1
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00823-y. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Sergio S, Spedicato B, Corallo G, Inguscio A, Greco M, Musarò D, Vergara D, Muro AF, De Sabbata G, Soria LR, Pierri NB, Maffia M. β-Catenin/c-Myc Axis Modulates Autophagy Response to Different Ammonia Concentrations. Adv Biol (Weinh) 2025:e2400408. [PMID: 39798123 DOI: 10.1002/adbi.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/13/2024] [Indexed: 01/15/2025]
Abstract
Ammonia a by-product of nitrogen containing molecules is detoxified by liver into non-toxic urea and glutamine. Impaired ammonia detoxification leads to hyperammonemia. Ammonia has a dual role on autophagy, it acts as inducer at low concentrations and as inhibitor at high concentrations. However, little is known about the mechanisms responsible for this switch. Wnt/β-catenin signalling is emerging for its role in the regulation of ammonia metabolizing enzymes and autophagosome synthesis through c-Myc. Here, using Huh7 cell line, we show a modulation in c-Myc expression under different ammonia concentrations. An increase in c-Myc expression and in its transcriptional regulator β-catenin was detected at low concentrations of ammonia, when autophagy is active, whereas these modifications were lost under high ammonia concentrations. These observations were also recapitulated in the livers of spf-ash mice, a model of constitutive hyperammonaemia due to deficiency in ornithine transcarbamylase enzyme. Moreover, c-Myc-mediated activation of autophagy plays a cytoprotective role in cells under ammonia stress conditions as confirmed through the pharmacological inhibition of c-Myc in Huh7 cells treated with low ammonia concentrations. In conclusion, the unravelled role of c-Myc in modulating ammonia induced autophagy opens new landscapes for the development of novel strategies for the treatment of hyperammonemia.
Collapse
Affiliation(s)
- S Sergio
- Laboratory of Clinical Proteomic, "V Fazzi" Hospital, Lecce, 73100, Italy
- Laboratory of General and Human Physiology, Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - B Spedicato
- Laboratory of Clinical Proteomic, "V Fazzi" Hospital, Lecce, 73100, Italy
- Laboratory of General and Human Physiology, Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - G Corallo
- Laboratory of Clinical Proteomic, "V Fazzi" Hospital, Lecce, 73100, Italy
- Laboratory of General and Human Physiology, Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - A Inguscio
- Laboratory of General and Human Physiology, Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - M Greco
- Laboratory of Clinical Proteomic, "V Fazzi" Hospital, Lecce, 73100, Italy
- Laboratory of General and Human Physiology, Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - D Musarò
- Laboratory of Clinical Proteomic, "V Fazzi" Hospital, Lecce, 73100, Italy
- Laboratory of General and Human Physiology, Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - D Vergara
- Laboratory of General and Human Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, 73100, Italy
| | - A F Muro
- International Centre for Genetic Engineering and Biotechnology, Trieste, 34149, Italy
| | - G De Sabbata
- International Centre for Genetic Engineering and Biotechnology, Trieste, 34149, Italy
| | - L R Soria
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078, Italy
| | - N Brunetti Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078, Italy
- Department of Translational Medicine, Federico II University, Naples, 80138, Italy
| | - M Maffia
- Laboratory of Clinical Proteomic, "V Fazzi" Hospital, Lecce, 73100, Italy
- Laboratory of General and Human Physiology, Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| |
Collapse
|
3
|
Ruan Y, Huang X, Sun P, Yu X, Tan X, Song Y, Chen H, Liu Z. ZO-1 boosts the in vitro self-renewal of pre-haematopoietic stem cells from OCT4-reprogrammed human hair follicle mesenchymal stem cells through cytoskeleton remodeling. Stem Cell Res Ther 2024; 15:480. [PMID: 39696518 DOI: 10.1186/s13287-024-04080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The challenge of expanding haematopoietic stem/progenitor cells (HSPCs) in vitro has limited their clinical application. Human hair follicle mesenchymal stem cells (hHFMSCs) can be reprogrammed to generate intermediate stem cells by transducing OCT4 (hHFMSCsOCT4) and pre-inducing with FLT3LG/SCF, and differentiated into erythrocytes. These intermediate cells exhibit gene expression patterns similar to pre-HSCs, making them promising for artificial haematopoiesis. However, further investigation is required to elucidate the in vitro proliferation ability and mechanism underlying the self-renewal of pre-HSCs derived from hHFMSCs. METHODS hHFMSCsOCT4 were pre-treated with FLT3LG and SCF cytokines, followed by characterization and isolation of the floating cell subsets for erythroid differentiation through stimulation with hematopoietic cytokines and nutritional factors. Cell adhesion was assessed through disassociation and adhesion assays. OCT4 expression levels were measured using immunofluorescence staining, RT-qPCR, and Western blotting. RNA sequencing and Gene Ontology (GO) enrichment analysis were then conducted to identify proliferation-related biological processes. Proliferative capacity was evaluated through CCK-8, colony formation assays, Ki67 index, and cell cycle analysis. Cytoskeleton was observed through Wright‒Giemsa, Coomassie brilliant blue, and phalloidin staining. Expression of adherens junction (AJ) core members was confirmed through RT‒qPCR, Western blotting, and immunofluorescence staining before and after ZO-1 knockdown. A regulatory network was constructed to determine relationships among cytoskeleton, proliferation, and the AJ pathway. Student's t tests (GraphPad Prism 8.0.2) were used for group comparisons. The results were considered significant at P < 0.05. RESULTS Pre-treatment of hHFMSCsOCT4 with FLT3LG and SCF leads to the emergence of floating cell subsets exhibiting small, globoid morphology, suspended above adherent cells, forming colonies, and displaying minimal expression of CD45. Excessive OCT4 expression weakens adhesion in floating hHFMSCsOCT4. Floating cells moderately enhanced proliferation and undergo cytoskeleton remodelling, with increased contraction and aggregation of F-actin near the nucleus. The upregulation of ZO-1 could impact the expressions of F-actin, E-cadherin, and β-catenin genes, as well as the nuclear positioning of β-catenin, leading to variations in the cytoskeleton and cell cycle. Finally, a regulatory network revealed that the AJ pathway cored with ZO-1 critically bridges cytoskeletal remodelling and haematopoiesis-related proliferation in a β-catenin-dependent manner. CONCLUSIONS ZO-1 improved the self-renewal of pre-HSCs from OCT4-overexpressing hHFMSCs by remodeling the cytoskeleton via the ZO-1-regulated AJ pathway, suggesting floating hHFMSCsOCT4 as the promising seed cells for artificial hematopoiesis.
Collapse
Affiliation(s)
- Yingchun Ruan
- Department of Pathology, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Xingang Huang
- Department of Pathology, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Pengpeng Sun
- Department of Critical Care Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 127 Siliunan Road, Qingdao, 266042, Shandong, China
| | - Xiaozhen Yu
- Department of Pathology, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Xiaohua Tan
- Department of Pathology, College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Zhijing Liu
- Department of Pathology, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, Shandong, China.
| |
Collapse
|
4
|
Wang J, Gui R, Li Y, Li Z, Li Z, Liu S, Zhang M, Qian L, Fan X, Xiong Y. SFRP4 contributes to insulin resistance-induced polycystic ovary syndrome by triggering ovarian granulosa cell hyperandrogenism and apoptosis through the nuclear β-catenin/IL-6 signaling axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119822. [PMID: 39159685 DOI: 10.1016/j.bbamcr.2024.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction and overproduction of androgens. Women with PCOS are commonly accompanied by insulin resistance (IR), which can impair insulin sensitivity and elevate blood glucose levels. IR promotes ovarian cysts, ovulatory dysfunction, and menstrual irregularities in women patients, leading to the pathogenesis of PCOS. Secreted frizzled-related protein 4 (SFRP4), a secreted glycoprotein, exhibits significantly elevated expression levels in obese individuals with IR and PCOS. Whereas, whether it plays a role in regulating IR-induced PCOS still has yet to be understood. In this study, we respectively established in vitro IR-induced hyperandrogenism in human ovarian granular cells and in vivo IR-induced PCOS models in mice to investigate the action mechanisms of SFRP4 in modulating IR-induced PCOS. Here, we revealed that SFRP4 expression levels in both mRNA and protein were remarkably upregulated in the IR-induced hyperandrogenism with elevated testosterone in the human ovarian granulosa cell line KGN. Under normal conditions without hyperandrogenism, overexpressing SFRP4 triggered the remarkable elevation of testosterone along with the increased nuclear translocation of β-catenin, cell apoptosis and proinflammatory cytokine IL-6. Furthermore, we found that phytopharmaceutical disruption of SFRP4 by genistein ameliorated IR-induced increase in testosterone in ovarian granular cells, and IR-induced PCOS in high-fat diet obese mice. Our study reveals that SFRP4 contributes to IR-induced PCOS by triggering ovarian granulosa cell hyperandrogenism and apoptosis through the nuclear β-catenin/IL-6 signaling axis. Elucidating the role of SFRP4 in PCOS may provide a novel therapeutic strategy for IR-related PCOS therapy.
