1
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China,*Correspondence: Li Xu,
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Li Xu,
| |
Collapse
|
3
|
Nicotine Affects Multiple Biological Processes in EpiDermTM Organotypic Tissues and Keratinocyte Monolayers. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dermal exposure to nicotine is common due to the widespread use of tobacco products. Here, we assessed the effects of nicotine at concentrations found in thirdhand smoke (THS) contaminated environments and electronic cigarette (EC) spills or leaks on a 3D human skin model (EpiDermTM) and on submerged keratinocyte cultures. Air liquid interface treatment of EpiDermTM with 10 or 400 μg/mL of nicotine for 24 h followed by proteomics analysis showed altered pathways related to inflammation, protein synthesis, cell–cell adhesion, apoptosis, and mitochondrial function. Submerged cultured keratinocytes were used to validate the proteomics data and further characterize the response of skin cells to nicotine. Mitochondrial phenotype changed from networked to punctate in keratinocytes treated with 10 or 400 μg/mL of nicotine for 48 h and 24 h, respectively. After 72 h, all concentrations of nicotine caused a significant decrease in the networked phenotype. In Western blots, keratinocytes exposed to 400 μg/mL of nicotine had a significant decrease in mitofusin 2, while mitofusin 1 decreased after 72 h. The shift from networked to punctate mitochondria correlated with a decrease in mitofusin 1/2, a protein needed to establish and maintain the networked phenotype. Mitochondrial changes were reversible after a 24 h recovery period. Peroxisomes exposed to 400 μg/mL of nicotine for 24 h became enlarged and were fewer in number. Nicotine concentrations in THS and EC spills altered the proteome profile in EpiDermTM and damaged organelles including mitochondria and peroxisomes, which are involved in ROS homeostasis. These changes may exacerbate skin infections, inhibit wound healing, and cause oxidative damage to cells in the skin.
Collapse
|
4
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
5
|
Tan MWY, Tan WR, Kong ZQ, Toh JH, Wee WKJ, Teo EML, Cheng HS, Wang X, Tan NS. High Glucose Restraint of Acetylcholine-Induced Keratinocyte Epithelial-Mesenchymal Transition Is Mitigated by p38 Inhibition. J Invest Dermatol 2020; 141:1438-1449.e9. [PMID: 33333125 DOI: 10.1016/j.jid.2020.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023]
Abstract
Non-neuronal acetylcholine (Ach) plays important roles in various aspects of cell biology and homeostasis outside the neural system. Keratinocytes (KCs) have a functional cholinergic mechanism, suggesting that they respond to Ach. However, the physiological role and mechanism by which Ach modulates wound KC behavior in both nondiabetic and diabetic conditions are unexplored. We found an enrichment in neurotransmitter-related pathways in microdissected-migrating nondiabetic and diabetic KCs. We showed that Ach upregulated TGFβRII through Src-extracellular signal‒regulated kinase 1/2 pathway to potentiate TGFβ1-mediated epithelial‒mesenchymal transition in normoglycemic condition. Unexpectedly, KCs were nonresponsive to the elevated endogenous Ach in a hyperglycemic environment. We further showed that the activation of p38 MAPK in high glucose condition interferes with Src-extracellular signal‒regulated kinase 1/2 signaling, resulting in Ach resistance that could be rescued by inhibiting p38 MAPK. A better understanding of the cholinergic physiology in diabetic KCs could improve wound management and care. The finding suggests that mitigating the inhibitory effect of diabetic wound microenvironment has a direct clinical implication on the efficacy and safety of various wound healing agents to improve chronic diabetic wounds.
Collapse
Affiliation(s)
- Mark Wei Yi Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ze Qing Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jun Hong Toh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wei Kiat Jonathan Wee
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Erica Mei Ling Teo
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore; Department of Cell Biology, Institute of Ophthalmology, University College London, London, United Kingdom; Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Zouboulis CC, Benhadou F, Byrd AS, Chandran NS, Giamarellos‐Bourboulis EJ, Fabbrocini G, Frew JW, Fujita H, González‐López MA, Guillem P, Gulliver WPF, Hamzavi I, Hayran Y, Hórvath B, Hüe S, Hunger RE, Ingram JR, Jemec GB, Ju Q, Kimball AB, Kirby JS, Konstantinou MP, Lowes MA, MacLeod AS, Martorell A, Marzano AV, Matusiak Ł, Nassif A, Nikiphorou E, Nikolakis G, Nogueira da Costa A, Okun MM, Orenstein LA, Pascual JC, Paus R, Perin B, Prens EP, Röhn TA, Szegedi A, Szepietowski JC, Tzellos T, Wang B, van der Zee HH. What causes hidradenitis suppurativa ?—15 years after. Exp Dermatol 2020; 29:1154-1170. [DOI: 10.1111/exd.14214] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Christos C. Zouboulis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - Farida Benhadou
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Hôpital Erasme Universite Libre de Bruxelles Bruxelles Belgium
| | - Angel S. Byrd
- Department of Dermatology Howard University College of Medicine Washington DC USA
| | - Nisha S. Chandran
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Division of Dermatology Department of Medicine National University Hospital Singapore
| | - Evangelos J. Giamarellos‐Bourboulis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- 4th Department of Internal Medicine National and Kapodistrian University of Athens Medical School Athens Greece
| | - Gabriella Fabbrocini
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Section of Dermatology Department of Clinical Medicine and Surgery University of Naples Federico II Naples Italy
| | | | - Hideki Fujita
- Division of Cutaneous Science Department of Dermatology Nihon University School of Medicine Tokyo Japan
| | - Marcos A. González‐López
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Division of Dermatology Hospital Universitario Marqués de Valdecilla University of Cantabria IDIVAL Santander Spain
| | - Philippe Guillem
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Surgery Clinique du Val d’Ouest (Lyon), ResoVerneuil (Paris) and Groupe de Recherche en Proctologie de la Société Nationale Française de ColoProctologie Paris France
| | - Wayne P. F. Gulliver
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Faculty of Medicine Memorial University of Newfoundland, and NewLab Clinical Research Inc St. John's Canada
| | - Iltefat Hamzavi
- Department of Dermatology Henry Ford Hospital Wayne State University Detroit MI USA
| | - Yildiz Hayran
- Department of Dermatology Ankara Numune Training and Research Hospital Ankara Turkey
| | - Barbara Hórvath
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology University Medical Centre Groningen University of Groningen Groningen The Netherlands
| | | | - Robert E. Hunger
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Inselspital Bern University Hospital Bern Switzerland
| | - John R. Ingram
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology & Academic Wound Healing Division of Infection and Immunity Cardiff University Cardiff UK
| | - Gregor B.E. Jemec
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | - Qiang Ju
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology RenJi Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Alexa B. Kimball
- Department of Dermatology Beth Israel Deaconess Medical Center and Harvard Medical School Boston MA USA
| | - Joslyn S. Kirby
- Department of Dermatology Penn State Milton S. Hershey Medical Center Hershey PA USA
| | - Maria P. Konstantinou
- Dermatology Department Paul Sabatier University University Hospital of Toulouse Toulouse France
| | | | - Amanda S. MacLeod
- Department of Dermatology Department of Immunology Department of Molecular Genetics and Microbiology Duke University Durham NC USA
| | - Antonio Martorell
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Hospital of Manises Valencia Spain
| | - Angelo V. Marzano
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Dermatology Unit Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation Università degli Studi di Milano Milan Italy
| | - Łukasz Matusiak
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Venereology and Allergology Wrocław Medical University Wrocław Poland
| | - Aude Nassif
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Institut Pasteur Paris France
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases King’s College London, and Department of Rheumatology King’s College Hospital London UK
| | - Georgios Nikolakis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - André Nogueira da Costa
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Translational Science and Experimental Medicine Early Respiratory and Immunology Biopharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | | | | | - José Carlos Pascual
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Alicante University General Hospital Alicante Institute for Health and Biomedical Research (ISABIAL‐FISABIO Foundation) Alicante Spain
| | - Ralf Paus
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Benjamin Perin
- Division of Dermatology University of Washington Seattle WA USA
| | - Errol P. Prens
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Erasmus University Medical Center Rotterdam The Netherlands
| | - Till A. Röhn
- Autoimmunity, Transplantation and Inflammation Novartis Institutes for BioMedical Research Novartis Pharma AG Basel Switzerland
| | - Andrea Szegedi
- Division of Dermatological Allergology Department of Dermatology Faculty of Medicine University of Debrecen Debrecen Hungary
| | - Jacek C. Szepietowski
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Venereology and Allergology Wrocław Medical University Wrocław Poland
| | - Thrasyvoulos Tzellos
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Nordland Hospital Trust Bodø Norway
| | - Baoxi Wang
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Plastic Surgery Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hessel H. van der Zee
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Erasmus University Medical Center Rotterdam The Netherlands
| |
Collapse
|
7
|
How Have Leukocyte In Vitro Chemotaxis Assays Shaped Our Ideas about Macrophage Migration? BIOLOGY 2020; 9:biology9120439. [PMID: 33276594 PMCID: PMC7761587 DOI: 10.3390/biology9120439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Simple Summary The migration of immune cells is vital during inflammatory responses. Macrophages, which are a subset of immune cells, are unique in the ways they migrate because they can switch between different mechanism of migration. This crucial feature of macrophage migration has been underappreciated in the literature because technologies used to study macrophage migration were not able to efficiently detect those subtle differences between macrophages and other immune cells. This review article describes popular technologies used to study macrophage migration and critically assesses their advantages and disadvantages in macrophage migration studies. Abstract Macrophage chemotaxis is crucial during both onset and resolution of inflammation and unique among all leukocytes. Macrophages are able to switch between amoeboid and mesenchymal migration to optimise their migration through 3D environments. This subtle migration phenotype has been underappreciated in the literature, with macrophages often being grouped and discussed together with other leukocytes, possibly due to the limitations of current chemotaxis assays. Transwell assays were originally designed in the 1960s but despite their long-known limitations, they are still one of the most popular methods of studying macrophage migration. This review aims to critically evaluate transwell assays, and other popular chemotaxis assays, comparing their advantages and limitations in macrophage migration studies.
