1
|
Chen W, Guo L, Wei W, Cai C, Wu G. Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation is essential for maintenance of mammary stem cell activity. Cell Rep 2024; 43:114762. [PMID: 39321020 DOI: 10.1016/j.celrep.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Guo
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Felipe R, Sarmiento-Jiménez J, Camafeita E, Vázquez J, López-Corcuera B. Role of palmitoylation on the neuronal glycine transporter GlyT2. J Neurochem 2024; 168:2056-2072. [PMID: 39032066 DOI: 10.1111/jnc.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
The neuronal glycine transporter GlyT2 removes glycine from the synaptic cleft through active Na+, Cl-, and glycine cotransport contributing to the termination of the glycinergic signal as well as supplying substrate to the presynaptic terminal for the maintenance of the neurotransmitter content in synaptic vesicles. Patients with mutations in the human GlyT2 gene (SLC6A5), develop hyperekplexia or startle disease (OMIM 149400), characterized by hypertonia and exaggerated startle responses to trivial stimuli that may have lethal consequences in the neonates as a result of apnea episodes. Post-translational modifications in cysteine residues of GlyT2 are an aspect of structural interest we analyzed. Our study is compatible with a reversible and short-lived S-acylation in spinal cord membranes, detectable by biochemical and proteomics methods (acyl-Rac binding and IP-ABE) confirmed with positive and negative controls (palmitoylated and non-palmitoylated proteins). According to a short-lived modification, direct labeling using click chemistry was faint but mostly consistent. We have analyzed the physiological properties of a GlyT2 mutant lacking the cysteines with high prediction of palmitoylation and the mutant is less prone to be included in lipid rafts, an effect also observed upon treatment with the palmitoylation inhibitor 2-bromopalmitate. This work demonstrates there are determinants of lipid raft inclusion associated with the GlyT2 mutated cysteines, which are presumably modified by palmitoylation.
Collapse
Affiliation(s)
- R Felipe
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - J Sarmiento-Jiménez
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - E Camafeita
- Centro Nacional de Investigaciones Cardiovasculares. (ISCIII), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - J Vázquez
- Centro Nacional de Investigaciones Cardiovasculares. (ISCIII), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - B López-Corcuera
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
3
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Owens GP, Fellin TJ, Matschulat A, Salas V, Schaller KL, Given KS, Ritchie AM, Navarro A, Blauth K, Hughes EG, Macklin WB, Bennett JL. Pathogenic myelin-specific antibodies in multiple sclerosis target conformational proteolipid protein 1-anchored membrane domains. J Clin Invest 2023; 133:e162731. [PMID: 37561592 PMCID: PMC10541191 DOI: 10.1172/jci162731] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
B cell clonal expansion and cerebrospinal fluid (CSF) oligoclonal IgG bands are established features of the immune response in multiple sclerosis (MS). Clone-specific recombinant monoclonal IgG1 Abs (rAbs) derived from MS patient CSF plasmablasts bound to conformational proteolipid protein 1 (PLP1) membrane complexes and, when injected into mouse brain with human complement, recapitulated histologic features of MS pathology: oligodendrocyte cell loss, complement deposition, and CD68+ phagocyte infiltration. Conformational PLP1 membrane epitopes were complex and governed by the local cholesterol and glycolipid microenvironment. Abs against conformational PLP1 membrane complexes targeted multiple surface epitopes, were enriched within the CSF compartment, and were detected in most MS patients, but not in inflammatory and noninflammatory neurologic controls. CSF PLP1 complex Abs provide a pathogenic autoantibody biomarker specific for MS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ethan G. Hughes
- Department of Cell & Developmental Biology
- Program in Neuroscience
| | - Wendy B. Macklin
- Department of Cell & Developmental Biology
- Program in Neuroscience
| | - Jeffrey L. Bennett
- Department of Neurology
- Program in Neuroscience
- Department of Ophthalmology, and
- Program in Immunology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Wild AR, Hogg PW, Flibotte S, Nasseri GG, Hollman RB, Abazari D, Haas K, Bamji SX. Exploring the expression patterns of palmitoylating and de-palmitoylating enzymes in the mouse brain using the curated RNA-seq database BrainPalmSeq. eLife 2022; 11:e75804. [PMID: 35819139 PMCID: PMC9365392 DOI: 10.7554/elife.75804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that plays a critical role in neuronal development and plasticity, while dysregulated S-palmitoylation underlies a number of severe neurological disorders. Dynamic S-palmitoylation is regulated by a large family of ZDHHC palmitoylating enzymes, their accessory proteins, and a small number of known de-palmitoylating enzymes. Here, we curated and analyzed expression data for the proteins that regulate S-palmitoylation from publicly available RNAseq datasets, providing a comprehensive overview of their distribution in the mouse nervous system. We developed a web-tool that enables interactive visualization of the expression patterns for these proteins in the nervous system (http://brainpalmseq.med.ubc.ca/), and explored this resource to find region and cell-type specific expression patterns that give insight into the function of palmitoylating and de-palmitoylating enzymes in the brain and neurological disorders. We found coordinated expression of ZDHHC enzymes with their accessory proteins, de-palmitoylating enzymes and other brain-expressed genes that included an enrichment of S-palmitoylation substrates. Finally, we utilized ZDHHC expression patterns to predict and validate palmitoylating enzyme-substrate interactions.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Peter W Hogg
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Facility, University of British ColumbiaVancouverCanada
| | - Glory G Nasseri
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Rocio B Hollman
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| |
Collapse
|
6
|
Ma Y, Liu H, Ou Z, Qi C, Xing R, Wang S, Han Y, Zhao TJ, Chen Y. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3. Glia 2021; 70:379-392. [PMID: 34724258 DOI: 10.1002/glia.24113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
Myelin sheath is an important structure to maintain functions of the nerves in central nervous system. Protein palmitoylation has been established as a sorting determinant for the transport of myelin-forming proteins to the myelin membrane, however, its function in the regulation of oligodendrocyte development remains unknown. Here, we show that an Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC5, is involved in the control of oligodendrocyte development. Loss of Zdhhc5 in oligodendrocytes inhibits myelination and remyelination by reducing total myelinating oligodendrocyte population. STAT3 is the primary substrate for DHHC5 palmitoylation in oligodendrocytes. Zdhhc5 ablation reduces STAT3 palmitoylation and suppresses STAT3 phosphorylation and activation. As a result, the transcription of the myelin-related and anti-apoptosis genes is inhibited, leading to suppressed oligodendrocyte development and myelination. Our findings demonstrate a key role DHHC5 in controlling myelinogenesis.
