1
|
Valioglu F, Valipour F, Atazadeh S, Hasansadeh M, Khosrowshahi ND, Nezamdoust FV, Mohammad-Jafarieh P, Rahbarghazi R, Mahdipour M. Recent advances in shape memory scaffolds and regenerative outcomes. Biomed Eng Lett 2024; 14:1279-1301. [PMID: 39465110 PMCID: PMC11502725 DOI: 10.1007/s13534-024-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
The advent of tissue engineering (TE) technologies has revolutionized human medicine over the last few decades. Despite splendid advances in the fabricating and development of different substrates for regenerative purposes, non-responsive static composites have been used to heal injured tissues. After being transplanted into the target sites, grafts will lose their original features, leading to a reduction in regenerative potential. Along with these statements, the use of shape memory polymers (SMPs), smart substrates with unique physicochemical properties, has been extended in different disciplines of regenerative medicine in recent years. These substrates are intelligent and they can easily change physicogeometry features such as stiffness, strain size, shape, etc. in response to external stimuli. It has been proposed that SMPs can easily acquire their original properties after deformation, even in the presence or absence of certain stimuli. It has been indicated that the application of distinct synthesis protocols is required to fabricate dynamically switchable surfaces with prominent cell-to-substrate interaction, resulting in better regulation of cell function, dynamic growth, and reparative mechanisms. Here, we aimed to scrutinize the prominent regenerative properties of SMPs in the TE and regenerative medicine fields. Whether and how SMPs can orchestrate certain cell behavior, with reconfigurable features and adaptability were discussed in detail.
Collapse
Affiliation(s)
- Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Fereshteh Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Atazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Maryam Hasansadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | | | - Fereshteh Vaziri Nezamdoust
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Mohammad-Jafarieh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Arai N, Kajihara R, Takasaka M, Amari K, Kuneshita N, Maejima D, Watanabe-Asaka T, Hayashi M, Yokoyama Y, Kaidoh M, Kawai Y, Ohhashi T. Cell surface ATP synthase-released H + and ATP play key roles in cocoa butter intake-mediated regulation of gut immunity through releases of cytokines in rat. Pflugers Arch 2023; 475:945-960. [PMID: 37261509 DOI: 10.1007/s00424-023-02822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Proper food intake is important for maintaining good health in humans. Chocolate is known to exert anti-inflammatory effects; however, the mechanisms remain unclear. In this study, we aimed to investigate the effects of cocoa butter intake on gut immunity in rats and rabbits. Cocoa butter intake increased the lymph flow, cell density, and IL-1β, IL-6 and IL-10 levels in mesenteric lymph. Clodronate, a macrophage depletion compound, significantly enhanced the release of all cytokines. The immunoreactivities of macrophage markers CD68 and F4/80 in the jejunal villi were significantly decreased with clodronate. Piceatannol, a selective cell surface ATP synthase inhibitor significantly reduced the cocoa butter intake-mediated releases of IL-1β, IL-6 and IL-10. The immunoreactivities of cell surface ATP synthase were observed in rat jejunal villi. Shear stress stimulation on the myofibroblast cells isolated from rat jejunum released ATP and carbon dioxide depended with H+ release. In rabbit in vivo experiments, cocoa butter intake increased the concentrations of ATP and H+ in the portal vein. The in vitro experiments with isolated cells of rat jejunal lamina propria the pH of 3.0 and 5.0 in the medium released significantly IL-1β and IL-6. ATP selectively released IL-10. These findings suggest that cocoa butter intake regulates the gut immunity through the release and transport of IL-1β, IL-6, and IL-10 into mesenteric lymph vessels in a negative feedback system. In addition, the H+ and ATP released from cell surface ATP synthase in jejunal villi play key roles in the cocoa butter intake-mediated regulation of gut immunity.
Collapse
Affiliation(s)
- Nariaki Arai
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryo Kajihara
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mieko Takasaka
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Kei Amari
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Norika Kuneshita
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Daisuke Maejima
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tomomi Watanabe-Asaka
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Physiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Moyuru Hayashi
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Physiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yumiko Yokoyama
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Maki Kaidoh
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yoshiko Kawai
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Physiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Toshio Ohhashi
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| |
Collapse
|
3
|
Nakanishi S, Mantani Y, Ohno N, Morishita R, Yokoyama T, Hoshi N. Histological study on regional specificity of the mucosal nerve network in the rat large intestine. J Vet Med Sci 2023; 85:123-134. [PMID: 36517005 PMCID: PMC10017283 DOI: 10.1292/jvms.22-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies and others have revealed detailed characteristics of the mucosal nerve network in the small intestine, but much remains unknown about the corresponding network in the large intestine. We herein investigated regional differences in the expression of neurochemical markers, the nerve network structure, and the cells in contact with nerve fibers by histological analysis using both immunohistochemistry and serial block-face scanning electron microscopy (SBF-SEM). Immunohistochemistry revealed that immunopositive structures for protein gene product 9.5, vasoactive intestinal peptide (VIP), calretinin and vesicular acetylcholine transporter were more prevalent in the lamina propria of the ascending colon than the cecum and descending colon (DC). There was no significant difference in the frequency of most neurochemical markers between the cecum and DC, but the frequencies of VIP+ structures were higher in the cecum than in the DC. SBF-SEM analysis showed that the nerve network structure was more developed on the luminal side of the DC than the cecum. The cells that nerve fibers abundantly contacted were subepithelial and lamina propria fibroblast-like cells and macrophages. In addition, nerve fibers in the cecum were in more frequent contact with immune cells such as macrophages and plasma cells than nerve fibers in the DC. Thus, the present histological analysis suggested that the mucosal nerve network in the large intestine possessed both regional universality and various specificities, and revealed the intimate relationship between the nerve network and immune cells, especially in the cecum.
Collapse
Affiliation(s)
- Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Tochigi, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Aichi, Japan
| | - Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
4
|
Chen Q, Bai H, Che B, Zhao T, Zhang C, Wang K, Bai J, Zhao W. Super-Resolution Reconstruction of Cytoskeleton Image Based on A-Net Deep Learning Network. MICROMACHINES 2022; 13:1515. [PMID: 36144138 PMCID: PMC9501965 DOI: 10.3390/mi13091515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
To date, live-cell imaging at the nanometer scale remains challenging. Even though super-resolution microscopy methods have enabled visualization of sub-cellular structures below the optical resolution limit, the spatial resolution is still far from enough for the structural reconstruction of biomolecules in vivo (i.e., ~24 nm thickness of microtubule fiber). In this study, a deep learning network named A-net was developed and shows that the resolution of cytoskeleton images captured by a confocal microscope can be significantly improved by combining the A-net deep learning network with the DWDC algorithm based on a degradation model. Utilizing the DWDC algorithm to construct new datasets and taking advantage of A-net neural network's features (i.e., considerably fewer layers and relatively small dataset), the noise and flocculent structures which originally interfere with the cellular structure in the raw image are significantly removed, with the spatial resolution improved by a factor of 10. The investigation shows a universal approach for exacting structural details of biomolecules, cells and organs from low-resolution images.