Collapse
Affiliation(s)
- Jiangxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Runlin Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Shanshan Liu
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Miao Zhang
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Lu Qian
- Xi'an Mental Health Center, Xi'an, Shaanxi 710100, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China.
| |
Collapse
|
5
|
Vuong LT, Mlodzik M. Wg/Wnt-signaling-induced nuclear translocation of β-catenin is attenuated by a β-catenin peptide through its interference with the IFT-A complex. Cell Rep 2024; 43:114362. [PMID: 38870008 PMCID: PMC11311196 DOI: 10.1016/j.celrep.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/Wingless (Wg) signaling is critical in development and disease, including cancer. Canonical Wnt signaling is mediated by β-catenin/Armadillo (Arm in Drosophila) transducing signals to the nucleus, with IFT-A/Kinesin 2 complexes promoting nuclear translocation of β-catenin/Arm. Here, we demonstrate that a conserved small N-terminal Arm34-87/β-catenin peptide binds to IFT140, acting as a dominant interference tool to attenuate Wg/Wnt signaling in vivo. Arm34-87 expression antagonizes endogenous Wnt/Wg signaling, resulting in the reduction of its target expression. Arm34-87 inhibits Wg/Wnt signaling by interfering with nuclear translocation of endogenous Arm/β-catenin, and this can be modulated by levels of wild-type β-catenin or IFT140, with the Arm34-87 effect being enhanced or suppressed. Importantly, this mechanism is conserved in mammals with the equivalent β-catenin24-79 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt signaling can be regulated by a defined N-terminal β-catenin peptide and thus might serve as an entry point for therapeutic applications to attenuate Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA.
| |
Collapse
|
6
|
Czowski BJ, White KA. Intracellular pH regulates β-catenin with low pHi increasing adhesion and signaling functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586349. [PMID: 38585883 PMCID: PMC10996556 DOI: 10.1101/2024.03.22.586349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intracellular pH (pHi) dynamics are linked to cell processes including proliferation, migration, and differentiation. The adherens junction (AJ) and signaling protein β-catenin has decreased abundance at high pHi due to increased proteasomal-mediated degradation. However, the effects of low pHi on β-catenin abundance and functions have not been characterized. Here, we show that low pHi stabilizes β-catenin in epithelial cells using population-level and single-cell assays. β-catenin abundance is increased at low pHi and decreased at high pHi. We also assay single-cell protein degradation rates to show that β-catenin half-life is longer at low compared to high pHi. Importantly, we show that AJs are not disrupted by β-catenin loss at high pHi due to rescue by plakoglobin. Finally, we show that low pHi increases β-catenin transcriptional activity in single cells and is indistinguishable from a Wnt-on state. This work characterizes pHi as a rheostat regulating β-catenin abundance, stability, and function and implicates β-catenin as a molecular mediator of pHi-dependent cell processes.
Collapse
Affiliation(s)
- Brandon J Czowski
- Department of Chemistry and Biochemistry, University of Notre Dame
- Harper Cancer Research Institute, University of Notre Dame
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame
- Harper Cancer Research Institute, University of Notre Dame
| |
Collapse
|
7
|
Wu M, Dong H, Xu C, Sun M, Gao H, Bu F, Chen J. The Wnt-dependent and Wnt-independent functions of BCL9 in development, tumorigenesis, and immunity: Implications in therapeutic opportunities. Genes Dis 2024; 11:701-710. [PMID: 37692512 PMCID: PMC10491870 DOI: 10.1016/j.gendis.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
B-cell CLL/lymphoma 9 (BCL9) is considered a key developmental regulator and a well-established oncogenic driver in multiple cancer types, mainly through potentiating the Wnt/β-catenin signaling. However, increasing evidences indicate that BCL9 also plays multiple Wnt-independent roles. Herein, we summarized the updates of the canonical and non-canonical functions of BCL9 in cellular, physiological, or pathological processes. Moreover, we also concluded that the targeted inhibitors disrupt the interaction of β-catenin with BCL9 reported recently.
Collapse
Affiliation(s)
- Minjie Wu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Heng Dong
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Sun
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haojin Gao
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fangtian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
8
|
Guo Y, Tian J, Guo Y, Wang C, Chen C, Cai S, Yu W, Sun B, Yan J, Li Z, Fan J, Qi Q, Zhang D, Jin W, Hua Z, Chen G. Oncogenic KRAS effector USP13 promotes metastasis in non-small cell lung cancer through deubiquitinating β-catenin. Cell Rep 2023; 42:113511. [PMID: 38043062 DOI: 10.1016/j.celrep.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
KRAS mutations are frequently detected in non-small cell lung cancers (NSCLCs). Although covalent KRASG12C inhibitors have been developed to treat KRASG12C-mutant cancers, effective treatments are still lacking for other KRAS-mutant NSCLCs. Thus, identifying a KRAS effector that confers poor prognosis would provide an alternative strategy for the treatment of KRAS-driven cancers. Here, we show that KRAS drives expression of deubiquitinase USP13 through Ras-responsive element-binding protein 1 (RREB1). Elevated USP13 promotes KRAS-mutant NSCLC metastasis, which is associated with poor prognosis in NSCLC patients. Mechanistically, USP13 interacts with and removes the K63-linked polyubiquitination of β-catenin at lysine 508, which enhances the binding between β-catenin and transcription factor TCF4. Importantly, we identify 2-methoxyestradiol as an effective inhibitor for USP13 from a natural compound library, and it could potently suppress the metastasis of KRAS-mutant NSCLC cells in vitro and in vivo. These findings identify USP13 as a therapeutic target for metastatic NSCLC with KRAS mutations.
Collapse
Affiliation(s)
- Yanguan Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Congcong Chen
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Songwang Cai
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Wenliang Yu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhonghua Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Fan
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Qi Qi
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China.
| |
Collapse
|
9
|
Vuong LT, Mlodzik M. Wg/Wnt-signaling induced nuclear translocation of β-catenin is attenuated by a β-catenin peptide through its interaction with IFT-A in development and cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544986. [PMID: 37398005 PMCID: PMC10312694 DOI: 10.1101/2023.06.14.544986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wnt/Wingless (Wg) signaling is critical for many developmental patterning processes and linked to diseases, including cancer. Canonical Wnt-signaling is mediated by β-catenin, Armadillo/Arm in Drosophila transducing signal activation to a nuclear response. The IFT-A/Kinesin-2 complex is required to promote the nuclear translocation of β-catenin/Arm. Here, we define a small conserved N-terminal Arm/β-catenin (Arm 34-87 ) peptide, which binds IFT140, as a dominant interference tool to attenuate Wg/Wnt-signaling in vivo . Expression of Arm 34-87 is sufficient to antagonize endogenous Wnt/Wg-signaling activation resulting in marked reduction of Wg-signaling target gene expression. This effect is modulated by endogenous levels of Arm and IFT140, with the Arm 34-87 effect being enhanced or suppressed, respectively. Arm 34-87 thus inhibits Wg/Wnt-signaling by interfering with the nuclear translocation of endogenous Arm/β-catenin. Importantly, this mechanism is conserved in mammals with the equivalent β-catenin 34-87 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt-signaling can be regulated by a defined N-terminal peptide of Arm/β-catenin, and thus this might serve as an entry point for potential therapeutic applications to attenuate Wnt/β-catenin signaling.
Collapse
|
10
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
11
|
He T, Wang S, Li S, Shen H, Hou L, Liu Y, Wei Y, Xie F, Zhang Z, Zhao Z, Mo C, Guo H, Huang Q, Zhang R, Shen D, Li B. Suppression of preadipocyte determination by SOX4 limits white adipocyte hyperplasia in obesity. iScience 2023; 26:106289. [PMID: 36968079 PMCID: PMC10030912 DOI: 10.1016/j.isci.2023.106289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Preadipocyte determination expanding the pool of preadipocytes is a vital process in adipocyte hyperplasia, but the molecular mechanisms underlying this process are yet to be elucidated. Herein, SRY-related HMG box transcription factor 4 (SOX4) was identified as a critical target in response to BMP4- and TGFβ-regulated preadipocyte determination. SOX4 deficiency is sufficient to promote preadipocyte determination in mesenchymal stem cells (MSCs) and acquisition of preadipocyte properties in nonadipogenic lineages, while its overexpression impairs the adipogenic capacity of preadipocytes and converts them into nonadipogenic lineages. Mechanism studies indicated that SOX4 activates and cooperates with LEF1 to retain the nuclear localization of β-catenin, thus mediating the crosstalk between TGFβ/BMP4 signaling pathway and Wnt signaling pathway to regulate the preadipocyte determination. In vivo studies demonstrated that SOX4 promotes the adipogenic-nonadipogenic conversion and suppresses the adipocyte hyperplasia. Together, our findings highlight the importance of SOX4 in regulating the adipocyte hyperplasia in obesity.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shengnan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Yunjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Fuan Xie
- Xiamen University Research Center of Retroperitoneal, Tumor Committee of Oncology Society of Chinese Medical Association, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiming Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Zehang Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Chunli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Qingsong Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Corresponding author
| | - Dongyan Shen
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Corresponding author
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- Corresponding author
| |
Collapse
|
12
|
Abdrabou A, Duong BTV, Chen K, Atwal RS, Labib M, Lin S, Angers S, Kelley SO. nuPRISM: Microfluidic Genome-Wide Phenotypic Screening Platform for Cellular Nuclei. ACS CENTRAL SCIENCE 2022; 8:1618-1626. [PMID: 36589880 PMCID: PMC9801500 DOI: 10.1021/acscentsci.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 06/17/2023]
Abstract
Genome-wide loss-of-function screens are critical tools to identify novel genetic regulators of intracellular proteins. However, studying the changes in the organelle-specific expression profile of intracellular proteins can be challenging due to protein localization differences across the whole cell, hindering context-dependent protein expression and activity analyses. Here, we describe nuPRISM, a microfluidics chip specifically designed for large-scale isolated nuclei sorting. The new device enables rapid genome-wide loss-of-function phenotypic CRISPR-Cas9 screens directed at intranuclear targets. We deployed this technology to identify novel genetic regulators of β-catenin nuclear accumulation, a phenotypic hallmark of APC-mutated colorectal cancer. nuPRISM expands our ability to capture aberrant nuclear morphological and functional traits associated with distinctive signal transduction and subcellular localization-driven functional processes with substantial resolution and high throughput.