Collapse
Affiliation(s)
- Yanchen Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiqing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiyun Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yinuo Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Montani L. Lipids in regulating oligodendrocyte structure and function. Semin Cell Dev Biol 2020; 112:114-122. [PMID: 32912639 DOI: 10.1016/j.semcdb.2020.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes enwrap central nervous system axons with myelin, a lipid enriched highly organized multi-layer membrane structure that allows for fast long-distance saltatory conduction of neuronal impulses. Myelin has an extremely high lipid content (∼80 % of its dry weight) and a peculiar lipid composition, with a 2:2:1 cholesterol:phospholipid:glycolipid ratio. Inherited neurodegenerative diseases of the lipids (caused by mutations in lipogenic enzymes) often present oligodendrocyte and/or myelin defects which contribute to the overall disease pathophysiology. These phenomena triggered an increasing number of studies over the functions lipid exert to shape and maintain myelin, and brought to the finding that lipids are more than only structural building blocks. They act as signaling molecules to drive proliferation and differentiation of oligodendrocyte progenitor cells, as well as proliferation of premyelinating oligodendrocytes, and their maturation into myelinating ones. Here, we summarize key findings in these areas, while presenting the main related human diseases. Despite many advances in the field, various questions remain open which we briefly discuss. This article is part of a special issue entitled "Role of Lipids in CNS Cell Physiology and Pathology".
Collapse
Affiliation(s)
- Laura Montani
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH-8093, Switzerland.
| |
Collapse
|
8
|
Castello-Serrano I, Lorent JH, Ippolito R, Levental KR, Levental I. Myelin-Associated MAL and PLP Are Unusual among Multipass Transmembrane Proteins in Preferring Ordered Membrane Domains. J Phys Chem B 2020; 124:5930-5939. [PMID: 32436385 PMCID: PMC7792449 DOI: 10.1021/acs.jpcb.0c03028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Eukaryotic membranes can be partitioned into lipid-driven membrane microdomains called lipid rafts, which function to sort lipids and proteins in the plane of the membrane. As protein selectivity underlies all functions of lipid rafts, there has been significant interest in understanding the structural and molecular determinants of raft affinity. Such determinants have been described for lipids and single-spanning transmembrane proteins; however, how multipass transmembrane proteins (TMPs) partition between ordered and disordered phases has not been widely explored. Here we used cell-derived giant plasma membrane vesicles (GPMVs) to systematically measure multipass TMP partitioning to ordered membrane domains. Across a set of 24 structurally and functionally diverse multipass TMPs, the large majority (92%) had minimal raft affinity. The only exceptions were two myelin-associated four-pass TMPs, myelin and lymphocyte protein (MAL), and proteo lipid protein (PLP). We characterized the potential mechanisms for their exceptional raft affinity and observed that PLP requires cholesterol and sphingolipids for optimal association with ordered membrane domains and that PLP and MAL appear to compete for cholesterol-mediated raft affinity. These observations suggest broad conclusions about the composition of ordered membrane domains in cells and point to previously unrecognized drivers of raft affinity for multipass transmembrane proteins.
Collapse
Affiliation(s)
- Ivan Castello-Serrano
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joseph H Lorent
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rossana Ippolito
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Kim HN, Langley MR, Simon WL, Yoon H, Kleppe L, Lanza IR, LeBrasseur NK, Matveyenko A, Scarisbrick IA. A Western diet impairs CNS energy homeostasis and recovery after spinal cord injury: Link to astrocyte metabolism. Neurobiol Dis 2020; 141:104934. [PMID: 32376475 PMCID: PMC7982964 DOI: 10.1016/j.nbd.2020.104934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/28/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
A diet high in fat and sucrose (HFHS), the so-called Western diet promotes metabolic syndrome, a significant co-morbidity for individuals with spinal cord injury (SCI). Here we demonstrate that the spinal cord of mice consuming HFHS expresses reduced insulin-like growth factor 1 (IGF-1) and its receptor and shows impaired tricarboxylic acid cycle function, reductions in PLP and increases in astrogliosis, all prior to SCI. After SCI, Western diet impaired sensorimotor and bladder recovery, increased microgliosis, exacerbated oligodendrocyte loss and reduced axon sprouting. Direct and indirect neural injury mechanisms are suggested since HFHS culture conditions drove parallel injury responses directly and indirectly after culture with conditioned media from HFHS-treated astrocytes. In each case, injury mechanisms included reductions in IGF-1R, SIRT1 and PGC-1α and were prevented by metformin. Results highlight the potential for a Western diet to evoke signs of neural insulin resistance and injury and metformin as a strategy to improve mechanisms of neural neuroprotection and repair.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America; Rehabilitation Medicine Research Center, Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Monica R Langley
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America; Rehabilitation Medicine Research Center, Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Whitney L Simon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America; Rehabilitation Medicine Research Center, Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Ian R Lanza
- Rehabilitation Medicine Research Center, Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America; Rehabilitation Medicine Research Center, Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Aleksey Matveyenko
- Rehabilitation Medicine Research Center, Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America; Rehabilitation Medicine Research Center, Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America; Neurosciuence Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America.
| |
Collapse
|
10
|
Mørkholt AS, Oklinski MK, Larsen A, Bockermann R, Issazadeh-Navikas S, Nieland JGK, Kwon TH, Corthals A, Nielsen S, Nieland JDV. Pharmacological inhibition of carnitine palmitoyl transferase 1 inhibits and reverses experimental autoimmune encephalitis in rodents. PLoS One 2020; 15:e0234493. [PMID: 32520953 PMCID: PMC7286491 DOI: 10.1371/journal.pone.0234493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by demyelination and inflammation. Dysregulated lipid metabolism and mitochondrial dysfunction are hypothesized to play a key role in MS. Carnitine Palmitoyl Transferase 1 (CPT1) is a rate-limiting enzyme for beta-oxidation of fatty acids in mitochondria. The therapeutic effect of pharmacological CPT1 inhibition with etomoxir was investigated in rodent models of myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalitis (EAE). Mice receiving etomoxir showed lower clinical score compared to placebo, however this was not significant. Rats receiving etomoxir revealed significantly lower clinical score and lower body weight compared to placebo group. When comparing etomoxir with interferon-β (IFN-β), IFN-β had no significant therapeutic effects, whereas etomoxir treatment starting at day 1 and 5 significantly improved the clinical scores compared to the IFN-β and the placebo group. Immunohistochemistry and image assessments of brain sections from rats with EAE showed higher myelination intensity and decreased expression of CPT1A in etomoxir-treated rats compared to placebo group. Moreover, etomoxir mediated increased interleukin-4 production and decreased interleukin-17α production in activated T cells. In conclusion, CPT1 is a key protein in the pathogenesis of EAE and MS and a crucial therapeutic target for the treatment.