Collapse
Affiliation(s)
- Qian Chen
- School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
| | - Haoxin Bai
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwestern University, Xi’an 710127, China
| | - Bingchen Che
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwestern University, Xi’an 710127, China
| | - Tianyun Zhao
- School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwestern University, Xi’an 710127, China
| | - Kaige Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwestern University, Xi’an 710127, China
| | - Jintao Bai
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwestern University, Xi’an 710127, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwestern University, Xi’an 710127, China
| |
Collapse
|
5
|
Iwanaga T, Takahashi-Iwanaga H. Disposal of intestinal apoptotic epithelial cells and their fate via divergent routes. Biomed Res 2022; 43:59-72. [PMID: 35718446 DOI: 10.2220/biomedres.43.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gut epithelial cells are characterized by rapid, constant cell renewal. The disposal of aging epithelial cells around the villus tips of the small intestine occurs so regularly that it has been regarded as a consequence of well-controlled cell death, designated as apoptosis. However, the notion of live cell extrusion in the intestine has been intensively built among researchers, and the disposal processes of effete epithelial cells display species and regional differences. Chemical mediators and mechanical forces rising from surrounding cells contribute to the regulated cell replacement. Cytotoxic intraepithelial lymphocytes and lamina propria macrophages play a leading role in the selection of disposal cells and their extrusion to maintain fully the epithelial homeostasis in tandem with the dynamic reconstruction of junctional devices. Lymphocyte-mediated cell killing is predominant in the mouse and rat, while the disposal of epithelial cells in the guinea pig, monkey, and human is characterized by active phagocytosis by subepithelially gathering macrophages. The fenestrated basement membrane formed by immune cells supports their involvement and explains species differences in the disposal of epithelial cells. Via these fenestrations, macrophages and dendritic cells can engulf apoptotic epithelial cells and debris and convey substantial information to regional lymph nodes. In this review, we attempt to focus on morphological aspects concerning the apoptosis and disposal process of effete epithelial cells; in vitro or ex vivo analyses using cultured monolayer has become predominant in recent studies concerning the exfoliation of apoptotic enterocytes. Furthermore, we give attention to their species differences, which is controversial but crucial to our understanding.
Collapse
Affiliation(s)
- Toshihiko Iwanaga
- Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | |
Collapse
|
6
|
Sato M, Morita K, Azumi R, Mizutani Y, Hayatsu M, Ushiki T, Terai S. Diet-related changes of basal lamina fenestrations in the villous epithelium of the rat small intestine: Statistical analysis on scanning electron microscopy. Biomed Res 2022; 43:11-22. [PMID: 35173112 DOI: 10.2220/biomedres.43.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The epithelial basal lamina of the small intestine has numerous fenestrations for intraepithelial migration of leukocytes. We have reported dynamic changes of fenestrations in dietary conditions. To investigate this phenomenon, we performed statistical analyses using scanning electron microscopy images of the epithelial basal lamina of rat intestinal villi after removal of the villous epithelium by osmium maceration. We examined structural changes in the number and size of fenestrations in the rat jejunum and ileum under fasted and fed states for 24 h. Our findings revealed that, in the jejunum, the number of free cells migrating into the epithelium through fenestrations increased from 2 h after feeding, resulting in an increase in the fenestration size of intestinal villi; the number of free cells then tended to decrease at 6 h after feeding, and the fenestration size also gradually decreased. By contrast, the increase in the fenestration size by feeding was not statistically significant in the ileum. These findings indicate that the number of migrating cells increases in the upper part of the small intestine under dietary conditions, which may influence the absorption efficiency of nutrients including lipids, as well as the induction of nutrient-induced inflammation.
Collapse
Affiliation(s)
- Masatoshi Sato
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences.,Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences
| | - Keisuke Morita
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences
| | - Rie Azumi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences
| | - Yusuke Mizutani
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences.,Office of Institutional Research, Hokkaido University
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
7
|
Xie X, Chen H, Zhang L, Chan D, Hill WG, Zeidel ML, Yu W. Molecular mechanisms of voiding dysfunction in a novel mouse model of acute urinary retention. FASEB J 2021; 35:e21447. [PMID: 33742688 PMCID: PMC9844132 DOI: 10.1096/fj.202002415r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 01/19/2023]
Abstract
Acute urinary retention (AUR) is a common urological emergency and affects a significant patient population. The inability to eliminate urine may lead to permanent damage to the bladder's structure and functioning. However, we know little about the underlying molecular sequelae to the urine retention. To closely mirror the potential high pressures that patients with AUR could experience, we catheterized anesthetized female mice via the urethra and filled the bladder by pumping saline (25 µL/min) into the bladder lumen to 50 cm or 80 cm water pressure. A water column with designated height (50 or 80 cm) was then adjusted to maintain constant pressure in the bladder lumen for 30 minutes. Functional and morphological evaluations were performed from 0 to 24 hours after AUR treatment. Mice exhibited incontinence and overactivity with diminished voiding pressure. Significant injury was confirmed which revealed bladders with disrupted urothelial barrier, edematous lamina propria, and distorted muscle bundles. Bladder smooth muscle (BSM) from pressure-treated mice have significantly diminished contraction force, suggesting that bladder voiding dysfunction can be attributed to impaired BSM contractility. Indeed, dysregulation of acetylcholine and purinergic signaling pathways were demonstrated, indicating that reduced efficacy of these pathways contributes to impaired BSM contractility. Finally, altered expression of β1-integrin and extracellular matrix mediated mechanotransduction pathways were detected, suggesting a profound remodeling process. These data demonstrated an easy to perform, quantifiable, and reproducible AUR mouse model, which mimics well the characteristics of human AUR patients, and our data generate new insights into the molecular mechanisms that occur following AUR.
Collapse
Affiliation(s)
- Xiang Xie
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Daniel Chan
- Brown University/Harvard Summer Research Program in Kidney Medicine, Providence, RI, USA
| | - Warren G. Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Lv ZY, Yang YQ, Yin LM. Role of Purinergic Signaling in Acupuncture Therapeutics. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:645-659. [PMID: 33641652 DOI: 10.1142/s0192415x21500294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acupuncture is a therapeutic treatment that is well recognized in many countries. However, the initiation mechanisms of acupuncture are not well understood. Purinergic signaling has been considered a key signaling pathway in acupuncture in recent years. Acupuncture-induced ATP is mainly produced by mast cells and fibroblasts, and ATP is gradually hydrolyzed into adenosine. ATP and adenosine further participate in the process of acupuncture information transmission to the nervous and immune systems through specific purine receptors. Acupuncture initiates analgesia via the down-regulation of the expression of P2 receptors or up-regulation of the expression of adenosine A1 receptors on nerve fibers. ATP also promotes the proliferation of immune cells through P2 receptors and A3 receptors, causing inflammation. In contrast, adenosine activates A2 receptors, promotes the production and infiltration of immunosuppressive cells, and causes an anti-inflammatory response. In summary, we described the role of purinergic signaling as a general signaling pathway in the initiation of acupuncture and the influence of purinergic signaling on the neuroimmune network to lay the foundation for future systematic research on the mechanisms of acupuncture therapeutics.
Collapse
Affiliation(s)
- Zhi-Ying Lv
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China.,Shanghai Innovation Center of Traditional Chinese Medicine, Health Service, Shanghai 201203, P. R. China
| |
Collapse
|
9
|
Hayashi M, Watanabe-Asaka T, Nagashio S, Kaidoh M, Yokoyama Y, Maejima D, Kajihara R, Amari K, Arai N, Kawai Y, Ohhashi T. Water intake accelerates ATP release from myofibroblast cells in rats: ATP-mediated podoplanin-dependent control for physiological function and immunity. Am J Physiol Gastrointest Liver Physiol 2021; 320:G54-G65. [PMID: 33146549 DOI: 10.1152/ajpgi.00303.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously demonstrated that water intake increased mesenteric lymph flow and the total flux of IL-22 in rat jejunum. The drained water and the higher permeability of albumin in the jejunal microcirculation contributed to increase the lymph flow and IL-22 transport via the activation of great bulk flow in the jejunal villi. To address the effects of water intake-mediated great bulk flow-dependent mechanical force on jejunal physiological function and immunological regulation of innate lymphoid cells (ILC)-3, we examined the effects of shear stress stimulation on cultured rat myofibroblast cells. Next, we investigated the effects of water intake on podoplanin and IL-22 expressions in cultured human intestinal epithelial cells and rat in vivo jejunal preparations, respectively. Shear stress stimulation of the myofibroblast cells induced ATP release via an activation of cell surface F1/F0 ATP synthase. ATP produced podoplanin expression in the intestinal epithelial cells. Water intake accelerated immunohistochemical expressions of podoplanin and IL-22 in the interepithelial layers and lamina propria of the jejunum. ATP dose-dependently increased IL-22 mRNA expression in ILC-3, which are housed in the lamina propria. Water intake also increased immunohistochemical and mRNA expressions of ecto-nucleoside triphosphate diphosphohydrolases 2 and 5 in jejunal villi. In conclusion, water intake-mediated shear stress stimulation-dependent ATP release from myofibroblast cells maintains higher tissue colloid osmotic pressure in the jejunal microcirculation through podoplanin upregulation in the interepithelial layers. ATP induces IL-22 mRNA expression in ILC-3 in jejunal villi, which may contribute to regulation of mucosal immunity in small intestine.NEW & NOTEWORTHY We investigated effects of shear stress stimulation on cultured myofibroblast cells and water intake on podoplanin and IL-22 expressions in rat jejunal villi. The stimulation induced ATP release from the cells. Water intake accelerated podoplanin and IL-22 expression levels. ATP increased IL-22 mRNA expression in innate lymphoid cells (ILC)-3. Hence, water intake maintains higher osmotic pressure in the jejunal villi through ATP release and podoplanin upregulation. Water intake may regulate the mucosal immunity.
