with HSP60 to Promote Mitochondrial Damage. PLoS Genet 2015; 11:e1005357. [PMID: 26335776 PMCID: PMC4559378 DOI: 10.1371/journal.pgen.1005357] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
FUS-proteinopathies, a group of heterogeneous disorders including ALS-FUS and FTLD-FUS, are characterized by the formation of inclusion bodies containing the nuclear protein FUS in the affected patients. However, the underlying molecular and cellular defects remain unclear. Here we provide evidence for mitochondrial localization of FUS and its induction of mitochondrial damage. Remarkably, FTLD-FUS brain samples show increased FUS expression and mitochondrial defects. Biochemical and genetic data demonstrate that FUS interacts with a mitochondrial chaperonin, HSP60, and that FUS translocation to mitochondria is, at least in part, mediated by HSP60. Down-regulating HSP60 reduces mitochondrially localized FUS and partially rescues mitochondrial defects and neurodegenerative phenotypes caused by FUS expression in transgenic flies. This is the first report of direct mitochondrial targeting by a nuclear protein associated with neurodegeneration, suggesting that mitochondrial impairment may represent a critical event in different forms of FUS-proteinopathies and a common pathological feature for both ALS-FUS and FTLD-FUS. Our study offers a potential explanation for the highly heterogeneous nature and complex genetic presentation of different forms of FUS-proteinopathies. Our data also suggest that mitochondrial damage may be a target in future development of diagnostic and therapeutic tools for FUS-proteinopathies, a group of devastating neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two groups of common and devastating neurodegenerative diseases, characterized by losses of selected groups of neurons. Mutations in the FUS gene have been associated with ALS, whereas inclusion bodies containing the FUS protein have been discovered in both ALS and FTLD patients. However, the underlying pathogenic mechanisms of FUS in these diseases remain unclear. Here, we demonstrate that wild-type or ALS-associated mutant FUS can interact with mitochondrial chaperonin HSP60 and that HSP60 mediates FUS localization to mitochondria, leading to mitochondrial damage. Mitochondrial impairment may be an early event in FUS proteinopathies and represent a potential therapeutic target for treating these fatal diseases.
Collapse
Affiliation(s)
- Jianwen Deng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengxue Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yanbo Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shufeng Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haipeng Cheng
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yang Li
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Eileen H. Bigio
- Department of Pathology & Neurology, The Cognitive Neurology& Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Marsel Mesulam
- Department of Pathology & Neurology, The Cognitive Neurology& Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Sidan Du
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Kazuo Fushimi
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LZ); (JYW)
| | - Jane Y. Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail: (LZ); (JYW)
| |
Collapse
|
13
|
Dikov D, Bereiter-Hahn J. Inner membrane dynamics in mitochondria. J Struct Biol 2013; 183:455-466. [DOI: 10.1016/j.jsb.2013.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 01/04/2023]
|
14
|
ATP synthase oligomerization: From the enzyme models to the mitochondrial morphology. Int J Biochem Cell Biol 2013; 45:99-105. [DOI: 10.1016/j.biocel.2012.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 01/03/2023]
|
15
|
Gong L, Ramm G, Devenish RJ, Prescott M. HcRed, a genetically encoded fluorescent binary cross-linking agent for cross-linking of mitochondrial ATP synthase in Saccharomyces cerevisiae. PLoS One 2012; 7:e35095. [PMID: 22496895 PMCID: PMC3319629 DOI: 10.1371/journal.pone.0035095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/08/2012] [Indexed: 12/02/2022] Open
Abstract
Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells expressed HcRed fused to a subunit of mitochondrial ATP synthase (mtATPase). This resulted in cross-linking of the large multi-subunit mtATPase complex within the inner-membrane of the mitochondrion. Fluorescence microscopy revealed aberrant mitochondrial morphology, and mtATPase complexes isolated from mitochondria were recovered as fluorescent dimers under conditions where complexes from control mitochondria were recovered as monomers. When viewed by electron microscopy normal cristae were absent from mitochondria in cells in which mATPase complexes were cross-linked. mtATPase dimers are believed to be the building blocks that are assembled into supramolecular mtATPase ribbons that promote the formation of mitochondrial cristae. We propose that HcRed cross-links mATPase complexes in the mitochondrial membrane hindering the normal assembly/disassembly of the supramolecular forms of mtATPase.
Collapse
Affiliation(s)
- Lan Gong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Victoria, Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Victoria, Australia
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
| |
Collapse
|
16
|
|
17
|
Wilkens V, Kohl W, Busch K. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J Cell Sci 2012; 126:103-16. [DOI: 10.1242/jcs.108852] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are involved in cellular energy supply, signaling and apoptosis. Their ability to fuse and divide provides functional and morphological flexibility and is a key feature in mitochondrial quality maintenance. To study the impact of mitochondrial fusion/fission on the reorganization of inner membrane proteins, OXPHOS complexes in mitochondria of different HeLa cells were tagged with fluorescent proteins (GFP and RFP-HA, respectively), and cells were fused by PEG treatment. Redistribution of the tagged OXPHOS complexes was then followed by means of immuno electron microscopy, two color superresolution fluorescence microscopy and single molecule tracking. In contrast to outer membrane and matrix proteins, which mix fast and homogeneously upon mitochondrial fusion, the mixing of inner membrane proteins was decelerated. Our data suggest that in principle (i) with respect to their composition cristae are preserved during fusion of mitochondria and (ii) cristae with mixed OXPHOS complexes are only slowly and successively formed by restricted diffusion of inner membrane proteins into existing cristae. The resulting transitory mosaic appearance of the inner mitochondrial membrane in terms of composition illuminates mitochondrial heterogeneity and potentially is linked to local differences in function and membrane potential.