Collapse
Affiliation(s)
| | | | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Robert Bockermann
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen N, Denmark
| | | | | | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Angelique Corthals
- Department of Science, John Jay College of Criminal Justice, City University of New York, New York, New York, United States of America
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Meta-IQ, ApS, Aarhus C, Denmark
| | | |
Collapse
|
11
|
Post-translational protein modifications in schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:5. [PMID: 32123175 PMCID: PMC7051976 DOI: 10.1038/s41537-020-0093-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Research investigating the pathophysiology of schizophrenia has not yet precisely defined the molecular phenotype of this disorder. Many studies have investigated cellular dysfunction by examining expression levels of molecular targets in postmortem patient brain; however, inconsistencies between transcript and protein measures in schizophrenia are common in the field and represent a challenge to the identification of a unified model of schizophrenia pathogenesis. In humans, >4800 unique proteins are expressed, and the majority of these are modified by glycans and/or lipids. Estimates indicate ~70% of all eukaryotic proteins are modified by at least one type of glycosylation, while nearly 20% of all proteins are known to be lipid-modified. Protein post-translational modification (PTM) by glycosylation and lipidation rely on the spatiotemporal colocalization of enzyme, substrate, and glycan or lipid donor molecule and do not require an upstream “blueprint” or specialized processing machinery for synthesis. Glycan and lipid PTMs can thus facilitate cellular adaptation to environmental signals more rapidly than changes of gene or protein expression, and can significantly impact the localization, function, and interactions of modified substrates, though relatively few studies in schizophrenia have evaluated the PTM status of target proteins. A growing body of literature reports glycosylation and lipidation abnormalities in schizophrenia brain as well as in patient peripheral fluids. In this review, we explain the functional significance of key glycan and lipid PTMs and summarize current findings associated with abnormal glycosylation and lipidation in this illness.
Collapse
|
12
|
Guo DZ, Xiao L, Liu YJ, Shen C, Lou HF, Lv Y, Pan SY. Cathepsin D deficiency delays central nervous system myelination by inhibiting proteolipid protein trafficking from late endosome/lysosome to plasma membrane. Exp Mol Med 2018; 50:e457. [PMID: 29546879 PMCID: PMC5898895 DOI: 10.1038/emm.2017.291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023] Open
Abstract
This study aimed to investigate the role of cathepsin D (CathD) in central nervous system (CNS) myelination and its possible mechanism. By using CathD knockout mice in conjunction with immunohistochemistry, immunocytochemistry and western blot assays, the myelination of the CNS and the development of oligodendrocyte lineage cells in vivo and in vitro were observed. Endocytosis assays, real-time-lapse experiments and total internal reflection fluorescence microscopy were used to demonstrate the location and movement of proteolipid protein in oligodendrocyte lineage cells. In addition, the relevant molecular mechanism was explored by immunoprecipitation. The increase in Fluoromyelin Green staining and proteolipid protein expression was not significant in the corpus callosum of CathD-/- mice at the age of P11, P14 and P24. Proteolipid protein expression was weak at each time point and was mostly accumulated around the nucleus. The number of oligodendrocyte lineage cells (olig2+) and mature oligodendrocytes (CC1+) significantly decreased between P14 and P24. In the oligodendrocyte precursor cell culture of CathD-/- mice, the morphology of myelin basic protein-positive mature oligodendrocytes was simple while oligodendrocyte precursor cells showed delayed differentiation into mature oligodendrocytes. Moreover, more proteolipid protein gathered in late endosomes/lysosomes (LEs/Ls) and fewer reached the plasma membrane. Immunohistochemistry and immunoelectron microscopy analysis showed that CathD, proteolipid protein and VAMP7 could bind with each other, whereas VAMP7 and proteolipid protein colocalized with CathD in late endosome/lysosome. The findings of this paper suggest that CathD may have an important role in the myelination of CNS, presumably by altering the trafficking of proteolipid protein.
Collapse
Affiliation(s)
- Da-Zhi Guo
- Department of Hyperbaric Oxygen, Navy General Hospital of PLA, Beijing, China
- Cerebrovascular Disease Center of ChangHai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Xiao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, China
| | - Yi-Jun Liu
- Institute of Neuroscience, University of Zhejiang, Hangzhou, China
| | - Chen Shen
- Company's Office of Service Center, China Petroleum and Natural Gas Group Corporation, Beijing, China
| | - Hui-Fang Lou
- Institute of Neuroscience, University of Zhejiang, Hangzhou, China
| | - Yan Lv
- Department of Hyperbaric Oxygen, Navy General Hospital of PLA, Beijing, China
| | - Shu-Yi Pan
- Department of Hyperbaric Oxygen, Navy General Hospital of PLA, Beijing, China
| |
Collapse
|
13
|
Ito Y, Honda A, Igarashi M. Glycoprotein M6a as a signaling transducer in neuronal lipid rafts. Neurosci Res 2018; 128:19-24. [DOI: 10.1016/j.neures.2017.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
14
|
Extracellular Signals Induce Glycoprotein M6a Clustering of Lipid Rafts and Associated Signaling Molecules. J Neurosci 2017; 37:4046-4064. [PMID: 28275160 DOI: 10.1523/jneurosci.3319-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/25/2017] [Accepted: 02/18/2017] [Indexed: 01/08/2023] Open
Abstract
Lipid raft domains, where sphingolipids and cholesterol are enriched, concentrate signaling molecules. To examine how signaling protein complexes are clustered in rafts, we focused on the functions of glycoprotein M6a (GPM6a), which is expressed at a high concentration in developing mouse neurons. Using imaging of lipid rafts, we found that GPM6a congregated in rafts in a GPM6a palmitoylation-dependent manner, thereby contributing to lipid raft clustering. In addition, we found that signaling proteins downstream of GPM6a, such as Rufy3, Rap2, and Tiam2/STEF, accumulated in lipid rafts in a GPM6a-dependent manner and were essential for laminin-dependent polarity during neurite formation in neuronal development. In utero RNAi targeting of GPM6a resulted in abnormally polarized neurons with multiple neurites. These results demonstrate that GPM6a induces the clustering of lipid rafts, which supports the raft aggregation of its associated downstream molecules for acceleration of neuronal polarity determination. Therefore, GPM6a acts as a signal transducer that responds to extracellular signals.SIGNIFICANCE STATEMENT Lipid raft domains, where sphingolipids and cholesterol are enriched, concentrate signaling molecules. We focused on glycoprotein M6a (GPM6a), which is expressed at a high concentration in developing neurons. Using imaging of lipid rafts, we found that GPM6a congregated in rafts in a palmitoylation-dependent manner, thereby contributing to lipid raft clustering. In addition, we found that signaling proteins downstream of GPM6a accumulated in lipid rafts in a GPM6a-dependent manner and were essential for laminin-dependent polarity during neurite formation. In utero RNAi targeting of GPM6a resulted in abnormally polarized neurons with multiple neurites. These results demonstrate that GPM6a induces the clustering of lipid rafts, which supports the raft aggregation of its associated downstream molecules for acceleration of polarity determination. Therefore, GPM6a acts as a signal transducer that responds to extracellular signals.