Collapse
Affiliation(s)
- Moyuru Hayashi
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan.,Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomomi Watanabe-Asaka
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan.,Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Sachiho Nagashio
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maki Kaidoh
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yumiko Yokoyama
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Daisuke Maejima
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryo Kajihara
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kei Amari
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nariaki Arai
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiko Kawai
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan.,Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Toshio Ohhashi
- Department of Innovation of Medical and Health Sciences Research, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
10
|
Vannucchi MG. The Telocytes: Ten Years after Their Introduction in the Scientific Literature. An Update on Their Morphology, Distribution, and Potential Roles in the Gut. Int J Mol Sci 2020; 21:E4478. [PMID: 32599706 PMCID: PMC7352570 DOI: 10.3390/ijms21124478] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Ten years ago, the term 'telocyte' was introduced in the scientific literature to describe a 'new' cell type described in the connective tissue of several organs by Popescu and Faussone-Pellegrini (2010). Since then, 368 papers containing the term 'telocyte' have been published, 261 of them in the last five years. These numbers underscore the growing interest in this cell type in the scientific community and the general acceptance of the name telocyte to indicate this interstitial cell. Most of these studies, while confirming the importance of transmission electron microscopy to identify the telocytes with certainty, highlight the variability of their immune phenotypes. This variability was interpreted as due to (i) the ability of the telocytes to adapt to the different sites in which they reside; (ii) the distinct functions they are likely to perform; and (iii) the existence of telocyte subtypes. In the present paper, an overview of the last 10 years of literature on telocytes located in the gut will be attempted, confining the revision to the morphological findings. A distinct chapter will be dedicated to the recently hypothesized role of the telocytes the intestinal mucosa. Through this review, it will be shown that telocytes, despite their variability, are a unique interstitial cell.
Collapse
|
11
|
Zhang J, Penny J, Lu JR. Development of a novel in vitro 3D intestinal model for permeability evaluations. Int J Food Sci Nutr 2019; 71:549-562. [DOI: 10.1080/09637486.2019.1700940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jing Zhang
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Sciences and Engineering, University of Manchester, Manchester, UK
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jian R. Lu
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Sciences and Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Uprety T, Spurlin BB, Antony L, Sreenivasan C, Young A, Li F, Hildreth MB, Kaushik RS. Development and characterization of a stable bovine intestinal sub-epithelial myofibroblast cell line from ileum of a young calf. In Vitro Cell Dev Biol Anim 2019; 55:533-547. [PMID: 31183683 DOI: 10.1007/s11626-019-00365-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Intestinal sub-epithelial myofibroblasts (ISEMFs) are mesenchymal cells that do not express cytokeratin but express α-smooth muscle actin and vimentin. Despite being cells with diverse functions, there is a paucity of knowledge about their origin and functions primarily due to the absence of a stable cell line. Although myofibroblast in vitro models for human, mouse, and pig are available, there is no ISEMF cell line available from young calves. We isolated and developed an ileal ISEMF cell line from a 2-d-old calf that expressed α-smooth muscle actin and vimentin but no cytokeratin indicating true myofibroblast cells. To overcome replicative senescence, we immortalized primary cells with SV40 large T antigen. We characterized and compared both primary and immortalized ileal ISEMF cells for surface glycan and Toll-like-receptor (TLR) expression by lectin-binding assay and real-time quantitative PCR (RT-qPCR) assay respectively. SV40 immortalization significantly decreased surface lectin binding for lectins GSL-I, PHA-L, ECL, Jacalin, Con-A, LCA, and LEL. Both cell types expressed TLRs 1-9 and showed no significant differences in TLR expression. Thus, these cells can be useful in vitro model to study ISEMF's origin, physiology, and functions.
Collapse
Affiliation(s)
- Tirth Uprety
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Brionna B Spurlin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Chithra Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Alan Young
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Michael B Hildreth
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
13
|
Prasad A, Alizadeh E. Cell Form and Function: Interpreting and Controlling the Shape of Adherent Cells. Trends Biotechnol 2019; 37:347-357. [DOI: 10.1016/j.tibtech.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
14
|
Tong J, Qi Y, Wang X, Yu L, Su C, Xie W, Zhang J. Cell micropatterning reveals the modulatory effect of cell shape on proliferation through intracellular calcium transients. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2389-2401. [PMID: 28962833 DOI: 10.1016/j.bbamcr.2017.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/09/2017] [Accepted: 09/24/2017] [Indexed: 12/14/2022]
Abstract
The mechanism by which cell shape regulates the function of the cell is one of the most important biological issues, but it remains unclear. Here, we investigated the effect of the regulation of cell shape on proliferation by using a micropatterning approach to confine MC3T3-E1 cells into specific shapes. Our results show that the proliferation rate for rectangle-, triangle-, square- and circle-shaped osteoblasts increased sequentially and was related to the nuclear shape index (NSI) but not the cell shape index (CSI). Interestingly, intracellular calcium transients also displayed different patterns, with the number of Ca2+ peaks increasing with the NSI in shaped cells. Further causal investigation revealed that the gene expression levels of the inositol 1,4,5-triphosphate receptor 1 (IP3R1) and sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2), two major calcium cycling proteins in the endoplasmic reticulum (ER), were increased with an increase in NSI as a result of nuclear volume changes. Moreover, the down-regulation of IP3R1 and/or SERCA2 using shRNAs in circle-shaped or control osteoblasts resulted in changes in intracellular calcium transient patterns and cell proliferation rates towards that of smaller-NSI-shaped cells. Our results indicate that changes in cell shape changed nuclear morphology and then the gene expression of IP3R1 and SERCA2, which produced different intracellular calcium transient patterns. The patterns of intracellular calcium transients then determined the proliferation rate of the shaped osteoblasts.
Collapse
Affiliation(s)
- Jie Tong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ying Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiangmiao Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Liyin Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Chang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Jianbao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
15
|
Uto K, Aoyagi T, DeForest CA, Hoffman AS, Ebara M. A Combinational Effect of "Bulk" and "Surface" Shape-Memory Transitions on the Regulation of Cell Alignment. Adv Healthc Mater 2017; 6. [PMID: 28169506 DOI: 10.1002/adhm.201601439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 12/23/2022]
Abstract
A novel shape-memory cell culture platform has been designed that is capable of simultaneously tuning surface topography and dimensionality to manipulate cell alignment. By crosslinking poly(ε-caprolactone) (PCL) macromonomers of precisely designed nanoarchitectures, a shape-memory PCL with switching temperature near body temperature is successfully prepared. The temporary strain-fixed PCLs are prepared by processing through heating, stretching, and cooling about the switching temperature. Temporary nanowrinkles are also formed spontaneously during the strain-fixing process with magnitudes that are dependent on the applied strain. The surface features completely transform from wrinkled to smooth upon shape-memory activation over a narrow temperature range. Shape-memory activation also triggers dimensional deformation in an initial fixed strain-dependent manner. A dynamic cell-orienting study demonstrates that surface topographical changes play a dominant role in cell alignment for samples with lower fixed strain, while dimensional changes play a dominant role in cell alignment for samples with higher fixed strain. The proposed shape-memory cell culture platform will become a powerful tool to investigate the effects of spatiotemporally presented mechanostructural stimuli on cell fate.