Collapse
|
18
|
Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:3-37. [PMID: 22399416 DOI: 10.1007/978-94-007-2869-1_1] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chapter provides a review of the state of art of the oxidative phosphorylation system in mammalian mitochondria. The sections of the paper deal with: (i) the respiratory chain as a whole: redox centers of the chain and protonic coupling in oxidative phosphorylation (ii) atomic structure and functional mechanism of protonmotive complexes I, III, IV and V of the oxidative phosphorylation system (iii) biogenesis of oxidative phosphorylation complexes: mitochondrial import of nuclear encoded subunits, assembly of oxidative phosphorylation complexes, transcriptional factors controlling biogenesis of the complexes. This advanced knowledge of the structure, functional mechanism and biogenesis of the oxidative phosphorylation system provides a background to understand the pathological impact of genetic and acquired dysfunctions of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S, Deckers M. MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 2011; 23:247-57. [PMID: 22114354 PMCID: PMC3258170 DOI: 10.1091/mbc.e11-09-0774] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MINOS1/Mio10, a conserved mitochondrial protein, is required for mitochondrial inner membrane organization and cristae morphology. MINOS1/Mio10 is a novel constituent of the mitofilin/Fcj1 complex of the inner membrane, linking the morphology phenotype of the mutant to the activity of the mitochondrial inner membrane organizing complex. The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.
Collapse
Affiliation(s)
- Alwaleed K Alkhaja
- Department of Biochemistry II, University of Göttingen Medical School, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jonckheere AI, Huigsloot M, Lammens M, Jansen J, van den Heuvel LP, Spiekerkoetter U, von Kleist-Retzow JC, Forkink M, Koopman WJ, Szklarczyk R, Huynen MA, Fransen JA, Smeitink JA, Rodenburg RJ. Restoration of complex V deficiency caused by a novel deletion in the human TMEM70 gene normalizes mitochondrial morphology. Mitochondrion 2011; 11:954-63. [DOI: 10.1016/j.mito.2011.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 11/25/2022]
|
21
|
Dieteren CEJ, Willems PHGM, Swarts HG, Fransen J, Smeitink JAM, Koopman WJH, Nijtmans LGJ. Defective mitochondrial translation differently affects the live cell dynamics of complex I subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1624-33. [PMID: 21978538 DOI: 10.1016/j.bbabio.2011.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/16/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
Abstract
Complex I (CI) of the oxidative phosphorylation system is assembled from 45 subunits encoded by both the mitochondrial and nuclear DNA. Defective mitochondrial translation is a major cause of mitochondrial disorders and proper understanding of its mechanisms and consequences is fundamental to rational treatment design. Here, we used a live cell approach to assess its consequences on CI assembly. The approach consisted of fluorescence recovery after photobleaching (FRAP) imaging of the effect of mitochondrial translation inhibition by chloramphenicol (CAP) on the dynamics of AcGFP1-tagged CI subunits NDUFV1, NDUFS3, NDUFA2 and NDUFB6 and assembly factor NDUFAF4. CAP increased the mobile fraction of the subunits, but not NDUFAF4, and decreased the amount of CI, demonstrating that CI is relatively immobile and does not associate with NDUFAF4. CAP increased the recovery kinetics of NDUFV1-AcGFP1 to the same value as obtained with AcGFP1 alone, indicative of the removal of unbound NDUFV1 from the mitochondrial matrix. Conversely, CAP decreased the mobility of NDUFS3-AcGFP1 and, to a lesser extent, NDUFB6-AcGFP1, suggestive of their enrichment in less mobile subassemblies. Little, if any, change in mobility of NDUFA2-AcGFP1 could be detected, suggesting that the dynamics of this accessory subunit of the matrix arm remains unaltered. Finally, CAP increased the mobility of NDUFAF4-AcGFP1, indicative of interaction with a more mobile membrane-bound subassembly. Our results show that the protein interactions of CI subunits and assembly factors are differently altered when mitochondrial translation is defective.