Collapse
|
8
|
Zhao J, Manuchehrfar F, Liang J. Cell-substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model. Biomech Model Mechanobiol 2020; 19:1781-1796. [PMID: 32108272 PMCID: PMC7990038 DOI: 10.1007/s10237-020-01308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 01/23/2023]
Abstract
During the process of tissue formation and regeneration, cells migrate collectively while remaining connected through intercellular adhesions. However, the roles of cell-substrate and cell-cell mechanical interactions in regulating collective cell migration are still unclear. In this study, we employ a newly developed finite element cellular model to study collective cell migration by exploring the effects of mechanical feedback between cell and substrate and mechanical signal transmission between adjacent cells. Our viscoelastic model of cells consists many triangular elements and is of high resolution. Cadherin adhesion between cells is modeled explicitly as linear springs at subcellular level. In addition, we incorporate a mechano-chemical feedback loop between cell-substrate mechanics and Rac-mediated cell protrusion. Our model can reproduce a number of experimentally observed patterns of collective cell migration during wound healing, including cell migration persistence, separation distance between cell pairs and migration direction. Moreover, we demonstrate that cell protrusion determined by the cell-substrate mechanics plays an important role in guiding persistent and oriented collective cell migration. Furthermore, this guidance cue can be maintained and transmitted to submarginal cells of long distance through intercellular adhesions. Our study illustrates that our finite element cellular model can be employed to study broad problems of complex tissue in dynamic changes at subcellular level.
Collapse
Affiliation(s)
- Jieling Zhao
- INRIA de Paris and Sorbonne Universités UPMC, LJLL Team Mamba, Paris, France.
| | - Farid Manuchehrfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
9
|
Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, Mokhtarzadeh A, Shanehbandi D, Doustvandi MA, Asadzadeh Z, Baradaran B. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? J Cell Physiol 2019; 234:14666-14679. [PMID: 30701535 DOI: 10.1002/jcp.28220] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
The lung tissue expresses the cholinergic system including nicotinic acetylcholine receptors (nAChRs) which included in many physiologic and pathologic processes. Mounting evidence revealed that these receptors have important roles in lung carcinogenesis via modulating either stimulatory or inhibitory signaling pathways. Among different members of nicotinic receptors family, alpha7-subtype of nAChR (α7nAChR) is a critical mediator involved in both inflammatory responses and cancers. Several studies have shown that this receptor is the most powerful regulator of responses that stimulate lung cancer processes such as proliferation, angiogenesis, metastasis, and inhibition of apoptosis. Moreover, aside from its roles in the regulation of cancer pathways, there is growing evidence indicating that α7nAChR has profound impacts on lung inflammation through the cholinergic anti-inflammatory pathway. Regarding such diverse effects as well as the critical roles of nicotine as an activator of α7nAChR on lung cancer pathogenesis, its modulation has emerged as a promising target for drug developments. In this review, we aim to highlight the detrimental as well as the possible beneficial influences of α7nAChR downstream signaling cascades in the control of lung inflammation and cancer-associated properties. Consequently, by considering the significant global burden of lung cancer, delineating the complex influences of α7 receptors would be of great interest in designing novel anticancer and anti-inflammatory strategies for the patients suffering from lung cancer.
Collapse
Affiliation(s)
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Advanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells. PLoS One 2019; 14:e0219708. [PMID: 31314801 PMCID: PMC6636736 DOI: 10.1371/journal.pone.0219708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022] Open
Abstract
Considering the essential role of chemotaxis of adherent, slow-moving cells in processes such as tumor metastasis or wound healing, a detailed understanding of the mechanisms and cues that direct migration of cells through tissues is highly desirable. The state-of-the-art chemotaxis instruments (e.g. microfluidic-based devices, bridge assays) can generate well-defined, long-term stable chemical gradients, crucial for quantitative investigation of chemotaxis in slow-moving cells. However, the majority of chemotaxis tools are designed for the purpose of an in-depth, but labor-intensive analysis of migratory behavior of single cells. This is rather inefficient for applications requiring higher experimental throughput, as it is the case of e.g. clinical examinations, chemoattractant screening or studies of the chemotaxis-related signaling pathways based on subcellular perturbations. Here, we present an advanced migration assay for accelerated and facilitated evaluation of the chemotactic response of slow-moving cells. The revised chemotaxis chamber contains a hydrogel microstructure–the migration arena, designed to enable identification of chemotactic behavior of a cell population in respect to the end-point of the experiment. At the same time, the assay in form of a microscopy slide enables direct visualization of the cells in either 2D or 3D environment, and provides a stable and linear gradient of chemoattractant. We demonstrate the correctness of the assay on the model study of HT-1080 chemotaxis in 3D and on 2D surface. Finally, we apply the migration arena chemotaxis assay to screen for a chemoattractant of primary keratinocytes, cells that play a major role in wound healing, being responsible for skin re-epithelialization and a successful wound closure. In direction of new therapeutic strategies to promote wound repair, we identified the chemotactic activity of the epithelial growth factor receptor (EGFR) ligands EGF and TGFα (transforming growth factor α).
Collapse
|
11
|
Shulepko MA, Kulbatskii DS, Bychkov ML, Lyukmanova EN. Human Nicotinic Acetylcholine Receptors: Part II. Non-Neuronal Cholinergic System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Burn Injury Alters Epidermal Cholinergic Mediators and Increases HMGB1 and Caspase 3 in Autologous Donor Skin and Burn Margin. Shock 2018; 47:175-183. [PMID: 27648692 DOI: 10.1097/shk.0000000000000752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Burn wound healing complications, such as graft failure or infection, are a major source of morbidity and mortality in burn patients. The mechanisms by which local burn injury alters epidermal barrier function in autologous donor skin and surrounding burn margin are largely undefined. We hypothesized that defects in the epidermal cholinergic system may impair epidermal barrier function and innate immune responses. The objective was to identify alterations in the epidermal cholinergic pathway, and their downstream targets, associated with inflammation and cell death. We established that protein levels, but not gene expression, of the α7 nicotinic acetylcholine receptor (CHRNA7) were significantly reduced in both donor and burn margin skin. Furthermore, the gene and protein levels of an endogenous allosteric modulator of CHRNA7, secreted mammalian Ly-6/ urokinase-type plasminogen activator receptor-related protein-1, and acetylcholine were significantly elevated in donor and burn margin skin. As downstream proteins of inflammatory and cell death targets of nAChR activation, we found significant elevations in epidermal High Mobility Group Box Protein 1 and caspase 3 in donor and burn margin skin. Lastly, we employed a novel in vitro keratinocyte burn model to establish that burn injury influences the gene expression of these cholinergic mediators and their downstream targets. These results indicate that defects in cholinergic mediators and inflammatory/apoptotic molecules in donor and burn margin skin may directly contribute to graft failure or infection in burn patients.