Collapse
Affiliation(s)
- Koichiro Uto
- International Research Center for Materials Nanoarchitectonics (WPI-MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| | - Takao Aoyagi
- International Research Center for Materials Nanoarchitectonics (WPI-MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| | - Cole A. DeForest
- Department of Chemical Engineering; University of Washington; 4000 15 Ave NE Seattle WA 98195 USA
| | - Allan S. Hoffman
- Department of Bioengineering; University of Washington; 3720 15 Ave NE Seattle WA 98195 USA
| | - Mitsuhiro Ebara
- International Research Center for Materials Nanoarchitectonics (WPI-MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| |
Collapse
|
16
|
Takahashi K, Ito S, Furuya K, Asano S, Sokabe M, Hasegawa Y. Real-time imaging of mechanically and chemically induced ATP release in human lung fibroblasts. Respir Physiol Neurobiol 2017; 242:96-101. [PMID: 28442443 DOI: 10.1016/j.resp.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) acts as an inflammatory mediator of pulmonary fibrosis. We investigated the effects of mechanical and chemical stimuli on ATP release from primary normal human lung fibroblasts. We visualized the ATP release from fibroblasts in real time using a luminescence imaging system while acquiring differential interference contrast cell images with infrared optics. Immediately following a single uniaxial stretch for 1s, ATP was released from a certain population of cells and spread to surrounding spaces. Hypotonic stress, which causes plasma membrane stretching, also induced the ATP release. Compared with the effects of mechanical stretch, ATP-induced release sites were homogeneously distributed. In contrast to the effects of mechanical stimuli, application of platelet-derived growth factor caused ATP release from small numbers of the cells. Our real-time ATP imaging demonstrates that there is a heterogeneous nature of ATP release from lung fibroblasts in response to mechanical and chemical stimuli.
Collapse
Affiliation(s)
- Kota Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Respiratory Medicine and Allergology, Aichi Medical University, Nagakute 480-1195, Japan.
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuichi Asano
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
17
|
Cell culture: complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res 2017; 370:1-11. [PMID: 28434079 PMCID: PMC5610203 DOI: 10.1007/s00441-017-2618-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
There is abundant evidence that ATP (adenosine 5′-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.
Collapse
|
18
|
Gohar EY, Kasztan M, Pollock DM. Interplay between renal endothelin and purinergic signaling systems. Am J Physiol Renal Physiol 2017; 313:F666-F668. [PMID: 28179257 DOI: 10.1152/ajprenal.00639.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
Alterations in extracellular fluid volume regulation and sodium balance may result in the development and maintenance of salt-dependent hypertension, a major risk factor for cardiovascular disease. Numerous pathways contribute to the regulation of sodium excretion and blood pressure, including endothelin and purinergic signaling. Increasing evidence suggests a link between purinergic receptor activation and endothelin production within the renal collecting duct as a means of promoting natriuresis. A better understanding of the relationship between these two systems, especially in regard to sodium homeostasis, will fill a significant knowledge gap and may provide novel antihypertensive treatment options. Therefore, this review focuses on the cross talk between endothelin and purinergic signaling as it relates to the renal regulation of sodium and blood pressure homeostasis.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Shiina K, Hayashida KI, Ishikawa K, Kawatani M. ATP release from bladder urothelium and serosa in a rat model of partial bladder outlet obstruction. Biomed Res 2017; 37:299-304. [PMID: 27784873 DOI: 10.2220/biomedres.37.299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Overactive bladder is one of the major health problem especially in elderly people. Adenosine triphosphate (ATP) is released from urinary bladder cells and acts as a smooth muscle contraction and sensory signal in micturition but little is known about the role of ATP release in the pathophysiology of overactive bladder. To assess the relationship between ATP and overactive bladder, we used a partial bladder outlet obstruction (pBOO) model in rats. The bladder caused several changes by pBOO: An increase in bladder weight, hypertrophy of sub-urothelium and sub-serosal area, and frequent non-voiding bladder contraction during urine storage. Basal ATP release from urothelium and serosa of pBOO rats was significantly higher than that of normal rats. Distentioninduced ATP release from urothelium of normal and pBOO rats had no significant change. However, distention-induced ATP release from serosa of pBOO rats was higher than that of normal. These findings may identify ATP especially released from serosa as one of causes of non-voiding contractions and overactive bladder symptoms.
Collapse
Affiliation(s)
- Kazuhiro Shiina
- Departments of Neurophysiology, Akita University Graduate School of Medicine
| | | | | | | |
Collapse
|
20
|
Telocytes in gastric lamina propria of the Chinese giant salamander, Andrias davidianus. Sci Rep 2016; 6:33554. [PMID: 27629815 PMCID: PMC5024317 DOI: 10.1038/srep33554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we attempt to identify gastric telocytes (TCs) of the Chinese giant salamander Andrias davidianus, by light microscopy, immunohistochemistry and transmission electron microscopy (TEM) methods. Toluidine blue staining showed TCs with one to two very thin and long telopodes (Tps) that were located in gastric lamina propria. Tps had characteristic structures, including podoms, podomers and dichotomous branching. Immunohistochemistry showed the existence of CD34+/PDGFRα+ TCs with moniliform Tps in stroma and were close to gastric glands and blood vessels. TEM micrographs also demonstrated the presence of TCs in interstitium between gastric glands. TCs/Tps were located in close proximity to gastric glands, blood vessels, endocrine cells and stem cells. In particular, Tps frequently surrounded stem cells. TCs and Tps, Tps and stem cells established close contacts. Moreover, the exosomes were also found near TCs/Tps. Our data confirmed the presence of TCs in gastric lamina propria of the amphibian, and suggested that TCs cooperate with resident stem cells to regulate endocrine cells and gastric glands regeneration and homeostasis.
Collapse
|
21
|
Nagasao T, Hamamoto Y, Tamai M, Kudo H, Ensako T, Kogure T, Takano N, Tanaka Y. The "Sea" should not be operated on in scar revision for "Island-Like" scars. Med Hypotheses 2015; 85:215-8. [PMID: 25978927 DOI: 10.1016/j.mehy.2015.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
Scars developing on body surfaces not only restrict body movement, but are also problematic from a cosmetic standpoint. Hence, revision is conducted by removing the scar and re-suturing the resultant defects. In performing scar revision, care should be taken to prevent the re-sutured wounds from developing hypertrophy again. Scars often present a pattern where hard, red parts are separated by soft parts in between. As the hard and soft parts may be analogized as islands and seas respectively, we call this the "Island-Like" scar. Two strategies can be taken to treat scars of this type. The first is to remove the entire scar-including both hard and soft parts; the second is to remove only the hard parts and leave the soft parts untouched. The authors conducted a biomechanical study using finite element analyses and found that as a body moves, greater stresses occur in the peri-wound regions with the first strategy than with the second strategy. A wound's likelihood to develop hypertrophy increases as the stresses working on it increase. Hence, it is hypothesized that the second strategy carries less risk of the operated wounds developing re-hypertrophy than the first strategy. Based on this logic, in performing scar revision for scars consisting of hard and soft parts, it is recommended only to remove only hard parts and not to operate on soft parts in between.
Collapse
Affiliation(s)
- Tomohisa Nagasao
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Japan.
| | - Yusuke Hamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Japan
| | - Motoki Tamai
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Japan
| | - Hiroo Kudo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Japan
| | - Toshiya Ensako
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Japan
| | - Tetsukuni Kogure
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Japan
| | - Naoki Takano
- Department of Mechanical Engineering, Keio University, Japan
| | - Yoshio Tanaka
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Japan
| |
Collapse
|
22
|
Takahara N, Ito S, Furuya K, Naruse K, Aso H, Kondo M, Sokabe M, Hasegawa Y. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2015; 51:772-82. [PMID: 24885163 DOI: 10.1165/rcmb.2014-0008oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.