Collapse
Affiliation(s)
- Cindy E J Dieteren
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
ATP synthase superassemblies in animals and plants: Two or more are better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1185-97. [PMID: 21679683 DOI: 10.1016/j.bbabio.2011.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022]
|
23
|
Velours J, Stines-Chaumeil C, Habersetzer J, Chaignepain S, Dautant A, Brèthes D. Evidence of the proximity of ATP synthase subunits 6 (a) in the inner mitochondrial membrane and in the supramolecular forms of Saccharomyces cerevisiae ATP synthase. J Biol Chem 2011; 286:35477-35484. [PMID: 21868388 DOI: 10.1074/jbc.m111.275776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The involvement of subunit 6 (a) in the interface between yeast ATP synthase monomers has been highlighted. Based on the formation of a disulfide bond and using the unique cysteine 23 as target, we show that two subunits 6 are close in the inner mitochondrial membrane and in the solubilized supramolecular forms of the yeast ATP synthase. In a null mutant devoid of supernumerary subunits e and g that are involved in the stabilization of ATP synthase dimers, ATP synthase monomers are close enough in the inner mitochondrial membrane to make a disulfide bridge between their subunits 6, and this proximity is maintained in detergent extract containing this enzyme. The cross-linking of cysteine 23 located in the N-terminal part of the first transmembrane helix of subunit 6 suggests that this membrane-spanning segment is in contact with its counterpart belonging to the ATP synthase monomer that faces it and participates in the monomer-monomer interface.
Collapse
Affiliation(s)
- Jean Velours
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095; Université de Bordeaux, UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex.
| | - Claire Stines-Chaumeil
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095; Université de Bordeaux, UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex
| | - Johan Habersetzer
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095; Université de Bordeaux, UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex
| | - Stéphane Chaignepain
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095; Université de Bordeaux, UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex; CNRS, Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Allée de Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Alain Dautant
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095; Université de Bordeaux, UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex
| | - Daniel Brèthes
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095; Université de Bordeaux, UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex.
| |
Collapse
|
24
|
Mitochondria impairment correlates with increased sensitivity of aging RPE cells to oxidative stress. J Ocul Biol Dis Infor 2011; 3:92-108. [PMID: 22833778 DOI: 10.1007/s12177-011-9061-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 12/22/2022] Open
Abstract
Impairment of mitochondria function and cellular antioxidant systems are linked to aging and neurodegenerative diseases. In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment that contributes to age-related visual dysfunction. Here, we examined changes in mitochondrial function in human RPE cells and sensitivity to oxidative stress with increased chronological age. Primary RPE cells from young (9-20)-, mid-age (48-60)-, and >60 (62-76)-year-old donors were grown to confluency and examined by electron microscopy and flow cytometry using several mitochondrial functional assessment tools. Susceptibility of RPE cells to H(2)O(2) toxicity was determined by lactate dehydrogenase and cytochrome c release, as well as propidium iodide staining. Reactive oxygen species, cytoplasmic Ca(2+) [Ca(2+)](c), and mitochondrial Ca(2+) [Ca(2+)](m) levels were measured using 2',7'-dichlorodihydrofluorescein diacetate, fluo-3/AM, and Rhod-2/AM, respectively, adenosine triphosphate (ATP) levels were measured by a luciferin/luciferase-based assay and mitochondrial membrane potential (ΔΨm) estimated using 5,5',6,6'-tetrachloro 1,1'3,3'-tetraethylbenzimid azolocarbocyanine iodide. Expression of mitochondrial and antioxidant genes was determined by real-time polymerase chain reaction. RPE cells show greater sensitivity to oxidative stress, reduction in expression of mitochondrial heat shock protein 70, uncoupling protein 2, and superoxide dismutase 3, and greater expression of superoxide dismutase 2 levels with increased chronological age. Changes in mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity were more prominent in samples obtained from >60 years old compared to mid-age and younger donors. These mitochondria abnormalities correlated with lower ATP levels, reduced ΔΨm, decreased [Ca(2+)](c), and increased sequestration of [Ca(2+)](m) in cells with advanced aging. Our study provides evidence for mitochondrial decay, bioenergetic deficiency, weakened antioxidant defenses, and increased sensitivity of RPE cells to oxidative stress with advanced aging. Our findings suggest that with increased severity of mitochondrial decay and oxidative stress, RPE function may be altered in some individuals in a way that makes the retina more susceptible to age-related injury.
Collapse
|
25
|
De los Rios Castillo D, Zarco-Zavala M, Olvera-Sanchez S, Pardo JP, Juarez O, Martinez F, Mendoza-Hernandez G, García-Trejo JJ, Flores-Herrera O. Atypical cristae morphology of human syncytiotrophoblast mitochondria: role for complex V. J Biol Chem 2011; 286:23911-9. [PMID: 21572045 DOI: 10.1074/jbc.m111.252056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial complexes I, III(2), and IV from human cytotrophoblast and syncytiotrophoblast associate to form supercomplexes or respirasomes, with the following stoichiometries: I(1):(III(2))(1) and I(1):(III(2))(1-2):IV(1-4). The content of respirasomes was similar in both cell types after isolating mitochondria. However, syncytiotrophoblast mitochondria possess low levels of dimeric complex V and do not have orthodox cristae morphology. In contrast, cytotrophoblast mitochondria show normal cristae morphology and a higher content of ATP synthase dimer. Consistent with the dimerizing role of the ATPase inhibitory protein (IF(1)) (García, J. J., Morales-Ríos, E., Cortés-Hernandez, P., and Rodríguez-Zavala, J. S. (2006) Biochemistry 45, 12695-12703), higher relative amounts of IF(1) were observed in cytotrophoblast when compared with syncytiotrophoblast mitochondria. Therefore, there is a correlation between dimerization of complex V, IF(1) expression, and the morphology of mitochondrial cristae in human placental mitochondria. The possible relationship between cristae architecture and the physiological function of the syncytiotrophoblast mitochondria is discussed.