Collapse
Affiliation(s)
- Abdalla
M. Abdrabou
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Bill T. V. Duong
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Kangfu Chen
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Singh Atwal
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Mahmoud Labib
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60611, United States
| | - Sichun Lin
- Terrence
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Stephane Angers
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department
of Biochemistry, Faculty of Medicine, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
- Terrence
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O. Kelley
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60611, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60611, United States
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
13
|
Iizumi R, Honda M. Wnt/β-Catenin Signaling Inhibits Osteogenic Differentiation in Human Periodontal Ligament Fibroblasts. Biomimetics (Basel) 2022; 7:biomimetics7040224. [PMID: 36546925 PMCID: PMC9776043 DOI: 10.3390/biomimetics7040224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
The periodontal ligament is a collagenous tissue that is important for maintaining the homeostasis of cementum and alveolar bone. In tendon cells, Wnt/β-catenin signaling has been reported to regulate the expression level of Scleraxis (Scx) and Mohawk Homeobox (Mkx) gene and maintain the tissue homeostasis, while its role in the periodontal ligament is unclear. The aim of this study was to investigate the effects of Wnt/β-catenin signaling induced by Wnt-3a stimulation on the inhibition of osteogenic differentiation of human periodontal ligament fibroblasts (HPLFs). During osteogenic differentiation of HPLFs, they formed bone nodules independently of alkaline phosphatase (ALP) activity. After stimulation of Wnt-3a, the expression of β-catenin increased, and nuclear translocation of β-catenin was observed. These data indicate that Wnt-3a activated Wnt/β-catenin signaling. Furthermore, the stimulation of Wnt-3a inhibited the bone nodule formation and suppressed the expression of osteogenic differentiation-related genes such as Runx2, Osteopontin and Osteocalcin, and upregulated the gene expression of Type-I collagen and Periostin (Postn). Scx may be involved in the suppression of osteogenic differentiation in HPLFs. In conclusion, Wnt/β-catenin signaling may be an important signaling pathway that inhibits the osteogenic differentiation in HPLFs by the upregulation of Scx gene expression and downregulation of osteogenic differentiation-related genes.
Collapse
|
14
|
Ganassi M, Figeac N, Reynaud M, Ortuste Quiroga HP, Zammit PS. Antagonism Between DUX4 and DUX4c Highlights a Pathomechanism Operating Through β-Catenin in Facioscapulohumeral Muscular Dystrophy. Front Cell Dev Biol 2022; 10:802573. [PMID: 36158201 PMCID: PMC9490378 DOI: 10.3389/fcell.2022.802573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant expression of the transcription factor DUX4 from D4Z4 macrosatellite repeats on chromosome 4q35, and its transcriptome, associate with pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Forced DUX4 expression halts skeletal muscle cell proliferation and induces cell death. DUX4 binds DNA via two homeodomains that are identical in sequence to those of DUX4c (DUX4L9): a closely related transcriptional regulator encoded by a single, inverted, mutated D4Z4 unit located centromeric to the D4Z4 macrosatellite array on chromosome 4. However, the function and contribution of DUX4c to FSHD pathogenesis are unclear. To explore interplay between DUX4, DUX4c, and the DUX4-induced phenotype, we investigated whether DUX4c interferes with DUX4 function in human myogenesis. Constitutive expression of DUX4c rescued the DUX4-induced inhibition of proliferation and reduced cell death in human myoblasts. Functionally, DUX4 promotes nuclear translocation of β-CATENIN and increases canonical WNT signalling. Concomitant constitutive expression of DUX4c prevents β-CATENIN nuclear accumulation and the downstream transcriptional program. DUX4 reduces endogenous DUX4c levels, whereas constitutive expression of DUX4c robustly suppresses expression of DUX4 target genes, suggesting molecular antagonism. In line, DUX4 expression in FSHD myoblasts correlates with reduced DUX4c levels. Addressing the mechanism, we identified a subset of genes involved in the WNT/β-CATENIN pathway that are differentially regulated between DUX4 and DUX4c, whose expression pattern can separate muscle biopsies from severely affected FSHD patients from healthy. Finally, blockade of WNT/β-CATENIN signalling rescues viability of FSHD myoblasts. Together, our study highlights an antagonistic interplay whereby DUX4 alters cell viability via β-CATENIN signalling and DUX4c counteracts aspects of DUX4-mediated toxicity in human muscle cells, potentially acting as a gene modifier for FSHD severity. Importantly, direct DUX4 regulation of the WNT/β-CATENIN pathway informs future therapeutic interventions to ameliorate FSHD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
15
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
16
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
17
|
Ambrosi G, Voloshanenko O, Eckert AF, Kranz D, Nienhaus GU, Boutros M. Allele-specific endogenous tagging and quantitative analysis of β-catenin in colorectal cancer cells. eLife 2022; 11:64498. [PMID: 35014953 PMCID: PMC8752093 DOI: 10.7554/elife.64498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants.
Collapse
Affiliation(s)
- Giulia Ambrosi
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - Oksana Voloshanenko
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - Antonia F Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dominique Kranz
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| |
Collapse
|
18
|
Vuong LT, Mlodzik M. Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Curr Top Dev Biol 2022; 149:59-89. [PMID: 35606062 PMCID: PMC9870056 DOI: 10.1016/bs.ctdb.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Wnt family of secreted glycolipo-proteins signals through multiple signal transduction pathways and is essential for embryonic development and organ development and homeostasis. The Wnt-pathways are conserved and critical in all metazoans. Wnt signaling pathways comprise the canonical Wnt/β-catenin pathway and several non-canonical signaling branches, of which Wnt-Planar Cell Polarity (PCP) signaling and the Wnt/Calcium pathway have received the most attention and are best understood. nterestingly, all Wnt-pathways have a nuclear signaling branch and also can affect many cellular processes independent of its nuclear transcriptional regulation. Canonical Wnt/β-catenin signaling is the most critical for a nuclear transcriptional response, in both development and disease, yet the mechanism(s) on how the "business end" of the pathway, β-catenin, translocates to the nucleus to act as co-activator to the TCF/Lef transcription factor family still remains obscure. Here we discuss and compare the very different strategies on how the respective Wnt signaling pathways activate a nuclear transcriptional response. We also highlight some recent new insights into how β-catenin is translocated to the nucleus via an IFT-A, Kinesin-2, and microtubule dependent mechanism and how this aspect of canonical Wnt-signaling uses ciliary proteins in a cilium independent manner, conserved between Drosophila and mammalian cells.
Collapse
Affiliation(s)
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
19
|
Plant-Derived Chinese Medicine Monomers on Ovarian Cancer via the Wnt/ β-Catenin Signaling Pathway: Review of Mechanisms and Prospects. JOURNAL OF ONCOLOGY 2021; 2021:6852867. [PMID: 34912456 PMCID: PMC8668291 DOI: 10.1155/2021/6852867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer (OC) is a common malignant tumor of the female reproductive system and has a high morbidity and mortality rate. The progression and metastasis of OC are complex and involve multiple signaling pathways. The Wnt/β-catenin signaling pathway is closely related to OC, and therefore blocking the activation of the Wnt/β-catenin signaling directly or inhibiting related genes, and molecular targets is of great value in treating OC. Toxicities such as myelotoxicity, cardiotoxicity, genotoxicity, and vasospasm are the major side effects for common anticancer drugs and are well documented. There is, therefore, a need to develop new, effective, safer, and more affordable anticancer drugs from alternative sources. In recent years, plant-derived Chinese medicine monomers have drawn increasing attention due to their high safety, low toxicity, minimal side effects, and antitumor effects. Plant-derived Chinese medicine monomers are effective against multiple targets and can regulate the growth, proliferation, apoptosis, invasion, and migration of OC as well as reverse drug resistance by regulating the Wnt/β-catenin signaling pathway. In this review, we summarize and provide mechanisms and prospects for the use of plant-derived Chinese medicines for the prevention and treatment of OC.