Collapse
|
23
|
|
24
|
Murata N, Ito S, Furuya K, Takahara N, Naruse K, Aso H, Kondo M, Sokabe M, Hasegawa Y. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts. Biochem Biophys Res Commun 2014; 453:101-5. [PMID: 25256743 DOI: 10.1016/j.bbrc.2014.09.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/31/2023]
Abstract
One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca(2+) concentration ([Ca(2+)]i) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10-30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca(2+)]i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca(2+)]i. The stretch-induced [Ca(2+)]i elevation was attenuated in Ca(2+)-free solution. In contrast, the increase of [Ca(2+)]i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd(3+), ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca(2+)]i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca(2+) influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.
Collapse
Affiliation(s)
- Naohiko Murata
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Norihiro Takahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan
| | - Hiromichi Aso
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
25
|
Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med 2014; 17:1099-108. [PMID: 24151977 PMCID: PMC4118169 DOI: 10.1111/jcmm.12134] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/09/2013] [Indexed: 12/25/2022] Open
Abstract
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34-positive/c-kit-negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c-kit-positive/CD34-negative/platelet-derived growth factor receptor α (PDGFRα)-negative interstitial cells of Cajal (ICC) and the PDGFRα-positive/c-kit-negative fibroblast-like cells (FLC). As TC display the same features and locations of the PDGFRα-positive cells, we investigated whether TC and PDGFRα-positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c-kit and CD34/c-kit double immunolabelling was performed in full-thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34-positive. TC formed a three-dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c-kit-positive and CD34/PDGFRα-negative. In conclusion, in the human GI tract the TC are PDGFRα-positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region-specific roles.
Collapse
Affiliation(s)
- Maria-Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
26
|
Fukushi Y, Sakurai T, Terakawa S. Cell-to-cell propagation of intracellular signals fluorescently visualized with acridine orange in the gastric glands of guinea pigs. Biochem Biophys Res Commun 2014; 447:38-43. [PMID: 24680825 DOI: 10.1016/j.bbrc.2014.03.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 11/19/2022]
Abstract
Secretion from the gastric gland involves the activation of various types of cells in a coordinated manner. In order to elucidate the mechanisms underlying the coordination of secretion, we studied live fluorescence images of guinea pig gastric glands stained with acridine orange (AO). On 2 μM AO staining, individual cells were characterized by metachromatic colors and various intensities of fluorescence. When the gland was stimulated with 100 μM of histamine, green fluorescence was transiently increased in parietal cells and intermediate cells and propagated along the gland for a long distance over many cells. Local stimulation in a couple of cells with histamine in the presence of suramin also induced propagation. However, the fluorescence response was suppressed by the addition of H-89, a protein kinase A inhibitor. These findings suggest that a cAMP-dependent signal propagates intercellularly through a variety of cells to induce coordinated secretion in the entire gastric gland.
Collapse
Affiliation(s)
- Yasuko Fukushi
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi Sakurai
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Susumu Terakawa
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
27
|
Robertson GN, Croll RP, Smith FM. The structure of the caudal wall of the zebrafish (Danio rerio) swim bladder: Evidence of localized lamellar body secretion and a proximate neural plexus. J Morphol 2014; 275:933-48. [DOI: 10.1002/jmor.20274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 01/09/2023]
Affiliation(s)
- George N. Robertson
- Department of Medical Neuroscience; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
- Department of Biology; Saint Francis Xavier University; Antigonish Nova Scotia Canada B2G 2W5
| | - Roger P. Croll
- Department of Physiology and Biophysics; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
| | - Frank M. Smith
- Department of Medical Neuroscience; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
| |
Collapse
|
28
|
Abundant expression and functional participation of TRPV1 at Zusanli acupoint (ST36) in mice: mechanosensitive TRPV1 as an "acupuncture-responding channel". BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:96. [PMID: 24612851 PMCID: PMC3984709 DOI: 10.1186/1472-6882-14-96] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/13/2014] [Indexed: 02/07/2023]
Abstract
Background Acupuncture is a therapy that involves applying mechanical stimulation to acupoints using needles. Although acupuncture is believed to trigger neural regulation by opioids or adenosine, still little is known about how physical stimulation is turned into neurological signaling. The transient receptor potential vanilloid receptors 1 and 4 (TRPV1 and TRPV4) and the acid-sensing ion channel 3 (ASIC3) are regarded as mechanosensitive channels. This study aimed to clarify their role at the Zusanli acupoint (ST36) and propose possible sensing pathways linking channel activation to neurological signaling. Methods First, tissues from different anatomical layers of ST36 and the sham point were sampled, and channel expressions between the two points were compared using western blotting. Second, immunofluorescence was performed at ST36 to reveal distribution pattern of the channels. Third, agonist of the channels were injected into ST36 and tested in a mouse inflammatory pain model to seek if agonist injection could replicate acupuncture-like analgesic effect. Last, the components of proposed downstream sensing pathway were tested with western blotting to determine if they were expressed in tissues with positive mechanosensitive channel expression. Results The results from western blotting demonstrated an abundance of TRPV1, TRPV4, and ASIC3 in anatomical layers of ST36. Furthermore, immunofluorescence showed these channels were expressed in both neural and non-neural cells at ST36. However, only capsaicin, a TRPV1 agonist, replicated the analgesic effect of acupuncture when injected into ST36. Components of calcium wave propagation (CWP, the proposed downstream sensing pathway) were also expressed in tissues with abundant TRPV1 expression, the muscle and epimysium layers. Conclusions The results demonstrated mechanosensitive channel TRPV1 is highly expressed at ST36 and possibly participated in acupuncture related analgesia. Since CWP was reported by other to occur during acupuncture and its components were shown here to express in tissues with positive TRPV1 expression. These findings suggest TRPV1 might act as acupuncture-responding channel by sensing physical stimulation from acupuncture and conducting the signaling via CWP to nerve terminals. This study provided a better understanding between physical stimulation from acupuncture to neurological signaling.
Collapse
|
29
|
Furuya K, Sokabe M, Grygorczyk R. Real-time luminescence imaging of cellular ATP release. Methods 2013; 66:330-44. [PMID: 23973809 DOI: 10.1016/j.ymeth.2013.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/01/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022] Open
Abstract
Extracellular ATP and other purines are ubiquitous mediators of local intercellular signaling within the body. While the last two decades have witnessed enormous progress in uncovering and characterizing purinergic receptors and extracellular enzymes controlling purinergic signals, our understanding of the initiating step in this cascade, i.e., ATP release, is still obscure. Imaging of extracellular ATP by luciferin-luciferase bioluminescence offers the advantage of studying ATP release and distribution dynamics in real time. However, low-light signal generated by bioluminescence reactions remains the major obstacle to imaging such rapid processes, imposing substantial constraints on its spatial and temporal resolution. We have developed an improved microscopy system for real-time ATP imaging, which detects ATP-dependent luciferin-luciferase luminescence at ∼10 frames/s, sufficient to follow rapid ATP release with sensitivity of ∼10 nM and dynamic range up to 100 μM. In addition, simultaneous differential interference contrast cell images are acquired with infra-red optics. Our imaging method: (1) identifies ATP-releasing cells or sites, (2) determines absolute ATP concentration and its spreading manner at release sites, and (3) permits analysis of ATP release kinetics from single cells. We provide instrumental details of our approach and give several examples of ATP-release imaging at cellular and tissue levels, to illustrate its potential utility.
Collapse
Affiliation(s)
- Kishio Furuya
- Department of Physiology, Nagoya University, Graduate School of Medicine, Nagoya, Japan; FIRST Research Center for Innovative Nanobiodevices, Nagoya University, Nagoya, Japan.