Collapse
Affiliation(s)
- Daniela De los Rios Castillo
- Department of Biochemistry and Molecular Biology, Medicine Faculty, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Couoh-Cardel SJ, Uribe-Carvajal S, Wilkens S, García-Trejo JJ. Structure of dimeric F1F0-ATP synthase. J Biol Chem 2010; 285:36447-55. [PMID: 20833715 DOI: 10.1074/jbc.m110.144907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c(10) ring and the other stator subunits at the F(0)-F(0) dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356-12358). In the ATP synthase dimer, the two peripheral stalks are located near the F(1)-F(1) interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.
Collapse
Affiliation(s)
- Sergio J Couoh-Cardel
- Department of Biology, Chemistry Faculty, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
27
|
Muster B, Kohl W, Wittig I, Strecker V, Joos F, Haase W, Bereiter-Hahn J, Busch K. Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells. PLoS One 2010; 5:e11910. [PMID: 20689601 PMCID: PMC2912852 DOI: 10.1371/journal.pone.0011910] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/07/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mitochondria, the main suppliers of cellular energy, are dynamic organelles that fuse and divide frequently. Constraining these processes impairs mitochondrial is closely linked to certain neurodegenerative diseases. It is proposed that functional mitochondrial dynamics allows the exchange of compounds thereby providing a rescue mechanism. METHODOLOGY/PRINCIPAL FINDINGS The question discussed in this paper is whether fusion and fission of mitochondria in different cell lines result in re-localization of respiratory chain (RC) complexes and of the ATP synthase. This was addressed by fusing cells containing mitochondria with respiratory complexes labelled with different fluorescent proteins and resolving their time dependent re-localization in living cells. We found a complete reshuffling of RC complexes throughout the entire chondriome in single HeLa cells within 2-3 h by organelle fusion and fission. Polykaryons of fused cells completely re-mixed their RC complexes in 10-24 h in a progressive way. In contrast to the recently described homogeneous mixing of matrix-targeted proteins or outer membrane proteins, the distribution of RC complexes and ATP synthase in fused hybrid mitochondria, however, was not homogeneous but patterned. Thus, complete equilibration of respiratory chain complexes as integral inner mitochondrial membrane complexes is a slow process compared with matrix proteins probably limited by complete fusion. In co-expressing cells, complex II is more homogenously distributed than complex I and V, resp. Indeed, this result argues for higher mobility and less integration in supercomplexes. CONCLUSION/SIGNIFICANCE Our results clearly demonstrate that mitochondrial fusion and fission dynamics favours the re-mixing of all RC complexes within the chondriome. This permanent mixing avoids a static situation with a fixed composition of RC complexes per mitochondrion.
Collapse
Affiliation(s)
- Britta Muster
- Institute of Kinematic Cell Research, Department of Biology, University of Frankfurt, Frankfurt/Main, Germany
| | - Wladislaw Kohl
- Institute of Kinematic Cell Research, Department of Biology, University of Frankfurt, Frankfurt/Main, Germany
- Laboratory for Mitochondrial Dynamics, Department of Biology, University of Osnabrueck, Osnabrueck, Germany
| | - Ilka Wittig
- Institute of Molecular Bioenergetics, Medical School, University of Frankfurt, Frankfurt/Main, Germany
| | - Valentina Strecker
- Institute of Molecular Bioenergetics, Medical School, University of Frankfurt, Frankfurt/Main, Germany
| | - Friederike Joos
- Electron Facility, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Winfried Haase
- Electron Facility, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Jürgen Bereiter-Hahn
- Institute of Kinematic Cell Research, Department of Biology, University of Frankfurt, Frankfurt/Main, Germany
| | - Karin Busch
- Institute of Kinematic Cell Research, Department of Biology, University of Frankfurt, Frankfurt/Main, Germany
- Laboratory for Mitochondrial Dynamics, Department of Biology, University of Osnabrueck, Osnabrueck, Germany
- * E-mail:
| |
Collapse
|
28
|
Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 2010; 45:563-72. [PMID: 20159033 DOI: 10.1016/j.exger.2010.02.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 01/18/2010] [Accepted: 02/02/2010] [Indexed: 11/21/2022]
Abstract
Activity and stability of life-supporting proteins are determined not only by their abundance and by post-translational modifications, but also by specific protein-protein interactions. This holds true both for signal-transduction and energy-converting cascades. For vital processes such as life-span control and senescence, to date predominantly age-dependent alterations in abundance and to lesser extent in post-translational modifications of proteins are examined to elucidate the cause of ageing at the molecular level. In mitochondria of rat cortex, we quantified profound changes in the proportion of supramolecular assemblies (supercomplexes) of the respiratory chain complexes I, III(2), IV as well as of the MF(o)F(1) ATP synthase (complex V) by 2D-native/SDS electrophoresis and fluorescent staining. Complex I was present solely in supercomplexes and those lacking complex IV were least stable in aged animals (2.4-fold decline). The ATP synthase was confirmed as a prominent target of age-associated degradation by an overall decline in abundance of 1.5-fold for the monomer and an 2.8-fold increase of unbound F(1). Oligomerisation of the ATP synthase increases during ageing and might modulate the cristae architecture. These data could explain the link between ageing and respiratory control as well as ROS generation.