Collapse
|
15
|
Holland SM, Thomas GM. Roles of palmitoylation in axon growth, degeneration and regeneration. J Neurosci Res 2017; 95:1528-1539. [PMID: 28150429 DOI: 10.1002/jnr.24003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
The protein-lipid modification palmitoylation plays important roles in neurons, but most attention has focused on roles of this modification in the regulation of mature pre- and post-synapses. However, exciting recent findings suggest that palmitoylation is also critical for both the growth and integrity of neuronal axons and plays previously unappreciated roles in conveying axonal anterograde and retrograde signals. Here we review these emerging roles for palmitoylation in the regulation of axons in health and disease. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sabrina M Holland
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair)
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair).,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140
| |
Collapse
|
16
|
Partial Immunoblotting of 2D-Gels: A Novel Method to Identify Post-Translationally Modified Proteins Exemplified for the Myelin Acetylome. Proteomes 2017; 5:proteomes5010003. [PMID: 28248254 PMCID: PMC5372224 DOI: 10.3390/proteomes5010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022] Open
Abstract
Post-translational modifications (PTMs) play a key role in regulating protein function, yet their identification is technically demanding. Here, we present a straightforward workflow to systematically identify post-translationally modified proteins based on two-dimensional gel electrophoresis. Upon colloidal Coomassie staining the proteins are partially transferred, and the investigated PTMs are immunodetected. This strategy allows tracking back the immunopositive antigens to the corresponding spots on the original gel, from which they are excised and mass spectrometrically identified. Candidate proteins are validated on the same membrane by immunodetection using a second fluorescence channel. We exemplify the power of partial immunoblotting with the identification of lysine-acetylated proteins in myelin, the oligodendroglial membrane that insulates neuronal axons. The excellent consistency of the detected fluorescence signals at all levels allows the differential comparison of PTMs across multiple conditions. Beyond PTM screening, our multi-level workflow can be readily adapted to clinical applications such as identifying auto-immune antigens or host-pathogen interactions.
Collapse
|
17
|
Pinner AL, Tucholski J, Haroutunian V, McCullumsmith RE, Meador-Woodruff JH. Decreased protein S-palmitoylation in dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2016; 177:78-87. [PMID: 26876311 PMCID: PMC4981568 DOI: 10.1016/j.schres.2016.01.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 11/28/2022]
Abstract
Recent reports suggest abnormalities of neurotransmitter receptor trafficking, targeting, dendritic localization, recycling, and degradation in the brain in schizophrenia. We hypothesized that a potential explanation for these findings may be abnormal posttranslational modifications that influence intracellular targeting and trafficking of proteins between subcellular compartments. Dysregulation of protein palmitoylation is a strong candidate for such a process. S-palmitoylation is a reversible thioesterification of palmitoyl-groups to cysteine residues that can regulate trafficking and targeting of intracellular proteins. Using a biotin switch assay to study S-palmitoylation of proteins in human postmortem brain, we identified a pattern of palmitoylated proteins that cluster into 17 bands of discrete molecular masses, including numerous proteins associated with receptor signal transduction. Using mass spectrometry, we identified 219 palmitoylated proteins in human frontal cortex, and individually validated palmitoylation status of a subset of these proteins. Next, we assayed protein palmitoylation in dorsolateral prefrontal cortex from 16 schizophrenia patients and paired comparison subjects. S-palmitoylation was significantly reduced for proteins in most of the 17 schizophrenia bands. In rats chronically treated with haloperidol, the same pattern of palmitoylation was observed but the extent of palmitoylation was unchanged, suggesting that the diminution in protein palmitoylation in schizophrenia is not due to chronic antipsychotic treatment. These results indicate there are changes in the extent of S-palmitoylation of many proteins in the frontal cortex in schizophrenia. Given the roles of this posttranslational modification, these data suggest a potential mechanism reconciling previous observations of abnormal intracellular targeting and trafficking of neurotransmitter receptors in this illness.
Collapse
Affiliation(s)
- Anita L. Pinner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| | - Janusz Tucholski
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219 USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| |
Collapse
|
18
|
The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Mol Neurobiol 2015; 53:4638-58. [PMID: 26310971 DOI: 10.1007/s12035-015-9392-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.
Collapse
|
19
|
Yaffe Y, Hugger I, Yassaf IN, Shepshelovitch J, Sklan EH, Elkabetz Y, Yeheskel A, Pasmanik-Chor M, Benzing C, Macmillan A, Gaus K, Eshed-Eisenbach Y, Peles E, Hirschberg K. The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex. J Cell Sci 2015; 128:2293-302. [DOI: 10.1242/jcs.166249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/18/2015] [Indexed: 01/27/2023] Open
Abstract
ABSTRACT
Myelin comprises a compactly stacked massive surface area of protein-poor thick membrane that insulates axons to allow fast signal propagation. Increasing levels of the myelin protein plasmolipin (PLLP) were correlated with post-natal myelination; however, its function is unknown. Here, the intracellular localization and dynamics of PLLP were characterized in primary glial and cultured cells using fluorescently labeled PLLP and antibodies against PLLP. PLLP localized to and recycled between the plasma membrane and the Golgi complex. In the Golgi complex, PLLP forms oligomers based on fluorescence resonance energy transfer (FRET) analyses. PLLP oligomers blocked Golgi to plasma membrane transport of the secretory protein vesicular stomatitis virus G protein (VSVG), but not of a VSVG mutant with an elongated transmembrane domain. Laurdan staining analysis showed that this block is associated with PLLP-induced proliferation of liquid-ordered membranes. These findings show the capacity of PLLP to assemble potential myelin membrane precursor domains at the Golgi complex through its oligomerization and ability to attract liquid-ordered lipids. These data support a model in which PLLP functions in myelin biogenesis through organization of myelin liquid-ordered membranes in the Golgi complex.
Collapse
Affiliation(s)
- Yakey Yaffe
- Department of Pathology, Sackler School of Medicine, Tel-Aviv 69978, Israel
| | - Ilan Hugger
- Department of Pathology, Sackler School of Medicine, Tel-Aviv 69978, Israel
| | - Inbar Nevo Yassaf
- Department of Pathology, Sackler School of Medicine, Tel-Aviv 69978, Israel
| | | | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv 69978, Israel
| | - Yechiel Elkabetz
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv 69978, Israel
| | - Adva Yeheskel
- Bioinformatics Unit, G.S.W. Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S.W. Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Carola Benzing
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, Centre for Vascular Research University of New South Wales, Sydney, Australia 2033
| | - Alexander Macmillan
- Biomedical Imaging Facility, University of New South Wales, Sydney, Australia 2033
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, Centre for Vascular Research University of New South Wales, Sydney, Australia 2033
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine, Tel-Aviv 69978, Israel
| |
Collapse
|
20
|
Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling. Mol Cell Biol 2014; 35:675-87. [PMID: 25512606 DOI: 10.1128/mcb.01389-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.