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University, Graduate School of Medicine, Nagoya, Japan.
| | - Ryszard Grygorczyk
- Department of Physiology, Nagoya University, Graduate School of Medicine, Nagoya, Japan; Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM) - Hôtel-Dieu, and Department of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
30
|
Transformation of keloids is determined by stress occurrence patterns on peri-keloid regions in response to body movement. Med Hypotheses 2013; 81:136-41. [PMID: 23642397 DOI: 10.1016/j.mehy.2013.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/08/2013] [Indexed: 11/24/2022]
Abstract
Keloids gradually change their shapes as they grow. We hypothesize that the change of keloid morphology reflects the incremental change of the stress patterns occurring in peri-keloid regions due to movement of the keloid-carrying body part. To examine the validity of this hypothesis, we used three-dimensional finite element analysis to calculate the stresses occurring in the peri-keloid regions of keloids on the chest in response to respiratory movement. The stresses concentrate at the peri-keloid regions close to the bilateral ends of the keloids. By reviewing this result in reference to our hypothesis, we can explain why keloids on the chest are likely to present crab or butterfly shapes. Although we know that keloids grow in response to mechanical stresses, our hypothesis differs from existing ones in that it focuses on morphological transformation. Our hypothesis is helpful for physicians in performing treatment for keloids, because they can predict what part of a keloid is likely to grow and perform preventive treatment in reference to the hypothesis.
Collapse
|
31
|
Kurahashi M, Nakano Y, Peri LE, Townsend JB, Ward SM, Sanders KM. A novel population of subepithelial platelet-derived growth factor receptor α-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol 2013; 304:G823-34. [PMID: 23429582 PMCID: PMC3652001 DOI: 10.1152/ajpgi.00001.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently platelet-derived growth factor-α-positive cells (PDGFRα(+) cells), previously called "fibroblast-like" cells, have been described in the muscle layers of the gastrointestinal tract. These cells form networks and are involved in purinergic motor neurotransduction. Examination of colon from mice with enhanced green fluorescent protein (eGFP) driven from the endogenous Pdgfra (PDGFRα-eGFP mice) revealed a unique population of PDGFRα(+) cells in the mucosal layer of colon. We investigated the phenotype and potential role of these cells, which have not been characterized previously. Expression of PDGFRα and several additional proteins was surveyed in human and murine colonic mucosae by immunolabeling; PDGFRα(+) cells in colonic mucosa were isolated from PDGFRα-eGFP mice, and the gene expression profile was analyzed by quantitative polymerase chain reaction. We found for the first time that PDGFRα was expressed in subepithelial cells (subepithelial PDGFRα(+) cells) forming a pericryptal sheath from the base to the tip of crypts. These cells were in close proximity to the basolateral surface of epithelial cells and distinct from subepithelial myofibroblasts, which were identified by expression of α-smooth muscle actin and smooth muscle myosin. PDGFRα(+) cells also lay in close proximity to varicose processes of nerve fibers. Mouse subepithelial PDGFRα(+) cells expressed Toll-like receptor genes, purinergic receptor genes, 5-hydroxytryptamine (5-HT) 4 receptor gene, and hedgehog signaling genes. Subepithelial PDGFRα(+) cells occupy an important niche in the lamina propria and may function in transduction of sensory and immune signals and in the maintenance of mucosal homeostasis.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yasuko Nakano
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Lauren E. Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jared B. Townsend
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
32
|
Goldman N, Chandler-Militello D, Langevin HM, Nedergaard M, Takano T. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts. Cell Calcium 2013; 53:297-301. [PMID: 23462235 DOI: 10.1016/j.ceca.2013.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/29/2013] [Indexed: 01/28/2023]
Abstract
Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca(2+) signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca(2+) increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca(2+) signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10min after agonist exposure. Inhibition of ATP-induced increases in Ca(2+) by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca(2+) ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca(2+). These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture.
Collapse
Affiliation(s)
- Nanna Goldman
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, United States
| | | | | | | | | |
Collapse
|
33
|
Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:133-89. [PMID: 23809436 DOI: 10.1016/b978-0-12-407696-9.00003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes and also villous movement in the gut. In the intestinal villi, subepithelial fibroblasts under the epithelium form contractile cellular networks and closely contact to the varicosities of substance P and nonsubstance P afferent neurons. Subepithelial fibroblasts of the duodenal villi possess purinergic receptor P2Y1 and tachykinin receptor NK1. ATP and substance P induce increase in intracellular Ca(2+) and cell contraction in subepithelial fibroblasts. They are highly mechanosensitive and release ATP by mechanical stimuli. Released ATP spreads to form an ATP "cloud" with nearly 1μM concentration and activates the surroundings via P2Y1 and afferent neurons via P2X receptors. These findings suggest that villous subepithelial fibroblasts and afferent neurons interact via ATP and substance P. This mutual interaction may play important roles in the signal transduction of mechano reflex pathways including a coordinate villous movement and also in the maturation of the structure and function of the intestinal villi.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
34
|
Lee HU, Yamazaki Y, Tanaka KF, Furuya K, Sokabe M, Hida H, Takao K, Miyakawa T, Fujii S, Ikenaka K. Increased astrocytic ATP release results in enhanced excitability of the hippocampus. Glia 2012; 61:210-24. [PMID: 23018918 DOI: 10.1002/glia.22427] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 09/04/2012] [Indexed: 11/05/2022]
Abstract
Astrocytes, a major subtype of glia, interact with neurons as a supportive partner supplying energy sources and growth factors. Astrocytes regulate the activity of neighboring neurons by releasing chemical transmitters (gliotransmitters). However, the precise role of gilotransmitters in regulating neuronal activity is still under debate. Here, we report that a subtle enhancement in the release of one gliotransmitter, ATP, affects synaptic potentiation from an analysis of mice containing an astrocyte-selective (GFAP) mutation. We found that, relative to normal mice, weaker stimulation induced long-term potentiation (LTP) in mutant mice, indicating that the threshold to induce LTP was lowered in the mutant. While excitatory transmission was normal in the mutant, inhibitory GABAergic transmission was suppressed. We found that a low concentration of adenosine selectively attenuated inhibitory neuronal activity and lowered the threshold to induce LTP in wild type mice. In comparison, adenosine A(1) receptor antagonism reversed the lowered LTP threshold back to normal in the mutant mouse. We verified that adenosine levels in the cerebrospinal fluid of mutant mice were slightly elevated compared to wild type mice. This was apparently caused by an increase in ATP release from mutant astrocytes that could provide a source of augmented adenosine levels in the mutant. ATP is thought to suppress the excitability of neuronal circuits; however, a small increase in ATP release can result in a suppressed inhibitory tone and enhanced excitability of neuronal circuitry. These findings demonstrate that ATP released from astrocytes acts in a bidirectional fashion to regulate neuronal excitability depending on concentration.
Collapse
Affiliation(s)
- Hae Ung Lee
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Qi Y, Li YW, Wang RJ, Tang LH, Mi H. Establishment of a method for isolation and primary culture of rat colonic epithelial cells. Shijie Huaren Xiaohua Zazhi 2012; 20:2030-2035. [DOI: 10.11569/wcjd.v20.i22.2030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a method for isolation and primary culture of rat colonic epithelial cells which can be used as an ideal cell model for the study of colonic epithelial morphology and function in vitro.
METHODS: Colons obtained from suckling rats (6-15 d) were cut into small pieces, washed, and digested with 0.1% collagenase I and hyaluronidase for 25 min at 37 ℃ to separate colonic epithelial cell clusters. After digestion, the supernatant was transferred into a new tube and DMEM medium was added. After centrifuging 3 times, cells were cultured in DMEM solution containing 100 mL/L fetal bovine serum in a CO2 incubator with a saturated humidity at 37 ℃. Fibroblasts were removed using phase difference digestion and adherence. When 80%-90% of the cells were adherent to culture plates, cells were passaged by trypsin digestion.