Collapse
|
29
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
30
|
Mitochondrial decay and impairment of antioxidant defenses in aging RPE cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:165-83. [PMID: 20238015 DOI: 10.1007/978-1-4419-1399-9_20] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment, partly due to elevated oxygen partial pressure from the choriocapillaris and to digestion of polyunsaturated fatty acid laden photoreceptor outer segments. Here we examined the vulnerability of RPE cells to stress and changes in their mitochondria with increased chronological aging and showed that there is greater sensitivity of the cells to oxidative stress, alterations in their mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity as a function of age. These features correlate with reduced cellular levels of ATP, ROS, and [Ca(2+)](c), lower Deltapsim, increased [Ca(2+)](m) sequestration and decreased expression of mtHsp70, UCP2, and SOD3. Mitochondrial decay, bioenergetic deficiencies, and weakened antioxidant defenses in RPE cells occur as early as age 62. With increased severity, these conditions may significantly reduce RPE function in the retina and contribute to age related retinal anomalies.
Collapse
|
31
|
Mitochondrial F1F0-ATP synthase and organellar internal architecture. Int J Biochem Cell Biol 2009; 41:1783-9. [DOI: 10.1016/j.biocel.2009.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/12/2009] [Accepted: 01/15/2009] [Indexed: 01/24/2023]
|
32
|
Identification of the proteome of the midgut of silkworm, Bombyx mori L., by multidimensional liquid chromatography (MDLC) LTQ-Orbitrap MS. Biosci Rep 2009; 29:363-73. [PMID: 19007334 DOI: 10.1042/bsr20080144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The midgut is the digestive apparatus of the silkworm and its proteome was studied by using nano-LC (liquid chromatography) electrospray ionization MS/MS (tandem MS). MS data were analysed by using X!Tandem searching software using different parameters and validated by using the Poisson model. A total of 90 proteins were identified and 79 proteins were described for the first time. Among the new proteins, (i) 22 proteins were closely related to the digestive function of the midgut, including 11 proteins of digestive enzymes secreted by the epithelium, eight proteins of intestine wall muscle and mechanical digestion and three proteins of peritrophic membrane that could prevent the epithelium from being mechanically rubbed; (ii) 44 proteins were involved in metabolism of substance and energy; and (iii) 11 proteins were associated with signal transduction, substance transport and cell skeleton.
Collapse
|
33
|
Cristae formation—linking ultrastructure and function of mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:5-19. [DOI: 10.1016/j.bbamcr.2008.06.013] [Citation(s) in RCA: 311] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/05/2008] [Accepted: 06/12/2008] [Indexed: 11/22/2022]
|
34
|
Wittig I, Schägger H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 2008; 8:3974-90. [DOI: 10.1002/pmic.200800017] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Benard G, Rossignol R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 2008; 10:1313-42. [PMID: 18435594 DOI: 10.1089/ars.2007.2000] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The recently ascertained network and dynamic organization of the mitochondrion, as well as the demonstration of energy proteins and metabolites subcompartmentalization, have led to a reconsideration of the relationships between organellar form and function. In particular, the impact of mitochondrial morphological changes on bioenergetics is inseparable. Several observations indicate that mitochondrial energy production may be controlled by structural rearrangements of the organelle both interiorly and globally, including the remodeling of cristae morphology and elongation or fragmentation of the tubular network organization, respectively. These changes are mediated by fusion or fission reactions in response to physiological signals that remain unidentified. They lead to important changes in the internal diffusion of energy metabolites, the sequestration and conduction of the electric membrane potential (Delta Psi), and possibly the delivery of newly synthesized ATP to various cellular areas. Moreover, the physiological or even pathological context also determines the morphology of the mitochondrion, suggesting a tight and mutual control between mitochondrial form and bioenergetics. In this review, we delve into the link between mitochondrial structure and energy metabolism.