Collapse
|
13
|
Kabbani N, Nichols RA. Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors. Trends Pharmacol Sci 2018; 39:354-366. [PMID: 29428175 DOI: 10.1016/j.tips.2018.01.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel (LGIC) that plays an important role in cellular calcium signaling and contributes to several neurological diseases. Agonist binding to the α7 nAChR induces fast channel activation followed by inactivation and prolonged desensitization while triggering long-lasting calcium signaling. These activities foster neurotransmitter release, synaptic plasticity, and somatodendritic regulation in the brain. We discuss here the ability of α7 nAChRs to operate in ionotropic (α7i) and metabotropic (α7m) modes, leading to calcium-induced calcium release (CICR) and G protein-associated inositol trisphosphate (IP3)-induced calcium release (IICR), respectively. Metabotropic activity extends the spatial and temporal aspects of calcium signaling by the α7 channel beyond its ionotropic limits, persisting into the desensitized state. Delineation of the ionotropic and metabotropic properties of the α7 nAChR will provide definitive indicators of moment-to-moment receptor functional status that will, in turn, spearhead new drug development.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
14
|
Zhang C, Ding XP, Zhao QN, Yang XJ, An SM, Wang H, Xu L, Zhu L, Chen HZ. Role of α7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. Oncotarget 2018; 7:59199-59208. [PMID: 27409670 PMCID: PMC5312305 DOI: 10.18632/oncotarget.10498] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/29/2016] [Indexed: 12/04/2022] Open
Abstract
Nicotine via nicotinic acetylcholine receptors (nAChRs) stimulates non-small cell lung cancer (NSCLC) cell invasion and epithelial to mesenchymal transition (EMT) which underpin the cancer metastasis. However, the receptor subtype-dependent effects of nAChRs on NSCLC cell invasion and EMT, and the signaling pathway underlying the effects remain not fully defined. We identified that nicotine induced NSCLC cell invasion, migration, and EMT; the effects were suppressed by pharmacological intervention using α7-nAChR selective antagonists or by genetic intervention using α7-nAChR knockdown via RNA inference. Meanwhile, nicotine induced activation of MEK/ERK signaling in NSCLC cells; α7-nAChR antagonism or MEK/ERK signaling pathway inhibition suppressed NSCLC cell invasion and EMT marker expression. These results indicate that nicotine induces NSCLC cell invasion, migration, and EMT; the effects are mediated by α7-nAChRs and involve MEK/ERK signaling pathway. Delineating the effect of nicotine on the NSCLC cell invasion and EMT at receptor subtype level would improve the understanding of cancer biology and offer potentials for the exploitation of selective ligands for the control of the cancer metastasis.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xu-Ping Ding
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qing-Nan Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Jie Yang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shi-Min An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
15
|
Li JY, Jiang SK, Wang LL, Zhang MZ, Wang S, Jiang ZF, Liu YL, Cheng H, Zhang M, Zhao R, Guan DW. α7-nAChR Activation Has an Opposite Effect on Healing of Covered and Uncovered Wounds. Inflammation 2017; 41:474-484. [DOI: 10.1007/s10753-017-0703-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Sun HJ, Jia YF, Ma XL. Alpha5 Nicotinic Acetylcholine Receptor Contributes to Nicotine-Induced Lung Cancer Development and Progression. Front Pharmacol 2017; 8:573. [PMID: 28878681 PMCID: PMC5572410 DOI: 10.3389/fphar.2017.00573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Nicotine and nicotinic acetylcholine receptors (nAChRs) are considered to be involved in lung cancer risk, onset and progression, but their precise physiological roles in these contexts remain unclear. Our previous studies suggested that α5-nAChR mediates nicotine-induced lung cancer cell proliferation, migration, and invasion in vitro. In this study, we aimed to determine the role of α5-nAChR in the development and progression of non-small cell lung cancer (NSCLC). Our microarray results reveal that knockdown of the CHRNA5 gene encoding α5-nAChR significantly modulates key pathways including the cell cycle, DNA replication, pathway in cancer. α5-nAChR knockdown in cultured A549 cells affected cell cycle distribution, apoptosis, and cyclin expression. In vivo, α5-nAChR silencing inhibited the growth of lung tumors, especially in the context of nicotine exposure. Importantly, α5-nAChR expression in patient tumors correlated with the primary T stage, N stage, and reduced survival time. These results reveal that α5-nAChR silencing inhibits the progression of nicotine-related NSCLC, making this receptor a potential pharmacological target for the treatment of nicotine-related lung carcinogenesis.
Collapse
Affiliation(s)
- Hai-Ji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Yan-Fei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong UniversityJinan, China
| | - Xiao-Li Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong UniversityJinan, China
| |
Collapse
|
17
|
Cuny H, Yu R, Tae HS, Kompella SN, Adams DJ. α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. Br J Pharmacol 2017; 175:1855-1868. [PMID: 28477355 DOI: 10.1111/bph.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal α3-containing nicotinic acetylcholine receptors (nAChRs) in the peripheral nervous system (PNS) and non-neuronal tissues are implicated in a number of severe disease conditions ranging from cancer to cardiovascular diseases and chronic pain. However, despite the physiological characterization of mouse models and cell lines, the precise pathophysiology of nAChRs outside the CNS remains not well understood, in part because there is a lack of subtype-selective antagonists. α-Conotoxins isolated from cone snail venom exhibit characteristic individual selectivity profiles for nAChRs and, therefore, are excellent tools to study the determinants for nAChR-antagonist interactions. Given that human α3β4 subtype selective α-conotoxins are scarce and this is a major nAChR subtype in the PNS, the design of new peptides targeting this nAChR subtype is desirable. Recent studies using α-conotoxins RegIIA and AuIB, in combination with nAChR site-directed mutagenesis and computational modelling, have shed light onto specific nAChR residues, which determine the selectivity of the α-conotoxins for the human α3β2 and α3β4 subtypes. Publications describing the selectivity profile and binding sites of other α-conotoxins confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Hartmut Cuny
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,Victor Chang Cardiac Research Institute, Developmental and Stem Cell Biology Division, Sydney, NSW, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Shiva N Kompella
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
18
|
Zanetti SR, Ziblat A, Torres NI, Zwirner NW, Bouzat C. Expression and Functional Role of α7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem 2016; 291:16541-52. [PMID: 27284006 DOI: 10.1074/jbc.m115.710574] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
The homomeric α7 nicotinic receptor (nAChR) is one of the most abundant nAChRs in the central nervous system where it contributes to cognition, attention, and working memory. α7 nAChR is also present in lymphocytes, dendritic cells (DCs), and macrophages and it is emerging as an important drug target for intervention in inflammation and sepsis. Natural killer (NK) cells display cytotoxic activity against susceptible target cells and modulate innate and adaptive immune responses through their interaction with DCs. We here show that human NK cells also express α7 nAChR. α7 nAChR mRNA is detected by RT-PCR and cell surface expression of α7 nAChR is detected by confocal microscopy and flow cytometry using α-bungarotoxin, a specific antagonist. Both mRNA and protein levels increase during NK stimulation with cytokines (IL-12, IL-18, and IL-15). Exposure of cytokine-stimulated NK cells to PNU-282987, a specific α7 nAChR agonist, increases intracellular calcium concentration ([Ca(2+)]i) mainly released from intracellular stores, indicating that α7 nAChR is functional. Moreover, its activation by PNU-282987 plus a specific positive allosteric modulator greatly enhances the Ca(2+) responses in NK cells. Stimulation of NK cells with cytokines and PNU-282987 decreases NF-κB levels and nuclear mobilization, down-regulates NKG2D receptors, and decreases NKG2D-dependent cell-mediated cytotoxicity and IFN-γ production. Also, such NK cells are less efficient to trigger DC maturation. Thus, our results demonstrate the anti-inflammatory role of α7 nAChR in NK cells and suggest that modulation of its activity in these cells may constitute a novel target for regulation of the immune response.
Collapse
Affiliation(s)
- Samanta R Zanetti
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca
| | - Andrea Ziblat
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Nicolás I Torres
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Norberto W Zwirner
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and the Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428ADN-Ciudad de Buenos Aires, Argentina
| | - Cecilia Bouzat
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca,
| |
Collapse
|
19
|
Scherl C, Schäfer R, Schlabrakowski A, Tziridis K, Iro H, Wendler O. Nicotinic Acetylcholine Receptors in Head and Neck Cancer and Their Correlation to Tumor Site and Progression. ORL J Otorhinolaryngol Relat Spec 2016; 78:151-8. [DOI: 10.1159/000445781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/22/2016] [Indexed: 11/19/2022]
|
20
|
Kalantari-Dehaghi M, Parnell EA, Armand T, Bernard HU, Grando SA. The nicotinic acetylcholine receptor-mediated reciprocal effects of the tobacco nitrosamine NNK and SLURP-1 on human mammary epithelial cells. Int Immunopharmacol 2015; 29:99-104. [DOI: 10.1016/j.intimp.2015.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/29/2015] [Accepted: 04/17/2015] [Indexed: 12/17/2022]
|
21
|
Kishibe M, Griffin TM, Radek KA. Keratinocyte nicotinic acetylcholine receptor activation modulates early TLR2-mediated wound healing responses. Int Immunopharmacol 2015; 29:63-70. [PMID: 26071220 DOI: 10.1016/j.intimp.2015.05.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 12/23/2022]
Abstract
The cholinergic anti-inflammatory pathway spans several macro- and micro-environments to control inflammation via α7 nicotinic acetylcholine receptors (nAChRs). Physiologic inflammation is necessary for normal wound repair and is triggered, in part, via Toll-like receptors (TLRs). Here, we demonstrate that keratinocyte nAChR activation dampens TLR2-mediated migration and pro-inflammatory cytokine and antimicrobial peptide (AMP) production, which is restored by a α7-selective nAChR antagonist. The mechanism of this response occurs by blocking the NF-κB and Erk1/2 pathway during early and late wound healing. In a mouse model of Staphylococcus aureus wound infection, topical nAChR activation reduces wound AMP and TLR2 production to augment bacterial survival in wild-type mice. These findings suggest that aberrant α7 nAChR activation may impair normal wound healing responses, and that pharmacologic administration of topical nAChR antagonists may improve wound healing outcomes in wounds necessitating a more robust inflammatory response.