Collapse
|
20
|
Li C, Li W, Cao S, Xu J, Qian Y, Pan X, Lei D, Wei D. Circ_0058106 promotes proliferation, metastasis and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway through miR-185-3p in hypopharyngeal squamous cell carcinoma. Cell Death Dis 2021; 12:1063. [PMID: 34750351 PMCID: PMC8575998 DOI: 10.1038/s41419-021-04346-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) accounts 95% of hypopharyngeal cancer, which is characterized by high early metastasis rate and poor prognosis. It is reported that circular RNA is involved in the occurrence and development of cancer; however, the role of circRNA in hypopharyngeal cancer has little been investigated. We performed hypopharyngeal carcinoma circRNA microarray and qRT-PCR verification. The results showed circ_0058106 expression level was significantly upregulated in tumor tissues than in corresponding normal tissues. We found that circ_0058106 upregulation promoted proliferation, migration and invasion of HSCC cells, while knockdown of circ_0058106 inhibited proliferation, migration and invasion of HSCC cells both in vitro and in vivo. Bioinformatics predicted circ_0058106 may interact with miR-185-3p. We verified circ_0058106 directly bound miR-185-3p and downregulated miR-185-3p expression by using dual-luciferase reporter assay and qRT-PCR. Moreover, we proved circ_0058106 promoted HSCC cells tumorigenesis and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway via miR-185-3p. In conclusion, our findings firstly confirmed the carcinogenic effect of circ_0058106 in promoting HSCC cells tumorigenesis, metastasis, invasion and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway through sponging miR-185-3p, indicating that circ_0058106 may be a new therapeutic target and prognostic marker for HSCC.
Collapse
Affiliation(s)
- Ce Li
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Jianing Xu
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Ye Qian
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Xinliang Pan
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China.
| |
Collapse
|
21
|
Kasthuriarachchi TDW, Harasgama JC, Lee S, Kwon H, Wan Q, Lee J. Cytosolic β-catenin is involved in macrophage M2 activation and antiviral defense in teleosts: Delineation through molecular characterization of β-catenin homolog from redlip mullet (Planiliza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2021; 118:228-240. [PMID: 34284111 DOI: 10.1016/j.fsi.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
β-catenin is a structural protein that makes the cell-cell connection in adherence junctions. Besides the structural functions, it also plays a role as a central transducer of the canonical Wnt signaling cascade, regulating nearly four hundred genes related to various cellular processes. Recently the immune functions of β-catenin during pathogenic invasion have gained more attention. In the present study, we elucidated the immune function of fish β-catenin by identifying and characterizing the β-catenin homolog (PhCatβ) from redlip mullet, Planiliza haematocheila. The complete open reading frame of PhCatβ consists of 2352 bp, which encodes a putative β-catenin homolog (molecular weight: 85.7 kDa). Multiple sequence alignment analysis revealed that β-catenin is highly conserved in vertebrates. Phylogenetic reconstruction demonstrated the close evolutionary relationship between PhCatβ and other fish β-catenin counterparts. The tissue distribution analysis showed the highest mRNA expression of PhCatβ in heart tissues of the redlip mullet under normal physiological conditions. While in response to pathogenic stress, the PhCatβ transcription level was dramatically increased in the spleen and gill tissues. The overexpression of PhCatβ stimulated M2 polarization and cell proliferation of murine RAW 264.7 macrophage. In fish cells, the overexpression of PhCatβ resulted in a significant upregulation of antiviral gene transcription and vice versa. Moreover, the overexpression of PhCatβ could inhibit the replication of VHSV in FHM cells. Our results strongly suggest that PhCatβ plays a role in macrophage activation and antiviral immune response in redlip mullet.
Collapse
Affiliation(s)
- T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- National Fishery Product Quality Management Service, Busan, 49111, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
22
|
Pyrvinium pamoate regulates MGMT expression through suppressing the Wnt/β-catenin signaling pathway to enhance the glioblastoma sensitivity to temozolomide. Cell Death Discov 2021; 7:288. [PMID: 34642308 PMCID: PMC8511032 DOI: 10.1038/s41420-021-00654-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Temozolomide (TMZ) is the mainstream chemotherapeutic drug for treating glioblastoma multiforme (GBM), but the intrinsic or acquired chemoresistance to TMZ has become the leading clinical concern, which is related to the repair of DNA alkylation sites by O6-methylguanine-DNA methyltransferase (MGMT). Pyrvinium pamoate (PP), the FDA-approved anthelminthic drug, has been reported to inhibit the Wnt/β-catenin pathway within numerous cancer types, and Wnt/β-catenin signaling pathway can modulate the expression of MGMT gene. However, whether PP affects the expression of MGMT and enhances TMZ sensitivity in GBM cells remains unclear. In the present study, we found that PP and TMZ had synergistic effect on inhibiting the viability of GBM cells, and PP induced inhibition of MGMT and enhanced the TMZ chemosensitivity of GBM cells through down-regulating Wnt/β-catenin pathway. Moreover, the overexpression of MGMT or β-catenin weakened the synergy between PP and TMZ. The mechanism of PP in inhibiting the Wnt pathway was indicated that PP resulted in the degradation of β-catenin via the AKT/GSK3β/β-catenin signaling axis. Moreover, Ser552 phosphorylation in β-catenin, which promotes its nuclear accumulation and transcriptional activity, is blocked by PP that also inhibits the Wnt pathway to some extent. The intracranial GBM mouse model also demonstrated that the synergy between PP and TMZ could be achieved through down-regulating β-catenin and MGMT, which prolonged the survival time of tumor-bearing mice. Taken together, our data suggest that PP may serve as the prospect medicine to improve the chemotherapeutic effect on GBM, especially for chemoresistant to TMZ induced by MGMT overexpression.
Collapse
|
23
|
Ranes M, Zaleska M, Sakalas S, Knight R, Guettler S. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol Cell 2021; 81:3246-3261.e11. [PMID: 34352208 PMCID: PMC8403986 DOI: 10.1016/j.molcel.2021.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
The Wnt/β-catenin pathway is a highly conserved, frequently mutated developmental and cancer pathway. Its output is defined mainly by β-catenin's phosphorylation- and ubiquitylation-dependent proteasomal degradation, initiated by the multi-protein β-catenin destruction complex. The precise mechanisms underlying destruction complex function have remained unknown, largely because of the lack of suitable in vitro systems. Here we describe the in vitro reconstitution of an active human β-catenin destruction complex from purified components, recapitulating complex assembly, β-catenin modification, and degradation. We reveal that AXIN1 polymerization and APC promote β-catenin capture, phosphorylation, and ubiquitylation. APC facilitates β-catenin's flux through the complex by limiting ubiquitylation processivity and directly interacts with the SCFβ-TrCP E3 ligase complex in a β-TrCP-dependent manner. Oncogenic APC truncation variants, although part of the complex, are functionally impaired. Nonetheless, even the most severely truncated APC variant promotes β-catenin recruitment. These findings exemplify the power of biochemical reconstitution to interrogate the molecular mechanisms of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Michael Ranes
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Mariola Zaleska
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Saira Sakalas
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Ruth Knight
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK.
| |
Collapse
|
24
|
de Man SMA, Zwanenburg G, van der Wal T, Hink MA, van Amerongen R. Quantitative live-cell imaging and computational modeling shed new light on endogenous WNT/CTNNB1 signaling dynamics. eLife 2021; 10:e66440. [PMID: 34190040 PMCID: PMC8341982 DOI: 10.7554/elife.66440] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
WNT/CTNNB1 signaling regulates tissue development and homeostasis in all multicellular animals, but the underlying molecular mechanism remains incompletely understood. Specifically, quantitative insight into endogenous protein behavior is missing. Here, we combine CRISPR/Cas9-mediated genome editing and quantitative live-cell microscopy to measure the dynamics, diffusion characteristics and absolute concentrations of fluorescently tagged, endogenous CTNNB1 in human cells under both physiological and oncogenic conditions. State-of-the-art imaging reveals that a substantial fraction of CTNNB1 resides in slow-diffusing cytoplasmic complexes, irrespective of the activation status of the pathway. This cytoplasmic CTNNB1 complex undergoes a major reduction in size when WNT/CTNNB1 is (hyper)activated. Based on our biophysical measurements, we build a computational model of WNT/CTNNB1 signaling. Our integrated experimental and computational approach reveals that WNT pathway activation regulates the dynamic distribution of free and complexed CTNNB1 across different subcellular compartments through three regulatory nodes: the destruction complex, nucleocytoplasmic shuttling, and nuclear retention.