Collapse
|
36
|
Wittig I, Schägger H. Structural organization of mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:592-8. [DOI: 10.1016/j.bbabio.2008.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 01/02/2023]
|
37
|
Weimann T, Vaillier J, Salin B, Velours J. The Intermembrane Space Loop of Subunit b (4) Is a Major Determinant of the Stability of Yeast Oligomeric ATP Synthases. Biochemistry 2008; 47:3556-63. [DOI: 10.1021/bi702000g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Théodore Weimann
- Université de Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux, France
| | - Jacques Vaillier
- Université de Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux, France
| | - Bénédicte Salin
- Université de Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux, France
| | - Jean Velours
- Université de Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux, France
| |
Collapse
|
38
|
Saddar S, Dienhart MK, Stuart RA. The F1F0-ATP synthase complex influences the assembly state of the cytochrome bc1-cytochrome oxidase supercomplex and its association with the TIM23 machinery. J Biol Chem 2008; 283:6677-86. [PMID: 18187422 DOI: 10.1074/jbc.m708440200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme complexes involved in mitochondrial oxidative phosphorylation are organized into higher ordered assemblies termed supercomplexes. Subunits e and g (Su e and Su g, respectively) are catalytically nonessential subunits of the F1F0-ATP synthase whose presence is required to directly support the stable dimerization of the ATP synthase complex. We report here that Su g and Su e are also important for securing the correct organizational state of the cytochrome bc1-cytochrome oxidase (COX) supercomplex. Mitochondria isolated from the Delta su e and Delta su g null mutant strains exhibit decreased levels of COX enzyme activity but appear to have normal COX subunit protein levels. An altered stoichiometry of the cytochrome bc1-COX supercomplex was observed in mitochondria deficient in Su e and/or Su g, and a perturbation in the association of Cox4, a catalytically important subunit of the COX complex, was also detected. In addition, an increase in the level of the TIM23 translocase associated with the cytochrome bc1-COX supercomplex is observed in the absence of Su e and Su g. Together, our data highlight that a further level of complexity exists between the oxidative phosphorylation supercomplexes, whereby the organizational state of one complex, i.e. the ATP synthase, may influence that of another supercomplex, namely the cytochrome bc1-COX complex.
Collapse
Affiliation(s)
- Sonika Saddar
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | |
Collapse
|
39
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
40
|
Abstract
Most membrane-bound organelles have elaborate, dynamic shapes and often include regions with distinct morphologies. These complex structures are relatively conserved throughout evolution, which indicates that they are important for optimal organelle function. Various mechanisms of determining organelle shape have been proposed - proteins that stabilize highly curved membranes, the tethering of organelles to other cellular components and the regulation of membrane fission and fusion might all contribute.
Collapse
Affiliation(s)
- Gia K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
41
|
Rak M, Tetaud E, Godard F, Sagot I, Salin B, Duvezin-Caubet S, Slonimski PP, Rytka J, di Rago JP. Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology. J Biol Chem 2007; 282:10853-64. [PMID: 17261589 DOI: 10.1074/jbc.m608692200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atp6p is an essential subunit of the ATP synthase proton translocating domain, which is encoded by the mitochondrial DNA (mtDNA) in yeast. We have replaced the coding sequence of Atp6p gene with the non-respiratory genetic marker ARG8m. Due to the presence of ARG8m, accumulation of rho-/rho0 petites issued from large deletions in mtDNA could be restricted to 20-30% by growing the atp6 mutant in media lacking arginine. This moderate mtDNA instability created favorable conditions to investigate the consequences of a specific lack in Atp6p. Interestingly, in addition to the expected loss of ATP synthase activity, the cytochrome c oxidase respiratory enzyme steady-state level was found to be extremely low (<5%) in the atp6 mutant. We show that the cytochrome c oxidase-poor accumulation was caused by a failure in the synthesis of one of its mtDNA-encoded subunits, Cox1p, indicating that, in yeast mitochondria, Cox1p synthesis is a key target for cytochrome c oxidase abundance regulation in relation to the ATP synthase activity. We provide direct evidence showing that in the absence of Atp6p the remaining subunits of the ATP synthase can still assemble. Mitochondrial cristae were detected in the atp6 mutant, showing that neither Atp6p nor the ATP synthase activity is critical for their formation. However, the atp6 mutant exhibited unusual mitochondrial structure and distribution anomalies, presumably caused by a strong delay in inner membrane fusion.
Collapse
Affiliation(s)
- Malgorzata Rak
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Boekema EJ, Braun HP. Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System. J Biol Chem 2007; 282:1-4. [PMID: 17102127 DOI: 10.1074/jbc.r600031200] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein complexes of the mitochondrial oxidative phosphorylation system were recently reported to form supramolecular assemblies termed respiratory supercomplexes or respirasomes. These supercomplexes are considered to be of great functional importance. Here we review new insights into supercomplex structure and physiology.
Collapse
Affiliation(s)
- Egbert J Boekema
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
43
|
Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD. OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina. Ann N Y Acad Sci 2006; 1067:106-15. [PMID: 16803975 DOI: 10.1196/annals.1354.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent biochemical evidence has indicated the existence of respiratory supercomplexes as well as ATP synthase oligomers in the inner mitochondrial membrane of different eukaryotes. We have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This aging model is able to respire by either the standard or the alternative pathway. In the latter, electrons are directly transferred from ubiquinol to the alternative oxidase (AOX) and thus bypass complexes III and IV. We showed that the two pathways are composed of distinct respiratory supercomplexes. These data are of significance for the understanding of both respiratory pathways as well as of life-span control and aging.