Collapse
|
21
|
Schmid D, Zeis T, Sobrio M, Schaeren-Wiemers N. MAL overexpression leads to disturbed expression of genes that influence cytoskeletal organization and differentiation of Schwann cells. ASN Neuro 2014; 6:1759091414548916. [PMID: 25290060 PMCID: PMC4187015 DOI: 10.1177/1759091414548916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the developing peripheral nervous system, a coordinated reciprocal signaling between Schwann cells and axons is crucial for accurate myelination. The myelin and lymphocyte protein MAL is a component of lipid rafts that is important for targeting proteins and lipids to distinct domains. MAL overexpression impedes peripheral myelinogenesis, which is evident by a delayed onset of myelination and reduced expression of the myelin protein zero (Mpz/P0) and the low-affinity neurotrophin receptor p75(NTR). This study shows that MAL overexpression leads to a significant reduction of Mpz and p75(NTR) expression in primary mouse Schwann cell cultures, which was already evident before differentiation, implicating an effect of MAL in early Schwann cell development. Their transcription was robustly reduced, despite normal expression of essential transcription factors and receptors. Further, the cAMP response element-binding protein (CREB) and phosphoinositide 3-kinase signaling pathways important for Schwann cell differentiation were correctly induced, highlighting that other so far unknown rate limiting factors do exist. We identified novel genes expressed by Schwann cells in a MAL-dependent manner in vivo and in vitro. A number of those, including S100a4, RhoU and Krt23, are implicated in cytoskeletal organization and plasma membrane dynamics. We showed that S100a4 is predominantly expressed by nonmyelinating Schwann cells, whereas RhoU was localized within myelin membranes, and Krt23 was detected in nonmyelinating as well as in myelinating Schwann cells. Their differential expression during early peripheral nerve development further underlines their possible role in influencing Schwann cell differentiation and myelination.
Collapse
Affiliation(s)
- Daniela Schmid
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Thomas Zeis
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Monia Sobrio
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | | |
Collapse
|
22
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
23
|
Abstract
PMP22 (peripheral myelin protein 22), also known as GAS 3 (growth-arrest-specific protein 3), is a disease-linked tetraspan glycoprotein of peripheral nerve myelin and constituent of intercellular junctions in epithelia. To date, our knowledge of the post-translational modification of PMP22 is limited. Using the CSS-Palm 2.0 software we predicted that C85 (cysteine 85), a highly conserved amino acid located between the second and third transmembrane domains, is a potential site for palmitoylation. To test this, we mutated C85S (C85 to serine) and established stable cells lines expressing the WT (wild-type) or the C85S-PMP22. In Schwann and MDCK (Madin–Darby canine kidney) cells mutating C85 blocked the palmitoylation of PMP22, which we monitored using 17-ODYA (17-octadecynoic acid). While palmitoylation was not necessary for processing the newly synthesized PMP22 through the secretory pathway, overexpression of C85S-PMP22 led to pronounced cell spreading and uneven monolayer thinning. To further investigate the functional significance of palmitoylated PMP22, we evaluated MDCK cell migration in a wound-healing assay. While WT-PMP22 expressing cells were resistant to migration, C85S cells displayed lamellipodial protrusions and migrated at a similar rate to vector control. These findings indicate that palmitoylation of PMP22 at C85 is critical for the role of the protein in modulating epithelial cell shape and motility.
Collapse
|
24
|
Bello-Morales R, Pérez-Hernández M, Rejas MT, Matesanz F, Alcina A, López-Guerrero JA. Interaction of PLP with GFP-MAL2 in the human oligodendroglial cell line HOG. PLoS One 2011; 6:e19388. [PMID: 21573057 PMCID: PMC3090389 DOI: 10.1371/journal.pone.0019388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/28/2011] [Indexed: 11/18/2022] Open
Abstract
The velocity of the nerve impulse conduction of vertebrates relies on the myelin sheath, an electrically insulating layer that surrounds axons in both the central and peripheral nervous systems, enabling saltatory conduction of the action potential. Oligodendrocytes are the myelin-producing glial cells in the central nervous system. A deeper understanding of the molecular basis of myelination and, specifically, of the transport of myelin proteins, will contribute to the search of the aetiology of many dysmyelinating and demyelinating diseases, including multiple sclerosis. Recent investigations suggest that proteolipid protein (PLP), the major myelin protein, could reach myelin sheath by an indirect transport pathway, that is, a transcytotic route via the plasma membrane of the cell body. If PLP transport relies on a transcytotic process, it is reasonable to consider that this myelin protein could be associated with MAL2, a raft protein essential for transcytosis. In this study, carried out with the human oligodendrocytic cell line HOG, we show that PLP colocalized with green fluorescent protein (GFP)-MAL2 after internalization from the plasma membrane. In addition, both immunoprecipitation and immunofluorescence assays, indicated the existence of an interaction between GFP-MAL2 and PLP. Finally, ultrastructural studies demonstrated colocalization of GFP-MAL2 and PLP in vesicles and tubulovesicular structures. Taken together, these results prove for the first time the interaction of PLP and MAL2 in oligodendrocytic cells, supporting the transcytotic model of PLP transport previously suggested.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | - Marta Pérez-Hernández
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | - María Teresa Rejas
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | - Fuencisla Matesanz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Antonio Alcina
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José Antonio López-Guerrero
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
25
|
Fukata Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 2010; 11:161-75. [PMID: 20168314 DOI: 10.1038/nrn2788] [Citation(s) in RCA: 467] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein palmitoylation, a classical and common lipid modification, regulates diverse aspects of neuronal protein trafficking and function. The reversible nature of palmitoylation provides a potential general mechanism for protein shuttling between intracellular compartments. The recent discovery of palmitoylating enzymes--a large DHHC (Asp-His-His-Cys) protein family--and the development of new proteomic and imaging methods have accelerated palmitoylation analysis. It is becoming clear that individual DHHC enzymes generate and maintain the specialized compartmentalization of substrates in polarized neurons. Here, we discuss the regulatory mechanisms for dynamic protein palmitoylation and the emerging roles of protein palmitoylation in various aspects of pathophysiology, including neuronal development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
| | | |
Collapse
|
26
|
On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett 2009; 584:1760-70. [PMID: 19896485 DOI: 10.1016/j.febslet.2009.10.085] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022]
Abstract
In the central nervous system, a multilayered membrane layer known as the myelin sheath enwraps axons, and is required for optimal saltatory signal conductance. The sheath develops from membrane processes that extend from the plasma membrane of oligodendrocytes and displays a unique lipid and protein composition. Myelin biogenesis is carefully regulated, and multiple transport pathways involving a variety of endosomal compartments are involved. Here we briefly summarize how the major myelin proteins proteolipid protein and myelin basic protein reach the sheath, and highlight potential mechanisms involved, including the role of myelin specific lipids and cell polarity related transport pathways.