RESULTS: Colonic epithelial cell clusters were successfully obtained, which showed high viability and became adherent after 24 hours of culture. The cells were typically polygonal in shape and grew into pavestone-like monolayers gradually in 4-8 days, showing excellent proliferative ability. Fibroblasts were significantly decreased after several passages. The colonic epithelial cells were identified by the ways of immunofluorescence staining and TEM observation. The cells were in good condition after being frozen and thawed.
CONCLUSION: The above mentioned method allows establishing stable primary colonic epithelial cell lines, which could provide an in vitro platform for the study of colonic epithelial physiology and pathology.
Collapse
|
36
|
Iwatsuki K, Ichikawa R, Uematsu A, Kitamura A, Uneyama H, Torii K. Detecting sweet and umami tastes in the gastrointestinal tract. Acta Physiol (Oxf) 2012; 204:169-77. [PMID: 21883959 DOI: 10.1111/j.1748-1716.2011.02353.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Information about nutrients is a critical part of food selection in living creatures. Each animal species has developed its own way to safely seek and obtain the foods necessary for them to survive and propagate. Necessarily, humans and other vertebrates have developed special chemosensory organs such as taste and olfactory organs. Much attention, recently, has been given to the gastrointestinal (GI) tract as another chemosensory organ. Although the GI tract had been considered to be solely for digestion and absorption of foods and nutrients, researchers have recently found taste-signalling elements, including receptors, in this tissue. Further studies have revealed that taste cells in the oral cavity and taste-like cells in the GI tract appear to share common characteristics. Major receptors to detect umami, sweet and bitter are found in the GI tract, and it is now proposed that taste-like cells reside in the GI tract to sense nutrients and help maintain homeostasis. In this review, we summarize recent findings of chemoreception especially through sweet and umami sensors in the GI tract. In addition, the possibility of purinergic transmission from taste-like cells in the GI tract to vagus nerves is discussed.
Collapse
Affiliation(s)
- K Iwatsuki
- Institute For Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Iwanaga K, Okada M, Murata T, Hori M, Ozaki H. Prostaglandin E2 Promotes Wound-Induced Migration of Intestinal Subepithelial Myofibroblasts via EP2, EP3, and EP4 Prostanoid Receptor Activation. J Pharmacol Exp Ther 2011; 340:604-11. [DOI: 10.1124/jpet.111.189845] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
38
|
Targeting the visceral purinergic system for pain control. Curr Opin Pharmacol 2011; 12:80-6. [PMID: 22036885 DOI: 10.1016/j.coph.2011.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
Abstract
Experimental evidence is presented to support the hypothesis that purinergic mechanosensory transduction can initiate visceral pain in urinary bladder, ureter, gut and uterus. In general, physiological reflexes are mediated via P2X3 and P2X2/3 receptors on low threshold sensory fibres, while these receptors on high threshold sensory fibres mediate pain. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by purinergic agents, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that modulate ATP release and breakdown.
Collapse
|
39
|
Pavasant P, Yongchaitrakul T. Role of mechanical stress on the function of periodontal ligament cells. Periodontol 2000 2011; 56:154-65. [PMID: 21501242 DOI: 10.1111/j.1600-0757.2010.00374.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH. Mechanical stimulation of epithelial cells using polypyrrole microactuators. LAB ON A CHIP 2011; 11:3287-3293. [PMID: 21842071 DOI: 10.1039/c1lc20436j] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The importance of mechanotransduction for physiological systems is becoming increasingly recognized. The effect of mechanical stimulation is well studied in organs and tissues, for instance by using flexible tissue culture substrates that can be stretched by external means. However, on the cellular and subcellular level, dedicated technology to apply appropriate mechanical stimuli is limited. Here we report an organic electronic microactuator chip for mechanical stimulation of single cells. These chips are manufactured on silicon wafers using traditional microfabrication and photolithography techniques. The active unit of the chip consists of the electroactive polymer polypyrrole that expands upon the application of a low potential. The fact that polypyrrole can be activated in physiological electrolytes makes it well suited as the active material in a microactuator chip for biomedical applications. Renal epithelial cells, which are responsive to mechanical stimuli and relevant from a physiological perspective, are cultured on top of the microactuator chip. The cells exhibit good adhesion and spread along the surface of the chip. After culturing, individual cells are mechanically stimulated by electrical addressing of the microactuator chip and the response to this stimulation is monitored as an increase in intracellular Ca(2+). This Ca(2+) response is caused by an autocrine ATP signalling pathway associated with mechanical stimulation of the cells. In conclusion, the present work demonstrates a microactuator chip based on an organic conjugated polymer, for mechanical stimulation of biological systems at the cellular and sub-cellular level.
Collapse
Affiliation(s)
- Karl Svennersten
- Karolinska Institutet, Swedish Medical Nanoscience Center, Department of Neuroscience, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
Endocrine differentiation of rat enterocytes in long-term three-dimensional co-culture with intestinal myofibroblasts. In Vitro Cell Dev Biol Anim 2011; 47:707-15. [DOI: 10.1007/s11626-011-9458-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/15/2011] [Indexed: 11/26/2022]
|
42
|
Luckprom P, Kanjanamekanant K, Pavasant P. Role of connexin43 hemichannels in mechanical stress-induced ATP release in human periodontal ligament cells. J Periodontal Res 2011; 46:607-15. [PMID: 21615411 DOI: 10.1111/j.1600-0765.2011.01379.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Our previous studies showed that mechanical stress could induce ATP release in human periodontal ligament (HPDL) cells. By signaling through P2 purinergic receptors, ATP increased the expression and the synthesis of osteopontin and RANKL. In this study, the mechanism of stress-induced ATP release was investigated. MATERIAL AND METHODS Continuous compressive forces were applied on cultured HPDL cells. The ATP released was measured using luciferin-luciferase bioluminescence. The expression of gap-junction proteins was examined using RT-PCR and western blot analysis. The opening of hemichannels was demonstrated by cellular uptake of a fluorescent dye, 5(6)-carboxyfluorescein, which is known to penetrate hemichannels. Intracellular signal transduction was investigated using inhibitors and antagonists. RESULTS Mechanical stress induced the release of ATP into the culture medium, which was attenuated by carbenoxolone, a nonspecific gap-junction inhibitor. Addition of meclofenamic acid sodium salt, a connexin43 inhibitor, inhibited ATP release by mechanical stress. Knockdown of connexin43 expression by small interfering RNA reduced the amount of ATP released by mechanical stress, suggesting the role of connexin43 hemichannels. In addition, intracellular Ca(2+) blockers could also inhibit mechanical stress-induced ATP release and the opening of the gap junction. CONCLUSION Our study demonstrated the involvement of gap-junction hemichannels, especially connexin43, in the stress-induced ATP-release mechanism. Furthermore, this mechanism may be regulated by the intracellular Ca(2+) signaling pathway. These results suggest an important role of gap-junction hemichannels in the function and behavior of HPDL cells.