Collapse
Affiliation(s)
- Frank Krause
- Physical Biochemistry, Department of Chemistry, Darmstadt University of Technology, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Krause F. Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 2006; 27:2759-81. [PMID: 16817166 DOI: 10.1002/elps.200600049] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is an essential and challenging task to unravel protein-protein interactions in their actual in vivo context. Native gel systems provide a separation platform allowing the analysis of protein complexes on a rather proteome-wide scale in a single experiment. This review focus on blue-native (BN)-PAGE as the most versatile and successful gel-based approach to separate soluble and membrane protein complexes of intricate protein mixtures derived from all biological sources. BN-PAGE is a charge-shift method with a running pH of 7.5 relying on the gentle binding of anionic CBB dye to all membrane and many soluble protein complexes, leading to separation of protein species essentially according to their size and superior resolution than other fractionation techniques can offer. The closely related colorless-native (CN)-PAGE, whose applicability is restricted to protein species with intrinsic negative net charge, proved to provide an especially mild separation capable of preserving weak protein-protein interactions better than BN-PAGE. The essential conditions determining the success of detecting protein-protein interactions are the sample preparations, e.g. the efficiency/mildness of the detergent solubilization of membrane protein complexes. A broad overview about the achievements of BN- and CN-PAGE studies to elucidate protein-protein interactions in organelles and prokaryotes is presented, e.g. the mitochondrial protein import machinery and oxidative phosphorylation supercomplexes. In many cases, solubilization with digitonin was demonstrated to facilitate an efficient and particularly gentle extraction of membrane protein complexes prone to dissociation by treatment with other detergents. In general, analyses of protein interactomes should be carried out by both BN- and CN-PAGE.
Collapse
Affiliation(s)
- Frank Krause
- Department of Chemistry, Physical Biochemistry, Darmstadt University of Technology, Germany.
| |
Collapse
|
45
|
Dudkina NV, Sunderhaus S, Braun HP, Boekema EJ. Characterization of dimeric ATP synthase and cristae membrane ultrastructure fromSaccharomycesandPolytomellamitochondria. FEBS Lett 2006; 580:3427-32. [PMID: 16714019 DOI: 10.1016/j.febslet.2006.04.097] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/20/2006] [Accepted: 04/21/2006] [Indexed: 12/19/2022]
Abstract
There is increasing evidence now that F(1)F(0) ATP synthase is arranged in dimers in the inner mitochondrial membrane of several organisms. The dimers are also considered to be the building blocks of oligomers. It was recently found that the monomers in beef and the alga Polytomella ATP synthase dimer make an angle of approximately 40 degrees and approximately 70 degrees, respectively. This arrangement is considered to induce a strong local bending of the membrane. To further understand the packing of dimers into oligomers we performed an electron microscopy analysis of ATP synthase dimers purified from Saccharomyces cerevisiae. Two types of dimers were found in which the angle between the monomers is either approximately 90 degrees or approximately 35 degrees. According to our interpretation, the wide-angle dimers (70-90 degrees) are "true-dimers" whereas the small-angle dimers (35-40 degrees) rather are "pseudo-dimers", which represent breakdown products of two adjacent true dimers in the oligomer. Ultrathin sectioning of intact Polytomella mitochondria indicates that the inner mitochondrial or cristae membrane is folded into lamellae and tubuli. Oligomers of ATP synthase can arrange in a helical fashion in tubular-shaped cristae membranes. These results strongly support the hypothesized role of ATP synthase oligomers in structural determination of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Natalya V Dudkina
- Department of Biophysical Chemistry, GBB, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
46
|
Fronzes R, Weimann T, Vaillier J, Velours J, Brèthes D. The Peripheral Stalk Participates in the Yeast ATP Synthase Dimerization Independently of e and g Subunits. Biochemistry 2006; 45:6715-23. [PMID: 16716082 DOI: 10.1021/bi0601407] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is now clearly established that dimerization of the F(1)F(o) ATP synthase takes place in the mitochondrial inner membrane. Interestingly, oligomerization of this enzyme seems to be involved in cristae morphogenesis. As they were able to form homodimers, subunits 4, e, and g have been proposed as potential ATP synthase dimerization subunits. In this paper, we provide evidence that subunit h, a peripheral stalk component, is located either at or near the ATP synthase dimerization interface. Subunit h homodimers were formed in mitochondria and were found to be associated to ATP synthase dimers. Moreover, homodimerization of subunit h and of subunit i turned out to be independent of subunits e and g, confirming the existence of an ATP synthase dimer in the mitochondrial inner membrane in the absence of subunits e and g. For the first time, this dimer has been observed by BN-PAGE. Finally, from these results we are now able to update our model for the supramolecular organization of the ATP synthase in the membrane and propose a role for subunits e and g, which stabilize the ATP synthase dimers and are involved in the oligomerization of the complex.