Collapse
Affiliation(s)
- Saskia MA de Man
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Gooitzen Zwanenburg
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Tanne van der Wal
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Mark A Hink
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
- van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
25
|
Moreno SE, Massee M, Bara H, Koob TJ. Dehydrated human amniotic membrane modulates canonical Wnt signaling in multiple cell types in vitro. Eur J Cell Biol 2021; 100:151168. [PMID: 34246182 DOI: 10.1016/j.ejcb.2021.151168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022] Open
Abstract
Canonical Wnt signaling is a major pathway known to regulate diverse physiological processes in multicellular organisms. Signaling is tightly regulated by feedback mechanisms; however, persistent dysregulation of this pathway is implicated in the progression of multiple disease states. In this study, proteomic analysis identified endogenous Wnt antagonists in micronized dehydrated human amnion/chorion membrane (μdHACM); thereby, prompting a study to further characterize the intrinsic properties of μdHACM as it relates to Wnt activity, in vitro. A TCF/LEF reporter cell line demonstrated the general ability of μdHACM to inhibit β-catenin induced transcription activity. Furthermore, in vitro systems, modeling elevated Wnt signaling, were developed in relevant cell types including tenocytes, synoviocytes, and human dermal fibroblasts (HDFs). Stimulation of these cells with Wnt3A resulted in translocation of β-catenin to the nucleus and increased expression of Wnt related genes. The subsequent addition of μdHACM, in the continued presence of Wnt-stimulus, mitigated the downstream effects of Wnt3A in tenocytes, synoviocytes, and HDFs. Nuclear localization of β-catenin was abated with corresponding reduction of Wnt related gene expression. These data demonstrate the in vitro regulation of canonical Wnt signaling as an inherent property of μdHACM and a novel mechanism of action.
Collapse
Affiliation(s)
- Sarah E Moreno
- MiMedx Group, Inc. 1775 West Oak Commons Court NE, Marietta, GA 30062, USA
| | - Michelle Massee
- MiMedx Group, Inc. 1775 West Oak Commons Court NE, Marietta, GA 30062, USA.
| | - Heather Bara
- MiMedx Group, Inc. 1775 West Oak Commons Court NE, Marietta, GA 30062, USA
| | - Thomas J Koob
- MiMedx Group, Inc. 1775 West Oak Commons Court NE, Marietta, GA 30062, USA
| |
Collapse
|
26
|
Chen X, Lu Y, Guo G, Zhang Y, Sun Y, Guo L, Li R, Nan Y, Yang X, Dong J, Jin X, Huang Q. AMOTL2‑knockdown promotes the proliferation, migration and invasion of glioma by regulating β‑catenin nuclear localization. Oncol Rep 2021; 46:139. [PMID: 34036399 PMCID: PMC8165599 DOI: 10.3892/or.2021.8090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent type of malignant cancer in the adult central nervous system; however, its mechanism remains unclear. Angiomotin-like 2 (AMOTL2) is a member of the motin family of angiostatin-binding proteins. It has been reported as an oncogene in cervical and breast cancer, but its association with glioma remains unknown. The aim of the present study was to investigate AMOTL2-regulated processes in glioma cell lines using extensive in vitro assays and certain bioinformatics tools. These results revealed that AMOTL2 was downregulated in high-grade glioma cells and tissues, with patients with glioma exhibiting a high AMOTL2 expression having a higher survival rate. The results of the glioma cell phenotype experiment showed that AMOTL2 suppressed GBM proliferation, migration and invasion. In addition, immunoblotting, co-immunoprecipitation and immunofluorescence assays demonstrated that AMOTL2 could directly bind to β-catenin protein, the key molecule of the Wnt signaling pathway, and regulate its downstream genes by regulating β-catenin nuclear translocation. In conclusion, the present study demonstrated that AMOTL2 inhibited glioma proliferation, migration and invasion by regulating β-catenin nuclear localization. Thus, AMOTL2 may serve as a therapeutic target to further improve the prognosis and prolong survival time of patients with glioma.
Collapse
Affiliation(s)
- Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yan Sun
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lianmei Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ruohong Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
27
|
Hauck L, Dadson K, Chauhan S, Grothe D, Billia F. Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death Differ 2021; 28:1398-1417. [PMID: 33288902 PMCID: PMC8027412 DOI: 10.1038/s41418-020-00669-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Adult mammalian cardiomyocytes (CM) are postmitotic, differentiated cells that cannot re-enter the cell cycle after any appreciable injury. Therefore, understanding the factors required to induce CM proliferation for repair is of great clinical importance. While expression of muscle pyruvate kinase 2 (Pkm2), a cytosolic enzyme catalyzing the final step in glycolysis, is high in end-stage heart failure (HF), the loss of Pkm2 promotes proliferation in some cellular systems, in vivo. We hypothesized that in the adult heart CM proliferation may require low Pkm2 activity. Thus, we investigated the potential for Pkm2 to regulate CM proliferation in a mouse model of myocardial infarction (MI) employing inducible, cardiac-specific Pkm2 gene knockout (Pkm2KOi) mice. We found a lack of cardiac hypertrophy or expression of the fetal gene program in Pkm2KOi mice post MI, as compared to vehicle control animals (P < 0.01), correlating with smaller infarct size, improved mitochondrial (mt) function, enhanced angiogenesis, reduced degree of CM apoptosis, and reduced oxidative stress post MI. There was significantly higher numbers of dividing CM in the infarct zone between 3-9 days post MI (P < 0.001). Mechanistically, we determined that Pkm2 interacts with β-catenin (Ctnnb1) in the cytoplasm of CM, inhibiting Ctnnb1 phosphorylation at serine 552 and tyrosine 333, by Akt. In the absence of Pkm2, Ctnnb1 translocates to the nucleus leading to transcriptional activation of proliferation-associated target genes. All these effects are abrogated by genetic co-deletion of Pkm2 and Ctnnb1. Collectively, this work supports a novel antiproliferative function for Pkm2 in CM through the sequestration of Ctnnb1 in the cytoplasm of CM whereas loss of Pkm2 is essential for CM proliferation. Reducing cardiac Pkm2 expression may provide a useful strategy for cardiac repair after MI in patients.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Keith Dadson
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Shelly Chauhan
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Daniela Grothe
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Filio Billia
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada.
- Division of Cardiology, University Health Network (UHN), 200 Elizabeth St., Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
28
|
Jiang J, Zhang C, Yuan X, Li J, Zhang M, Shi X, Jin K, Zhang Y, Zuo Q, Chen G, Li B. Spin1z induces the male pathway in the chicken by down-regulating Tcf4. Gene 2021; 780:145521. [PMID: 33631236 DOI: 10.1016/j.gene.2021.145521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
SPINDLIN1-Z (SPIN1Z), a member of the Spin/Ssty(Y-linked spermiogenesis specific transcript) protein family, participates in the early embryonic development process. Our previous RNA-seq analysis indicates that the level of Spin1z was abundantly expressed in male embryonic stem cells (ESCs) and primitive germ cells (PGCs), we speculate that Spin1z may play an important role in chicken male differentiation. Therefore, the loss- and gain-of-function experiments provide solid evidence that Spin1z is both necessary and sufficient to initiate male development in chicken. Furthermore, chromatin immunoprecipitation (ChIP) assay and the dual-luciferase assay was performed to further confirm that Spin1z contributed to chicken male differentiation by inhibiting the Tcf4 transcription. Our findings provide a novel insight into the molecular mechanism for chicken male differentiation.
Collapse
Affiliation(s)
- Jingyi Jiang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xia Yuan
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiancheng Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ming Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiang Shi
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
29
|
Sinha S, Secreto CR, Boysen JC, Lesnick C, Wang Z, Ding W, Call TG, Kenderian SJ, Parikh SA, Warner SL, Bearss DJ, Ghosh AK, Kay NE. Upregulation of AXL and β-catenin in chronic lymphocytic leukemia cells cultured with bone marrow stroma cells is associated with enhanced drug resistance. Blood Cancer J 2021; 11:37. [PMID: 33602892 PMCID: PMC7893033 DOI: 10.1038/s41408-021-00426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sutapa Sinha
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Zhiquan Wang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Asish K Ghosh
- Stephenson Cancer Center and Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
30
|
Pan K, Lee W, Chou C, Yang Y, Chang Y, Chien M, Hsiao M, Hua K. Direct interaction of β-catenin with nuclear ESM1 supports stemness of metastatic prostate cancer. EMBO J 2021; 40:e105450. [PMID: 33347625 PMCID: PMC7883293 DOI: 10.15252/embj.2020105450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt/β-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/β-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/β-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of β-catenin to stabilize β-catenin-TCF4 complex and facilitate the transactivation of Wnt/β-catenin signaling targets. Accordingly, activated β-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/β-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Ke‐Fan Pan
- Graduate Institute of ToxicologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Jiunn Lee
- Department of UrologySchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical Education and ResearchWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Cancer CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Chun‐Chi Chou
- Department of Obstetrics & GynecologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yi‐Chieh Yang
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchTungs’ Taichung Metro Harbor HospitalTaichungTaiwan
| | - Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ming‐Hsien Chien
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Pulmonary Research CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
- Traditional Herbal Medicine Research CenterTaipei Medical University HospitalTaipeiTaiwan
| | - Michael Hsiao
- The Genomics Research CenterAcademia SinicaTaipeiTaiwan
| | - Kuo‐Tai Hua
- Graduate Institute of ToxicologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
31
|
de Man SMA, van Amerongen R. Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. Handb Exp Pharmacol 2021; 269:137-173. [PMID: 34486095 DOI: 10.1007/164_2021_522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
WNT/CTNNB1 signaling is crucial for balancing cell proliferation and differentiation in all multicellular animals. CTNNB1 accumulation is the hallmark of WNT/CTNNB1 pathway activation and the key downstream event in both a physiological and an oncogenic context. In the absence of WNT stimulation, the cytoplasmic and nuclear levels of CTNNB1 are kept low because of its sequestration and phosphorylation by the so-called destruction complex, which targets CTNNB1 for proteasomal degradation. In the presence of WNT proteins, or as a result of oncogenic mutations, this process is impaired and CTNNB1 levels become elevated.Here we discuss recent advances in our understanding of destruction complex activity and inactivation, focusing on the individual components and interactions that ultimately control CTNNB1 turnover (in the "WNT off" situation) and stabilization (in the "WNT on" situation). We especially highlight the insights gleaned from recent quantitative, image-based studies, which paint an unprecedentedly detailed picture of the dynamic events that control destruction protein complex composition and function. We argue that these mechanistic details may reveal new opportunities for therapeutic intervention and could result in the destruction complex re-emerging as a target for therapy in cancer.