Collapse
|
27
|
Characterization of the MAL2-positive compartment in oligodendrocytes. Exp Cell Res 2009; 315:3453-65. [DOI: 10.1016/j.yexcr.2009.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/21/2009] [Accepted: 08/02/2009] [Indexed: 01/13/2023]
|
28
|
Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. ACTA ACUST UNITED AC 2009; 4:111-27. [PMID: 19497142 DOI: 10.1017/s1740925x0900009x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.
Collapse
|
29
|
Klunder B, Baron W, Schrage C, de Jonge J, de Vries H, Hoekstra D. Sorting signals and regulation of cognate basolateral trafficking in myelin biogenesis. J Neurosci Res 2008; 86:1007-16. [DOI: 10.1002/jnr.21556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Winterstein C, Trotter J, Krämer-Albers EM. Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. J Cell Sci 2008; 121:834-42. [DOI: 10.1242/jcs.022731] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The central nervous system myelin sheath is a multilayered specialized membrane with compacted and non-compacted domains of defined protein composition. How oligodendrocytes regulate myelin membrane trafficking and establish membrane domains during myelination is largely unknown. Oligodendroglial cells respond to neuronal signals by adjusting the relative levels of endocytosis and exocytosis of the major myelin protein, proteolipid protein (PLP). We investigated whether endocytic trafficking is common to myelin proteins and analyzed the endocytic fates of proteins with distinct myelin subdomain localization. Interestingly, we found that PLP, myelin-associated glycoprotein (MAG) and myelin-oligodendrocyte glycoprotein (MOG), which localize to compact myelin, periaxonal loops and abaxonal loops, respectively, exhibit distinct endocytic fates. PLP was internalized via clathrin-independent endocytosis, whereas MAG was endocytosed by a clathrin-dependent pathway, although both proteins were targeted to the late-endosomal/lysosomal compartment. MOG was also endocytosed by a clathrin-dependent pathway, but in contrast to MAG, trafficked to the recycling endosome. Endocytic recycling resulted in the association of PLP, MAG and MOG with oligodendroglial membrane domains mimicking the biochemical characteristics of myelin domains. Our results suggest that endocytic sorting and recycling of myelin proteins may assist plasma membrane remodeling, which is necessary for the morphogenesis of myelin subdomains.
Collapse
Affiliation(s)
- Christine Winterstein
- Department of Biology, Unit of Molecular Cell Biology, University of Mainz, Bentzelweg 3, 55128 Mainz, Germany
| | - Jacqueline Trotter
- Department of Biology, Unit of Molecular Cell Biology, University of Mainz, Bentzelweg 3, 55128 Mainz, Germany
| | - Eva-Maria Krämer-Albers
- Department of Biology, Unit of Molecular Cell Biology, University of Mainz, Bentzelweg 3, 55128 Mainz, Germany
| |
Collapse
|
31
|
Maier O, Hoekstra D, Baron W. Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components. J Mol Neurosci 2008; 35:35-53. [DOI: 10.1007/s12031-007-9024-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 11/13/2007] [Indexed: 12/15/2022]
|
32
|
Sachon E, Nielsen PF, Jensen ON. Characterization of N-palmitoylated human growth hormone by in situ liquid-liquid extraction and MALDI tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:724-34. [PMID: 17428000 DOI: 10.1002/jms.1207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Acylation is a common post-translational modification found in secreted proteins and membrane-associated proteins, including signal transducing and regulatory proteins. Acylation is also explored in the pharmaceutical and biotechnology industry to increase the stability and lifetime of protein-based products. The presence of acyl moieties in proteins and peptides affects the physico-chemical properties of these species, thereby modulating protein stability, function, localization and molecular interactions. Characterization of protein acylation is a challenging analytical task, which includes the precise definition of the acylation sites in proteins and determination of the identity and molecular heterogeneity of the acyl moiety at each individual site. In this study, we generated a chemically modified human growth hormone (hGH) by incorporation of a palmitoyl moiety on the N(epsilon) group of a lysine residue. Monoacylation of the hGH protein was confirmed by determination of the intact molecular weight by mass spectrometry. Detailed analysis of protein acylation was achieved by analysis of peptides derived from hGH by protease treatment. However, peptide mass mapping by MALDI MS using trypsin and AspN proteases and standard sample preparation methods did not reveal any palmitoylated peptides. In contrast, in situ liquid-liquid extraction (LLE) performed directly on the MALDI MS metal target enabled detection of acylated peptide candidates by MALDI MS and demonstrated that hGH was N-palmitoylated at multiple lysine residues. MALDI MS and MS/MS analysis of the modified peptides mapped the N-palmitoylation sites to Lys158, Lys172 and Lys140 or Lys145. This study demonstrates the utility of LLE/MALDI MS/MS for mapping and characterization of acylation sites in proteins and peptides and the importance of optimizing sample preparation methods for mass spectrometry-based determination of substoichiometric, multi-site protein modifications.
Collapse
Affiliation(s)
- Emmanuelle Sachon
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
33
|
Kippert A, Trajkovic K, Rajendran L, Ries J, Simons M. Rho regulates membrane transport in the endocytic pathway to control plasma membrane specialization in oligodendroglial cells. J Neurosci 2007; 27:3560-70. [PMID: 17392472 PMCID: PMC6672132 DOI: 10.1523/jneurosci.4926-06.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Differentiation of oligodendrocytes is associated with dramatic changes in plasma membrane structure, culminating in the formation of myelin membrane sheaths. Previous results have provided evidence that regulation of endocytosis may represent a mechanism to control myelin membrane growth. Immature oligodendrocytes have a high rate of clathrin-independent endocytosis for the transport of membrane to late endosomes/lysosomes (LE/Ls). After maturation and receiving signals from neurons, endocytosis is reduced and transport of membrane from LE/Ls to the plasma membrane is triggered. Here, we show that changes in Rho GTPase activity are responsible for switching between these two modes of membrane transport. Strikingly, Rho inactivation did not only reduce the transport of cargo to LE/L but also increased the dynamics of LE/L vesicles. Furthermore, we provide evidence that Rho inactivation results in the condensation of the plasma membrane in a polarized manner. In summary, our data reveal a novel role of Rho: to regulate the flow of membrane and to promote changes in cell surface structure and polarity in oligodendroglial cells. We suggest that Rho inactivation is required to trigger plasma membrane specialization in oligodendrocytes.