Collapse
Affiliation(s)
- Mari Kishibe
- The Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Department of Surgery, Loyola University Chicago, Health Science Division, Maywood, IL, USA.
| | - Tina M Griffin
- The Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Department of Surgery, Loyola University Chicago, Health Science Division, Maywood, IL, USA
| | - Katherine A Radek
- The Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Department of Surgery, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Infectious Disease and Immunology Research Institute in the Department of Microbiology and Immunology, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Stritch School of Medicine, Loyola University Chicago, Health Science Division, Maywood, IL, USA
| |
Collapse
|
22
|
Chernyavsky AI, Shchepotin IB, Grando SA. Mechanisms of growth-promoting and tumor-protecting effects of epithelial nicotinic acetylcholine receptors. Int Immunopharmacol 2015; 29:36-44. [PMID: 26071223 DOI: 10.1016/j.intimp.2015.05.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/14/2023]
Abstract
Although the role of nicotine as a carcinogen is debatable, it is widely accepted that it contributes to cancer by promoting growth and survival of mutated cell clones and protecting them from the chemo- and radiotherapy-induced apoptosis. On the cell membrane (cm), the nicotinic acetylcholine (ACh) receptors (nAChRs) implement upregulation of proliferative and survival genes. Nicotine also can permeate cells and activate mitochondrial (mt)-nAChRs coupled to inhibition of the mitochondrial permeability transition pore (mPTP) opening, thus preventing apoptosis. In this study, we sought to pin down principal mechanisms mediating the tumor-promoting activities of nicotine resulting from activation of cm- and mt-nAChRs in oral and lung cancer cells, SCC25 and SW900, respectively. Activated cm-nAChRs were found to form complexes with receptors for EGF and VEGEF via the α7 and β2 nAChR subunits, respectively, whereas activated mt-nAChRs physically associated with the intramitochondrial protein kinases PI3K and Src via the α7 and β4 subunits. This was associated with upregulated expression of cyclin D1/activation of ERK1/2 and inhibition of mPTP opening, respectively, as well as upregulated proliferation and resistance to H(2)O(2)-induced apoptosis. The molecular synergy between cm-nAChRs and growth factor receptors helps explain how one biological mediator, such as ACh, can modulate activity of the other, such as a growth factor, and vice versa. Establishment of functional coupling of mt-nAChRs to regulation of mPTP opening provides a novel mechanism of nicotine-dependent protection from cell death. Further elucidation of this novel mechanism of tumor-promoting activities of nicotine should have a strong translational impact, because extraneuronal nAChRs may provide a novel molecular target to prevent, reverse, or retard progression of both nicotine-related and unrelated cancers.
Collapse
Affiliation(s)
| | | | - Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, CA, USA; Cancer Center and Research Institute, University of California, Irvine, CA, USA.
| |
Collapse
|
23
|
Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis. Int Immunopharmacol 2015; 29:76-80. [PMID: 25998908 DOI: 10.1016/j.intimp.2015.04.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/04/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022]
Abstract
The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity.
Collapse
|
24
|
Seeger MA, Paller AS. The Roles of Growth Factors in Keratinocyte Migration. Adv Wound Care (New Rochelle) 2015; 4:213-224. [PMID: 25945284 DOI: 10.1089/wound.2014.0540] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Significance: The re-epithelialization of wounded skin requires the rapid and coordinated migration of keratinocytes (KC) into the wound bed. Almost immediately after wounding, cells present at or attracted to the wound site begin to secrete a complex milieu of growth factors. These growth factors exert mitogenic and motogenic effects on KCs, inducing the rapid proliferation and migration of KCs at the wound edge. Recent Advances: New roles for growth factors in KC biology are currently being discovered and investigated. This review will highlight the growth factors, particularly transforming growth factor-α (TGF-α), heparin-binding epidermal growth factor (HB-EGF), insulin-like growth factor 1 (IGF-1), fibroblast growth factor 7 (FGF-7), FGF-10, and hepatocyte growth factor (HGF), which have conclusively been shown to be the most motogenic for KCs. Critical Issues: The cellular and molecular heterogeneity of wounded tissue makes establishing direct relationships between specific growth factors and KC migration difficult in situ. The absence of this complexity in simplified in vitro experimental models of migration makes the clinical relevance of the results obtained from these in vitro studies ambiguous. Future Directions: Deciphering the relationship between growth factors and KC migration is critical for understanding the process of wound healing in normal and disease states. Insights into the basic science of the effects of growth factors on KC migration will hopefully lead to the development of new therapies to treat acute and chronic wounds.
Collapse
Affiliation(s)
- Mark A. Seeger
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amy S. Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
25
|
Cirillo N, Vicidomini A, McCullough M, Gambardella A, Hassona Y, Prime SS, Colella G. A hyaluronic acid-based compound inhibits fibroblast senescence induced by oxidative stress in vitro and prevents oral mucositis in vivo. J Cell Physiol 2015; 230:1421-9. [DOI: 10.1002/jcp.24908] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/18/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School and Oral Health CRC; The University of Melbourne; Melbourne VIC Australia
| | - Antonio Vicidomini
- Dipartimento Multidisciplinare di Specialit; à; Medico-chirurgiche ed Odontoiatriche; Seconda Università degli Studi di Napoli; Napoli Italy
| | - Michael McCullough
- Melbourne Dental School and Oral Health CRC; The University of Melbourne; Melbourne VIC Australia
| | - Antonio Gambardella
- Dipartimento Multidisciplinare di Specialit; à; Medico-chirurgiche ed Odontoiatriche; Seconda Università degli Studi di Napoli; Napoli Italy
| | - Yazan Hassona
- Department of Dentistry; University of Jordan; Amman Jordan
| | - Stephen S. Prime
- Centre for Clinical and Diagnostic Oral Sciences; Institute of Dentistry; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Giuseppe Colella
- Dipartimento Multidisciplinare di Specialit; à; Medico-chirurgiche ed Odontoiatriche; Seconda Università degli Studi di Napoli; Napoli Italy
| |
Collapse
|
26
|
Chernyavsky AI, Shchepotin IB, Galitovkiy V, Grando SA. Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors. BMC Cancer 2015; 15:152. [PMID: 25885699 PMCID: PMC4369089 DOI: 10.1186/s12885-015-1158-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background One of the major controversies of contemporary medicine is created by an increased consumption of nicotine and growing evidence of its connection to cancer, which urges elucidation of the molecular mechanisms of oncogenic effects of inhaled nicotine. Current research indicates that nicotinergic regulation of cell survival and death is more complex than originally thought, because it involves signals emanating from both cell membrane (cm)- and mitochondrial (mt)-nicotinic acetylcholine receptors (nAChRs). In this study, we elaborated on the novel concept linking cm-nAChRs to growth promotion of lung cancer cells through cooperation with the growth factor signaling, and mt-nAChRs — to inhibition of intrinsic apoptosis through prevention of opening of mitochondrial permeability transition pore (mPTP). Methods Experiments were performed with normal human lobar bronchial epithelial cells, the lung squamous cell carcinoma line SW900, and intact and NNK-transformed immortalized human bronchial cell line BEP2D. Results We demonstrated that the growth-promoting effect of nicotine mediated by activation of α7 cm-nAChR synergizes mainly with that of epidermal growth factor (EGF), α3 — vascular endothelial growth factor (VEGF), α4 — insulin-like growth factor I (IGF-I) and VEGF, whereas α9 with EGF, IGF-I and VEGF. We also established the ligand-binding abilities of mt-nAChRs and demonstrated that quantity of the mt-nAChRs coupled to inhibition of mPTP opening increases upon malignant transformation. Conclusions These results indicated that the biological sum of simultaneous activation of cm- and mt-nAChRs produces a combination of growth-promoting and anti-apoptotic signals that implement the tumor-promoting action of nicotine on lung cells. Therefore, nAChRs may be a promising molecular target to arrest lung cancer progression and re-open mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Alex I Chernyavsky
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| | | | - Valentin Galitovkiy
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| | - Sergei A Grando
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA. .,Department of Biological Chemistry, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA. .,Cancer Center and Research Institute, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
27
|
Kompella SN, Hung A, Clark RJ, Marí F, Adams DJ. Alanine scan of α-conotoxin RegIIA reveals a selective α3β4 nicotinic acetylcholine receptor antagonist. J Biol Chem 2014; 290:1039-48. [PMID: 25411242 DOI: 10.1074/jbc.m114.605592] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the α3β4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3β4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3β4, α3β2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3β4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3β4 than the α3β2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3β4 nAChR antagonist (IC50 of 370 nM) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3β4 and α3β2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3β2 (α3-Tyr(92), Ser(149), Tyr(189), Cys(192), and Tyr(196); β2-Trp(57), Arg(81), and Phe(119)) may form the molecular basis for the selectivity shift.
Collapse
Affiliation(s)
- Shiva N Kompella
- From the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | - Andrew Hung
- From the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | - Richard J Clark
- the School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia, and
| | - Frank Marí
- the Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431
| | - David J Adams
- From the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia,
| |
Collapse
|
28
|
Chernyavsky AI, Galitovskiy V, Shchepotin IB, Jester JV, Grando SA. The acetylcholine signaling network of corneal epithelium and its role in regulation of random and directional migration of corneal epithelial cells. Invest Ophthalmol Vis Sci 2014; 55:6921-33. [PMID: 25270189 DOI: 10.1167/iovs.14-14667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Because cholinergic drugs are used in ophthalmology and cholinergic stimulation has been shown to facilitate epithelialization of mucocutaneous wounds, we performed a systematic analysis of components of the cholinergic network of human and murine corneal epithelial cells (CECs) and determined the role of autocrine and paracrine acetylcholine (ACh) in regulation of CEC motility. METHODS We investigated the expression of ACh receptors at the mRNA and protein levels in human immortalized CECs, localization of cholinergic molecules in normal and wounded murine cornea, and the effects of cholinergic drugs on CEC directional and random migration in vitro, intercellular adhesion, and expression of integrin αV and E-cadherin. RESULTS We demonstrated that corneal epithelium expresses the ACh-synthesizing enzyme choline acetyltransferase, the ACh-degrading enzyme acetylcholinesterase, two muscarinic ACh receptors (mAChRs), M3 and M4, and several nicotinic ACh receptors (nAChRs), including both α7- and α9-made homomeric nAChRs and predominantly the α3β2±α5 subtype of heteromeric nAChRs. Wounding affected the expression patterns of cholinergic molecules in the murine corneal epithelium. Constant stimulation of CECs through both muscarinic and nicotinic signaling pathways was essential for CEC survival and both directional and random migration in vitro. Both α7 and non-α7 nAChRs elicited chemotaxis, with the α7 signaling exhibiting a stronger chemotactic effect. Cholinergic stimulation of CECs upregulated expression of the integrin and cadherin molecules involved in epithelialization. We found synergy between the proepithelialization signals elicited by different ACh receptors expressed in CECs. CONCLUSIONS Simultaneous stimulation of mAChRs and nAChRs by ACh may be required to synchronize and balance ionic and metabolic events in a single cell. Localization of these cholinergic enzymes and receptors in murine cornea indicated that the concentration of endogenous ACh and the mode of its signaling differ among corneal epithelial layers. Elucidation of the signaling events elicited upon agonist binding to corneal mAChRs and nAChRs will be crucial for understanding the mechanisms of ACh signaling in CECs, which has salient clinical implications.