Collapse
Affiliation(s)
- Saskia Madelon Ada de Man
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Sayedyahossein S, Huang K, Li Z, Zhang C, Kozlov AM, Johnston D, Nouri-Nejad D, Dagnino L, Betts DH, Sacks DB, Penuela S. Pannexin 1 binds β-catenin to modulate melanoma cell growth and metabolism. J Biol Chem 2021; 296:100478. [PMID: 33647315 PMCID: PMC8027267 DOI: 10.1016/j.jbc.2021.100478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023] Open
Abstract
Melanoma is the most aggressive skin malignancy with increasing incidence worldwide. Pannexin1 (PANX1), a member of the pannexin family of channel-forming glycoproteins, regulates cellular processes in melanoma cells including proliferation, migration, and invasion/metastasis. However, the mechanisms responsible for coordinating and regulating PANX1 function remain unclear. Here, we demonstrated a direct interaction between the C-terminal region of PANX1 and the N-terminal portion of β-catenin, a key transcription factor in the Wnt pathway. At the protein level, β-catenin was significantly decreased when PANX1 was either knocked down or inhibited by two PANX1 blockers, Probenecid and Spironolactone. Immunofluorescence imaging showed a disrupted pattern of β-catenin localization at the cell membrane in PANX1-deficient cells, and transcription of several Wnt target genes, including MITF, was suppressed. In addition, a mitochondrial stress test revealed that the metabolism of PANX1-deficient cells was impaired, indicating a role for PANX1 in the regulation of the melanoma cell metabolic profile. Taken together, our data show that PANX1 directly interacts with β-catenin to modulate growth and metabolism in melanoma cells. These findings provide mechanistic insight into PANX1-mediated melanoma progression and may be applicable to other contexts where PANX1 and β-catenin interact as a potential new component of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kenneth Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alexandra M Kozlov
- Department of Biology, Faculty of Science, University of Western Ontario, London, Ontario, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Daniel Nouri-Nejad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentristry, University of Western Ontario, London, Ontario, Canada; Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dean H Betts
- Department of Biology, Faculty of Science, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentristry, University of Western Ontario, London, Ontario, Canada
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
33
|
Furukawa N, Popel AS. Peptides that immunoactivate the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1875:188486. [PMID: 33276025 PMCID: PMC8369429 DOI: 10.1016/j.bbcan.2020.188486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/04/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy has achieved positive clinical outcomes and is revolutionizing cancer treatment. However, cancer immunotherapy has thus far failed to improve outcomes for most "cold tumors", which are characterized by low infiltration of immune cells and immunosuppressive tumor microenvironment. Enhancing the responsiveness of cold tumors to cancer immunotherapy by stimulating the components of the tumor microenvironment is a strategy pursued in the last decade. Currently, most of the agents used to modify the tumor microenvironment are small molecules or antibodies. Small molecules exhibit low affinity and specificity towards the target and antibodies have shortcomings such as poor tissue penetration and high production cost. Peptides may overcome these drawbacks and therefore are promising materials for immunomodulating agents. Here we systematically summarize the currently developed immunoactivating peptides and discuss the potential of peptide therapeutics in cancer immunology.
Collapse
Affiliation(s)
- Natsuki Furukawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
34
|
Zhang L, Jing H, Li H, Chen W, Luo B, Zhang H, Dong Z, Li L, Su H, Xiong WC, Mei L. Neddylation is critical to cortical development by regulating Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 2020; 117:26448-26459. [PMID: 33020269 PMCID: PMC7584916 DOI: 10.1073/pnas.2005395117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling plays a critical role in production and differentiation of neurons and undergoes a progressive reduction during cortical development. However, how Wnt signaling is regulated is not well understood. Here we provide evidence for an indispensable role of neddylation, a ubiquitylation-like protein modification, in inhibiting Wnt/β-catenin signaling. We show that β-catenin is neddylated; and inhibiting β-catenin neddylation increases its nuclear accumulation and Wnt/β-catenin signaling. To test this hypothesis in vivo, we mutated Nae1, an obligative subunit of the E1 for neddylation in cortical progenitors. The mutation leads to eventual reduction in radial glia progenitors (RGPs). Consequently, the production of intermediate progenitors (IPs) and neurons is reduced, and neuron migration is impaired, resulting in disorganization of the cerebral cortex. These phenotypes are similar to those of β-catenin gain-of-function mice. Finally, suppressing β-catenin expression is able to rescue deficits of Nae1 mutant mice. Together, these observations identified a mechanism to regulate Wnt/β-catenin signaling in cortical development.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Haiwen Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Wenbing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Lei Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106;
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| |
Collapse
|
35
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
36
|
Guo L, Glover J, Risner A, Wang C, Fulmer D, Moore K, Gensemer C, Rumph MK, Moore R, Beck T, Norris RA. Dynamic Expression Profiles of β-Catenin during Murine Cardiac Valve Development. J Cardiovasc Dev Dis 2020; 7:jcdd7030031. [PMID: 32824435 PMCID: PMC7570242 DOI: 10.3390/jcdd7030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
β-catenin has been widely studied in many animal and organ systems across evolution, and gain or loss of function has been linked to a number of human diseases. Yet fundamental knowledge regarding its protein expression and localization remains poorly described. Thus, we sought to define whether there was a temporal and cell-specific regulation of β-catenin activities that correlate with distinct cardiac morphological events. Our findings indicate that activated nuclear β-catenin is primarily evident early in gestation. As development proceeds, nuclear β-catenin is down-regulated and becomes restricted to the membrane in a subset of cardiac progenitor cells. After birth, little β-catenin is detected in the heart. The co-expression of β-catenin with its main transcriptional co-factor, Lef1, revealed that Lef1 and β-catenin expression domains do not extensively overlap in the cardiac valves. These data indicate mutually exclusive roles for Lef1 and β-catenin in most cardiac cell types during development. Additionally, these data indicate diverse functions for β-catenin within the nucleus and membrane depending on cell type and gestational timing. Cardiovascular studies should take into careful consideration both nuclear and membrane β-catenin functions and their potential contributions to cardiac development and disease.
Collapse
|
37
|
Hirano K, Kubo M, Fukuyama Y, Namihira M. Indonesian Ginger (Bangle) Extract Promotes Neurogenesis of Human Neural Stem Cells through WNT Pathway Activation. Int J Mol Sci 2020; 21:E4772. [PMID: 32635647 PMCID: PMC7369972 DOI: 10.3390/ijms21134772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022] Open
Abstract
Indonesian ginger (Zingiber purpureum Rosc.), also known as Bangle, exhibits neurotrophic effects on cultured murine cortical neurons and in the adult mouse brain, but the underlying mechanisms remain unknown. Here, using human fetal neural stem cells (hfNSCs) as a model system for in vitro human neurogenesis, we show that Bangle extracts activate canonical WNT/β-catenin signaling. Bangle extract-treatment of hfNSCs not only promoted neuronal differentiation, but also accelerated neurite outgrowth from immature neurons. Furthermore, Bangle extracts induced expression of neurogenic genes and WNT signaling-target genes, and facilitated the accumulation of β-catenin in nuclei of hfNSC. Interestingly, altered histone modifications were also observed in Bangle-treated hfNSCs. Together, these findings demonstrate that Bangle contributes to hfNSC neurogenesis by WNT pathway and epigenetic regulation.
Collapse
Affiliation(s)
- Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Miwa Kubo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (M.K.); (Y.F.)
| | - Yoshiyasu Fukuyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (M.K.); (Y.F.)