Collapse
Affiliation(s)
- Angelika Kippert
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, 37073 Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Katarina Trajkovic
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, 37073 Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Lawrence Rajendran
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jonas Ries
- Technical University of Dresden, 01062 Dresden, Germany, and
| | - Mikael Simons
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, 37073 Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
34
|
Abstract
S-palmitoylation is a posttranslational modification that regulates membrane-protein interactions. However, palmitate is more than just a hydrophobic membrane anchor, as many different types of protein are palmitoylated, including transmembrane proteins. Indeed, there is now compelling evidence that palmitoylation plays a key role in regulating various aspects of protein sorting within the cell.
Collapse
Affiliation(s)
- Jennifer Greaves
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | |
Collapse
|
35
|
Simons M, Trajkovic K. Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci 2007; 119:4381-9. [PMID: 17074832 DOI: 10.1242/jcs.03242] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the development of the central nervous system the reciprocal communication between neurons and oligodendrocytes is essential for the generation of myelin, a multilamellar insulating membrane that ensheathes the axons. Neuron-derived signalling molecules regulate the proliferation, differentiation and survival of oligodendrocytes. Furthermore, neurons control the onset and timing of myelin membrane growth. In turn, signals from oligodendrocytes to neurons direct the assembly of specific subdomains in neurons at the node of Ranvier. Recent work has begun to shed light on the molecules and signaling systems used to coordinate the interaction of neurons and oligodendrocytes. For example, the neuronal signals seem to control the membrane trafficking machinery in oligodendrocytes that leads to myelination. These interconnections at multiple levels show how neurons and glia cooperate to build a complex network during development.
Collapse
Affiliation(s)
- Mikael Simons
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | |
Collapse
|
36
|
Burks JK, Summers MD, Braunagel SC. BV/ODV-E26: a palmitoylated, multifunctional structural protein of Autographa californica nucleopolyhedrovirus. Virology 2006; 361:194-203. [PMID: 17169392 DOI: 10.1016/j.virol.2006.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 10/30/2006] [Accepted: 11/06/2006] [Indexed: 11/18/2022]
Abstract
Autographa californica nucleopolyhedrovirus Ac16 is 1 of 17 genes conserved within Type 1 nucleopolyhedroviruses. This report demonstrates that multiple isoforms of the protein encoded by Ac16, BV/ODV-E26 (E26), are present in the infected cell. One form of E26 associates with viral DNA or DNA-binding proteins, while a second form associates with intracellular membranes and this is likely due to palmitoylation. The different forms of E26 present unique epitopes that can be discriminated by antiserum produced to bacterially or virally produced antigen. A summation of the data now available on E26 suggests that it is a multifunctional protein and the functional states assume unique conformations that can be discriminated by differing antisera.
Collapse
Affiliation(s)
- Jared K Burks
- Department of Biology, Texas A&M University, TX, USA
| | | | | |
Collapse
|
37
|
Fitzner D, Schneider A, Kippert A, Möbius W, Willig KI, Hell SW, Bunt G, Gaus K, Simons M. Myelin basic protein-dependent plasma membrane reorganization in the formation of myelin. EMBO J 2006; 25:5037-48. [PMID: 17036049 PMCID: PMC1630406 DOI: 10.1038/sj.emboj.7601376] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 09/11/2006] [Indexed: 11/09/2022] Open
Abstract
During vertebrate development, oligodendrocytes wrap their plasma membrane around axons to produce myelin, a specialized membrane highly enriched in galactosylceramide (GalC) and cholesterol. Here, we studied the formation of myelin membrane sheets in a neuron-glia co-culture system. We applied different microscopy techniques to visualize lipid packing and dynamics in the oligodendroglial plasma membrane. We used the fluorescent dye Laurdan to examine the lipid order with two-photon microscopy and observed that neurons induce a dramatic lipid condensation of the oligodendroglial membrane. On a nanoscale resolution, using stimulated emission depletion and fluorescence resonance energy transfer microscopy, we demonstrated a neuronal-dependent clustering of GalC in oligodendrocytes. Most importantly these changes in lipid organization of the oligodendroglial plasma membrane were not observed in shiverer mice that do not express the myelin basic protein. Our data demonstrate that neurons induce the condensation of the myelin-forming bilayer in oligodendrocytes and that MBP is involved in this process of plasma membrane rearrangement. We propose that this mechanism is essential for myelin to perform its insulating function during nerve conduction.
Collapse
Affiliation(s)
- Dirk Fitzner
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Anja Schneider
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Angelika Kippert
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Katrin I Willig
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gertrude Bunt
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Katharina Gaus
- Centre for Vascular Research at the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mikael Simons
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
- Centre for Biochemistry and Molecular Cell Biology, Max-Planck Institute for Experimental Medicine, University of Göttingen, Hermann Rein Str. 3, 37073 Göttingen, Germany. Tel.: +49 551 3899533; Fax: +49 551 3899201; E-mail:
| |
Collapse
|
38
|
Trajkovic K, Dhaunchak AS, Goncalves JT, Wenzel D, Schneider A, Bunt G, Nave KA, Simons M. Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. ACTA ACUST UNITED AC 2006; 172:937-48. [PMID: 16520383 PMCID: PMC2063736 DOI: 10.1083/jcb.200509022] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During vertebrate brain development, axons are enwrapped by myelin, an insulating membrane produced by oligodendrocytes. Neuron-derived signaling molecules are temporally and spatially required to coordinate oligodendrocyte differentiation. In this study, we show that neurons regulate myelin membrane trafficking in oligodendrocytes. In the absence of neurons, the major myelin membrane protein, the proteolipid protein (PLP), is internalized and stored in late endosomes/lysosomes (LEs/Ls) by a cholesterol-dependent and clathrin-independent endocytosis pathway that requires actin and the RhoA guanosine triphosphatase. Upon maturation, the rate of endocytosis is reduced, and a cAMP-dependent neuronal signal triggers the transport of PLP from LEs/Ls to the plasma membrane. These findings reveal a fundamental and novel role of LEs/Ls in oligodendrocytes: to store and release PLP in a regulated fashion. The release of myelin membrane from LEs/Ls by neuronal signals may represent a mechanism to control myelin membrane growth.