Collapse
Affiliation(s)
- Alex I Chernyavsky
- Department of Dermatology, University of California, Irvine, California, United States
| | - Valentin Galitovskiy
- Department of Dermatology, University of California, Irvine, California, United States
| | | | - James V Jester
- Institute for Immunology, University of California, Irvine, California, United States
| | - Sergei A Grando
- Department of Dermatology, University of California, Irvine, California, United States Department of Biological Chemistry, University of California, Irvine, California, United States Gavin Herbert Eye Institute, University of California, Irvine, California, United States
| |
Collapse
|
29
|
Abstract
This Opinion article discusses emerging evidence of direct contributions of nicotine to cancer onset and growth. The list of cancers reportedly connected to nicotine is expanding and presently includes small-cell and non-small-cell lung carcinomas, as well as head and neck, gastric, pancreatic, gallbladder, liver, colon, breast, cervical, urinary bladder and kidney cancers. The mutagenic and tumour-promoting activities of nicotine may result from its ability to damage the genome, disrupt cellular metabolic processes, and facilitate growth and spreading of transformed cells. The nicotinic acetylcholine receptors (nAChRs), which are activated by nicotine, can activate several signalling pathways that can have tumorigenic effects, and these receptors might be able to be targeted for cancer therapy or prevention. There is also growing evidence that the unique genetic makeup of an individual, such as polymorphisms in genes encoding nAChR subunits, might influence the susceptibility of that individual to the pathobiological effects of nicotine. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the evaluation of regulations on nicotine product manufacturing, distribution and marketing.
Collapse
Affiliation(s)
- Sergei A Grando
- Departments of Dermatology and Biological Chemistry, and Cancer Center and Research Institute, University of California, Irvine, California 92782, USA
| |
Collapse
|
30
|
Gergalova G, Lykhmus O, Komisarenko S, Skok M. α7 nicotinic acetylcholine receptors control cytochrome c release from isolated mitochondria through kinase-mediated pathways. Int J Biochem Cell Biol 2014; 49:26-31. [PMID: 24412630 DOI: 10.1016/j.biocel.2014.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/11/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels found in the plasma membrane of both excitable and non-excitable cells. Previously we reported that nicotinic receptors containing α7 subunits were present in the outer membranes of mitochondria to regulate the early apoptotic events like cytochrome c release. Here we show that signaling of mitochondrial α7 nicotinic receptors affects intramitochondrial protein kinases. Agonist of α7 nicotinic receptors PNU 282987 (30 nM) prevented the effect of phosphatidyl inositol-3-kinase inhibitor wortmannin, which stimulated cytochrome c release in isolated mouse liver mitochondria, and restored the Akt (Ser 473) phosphorylation state decreased by either 90 μM Ca(2+) or wortmannin. The effect of PNU 282987 was similar to inhibition of calcium-calmodulin-dependent kinase II (upon 90 μM Ca(2+)) or of Src kinase(s) (upon 0.5mM H2O2) and of protein kinase C. Cytochrome c release from mitochondria could be also attenuated by α7 nicotinic receptor antagonist methyllicaconitine or α7-specific antibodies. Allosteric modulator PNU 120526 (1 μM) did not improve the effect of agonist PNU 282987. Acetylcholine (1 μM) and methyllicaconitine (10nM) inhibited superoxide release from mitochondria measured according to alkalization of Ca(2+)-containing medium. It is concluded that α7 nicotinic receptors regulate mitochondrial permeability transition pore formation through ion-independent mechanism involving activation of intramitochondrial PI3K/Akt pathway and inhibition of calcium-calmodulin-dependent or Src-kinase-dependent signaling pathways.
Collapse
Affiliation(s)
- Galyna Gergalova
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Sergiy Komisarenko
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine.
| |
Collapse
|
31
|
Skok MV. Nicotinic acetylcholine receptors: specific antibodies and functions in humoral immunity. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Garcia R, Nguyen L, Brazill D. Dictyostelium discoideum SecG interprets cAMP-mediated chemotactic signals to influence actin organization. Cytoskeleton (Hoboken) 2013; 70:269-80. [PMID: 23564751 PMCID: PMC3693759 DOI: 10.1002/cm.21107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 11/12/2022]
Abstract
Tight control of actin cytoskeletal dynamics is essential for proper cell function and survival. Arf nucleotide binding-site opener (ARNO), a mammalian guanine nucleotide exchange factor for Arf, has been implicated in actin cytoskeletal regulation but its exact role is still unknown. To explore the role of ARNO in this regulation as well as in actin-mediated processes, the Dictyostelium discoideum homolog, SecG, was examined. SecG peaks during aggregation and mound formation. The overexpression of SecG arrests development at the mound stage. SecG overexpressing (SecG OE) cells fail to stream during aggregation. Although carA is expressed, SecG OE cells do not chemotax toward cAMP, indicating SecG is involved in the cellular response to cAMP. This chemotactic defect is specific to cAMP-directed chemotaxis, as SecG OE cells chemotax to folate without impairment and exhibit normal cell motility. The chemotactic defects of the SecG mutants may be due to an impaired cAMP response as evidenced by altered cell polarity and F-actin polymerization after cAMP stimulation. Cells overexpressing SecG have increased filopodia compared to wild type cells, implying that excess SecG causes abnormal organization of F-actin. The general function of the cytoskeleton, however, is not disrupted as the SecG OE cells exhibit proper cell-substrate adhesion. Taken together, the results suggest proper SecG levels are needed for appropriate response to cAMP signaling in order to coordinate F-actin organization during development.
Collapse
Affiliation(s)
- Rebecca Garcia
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College and the Graduate Center of the City University of New York, New York, NY 10065
| | - Liem Nguyen
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College and the Graduate Center of the City University of New York, New York, NY 10065
| | - Derrick Brazill
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College and the Graduate Center of the City University of New York, New York, NY 10065
| |
Collapse
|
33
|
Chernyavsky AI, Marchenko S, Phillips C, Grando SA. Auto/paracrine nicotinergic peptides participate in cutaneous stress response to wounding. DERMATO-ENDOCRINOLOGY 2013; 4:324-30. [PMID: 23467535 PMCID: PMC3583894 DOI: 10.4161/derm.22594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Restoration of epidermal barrier (epithelialization), is a major component of cutaneous response to stress imposed by wounding. Learning physiologic regulation of epithelialization may lead to novel treatments of chronic wounds. The non-canonical ligands of nicotinic acetylcholine receptors SLURP (secreted mammalian Ly-6/urokinase-type plasminogen activator receptor-related proteins)-1 and -2 are produced by keratinocytes (KCs) and inflammatory cells to augment physiologic responses to non-neuronal acetylcholine, suggesting that they can affect wound epithelialization and inflammation. In this study, recombinant (r)SLURP-1 and -2 exhibited dose dependent effects on migration of cultured KCs, and monoclonal antibodies inactivating auto/paracrine SLURPs in mouse skin delayed wound epithelialization. While effects of rSLURPs on migration were opposite, with rSLURP-1 inhibiting and rSLURP-2 stimulating migration of KCs, each anti-SLURP antibody produced a negative effect on epithelialization in vivo, suggesting their more extensive than regulation of keratinocyte migration involvement in wound repair. Since inflammation plays an important role in stress response to wounding, we measured inflammation biomarkers in wounds treated with anti-SLURP antibodies. Both anti-SLURP-1 and -2 antibodies, or their mixture, caused significant elevation of wound myeloperoxidase, IL-1β, IL-6 and TNFα. Taken together, results of this study demonstrated that SLURP-1 slows crawling locomotion of KCs, and exhibits a strong anti-inflammatory activity in wound tissue. In contrast, SLURP-2 facilitates lateral migration of KCs, but shows a lesser anti-inflammatory capacity. Thus, combined biologic activities of both SLURPs may be required for normal stress response to skin wounding, which favors clinical trial of rSLURP-1 and -2 in wounds that fail to heal.