Collapse
Affiliation(s)
- Rémi Fronzes
- Institut de Biochimie et Génétique Cellulaires du Centre National de la Recherche Scientifique, UMR5095, Université Victor Segalen Bordeaux 2, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
47
|
Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP. Respiratory chain supercomplexes in the plant mitochondrial membrane. TRENDS IN PLANT SCIENCE 2006; 11:232-40. [PMID: 16616870 DOI: 10.1016/j.tplants.2006.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 02/20/2006] [Accepted: 03/27/2006] [Indexed: 05/08/2023]
Abstract
The intricate, heavily folded inner membrane of mitochondria houses the respiratory chain complexes. These complexes, together with the ATP synthase complex, are responsible for energy production, which is stored as ATP. The structure of the individual membrane-bound protein components has been well characterized. In particular, the use of Blue-native polyacrylamide gel electrophoresis has been instrumental in recent years in providing evidence that these components are organized into supercomplexes. Single particle electron microscopy studies have enabled a structural characterization of some of the mitochondrial supercomplexes. This has provided the opportunity to define a functional role for these supercomplexes for the first time, in particular for the dimeric ATP synthase complex, which appears to be responsible for the folding of the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Natalya V Dudkina
- Department of Biophysical Chemistry, GBB, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Jakobs S. High resolution imaging of live mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:561-75. [PMID: 16750866 DOI: 10.1016/j.bbamcr.2006.04.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/12/2006] [Accepted: 04/13/2006] [Indexed: 11/26/2022]
Abstract
Classically, mitochondria have been studied by biochemical, genetic and electron microscopic approaches. In the last two decades, it became evident that mitochondria are highly dynamic organelles that are frequently dividing and fusing, changing size and shape and traveling long distances throughout the life of a cell. The study of the complex structural changes of mitochondria in vivo became possible with the advent of fluorescent labeling techniques in combination with live cell imaging microscopy. This review aims to provide an overview on novel fluorescent markers that are used in combination with mitochondrial fusion assays and various live cell microscopy techniques to study mitochondrial dynamics. In particular, approaches to study the movement of mitochondrial proteins and novel imaging techniques (FRET imaging-, 4Pi- and STED-microscopy) that provide high spatial resolution are considered.
Collapse
Affiliation(s)
- Stefan Jakobs
- Max-Planck-Institute for Biophysical Chemistry, Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Am Fassberg 11, 37077 Goettingen, Germany.
| |
Collapse
|
49
|
Abstract
Clear-native PAGE (CN-PAGE) separates acidic water-soluble and membrane proteins (pI < 7) in an acrylamide gradient gel, and usually has lower resolution than blue-native PAGE (BN-PAGE). The migration distance depends on the protein intrinsic charge, and on the pore size of the gradient gel. This complicates estimation of native masses and oligomerization states when compared to BN-PAGE, which uses negatively charged protein-bound Coomassie-dye to impose a charge shift on the proteins. Therefore, BN-PAGE rather than CN-PAGE is commonly used for standard analyses. However, CN-PAGE offers advantages whenever Coomassie-dye interferes with techniques required to further analyze the native complexes, e.g., determination of catalytic activities, as shown here for mitochondrial ATP synthase, or efficient microscale separation of membrane protein complexes for fluorescence resonance energy transfer (FRET) analyses. CN-PAGE is milder than BN-PAGE. Especially the combination of digitonin and CN-PAGE can retain labile supramolecular assemblies of membrane protein complexes that are dissociated under the conditions of BN-PAGE. Enzymatically active oligomeric states of mitochondrial ATP synthase previously not detected using BN-PAGE were identified by CN-PAGE.
Collapse
Affiliation(s)
- Ilka Wittig
- Zentrum der Biologischen Chemie, Fachbereich Medizin, Universität Frankfurt, Germany
| | | |
Collapse
|
50
|
Heath-Engel HM, Shore GC. Mitochondrial membrane dynamics, cristae remodelling and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:549-60. [PMID: 16574258 DOI: 10.1016/j.bbamcr.2006.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 12/31/2022]
Abstract
Mitochondria form a highly dynamic reticular network in living cells, and undergo continuous fusion/fission events and changes in ultrastructural architecture. Although significant progress has been made in elucidating the molecular events underlying these processes, their relevance to normal cell function remains largely unexplored. Emerging evidence, however, suggests an important role for mitochondrial dynamics in cellular apoptosis. The mitochondria is at the core of the intrinsic apoptosis pathway, and provides a reservoir for protein factors that induce caspase activation and chromosome fragmentation. Additionally, mitochondria modulate Ca2+ homeostasis and are a source of various metabolites, including reactive oxygen species, that have the potential to function as second messengers in response to apoptotic stimuli. One of the mitochondrial factors required for activation of caspases in most intrinsic apoptotic pathways, cytochrome c, is largely sequestered within the intracristae compartment, and must migrate into the boundary intermembrane space in order to allow passage across the outer membrane to the cytosol. Recent evidence argues that inner mitochondrial membrane dynamics regulate this process. Here, we review the contribution of mitochondrial dynamics to the intrinsic apoptosis pathway, with emphasis on the inner membrane.
Collapse
Affiliation(s)
- Hannah M Heath-Engel
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec, 3655 Promenade Sir William Osler, Canada H3G 1Y6
| | | |
Collapse
|