Collapse
Affiliation(s)
- P Luckprom
- Department of Anatomy and Graduate School of Oral Biology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | | | | |
Collapse
|
43
|
Gendaszewska-Darmach E, Kucharska M. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal 2011; 7:193-206. [PMID: 21519856 PMCID: PMC3146642 DOI: 10.1007/s11302-011-9233-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/10/2011] [Indexed: 12/15/2022] Open
Abstract
With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924, Lodz, Poland,
| | | |
Collapse
|
44
|
ATP induces contraction mediated by the P2Y(2) receptor in rat intestinal subepithelial myofibroblasts. Eur J Pharmacol 2011; 657:152-8. [PMID: 21296070 DOI: 10.1016/j.ejphar.2011.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 01/29/2023]
Abstract
Intestinal subepithelial myofibroblasts (IMFs) exist just under the epithelial membrane directly facing the mucosal microvascular capillary surface distributed in the lamina propria. In the gastrointestinal tract, ATP is released from epithelial and endothelial cells in response to mechanical stimuli. Although it has been reported that mechanical stimuli evoke synchronized Ca(2+) waves in cultured IMFs, the contractile responses by ATP stimulation have not been examined. The aim of this study was to clarify the mechanism of the contraction of IMFs in response to ATP. ATP (1-30μM) induced contraction in a concentration-dependent manner. These contractions were inhibited by LaCl(3) (100-300μM) and by Ca(2+)-free solution (0.5mM EGTA). Fura-2/Ca(2+) signals indicated that ATP (1-10μM) elicited transient increases in intracellular Ca(2+) concentration ([Ca(2+)](i)). In addition, αβ-methylene-ATP (10, 30 and 300μM), a broad spectrum P2X agonist at a concentration higher than 100μM, induced neither contraction nor [Ca(2+)](i) rise. UTP (1-30μM), a selective P2Y(2) and P2Y(4) agonist in rodent, induced concentration-dependent contractions and [Ca(2+)](i) increases, whereas ADP and UDP (10μM) did not induce contractions. Pretreatment with suramin (30-100μM), a relatively selective P2Y(2) antagonist, strongly inhibited ATP- and UTP-induced contractions and [Ca(2+)](i) increases. However, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS: 10-30μM), a receptor antagonist for several P2X and P2Y but less effective to P2Y(2) receptor, failed to inhibit ATP- and UTP-induced contractions and [Ca(2+)](i) increases. By RT-PCR, mRNA expressions of the P2Y(1) and P2Y(2) receptors, but not P2Y(4) or P2Y(6), were detected in IMFs. These results suggest that ATP induces [Ca(2+)](i)-dependent contraction in IMFs, which is mediated through the P2Y(2) receptor.
Collapse
|
45
|
Immunohistochemical analysis of substance P-containing neurons in rat small intestine. Cell Tissue Res 2010; 343:331-41. [DOI: 10.1007/s00441-010-1080-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
|
46
|
Furuya S, Furuya K, Shigemoto R, Sokabe M. Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi. Cell Tissue Res 2010; 342:243-59. [PMID: 20967467 DOI: 10.1007/s00441-010-1056-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 09/10/2010] [Indexed: 11/28/2022]
Abstract
Subepithelial fibroblasts of the intestinal villi, which form a contractile cellular network beneath the epithelium, are in close contact with epithelial cells, nerve varicosities, capillaries, smooth muscles and immune cells, and secrete extracellular matrix molecules, growth factors and cytokines, etc. Cultured subepithelial fibroblasts of the rat duodenal villi display various receptors such as endothelins, ATP, substance-P and bradykinin, and release ATP in response to mechanical stimulation. In this study, the presence of functional NK1 receptors (NK1R) was pharmacologically confirmed in primary culture by Ca(2+) measurement, and the effects of substance-P were measured in an acute preparation of epithelium-free duodenal villi from 2- to 3-week-old rats using a two-photon laser microscope. Substance-P elicited an increase in the intracellular Ca(2+) concentration and contraction of the subepithelial fibroblasts in culture and the isolated villi. The localization of NK1R and substance-P in the villi was examined by light and electron microscopic immunohistochemistry. NK1R-like immunoreactivity was intensely localized on the plasma membrane of villous subepithelial fibroblasts in 10-day- to 4-week-old rats and mice and was decreased or absent in adulthood. The pericryptal fibroblasts of the small and large intestine were NK1R immuno-negative. These villous subepithelial fibroblasts form synapse-like structures with both substance-P-immunopositive and -immunonegative nerve varicosities. Here, we propose that the mutual interaction between villous subepithelial fibroblasts and afferent neurons via substance-P and ATP plays important roles in the maturation of the structure and function of the small intestine.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure, Center for Brain Research, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
| | | | | | | |
Collapse
|
47
|
Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res 2010; 316:2390-401. [PMID: 20451515 DOI: 10.1016/j.yexcr.2010.04.033] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 12/23/2022]
Abstract
Myofibroblast-induced remodeling of collagenous extracellular matrix is a key component of our body's strategy to rapidly and efficiently repair damaged tissues; thus myofibroblast activity is considered crucial in assuring the mechanical integrity of vital organs and tissues after injury. Typical examples of beneficial myofibroblast activities are scarring after myocardial infarct and repair of damaged connective tissues including dermis, tendon, bone, and cartilage. However, deregulation of myofibroblast contraction causes the tissue deformities that characterize hypertrophic scars as well as organ fibrosis that ultimately leads to heart, lung, liver and kidney failure. The phenotypic features of the myofibroblast, within a spectrum going from the fibroblast to the smooth muscle cell, raise the question as to whether it regulates contraction in a fibroblast- or muscle-like fashion. In this review, we attempt to elucidate this point with a particular focus on the role of calcium signaling. We suggest that calcium plays a central role in myofibroblast biological activity not only in regulating contraction but also in mediating intracellular and extracellular mechanical signals, structurally organizing the contractile actin-myosin cytoskeleton, and establishing lines of intercellular communication.
Collapse
|
48
|
Castella LF, Buscemi L, Godbout C, Meister JJ, Hinz B. A new lock-step mechanism of matrix remodelling based on subcellular contractile events. J Cell Sci 2010; 123:1751-60. [PMID: 20427321 DOI: 10.1242/jcs.066795] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myofibroblasts promote tissue contractures during fibrotic diseases. To understand how spontaneous changes in the intracellular calcium concentration, [Ca(2+)](i), contribute to myofibroblast contraction, we analysed both [Ca(2+)](i) and subcellular contractions. Contractile events were assessed by tracking stress-fibre-linked microbeads and measured by atomic force microscopy. Myofibroblasts exhibit periodic (approximately 100 seconds) [Ca(2+)](i) oscillations that control small (approximately 400 nm) and weak (approximately 100 pN) contractions. Whereas depletion of [Ca(2+)](i) reduces these microcontractions, cell isometric tension is unaffected, as shown by growing cells on deformable substrates. Inhibition of Rho- and ROCK-mediated Ca(2+)-independent contraction has no effect on microcontractions, but abolishes cell tension. On the basis of this two-level regulation of myofibroblast contraction, we propose a single-cell lock-step model. Rho- and ROCK-dependent isometric tension generates slack in extracellular matrix fibrils, which are then accessible for the low-amplitude and high-frequency contractions mediated by [Ca(2+)](i). The joint action of both contraction modes can result in macroscopic tissue contractures of approximately 1 cm per month.
Collapse
|
49
|
Tsukamoto A, Hayashida Y, Furukawa KS, Ushida T. Spatio-temporal PLC activation in parallel with intracellular Ca2+ wave propagation in mechanically stimulated single MDCK cells. Cell Calcium 2010; 47:253-63. [PMID: 20060585 DOI: 10.1016/j.ceca.2009.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 12/18/2022]
Abstract
Intracellular Ca2+ transients are evoked either by the opening of Ca2+ channels on the plasma membrane or by phospholipase C (PLC) activation resulting in IP3 production. Ca2+ wave propagation is known to occur in mechanically stimulated cells; however, it remains uncertain whether and how PLC activation is involved in intracellular Ca2+ wave propagation in mechanically stimulated cells. To answer these questions, it is indispensable to clarify the spatio-temporal relations between intracellular Ca2+ wave propagation and PLC activation. Thus, we visualized both cytosolic Ca2+ and PLC activation using a real-time dual-imaging system in individual Mardin-Darby Canine Kidney (MDCK) cells. This system allowed us to simultaneously observe intracellular Ca2+ wave propagation and PLC activation in a spatio-temporal manner in a single mechanically stimulated MDCK cell. The results showed that PLC was activated not only in the mechanically stimulated region but also in other subcellular regions in parallel with intracellular Ca2+ wave propagation. These results support a model in which PLC is involved in Ca2+ signaling amplification in mechanically stimulated cells.
Collapse
Affiliation(s)
- Akira Tsukamoto
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
50
|
Iwanaga K, Murata T, Hori M, Ozaki H. Isolation and Characterization of Bovine Intestinal Subepithelial Myofibroblasts. J Pharmacol Sci 2010; 112:98-104. [DOI: 10.1254/jphs.09258fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|