Collapse
Affiliation(s)
- Alex I Chernyavsky
- Departments of Dermatology and Biochemistry; University of California; Irvine, CA USA
| | | | | | | |
Collapse
|
34
|
Gahring LC, Enioutina EY, Myers EJ, Spangrude GJ, Efimova OV, Kelley TW, Tvrdik P, Capecchi MR, Rogers SW. Nicotinic receptor alpha7 expression identifies a novel hematopoietic progenitor lineage. PLoS One 2013; 8:e57481. [PMID: 23469197 PMCID: PMC3586088 DOI: 10.1371/journal.pone.0057481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
How inflammatory responses are mechanistically modulated by nicotinic acetylcholine receptors (nAChR), especially by receptors composed of alpha7 (α7) subunits, is poorly defined. This includes a precise definition of cells that express α7 and how these impact on innate inflammatory responses. To this aim we used mice generated through homologous recombination that express an Ires-Cre-recombinase bi-cistronic extension of the endogenous α7 gene that when crossed with a reporter mouse expressing Rosa26-LoxP (yellow fluorescent protein (YFP)) marks in the offspring those cells of the α7 cell lineage (α7lin+). In the adult, on average 20–25 percent of the total CD45+ myeloid and lymphoid cells of the bone marrow (BM), blood, spleen, lymph nodes, and Peyers patches are α7lin+, although variability between litter mates in this value is observed. This hematopoietic α7lin+ subpopulation is also found in Sca1+cKit+ BM cells suggesting the α7 lineage is established early during hematopoiesis and the ratio remains stable in the individual thereafter as measured for at least 18 months. Both α7lin+ and α7lin– BM cells can reconstitute the immune system of naïve irradiated recipient mice and the α7lin+:α7lin– beginning ratio is stable in the recipient after reconstitution. Functionally the α7lin+:α7lin– lineages differ in response to LPS challenge. Most notable is the response to LPS as demonstrated by an enhanced production of IL-12/23(p40) by the α7lin+ cells. These studies demonstrate that α7lin+ identifies a novel subpopulation of bone marrow cells that include hematopoietic progenitor cells that can re-populate an animal’s inflammatory/immune system. These findings suggest that α7 exhibits a pleiotropic role in the hematopoietic system that includes both the direct modulation of pro-inflammatory cell composition and later in the adult the role of modulating pro-inflammatory responses that would impact upon an individual’s lifelong response to inflammation and infection.
Collapse
Affiliation(s)
- Lorise C Gahring
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ion channels in hematopoietic and mesenchymal stem cells. Stem Cells Int 2012; 2012:217910. [PMID: 22919401 PMCID: PMC3420091 DOI: 10.1155/2012/217910] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/05/2012] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside in bone marrow niches and give rise to hematopoietic precursor cells (HPCs). These have more restricted lineage potential and eventually differentiate into specific blood cell types. Bone marrow also contains mesenchymal stromal cells (MSCs), which present multilineage differentiation potential toward mesodermal cell types. In bone marrow niches, stem cell interaction with the extracellular matrix is mediated by integrin receptors. Ion channels regulate cell proliferation and differentiation by controlling intracellular Ca(2+), cell volume, release of growth factors, and so forth. Although little evidence is available about the ion channel roles in true HSCs, increasing information is available about HPCs and MSCs, which present a complex pattern of K(+) channel expression. K(+) channels cooperate with Ca(2+) and Cl(-) channels in regulating calcium entry and cell volume during mitosis. Other K(+) channels modulate the integrin-dependent interaction between leukemic progenitor cells and the niche stroma. These channels can also regulate leukemia cell interaction with MSCs, which also involves integrin receptors and affects the MSC-mediated protection from chemotherapy. Ligand-gated channels are also implicated in these processes. Nicotinic acetylcholine receptors regulate cell proliferation and migration in HSCs and MSCs and may be implicated in the harmful effects of smoking.
Collapse
|
36
|
Abstract
Cigarette smoking has been associated with significant morbidity affecting all systems of the body, including the integumentary system. We review the many dermatologic hazards of tobacco use. It is important to distinguish between the effects of tobacco smoke from effects of pure nicotine on the skin. All skin cells express several subtypes of the nicotinic class of acetylcholine receptors, including the α7 receptor. Many chronic dermatoses are affected by smoking either negatively or positively. Elucidation of positive associations with a particular disease can lead to improvement from smoking cessation, whereas inverse correlation may lead to development of a disease-specific treatment with nicotinergic agonists.
Collapse
Affiliation(s)
- Arisa Ortiz
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
37
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
38
|
Gergalova G, Lykhmus O, Kalashnyk O, Koval L, Chernyshov V, Kryukova E, Tsetlin V, Komisarenko S, Skok M. Mitochondria express α7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS One 2012; 7:e31361. [PMID: 22359587 PMCID: PMC3281078 DOI: 10.1371/journal.pone.0031361] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/06/2012] [Indexed: 11/30/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate synaptic transmission in the muscle and autonomic ganglia and regulate transmitter release in the brain. The nAChRs composed of α7 subunits are also expressed in non-excitable cells to regulate cell survival and proliferation. Up to now, functional α7 nAChRs were found exclusively on the cell plasma membrane. Here we show that they are expressed in mitochondria and regulate early pro-apoptotic events like cytochrome c release. The binding of α7-specific antibody with mouse liver mitochondria was revealed by electron microscopy. Outer membranes of mitochondria from the wild-type and β2−/− but not α7−/− mice bound α7 nAChR-specific antibody and toxins: FITC-labeled α-cobratoxin or Alexa 555-labeled α-bungarotoxin. α7 nAChR agonists (1 µM acetylcholine, 10 µM choline or 30 nM PNU-282987) impaired intramitochondrial Ca2+ accumulation and significantly decreased cytochrome c release stimulated with either 90 µM CaCl2 or 0.5 mM H2O2. α7-specific antagonist methyllicaconitine (50 nM) did not affect Ca2+ accumulation in mitochondria but attenuated the effects of agonists on cytochrome c release. Inhibitor of voltage-dependent anion channel (VDAC) 4,4′-diisothio-cyano-2,2′-stilbene disulfonic acid (0.5 µM) decreased cytochrome c release stimulated with apoptogens similarly to α7 nAChR agonists, and VDAC was co-captured with the α7 nAChR from mitochondria outer membrane preparation in both direct and reverse sandwich ELISA. It is concluded that α7 nAChRs are expressed in mitochondria outer membrane to regulate the VDAC-mediated Ca2+ transport and mitochondrial permeability transition.
Collapse
Affiliation(s)
- Galyna Gergalova
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Olena Lykhmus
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Olena Kalashnyk
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Lyudmyla Koval
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Volodymyr Chernyshov
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Elena Kryukova
- Department of Molecular Bases of Neurosignaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor Tsetlin
- Department of Molecular Bases of Neurosignaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergiy Komisarenko
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Maryna Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
- * E-mail:
| |
Collapse
|
39
|
Beckel JM, Birder LA. Differential expression and function of nicotinic acetylcholine receptors in the urinary bladder epithelium of the rat. J Physiol 2012; 590:1465-80. [PMID: 22250215 DOI: 10.1113/jphysiol.2011.226860] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been previously determined that the epithelial lining of the urinary bladder, or urothelium, expresses two subtypes of nicotinic acetylcholine receptors (nAChRs) that mediate distinct physiological effects in vivo. These effects include inhibition of bladder reflexes through α7 receptors and an excitation of bladder reflexes through α3-containing (α3*) receptors. It is believed that urothelial receptors mediate their effects through modulating the release of neurotransmitters such as ATP that subsequently influence bladder afferent nerve excitability. Therefore, we examined the distribution of nAChRs in the urothelium, as well as their ability to influence the release of the neurotransmitter ATP. Immunofluorescent staining of both whole bladder tissue and primary urothelial cultures from the rat demonstrated that the urothelium contains both α3* and α7 receptors. In primary urothelial cultures, α7 stimulation with choline (10 μM to 1 mM) caused a decrease in basal ATP release while α3* stimulation with cytisine (1–100 μM) caused a concentration-dependent, biphasic response, with low concentrations (1–10 μM) inhibiting release and higher concentrations (50–100 μM) increasing release. These responses were mirrored in an in vitro, whole bladder preparation. In vivo, excitation of bladder reflexes in response to intravesical cytisine (100 μM) is blocked by systemic administration of the purinergic antagonist PPADS (1 or 3 μg kg(−1)). We also examined how each receptor subtype influenced intracellular Ca2+ levels in cultured urothelial cells. nAChR stimulation increased [Ca2+]i through distinct mechanisms: α7 through a ryanodine-sensitive intracellular mechanism and α3* through extracellular influx. In addition, our findings suggest interactions between nAChR subtypes whereby activation of α7 receptors inhibited the response to a subsequent activation of α3* receptors, preventing the increase in [Ca2+]i previously observed. This inhibitory effect appears to be mediated through protein kinase A- or protein kinase C-mediated pathways.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Pharmacology and Biological Chemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
40
|
Abstract
During embryonic development, the skin, the largest organ of the human body, and nervous system are both derived from the neuroectoderm. Consequently, several key factors and mechanisms that influence and control central or peripheral nervous system activities are also present and hence involved in various regulatory mechanisms of the skin. Apparently, this is the case for the ion and non-ion selective channels as well. Therefore, in this review, we shall focus on delineating the regulatory roles of the channels in skin physiology and pathophysiology. First, we introduce key cutaneous functions and major characteristics of the channels in question. Then, we systematically detail the involvement of a multitude of channels in such skin processes (e.g. skin barrier formation, maintenance, and repair, immune mechanisms, exocrine secretion) which are mostly defined by cutaneous non-neuronal cell populations. Finally, we close by summarizing data suggesting that selected channels are also involved in skin diseases such as e.g. atopic dermatitis, psoriasis, non-melanoma cancers and malignant melanoma, genetic and autoimmune diseases, etc., as well as in skin ageing.