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| |
Collapse
|
38
|
Osman MA, Antonisamy WJ, Yakirevich E. IQGAP1 control of centrosome function defines distinct variants of triple negative breast cancer. Oncotarget 2020; 11:2493-2511. [PMID: 32655836 PMCID: PMC7335670 DOI: 10.18632/oncotarget.27623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogenous and lethal disease that lacks diagnostic markers and therapeutic targets; as such common targets are highly sought after. IQGAP1 is a signaling scaffold implicated in TNBC, but its mechanism is unknown. Here we show that IQGAP1 localizes to the centrosome, interacts with and influences the expression level and localization of key centrosome proteins like BRCA1 and thereby impacts centrosome number. Genetic mutant analyses suggest that phosphorylation cycling of IQGAP1 is important to its subcellular localization and centrosome-nuclear shuttling of BRCA1; dysfunction of this process defines two alternate mechanisms associated with cell proliferation. TNBC cell lines and patient tumor tissues differentially phenocopy these mechanisms supporting clinical existence of molecularly distinct variants of TNBC defined by IQGAP1 pathways. These variants are defined, at least in part, by differential mis-localization or stabilization of IQGAP1-BRCA1 and rewiring of a novel Erk1/2-MNK1-JNK-Akt-β-catenin signaling signature. We discuss a model in which IQGAP1 modulates centrosome-nuclear crosstalk to regulate cell division and imparts on cancer. These findings have implications on cancer racial disparities and can provide molecular tools for classification of TNBC, presenting IQGAP1 as a common target amenable to personalized medicine.
Collapse
Affiliation(s)
- Mahasin A. Osman
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - William James Antonisamy
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
39
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Chronic hyperglycemia impairs hippocampal neurogenesis and memory in an Alzheimer's disease mouse model. Neurobiol Aging 2020; 92:98-113. [PMID: 32417750 DOI: 10.1016/j.neurobiolaging.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
During aging, lifestyle-related factors shape the brain's response to insults and modulate the progression of neurodegenerative pathologies such as Alzheimer's disease (AD). This is the case for chronic hyperglycemia associated with type 2 diabetes, which reduces the brain's ability to handle the neurodegenerative burden associated with AD. However, the mechanisms behind the effects of chronic hyperglycemia in the context of AD are not fully understood. Here, we show that newly generated neurons in the hippocampal dentate gyrus of triple transgenic AD (3xTg-AD) mice present increased dendritic arborization and a number of synaptic puncta, which may constitute a compensatory mechanism allowing the animals to cope with a lower neurogenesis rate. Contrariwise, chronic hyperglycemia decreases the complexity and differentiation of 3xTg-AD newborn neurons and reduces the levels of β-catenin, a key intrinsic modulator of neuronal maturation. Moreover, synaptic facilitation is depressed in hyperglycemic 3xTg-AD mice, accompanying the defective hippocampal-dependent memory. Our data suggest that hyperglycemia evokes cellular and functional alterations that accelerate the onset of AD-related symptoms, namely memory impairment.
Collapse
|
41
|
Zimmerlin L, Zambidis ET. Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naïve pluripotency. Exp Cell Res 2020; 390:111935. [PMID: 32151493 DOI: 10.1016/j.yexcr.2020.111935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
Tankyrase 1 (TNKS1; PARP-5a) and Tankyrase 2 (TNKS2; PARP-5b) are poly-ADP-ribosyl-polymerase (PARP)-domain-containing proteins that regulate the activities of a wide repertoire of target proteins via post-translational addition of poly-ADP-ribose polymers (PARylation). Although tankyrases were first identified as regulators of human telomere elongation, important and expansive roles of tankyrase activity have recently emerged in the development and maintenance of stem cell states. Herein, we summarize the current state of knowledge of the various tankyrase-mediated activities that may promote human naïve and 'extended' pluripotency'. We review the putative role of tankyrase and PARP inhibition in trophectoderm specification, telomere elongation, DNA repair and chromosomal segregation, metabolism, and PTEN-mediated apoptosis. Importantly, tankyrases possess PARP-independent activities that include regulation of MDC1-associated DNA repair by homologous recombination (HR) and autophagy/pexophagy, which is an essential mechanism of protein synthesis in the preimplantation embryo. Additionally, tankyrases auto-regulate themselves via auto-PARylation which augments their cellular protein levels and potentiates their non-PARP tankyrase functions. We propose that these non-PARP-related activities of tankyrase proteins may further independently affect both naïve and extended pluripotency via mechanisms that remain undetermined. We broadly outline a hypothetical framework for how inclusion of a tankyrase/PARP inhibitor in small molecule cocktails may stabilize and potentiate naïve and extended pluripotency via pleiotropic routes and mechanisms.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| | - Elias T Zambidis
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| |
Collapse
|
42
|
Mis M, O’Brien S, Steinhart Z, Lin S, Hart T, Moffat J, Angers S. IPO11 mediates βcatenin nuclear import in a subset of colorectal cancers. J Cell Biol 2020; 219:e201903017. [PMID: 31881079 PMCID: PMC7041691 DOI: 10.1083/jcb.201903017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/09/2019] [Accepted: 11/07/2019] [Indexed: 01/11/2023] Open
Abstract
Activation of Wnt signaling entails βcatenin protein stabilization and translocation to the nucleus to regulate context-specific transcriptional programs. The majority of colorectal cancers (CRCs) initiate following APC mutations, resulting in Wnt ligand-independent stabilization and nuclear accumulation of βcatenin. The mechanisms underlying βcatenin nucleocytoplasmic shuttling remain incompletely defined. Using a novel, positive selection, functional genomic strategy, DEADPOOL, we performed a genome-wide CRISPR screen and identified IPO11 as a required factor for βcatenin-mediated transcription in APC mutant CRC cells. IPO11 (Importin-11) is a nuclear import protein that shuttles cargo from the cytoplasm to the nucleus. IPO11-/- cells exhibit reduced nuclear βcatenin protein levels and decreased βcatenin target gene activation, suggesting IPO11 facilitates βcatenin nuclear import. IPO11 knockout decreased colony formation of CRC cell lines and decreased proliferation of patient-derived CRC organoids. Our findings uncover a novel nuclear import mechanism for βcatenin in cells with high Wnt activity.
Collapse
Affiliation(s)
- Monika Mis
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Siobhan O’Brien
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zachary Steinhart
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
3D-microenvironments initiate TCF4 expression rescuing nuclear β-catenin activity in MCF-7 breast cancer cells. Acta Biomater 2020; 103:153-164. [PMID: 31843716 DOI: 10.1016/j.actbio.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Mechanical cues sensed by tumor cells in their microenvironment can influence important mechanisms including adhesion, invasion and proliferation. However, a common mechanosensitive protein and/or pathway can be regulated in different ways among diverse types of tumors. Of particular interest are human breast epithelial cancers, which markedly exhibit a heterogeneous pattern of nuclear β-catenin localization, a protein known to be involved in both mechanotransduction and tumorigenesis. β-catenin can be aberrantly accumulated in the nucleus wherein it binds to and activates lymphoid enhancer factor/T cell factor (LEF/TCF) transcription factors. At present, little is known about how mechanical cues are integrated into breast cancer cells harboring impaired mechanisms of β-catenin's nuclear uptake and/or retention. This prompted us to investigate the influence of mechanical cues on MCF-7 human breast cancer cells which are known to fail in relocating β-catenin into the nucleus due to very low baseline levels of LEF/TCFs. Exploiting three-dimensional (3D) microscaffolds realized by two-photon lithography, we show that surrounding MCF-7 cells have not only a nuclear pool of β-catenin, but also rescue from their defective expression of TCF4 and boost invasiveness. Together with heightened amounts of vimentin, a β-catenin/TCF-target gene regulator of proliferation and invasiveness, such 3D-elicited changes indicate an epithelial-to-mesenchymal phenotypic switch of MCF-7 cells. This is also consistent with an increased in situ MCF-7 cell proliferation that can be abrogated by blocking β-catenin/TCF-transcription activity. Collectively, these data suggest that 3D microenvironments are per se sufficient to prime a TCF4-dependent rescuing of β-catenin nuclear activity in MCF-7 cells. The employed methodology could, therefore, provide a mechanism-based rationale to dissect further aspects of mechanotranscription in breast cancerogenesis, somewhat independent of β-catenin's nuclear accumulation. More importantly, by considering the heterogeneity of β-catenin signaling pathway in breast cancer patients, these data may open alternative avenues for personalized disease management and prevention. STATEMENT OF SIGNIFICANCE: Mechanical cues play a critical role in cancer pathogenesis. Little is known about their influence in breast cancer cells harboring impaired mechanisms of β-catenin's nuclear uptake and/or retention, involved in both mechanotransduction and tumorigenesis. We engineered 3D scaffold, by two-photon lithography, to study the influence of mechanical cues on MCF-7 cells which are known to fail in relocating β-catenin into the nucleus. We found that 3D microenvironments are per se sufficient to prime a TCF4-dependent rescuing of β-catenin nuclear activity that boost cell proliferation and invasiveness. Thus, let us suggest that our system could provide a mechanism-based rationale to further dissect key aspects of mechanotranscription in breast cancerogenesis and progression, somewhat independent of β-catenin's nuclear accumulation.