Collapse
Affiliation(s)
- Katarina Trajkovic
- Centre for Biochemistry and Molecular Cell Biology, University of Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Anitei M, Ifrim M, Ewart MA, Cowan AE, Carson JH, Bansal R, Pfeiffer SE. A role for Sec8 in oligodendrocyte morphological differentiation. J Cell Sci 2006; 119:807-18. [PMID: 16478790 DOI: 10.1242/jcs.02785] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In the central nervous system, oligodendrocytes synthesize vast amounts of myelin, a multilamellar membrane wrapped around axons that dramatically enhances nerve transmission. A complex apparatus appears to coordinate trafficking of proteins and lipids during myelin synthesis, but the molecular interactions involved are not well understood. We demonstrate that oligodendrocytes express several key molecules necessary for the targeting of transport vesicles to areas of rapid membrane growth, including the exocyst components Sec8 and Sec6 and the multidomain scaffolding proteins CASK and Mint1. Sec8 overexpression significantly promotes oligodendrocyte morphological differentiation and myelin-like membrane formation in vitro; conversely, siRNA-mediated interference with Sec8 expression inhibits this process, and anti-Sec8 antibody induces a reduction in oligodendrocyte areas. In addition, Sec8 colocalizes, coimmunoprecipitates and cofractionates with the major myelin protein OSP/Claudin11 and with CASK in oligodendrocytes. These results suggest that Sec8 plays a central role in oligodendrocyte membrane formation by regulating the recruitment of vesicles that transport myelin proteins such as OSP/Claudin11 to sites of membrane growth.
Collapse
Affiliation(s)
- Mihaela Anitei
- Program of Molecular Biology and Biochemistry, University of Connecticut Medical School, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhou F, Xue Y, Yao X, Xu Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics 2006; 22:894-6. [PMID: 16434441 DOI: 10.1093/bioinformatics/btl013] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED Palmitoylation is an important post-translational lipid modification of proteins. Unlike prenylation and myristoylation, palmitoylation is a reversible covalent modification, allowing for dynamic regulation of multiple complex cellular systems. However, in vivo or in vitro identification of palmitoylation sites is usually time-consuming and labor-intensive. So in silico predictions could help to narrow down the possible palmitoylation sites, which can be used to guide further experimental design. Previous studies suggested that there is no unique canonical motif for palmitoylation sites, so we hypothesize that the bona fide pattern might be compromised by heterogeneity of multiple structural determinants with different features. Based on this hypothesis, we partition the known palmitoylation sites into three clusters and score the similarity between the query peptide and the training ones based on BLOSUM62 matrix. We have implemented a computer program for palmitoylation site prediction, Clustering and Scoring Strategy for Palmitoylation Sites Prediction (CSS-Palm) system, and found that the program's prediction performance is encouraging with highly positive Jack-Knife validation results (sensitivity 82.16% and specificity 83.17% for cut-off score 2.6). Our analyses indicate that CSS-Palm could provide a powerful and effective tool to studies of palmitoylation sites. AVAILABILITY CSS-Palm is implemented in PHP/PERL+MySQL and can be freely accessed at http://bioinformatics.lcd-ustc.org/css_palm/ CONTACT yaoxb@ustc.edu.cn; xuyn@bmb.uga.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bionformatics online.
Collapse
Affiliation(s)
- Fengfeng Zhou
- Computational Systems Biology Laboratory, Department of Biochemical and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
41
|
Schweitzer J, Becker T, Schachner M, Nave KA, Werner H. Evolution of myelin proteolipid proteins: Gene duplication in teleosts and expression pattern divergence. Mol Cell Neurosci 2006; 31:161-77. [PMID: 16289898 DOI: 10.1016/j.mcn.2005.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/30/2005] [Accepted: 10/12/2005] [Indexed: 11/26/2022] Open
Abstract
The coevolution of neurons and their supporting glia to the highly specialized axon-myelin unit included the recruitment of proteolipids as neuronal glycoproteins (DMbeta, DMgamma) or myelin proteins (DMalpha/PLP/DM20). Consistent with a genome duplication at the root of teleosts, we identified three proteolipid pairs in zebrafish, termed DMalpha1 and DMalpha2, DMbeta1 and DMbeta2, DMgamma1 and DMgamma2. The paralogous amino acid sequences diverged remarkably after gene duplication, indicating functional specialization. Each proteolipid has adopted a distinct spatio-temporal expression pattern in neural progenitors, neurons, and in glia. DMalpha2, the closest homolog to mammalian PLP/DM20, is coexpressed with P0 in oligodendrocytes and upregulated after optic nerve lesion. DMgamma2 is expressed in multipotential stem cells, and the other four proteolipids are confined to subsets of CNS neurons. Comparing protein sequences and gene structures from birds, teleosts, one urochordate species, and four invertebrates, we have reconstructed major steps in the evolution of proteolipids.
Collapse
Affiliation(s)
- Jörn Schweitzer
- Zentrum fuer Molekulare Neurobiologie, University of Hamburg, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Fukazawa N, Ayukawa K, Nishikawa K, Ohashi H, Ichihara N, Hikawa Y, Abe T, Kudo Y, Kiyama H, Wada K, Aoki S. Identification and functional characterization of mouse TPO1 as a myelin membrane protein. Brain Res 2006; 1070:1-14. [PMID: 16405874 DOI: 10.1016/j.brainres.2005.11.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 01/06/2023]
Abstract
TPO1 is a member of the AIGP family, a unique group of proteins that contains 11 putative transmembrane domains. Expression of the rat TPO1 gene is upregulated in cultured oligodendrocytes (OLs) during development from pro-oligodendroblasts to postmitotic OLs. However, the distribution of native TPO1 protein in cultured OLs and in the brain has not been elucidated. We investigated the distribution and cellular function of TPO1 in myelinating cells of the nervous system. In mice, TPO1 gene expression was detected in the central (CNS) and peripheral (PNS) nervous systems and was markedly upregulated at postnatal days 10-20, an early phase of myelination in the mouse brain. To investigate TPO1 localization, we generated affinity-purified antibodies to synthetic peptides derived from mouse TPO1. Immunohistochemical analysis showed that TPO1 was expressed in OLs and Schwann cells but not in neurons and astrocytes. Schwann cells from trembler mice, which lack PNS myelin, had significantly decreased TPO1 expression and an altered localization pattern, suggesting that TPO1 is a functional myelin membrane protein. In OL lineage cell cultures, TPO1 was detected in A2B5+ bipolar early progenitors, A2B5+ multipolar Pro-OLs, GalC+ immature OLs and MBP+ mature OLs. The subcellular localization of TPO1 in OL lineage cells was mapped to the GM130+ Golgi in cell bodies and Fyn+ cell processes and myelin-like sheets. Furthermore, TPO1 selectively colocalized with non-phosphorylated Fyn and promoted Fyn autophosphorylation in COS7 cells, suggesting that TPO1 may play a role in myelin formation via Fyn kinase activation in the PNS and CNS.
Collapse
Affiliation(s)
- Nobuna Fukazawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|