Collapse
Affiliation(s)
- Attila Oláh
- DE-MTA Lendület Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | | | | |
Collapse
|
41
|
Grando SA. Muscarinic receptor agonists and antagonists: effects on keratinocyte functions. Handb Exp Pharmacol 2012:429-50. [PMID: 22222709 DOI: 10.1007/978-3-642-23274-9_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stratified epithelium enveloping the skin and lining the surfaces of oral and vaginal mucosa is comprised by keratinocytes that synthesize, secrete, degrade, and respond to acetylcholine via muscarinic and nicotinic receptors. The two pathways may compete or synergize with one another, so that net biologic effect represents the biologic sum of the effects of distinct acetylcholine receptors expressed by a keratinocyte at a particular stage of its development. Keratinocytes express a unique combination of muscarinic receptor subtypes at each stage of their development. Experimental results indicate that muscarinic receptors expressed in human keratinocytes regulate their viability, proliferation, migration, adhesion, and terminal differentiation, hair follicle cycling, and secretion of humectants, cytokines, and growth factors. Learning the muscarinic pharmacology of keratinocyte development and functions has salient clinical implications for patients with nonhealing wounds, mucocutaneous cancers, and various autoimmune and inflammatory diseases. Successful therapy of pemphigus lesions with topical pilocarpine and disappearance of psoriatic lesions due to systemic atropine therapy illustrate that such therapeutic approach is feasible.
Collapse
Affiliation(s)
- Sergei A Grando
- Departments of Dermatology and Biological Chemistry, University of California, 134 Sprague Hall, Irvine, CA 92697, USA.
| |
Collapse
|
42
|
Chernyavsky AI, Kalantari-Dehaghi M, Phillips C, Marchenko S, Grando SA. Novel cholinergic peptides SLURP-1 and -2 regulate epithelialization of cutaneous and oral wounds. Wound Repair Regen 2011; 20:103-13. [PMID: 22168155 DOI: 10.1111/j.1524-475x.2011.00753.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/07/2011] [Indexed: 01/03/2023]
Abstract
It is well established that auto/paracrine acetylcholine (ACh) is essential for wound epithelialization, and that the mechanisms include regulation of keratinocyte motility and adhesion via nicotinic ACh receptors (nAChRs). Keratinocyte nAChRs can be also activated by non-canonical ligands, such as secreted mammalian Ly-6/urokinase-type plasminogen activator receptor-related protein (SLURP)-1 and -2. In this study, we determined effects of recombinant (r)SLURP-1 and-2 on migration of human epidermal and oral keratinocytes under agarose and epithelialization of cutaneous and oral mucosal excisional wounds in mice, and also identified nAChRs mediating SLURP signals. Both in vitro and in vivo, rSLURP-1 decreased and SLURP-2 increased epithelialization rate. The mixture of both peptides accelerated epithelialization even further, indicating that their simultaneous signaling renders an additive physiologic response. The specificity of rSLURP actions was illustrated by similar effects on cutaneous and oral wounds, which feature distinct responses to injury, and also by abrogation of rSLURP effects with neutralizing antibodies. rSLURP-1 acted predominantly via the α7 nAChR-coupled up-regulation of the sedentary integrins α2 and α3 , whereas SLURP-2--through α3, and α9 nAChRs up-regulating migratory integrins α5 and αV . The biologic effects of rSLURPs required the presence of endogenous ACh, indicating that auto/paracrine SLURPs provide for a fine tuning of the physiologic regulation of crawling locomotion via the keratinocyte ACh axis. Since nAChRs have been shown to regulate SLURP production, cholinergic regulation of keratinocyte migration appears to be mediated by a reciprocally arranged network. The cholinergic peptides, therefore, may become prototype drugs for the treatment of wounds that fail to heal.
Collapse
|
43
|
α7-Containing and non-α7-containing nicotinic receptors respond differently to spillover of acetylcholine. J Neurosci 2011; 31:14920-30. [PMID: 22016525 DOI: 10.1523/jneurosci.3400-11.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We explored whether nicotinic acetylcholine receptors (nAChRs) might participate in paracrine transmission by asking if they respond to spillover of ACh at a model synapse in the chick ciliary ganglion, where ACh activates diffusely distributed α7- and α3-containing nAChRs (α7-nAChRs and α3*-nAChRs). Elevating quantal content lengthened EPSC decay time and prolonged both the fast (α7-nAChR-mediated) and slow (α3*-nAChR-mediated) components of decay, even in the presence of acetylcholinesterase. Increasing quantal content also prolonged decay times of pharmacologically isolated α7-nAChR- and α3*-nAChR-EPSCs. The effect upon EPSC decay time of changing quantal content was 5-10 times more pronounced for α3*-nAChR- than α7-nAChR-mediated currents and operated over a considerably longer time window: ≈ 20 vs ≈ 2 ms. Control experiments rule out a presynaptic source for the effect. We suggest that α3*-nAChR currents are prolonged at higher quantal content because of ACh spillover and postsynaptic potentiation (Hartzell et al., 1975), while α7-nAChR currents are prolonged probably for other reasons, e.g., increased occupancy of long channel open states. α3*-nAChRs report more spillover when α7-nAChRs are competitively blocked than under native conditions; this could be explained if α7-nAChRs buffer ACh and regulate its availability to activate α3*-nAChRs. Our results suggest that non-α7-nAChRs such as α3*-nAChRs may be suitable for paracrine nicotinic signaling but that α7-nAChRs may not be suitable. Our results further suggest that α7-nAChRs may buffer ACh and regulate its bioavailability.
Collapse
|
44
|
Canastar A, Logel J, Graw S, Finlay-Schultz J, Osborne C, Palionyte M, Drebing C, Plehaty M, Wilson L, Eyeson R, Leonard S. Promoter methylation and tissue-specific transcription of the α7 nicotinic receptor gene, CHRNA7. J Mol Neurosci 2011; 47:389-400. [PMID: 22052086 DOI: 10.1007/s12031-011-9663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023]
Abstract
The α7 nicotinic acetylcholine receptor is known to regulate a wide variety of developmental and secretory functions in neural and non-neural tissues. The mechanisms that regulate its transcription in these varied tissues are not well understood. Epigenetic processes may play a role in the tissue-specific regulation of mRNA expression from the α7 nicotinic receptor subunit gene, CHRNA7. Promoter methylation was correlated with CHRNA7 mRNA expression in various tissue types and the role of DNA methylation in regulating transcription from the gene was tested by using DNA methyltransferase (DNMT1) inhibitors and methyl donors. CHRNA7 mRNA expression was silenced in SH-EP1 cells and bisulfite sequencing PCR revealed the CHRNA7 proximal promoter was hypermethylated. The proximal promoter was hypomethylated in the cell lines HeLa, SH-SY5Y, and SK-N-BE which express varying levels of CHRNA7 mRNA. Expression of CHRNA7 mRNA was present in SH-EP1 cells after treatment with the methylation inhibitor, 5-aza-2-deoxycytidine (5-Aza-CdR), and increased in SH-EP1 and HeLa cells using another methylation inhibitor, zebularine (ZEB). Transcription from the CHRNA7 promoter in HeLa cells was increased when the methyl donor methionine (MET) was absent from the media. Using methylation-sensitive restriction enzyme analysis (MSRE), there was a strong inverse correlation between CHRNA7 mRNA levels and promoter DNA methylation across several human tissue types. The results support a role for DNA methylation of the proximal promoter in regulation of CHRNA7 transcription.
Collapse
Affiliation(s)
- Andrew Canastar
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cardinale A, Nastrucci C, Cesario A, Russo P. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol 2011; 42:68-89. [PMID: 22050423 DOI: 10.3109/10408444.2011.623150] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, tobacco smoking is the cause of ~5-6 million deaths per year, counting 31% and 6% of all cancer deaths (affecting 18 different organs) in middle-aged men and women, respectively. Nicotine is the addictive component of tobacco acting on neuronal nicotinic receptors (nAChR). Functional nAChR, are also present on endothelial, haematological and epithelial cells. Although nicotine itself is regularly not referred to as a carcinogen, there is an ongoing debate whether nicotine functions as a 'tumour promoter'. Nicotine, with its specific binding to nAChR, deregulates essential biological processes like regulation of cell proliferation, apoptosis, migration, invasion, angiogenesis, inflammation and cell-mediated immunity in a wide variety of cells including foetal (regulation of development), embryonic and adult stem cells, adult tissues as well as cancer cells. Nicotine seems involved in fundamental aspects of the biology of malignant diseases, as well as of neurodegeneration. Investigating the biological effects of nicotine may provide new tools for therapeutic interventions and for the understanding of neurodegenerative diseases and tumour biology.