Collapse
|
44
|
Chelerythrine Chloride Downregulates β-Catenin and Inhibits Stem Cell Properties of Non-Small Cell Lung Carcinoma. Molecules 2020; 25:molecules25010224. [PMID: 31935827 PMCID: PMC6983151 DOI: 10.3390/molecules25010224] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023] Open
Abstract
Plant secondary metabolites have been seen as alternatives to seeking new medicines for treating various diseases. Phytochemical scientists remain hopeful that compounds isolated from natural sources could help alleviate the leading problem in oncology—the lung malignancy that kills an estimated two million people annually. In the present study, we characterized a medicinal compound benzophenanthridine alkaloid, called chelerythrine chloride for its anti-tumorigenic activities. Cell viability assays confirmed its cytotoxicity and anti-proliferative activity in non-small cell lung carcinoma (NSCLC) cell lines. Immunofluorescence staining of β-catenin revealed that there was a reduction of nuclear content as well as overall cellular content of β-catenin after treating NCI-H1703 with chelerythrine chloride. In functional characterizations, we observed favorable inhibitory activities of chelerythrine chloride in cancer stem cell (CSC) properties, which include soft agar colony-forming, migration, invasion, and spheroid forming abilities. Interesting observations in chelerythrine chloride treatment noted that its action abides to certain concentration-specific-targeting behavior in modulating β-catenin expression and apoptotic cell death. The downregulation of β-catenin implicates the downregulation of CSC transcription factors like SOX2 and MYC. In conclusion, chelerythrine chloride has the potential to mitigate cancer growth due to inhibitory actions toward the tumorigenic activity of CSC in lung cancer and it can be flexibly adjusted according to concentration to modulate specific targeting in different cell lines.
Collapse
|
45
|
Shankar G. M, Alex VV, Nisthul A. A, Bava SV, Sundaram S, Retnakumari AP, Chittalakkottu S, Anto RJ. Pre-clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Prolif 2020; 53:e12710. [PMID: 31663659 PMCID: PMC6985671 DOI: 10.1111/cpr.12710] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/22/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Clinical trials have demonstrated the efficacy of indigo naturalis, a traditional Chinese medicine ingredient, against psoriasis, a skin disease characterized by keratinocyte hyperproliferation and inflammation. The present study investigates the efficacy of tryptanthrin, a bioactive compound in indigo naturalis, against non-melanoma skin cancer (NMSC) and the signalling events involved. METHODS Efficacy of tryptanthrin against NMSC was assessed using DMBA/PMA-induced skin carcinogenesis model in Swiss albino mice. Immunostaining for PCNA and ki-67 was used to mark proliferating cells in tissues. Haematoxylin and eosin staining and toluidine staining were employed to assess inflammation, and TUNEL assay was used to detect apoptosis in tissues. The signalling events were evaluated using Western blot, imunohistochemistry and immunofluorescence staining. MTT assay and clonogenic assay were performed to assess the viability and proliferation of cancer cells, in vitro. RESULTS In mice, topical application of tryptanthrin suppressed skin carcinogenesis. It attenuated inflammation, impeded the proliferation of hair follicle (HF) cells and suppressed the activation of β-catenin, a major driver of HF cell proliferation. Additionally tryptanthrin suppressed the activation of ERK1/2 and p38, both of which promote β-catenin activation and lowered the expression of c-Myc and cyclin-D1. Tryptanthrin suppressed the proliferation of the human NMSC cell line, A431 and abrogated EGF-induced activation of β-catenin and subsequent cytoskeletal rearrangement. CONCLUSION The study demonstrates with molecular evidence that tryptanthrin is an effective suppressor of NMSC.
Collapse
Affiliation(s)
- Mohan Shankar G.
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
- Research ScholarManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Vijai V. Alex
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| | - Amrutha Nisthul A.
- Department of Biotechnology and MicrobiologyKannur UniversityKannurKeralaIndia
| | - Smitha V. Bava
- Department of BiotechnologyUniversity of CalicutCalicutKeralaIndia
| | - Sankar Sundaram
- Department of PathologyGovernment Medical CollegeKottayamKeralaIndia
| | - Archana P. Retnakumari
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| | | | - Ruby John Anto
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| |
Collapse
|
46
|
Johansson M, Giger FA, Fielding T, Houart C. Dkk1 Controls Cell-Cell Interaction through Regulation of Non-nuclear β-Catenin Pools. Dev Cell 2019; 51:775-786.e3. [PMID: 31786070 PMCID: PMC6912161 DOI: 10.1016/j.devcel.2019.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
Dickkopf-1 (Dkk1) is a secreted Wnt antagonist with a well-established role in head induction during development. Numerous studies have emerged implicating Dkk1 in various malignancies and neurodegenerative diseases through an unknown mechanism. Using zebrafish gastrulation as a model for collective cell migration, we unveil such a mechanism, identifying a role for Dkk1 in control of cell connectivity and polarity in vivo, independent of its known function. We find that Dkk1 localizes to adhesion complexes at the plasma membrane and regions of concentrated actomyosin, suggesting a direct involvement in regulation of local cell adhesion. Our results show that Dkk1 represses cell polarization and integrity of cell-cell adhesion, independently of its impact on β-catenin protein degradation. Concurrently, Dkk1 prevents nuclear localization of β-catenin by restricting its distribution to a discrete submembrane pool. We propose that redistribution of cytosolic β-catenin by Dkk1 concomitantly drives repression of cell adhesion and inhibits β-catenin-dependent transcriptional output.
Collapse
Affiliation(s)
- Marie Johansson
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Florence A Giger
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
47
|
CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of β-catenin and E-cadherin. Oncogene 2019; 39:219-233. [DOI: 10.1038/s41388-019-0983-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/08/2022]
|
48
|
Dynamic palmitoylation regulates trafficking of K channel interacting protein 2 (KChIP2) across multiple subcellular compartments in cardiac myocytes. J Mol Cell Cardiol 2019; 135:1-9. [PMID: 31362018 DOI: 10.1016/j.yjmcc.2019.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND K channel interacting protein 2 (KChIP2), initially cloned as Kv4 channel modulator, is a multi-tasking protein. In addition to modulating several cardiac ion channels at the plasma membrane, it can also modulate microRNA transcription inside nuclei, and interact with presenilins to modulate Ca release through RyR2 in the cytoplasm. However, the mechanism regulating its subcellular distribution is not clear. OBJECTIVE We tested whether palmitoylation drives KChIP2 trafficking and distribution in cells, and whether the distribution pattern of KChIP2 in cardiac myocytes is sensitive to cellular milieu. METHOD We conducted imaging and biochemical experiments on palmitoylatable and unpalmitoylatable KChIP2 variants expressed in COS-7 cells and in cardiomyocytes, and on native KChIP2 in myocytes. RESULTS In COS-7 cells, palmitoylatable KChIP2 clustered to plasma membrane, while unpalmitoylatable KChIP2 exhibited higher cytoplasmic mobility and faster nuclear entry. The same differences in distribution and mobility were observed when these KChIP2 variants were expressed in cardiac myocytes, indicating that the palmitoylation-dependent distribution and trafficking are intrinsic properties of KChIP2. Importantly, acute stress in a rat model of cardiac arrest/resuscitation induced changes in native KChIP2 resembling those of KChIP2 depalmitoylation, promoting KChIP2 nuclear entry. CONCLUSION The palmitoylation status of KChIP2 determines its subcellular distribution in cardiac myocytes. Stress promotes nuclear entry of KChIP2, diverting it from ion channel modulation at the plasma membrane to other functions in the nuclear compartment.
Collapse
|
49
|
He W, Wang S, Yan J, Qu Y, Jin L, Sui F, Li Y, You W, Yang G, Yang Q, Ji M, Shao Y, Ma PX, Lu W, Hou P. Self-Assembly of Therapeutic Peptide into Stimuli-Responsive Clustered Nanohybrids for Cancer-Targeted Therapy. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807736. [PMID: 32982625 PMCID: PMC7518326 DOI: 10.1002/adfm.201807736] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 05/08/2023]
Abstract
Clinical translation of therapeutic peptides, particularly those targeting intracellular protein-protein interactions (PPIs), has been hampered by their inefficacious cellular internalization in diseased tissue. Therapeutic peptides engineered into nanostructures with stable spatial architectures and smart disease targeting ability may provide a viable strategy to overcome the pharmaceutical obstacles of peptides. This study describes a strategy to assemble therapeutic peptides into a stable peptide-Au nanohybrid, followed by further self-assembling into higher-order nanoclusters with responsiveness to tumor microenvironment. As a proof of concept, an anticancer peptide termed β-catenin/Bcl9 inhibitors is copolymerized with gold ion and assembled into a cluster of nanohybrids (pCluster). Through a battery of in vitro and in vivo tests, it is demonstrated that pClusters potently inhibit tumor growth and metastasis in several animal models through the impairment of the Wnt/β-catenin pathway, while maintaining a highly favorable biosafety profile. In addition, it is also found that pClusters synergize with the PD1/PD-L1 checkpoint blockade immunotherapy. This new strategy of peptide delivery will likely have a broad impact on the development of peptide-derived therapeutic nanomedicine and reinvigorate efforts to discover peptide drugs that target intracellular PPIs in a great variety of human diseases, including cancer.
Collapse
Affiliation(s)
- Wangxiao He
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jin Yan
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular, Science and Engineering Center, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yiping Qu
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Liang Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fang Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yujun Li
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Weiming You
- Department of Oncology, BenQ Medical Center, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Guang Yang
- Department of Oncology, BenQ Medical Center, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yongping Shao
- Center for Translational Medicine, Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular, Science and Engineering Center, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
50
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|