Collapse
|
46
|
Cholinergic regulation of keratinocyte innate immunity and permeability barrier integrity: new perspectives in epidermal immunity and disease. J Invest Dermatol 2011; 132:28-42. [PMID: 21918536 DOI: 10.1038/jid.2011.264] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several cutaneous inflammatory diseases and their clinical phenotypes are recapitulated in animal models of skin disease. However, the identification of shared pathways for disease progression is limited by the ability to delineate the complex biochemical processes fundamental for development of the disease. Identifying common signaling pathways that contribute to cutaneous inflammation and immune function will facilitate better scientific and therapeutic strategies to span a variety of inflammatory skin diseases. Aberrant antimicrobial peptide (AMP) expression and activity is one mechanism behind the development and severity of several inflammatory skin diseases and directly influences the susceptibility of skin to microbial infections. Our studies have recently exposed a newly identified pathway for negative regulation of AMPs in the skin by the cholinergic anti-inflammatory pathway via acetylcholine (ACh). The role of ACh in AMP regulation of immune and permeability barrier function in keratinocytes is reviewed, and the importance for a better comprehension of cutaneous disease progression by cholinergic signaling is discussed.
Collapse
|
47
|
Renò F, Rocchetti V, Migliario M, Rizzi M, Cannas M. Chronic exposure to cigarette smoke increases matrix metalloproteinases and Filaggrin mRNA expression in oral keratinocytes: role of nicotine stimulation. Oral Oncol 2011; 47:827-30. [PMID: 21723775 DOI: 10.1016/j.oraloncology.2011.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/26/2011] [Accepted: 06/03/2011] [Indexed: 11/27/2022]
Abstract
The vegetal alkaloid nicotine has been proved to modify the expression of many keratinocyte markers. In this study, the basal expression of MMP-2, MMP-9, MMP-28, and Filaggrin has been evaluated in oral keratinocytes, in order to collect information about the ability of cigarette smoke to modify the basal expression pattern of these key enzymes in the absence of evident clinical signs in the oral epithelium. MMP-2, MMP-9, MMP-28, and Filaggrin basal expression was investigated by RT-PCR in oral keratinocytes derived from smokers (n=11), non-smokers (n=11), and ex-smokers (n=6) healthy volunteers. Moreover keratinocytes from non-smokers volunteers were stimulated in vitro by a single dose administration of nicotine (10 μM) in order to estimate the effect of nicotinic receptors activation on the basal expression of the studied markers. RT-PCR analysis showed that all the markers studied were overexpressed in keratinocytes from smoker donors compared to control keratinocytes, while a single dose of nicotine was able to induce only Filaggrin expression in keratinocytes from non-smoking donors. Markers expression in ex-smoker donors was similar to that observed in normal non-smoker donors. These data indicate for the first time that cigarette smoking affects basal expression of some important markers in oral mucosa keratinocytes in vivo in the absence of clinical signs and that smoke quitting restores basal expression levels of these markers.
Collapse
Affiliation(s)
- Filippo Renò
- Human Anatomy Laboratory, Dept. of Experimental and Clinical Medicine, University of Eastern Piedmont A. Avogadro, via Solaroli 17, 28100 Novara, Italy.
| | | | | | | | | |
Collapse
|
48
|
Nicotinic acetylcholine receptor α7 subunit is time-dependently expressed in distinct cell types during skin wound healing in mice. Histochem Cell Biol 2011; 135:375-87. [PMID: 21437621 DOI: 10.1007/s00418-011-0798-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that nicotinic acetylcholine receptor alpha7 subunit (nAChRα7) plays an important role in regulation of inflammation, angiogenesis and keratinocyte biology, but little is known about its expression after the skin is wounded. A preliminary study on time-dependent expression and distribution of nAChRα7 was performed by immunohistochemistry, Western blotting and RT-PCR during skin wound healing in mice. After a 1-cm-long incision was made in the skin of the central dorsum, mice were killed at intervals ranging from 6 h to 14 days post-injury. In uninjured skin controls, nAChRα7 positive staining was observed in epidermis, hair follicles, sebaceous glands, vessel endothelium and resident dermal fibroblastic cells. In wounded specimens, a small number of polymorphonuclear cells, a large number of mononuclear cells (MNCs) and fibroblastic cells (FBCs) showed positive reaction for nAChRα7 in the wound zones. Simultaneously, nAChRα7 immunoreactivity was evident in endothelial-like cells of regenerated vessels and neoepidermis. By morphometric analysis, an up-regulation of nAChRα7 expression was verified at the inflammatory phase after skin injury and reached a peak at the proliferative phase of wound healing. The expression tendency was further confirmed by Western blotting and RT-PCR assay. By immunofluorescent staining for co-localization, the nAChRα7-positive MNCs and FBCs in skin wounds were identified as macrophages, fibrocytes and myofibroblasts. A number of nAChRα7-positive myofibroblasts were also CD45 positive, indicating that they originated from differentiation of fibrocytes. The results demonstrate that nAChRα7 is time-dependently expressed in distinct cell types, which may be closely involved in inflammatory response and repair process during skin wound healing.
Collapse
|
49
|
Chernyavsky AI, Arredondo J, Galitovskiy V, Qian J, Grando SA. Upregulation of nuclear factor-kappaB expression by SLURP-1 is mediated by alpha7-nicotinic acetylcholine receptor and involves both ionic events and activation of protein kinases. Am J Physiol Cell Physiol 2010; 299:C903-11. [PMID: 20660165 PMCID: PMC2980298 DOI: 10.1152/ajpcell.00216.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/15/2010] [Indexed: 11/22/2022]
Abstract
SLURP-1 (secreted mammalian Ly-6/urokinase plasminogen activator receptor-related protein-1) is a novel auto/paracrine cholinergic peptide that can bind to α(7)-nicotinic acetylcholine receptor (nAChR), a high Ca(2+)-permeable ion channel coupled to regulation of nuclear factor-κB (NF-κB) expression. Elucidation of intracellular signaling events elicited by SLURP-1 is crucial for understanding the molecular mechanism of functioning of this novel hormone-like peptide that alters vital cell functions and can protect from tumorigenic transformation. In this study, we sought to dissect out the role of α(7)-nAChR in mediating the biologic effects of recombinant SLURP-1 on the immortalized line of human oral keratinocytes Het-1A. A multifold upregulation of the NF-κB expression at the mRNA and protein levels by SLURP-1 was only slightly diminished due to elimination of Na(+), whereas in Ca(2+)-free medium the effect of SLURP-1 was inhibited by >50%. Both in the absence of extracellular Ca(2+) and in the presence of Cd(2+) or Zn(2+), the SLURP-1-dependent elevation of NF-κB was almost completely blocked by inhibiting MEK1 activity. Downstream of α(7)-nAChR, the SLURP-1 signaling coupled to upregulation of NF-κB also involved Jak2 as well as Ca(2+)/calmodulin-dependent kinase II (CaMKII) and protein kinase C (PKC), whose inhibition significantly (P < 0.05) reduced the SLURP-1-induced upregulation of NF-κB. The obtained results indicated that activation of α(7)-nAChR by SLURP-1 leads to upregulation of the NF-κB gene expression due to activation of the Raf-1/MEK1/ERK1/2 cascade that proceeds via two complementary signaling pathways. One is mediated by the Ca(2+)-entry dependent CaMKII/PKC activation and another one by Ca(2+)-independent involvement of Jak2. Thus, there exists a previously not appreciated network of noncanonical auto/paracrine ligands of nAChR of the Ly-6 protein family, which merits further investigations.
Collapse
|
50
|
Evidence of alpha 7 nicotinic acetylcholine receptor expression in retinal pigment epithelial cells. Vis Neurosci 2010; 27:139-47. [DOI: 10.1017/s0952523810000246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractSome evidence suggests that retinal pigment epithelium (RPE) can express nicotinic acetylcholine receptors (nAChRs) as described for other epithelial cells, where nAChRs have been involved in processes such as cell development, cell death, cell migration, and angiogenesis. This study is designed to determine the expression and activity of α7 nAChRs in RPE cells. Reverse transcriptase (RT)-PCR was performed to test the expression of nicotinic α7 subunit in bovine RPE cells. Protein expression was determined by Western blot and by immunocytochemistry. Expression of nicotinic α7 subunits was also analyzed in cryostat sections of albino rat retina. Changes in protein expression were tested under hypoxic conditions. Functional nAChRs were studied by examining the Ca2+transients elicited by nicotine and acetylcholine stimulation in fura-2–loaded cells. Expression of endogenous modulators of nAChRs was analyzed by RT-PCR and Western blot in retina and RPE. Cultured bovine RPE cells expressed nicotinic receptors containing α7 subunit. RT-PCR amplified the expected specific α7 fragment. Western blotting showed expression at the protein level, with a specific band being found at 57 kDa in both cultured and freshly isolated RPE cells. Expression of nAChRs was confirmed for cultured cells by immunofluorescence. Immunohistochemistry confirmed α7 receptor expression in rat RPE retina. α7 receptor expression was down-regulated by long-term hypoxia. A small subpopulation of RPE cultured cells showed functional nAChRs, as evidenced by the selective response elicited by nicotine and acetylcholine stimulation. Expression of the endogenous nicotinic receptors’ modulator lynx1 was confirmed in bovine retina and RPE, and expression of lynx1 and other endogenous nicotinic receptor modulators (SLURP1 and RGD1308195) were also confirmed in rat retina. These results suggest that nAChRs could have a significant role in RPE, which may not be related to the traditional role in nerve transmission but could more likely be related to the nonneuronal cholinergic system in the eye.
Collapse
|