1
|
Atsumi Y, Iwata R, Kimura H, Vanderhaeghen P, Yamamoto N, Sugo N. Repetitive CREB-DNA interactions at gene loci predetermined by CBP induce activity-dependent gene expression in human cortical neurons. Cell Rep 2024; 43:113576. [PMID: 38128530 DOI: 10.1016/j.celrep.2023.113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Neuronal activity-dependent transcription plays a key role in plasticity and pathology in the brain. An intriguing question is how neuronal activity controls gene expression via interactions of transcription factors with DNA and chromatin modifiers in the nucleus. By utilizing single-molecule imaging in human embryonic stem cell (ESC)-derived cortical neurons, we demonstrate that neuronal activity increases repetitive emergence of cAMP response element-binding protein (CREB) at histone acetylation sites in the nucleus, where RNA polymerase II (RNAPII) accumulation and FOS expression occur rapidly. Neuronal activity also enhances co-localization of CREB and CREB-binding protein (CBP). Increased binding of a constitutively active CREB to CBP efficiently induces CREB repetitive emergence. On the other hand, the formation of histone acetylation sites is dependent on CBP histone modification via acetyltransferase (HAT) activity but is not affected by neuronal activity. Taken together, our results suggest that neuronal activity promotes repetitive CREB-CRE and CREB-CBP interactions at predetermined histone acetylation sites, leading to rapid gene expression.
Collapse
Affiliation(s)
- Yuri Atsumi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryohei Iwata
- VIB-KU Leuven, Center for Brain & Disease Research and KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Pierre Vanderhaeghen
- VIB-KU Leuven, Center for Brain & Disease Research and KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| | - Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Abbott DA, Mancini MG, Bolt MJ, Szafran AT, Neugebauer KA, Stossi F, Gorelick DA, Mancini MA. A novel ERβ high throughput microscopy platform for testing endocrine disrupting chemicals. Heliyon 2024; 10:e23119. [PMID: 38169792 PMCID: PMC10758781 DOI: 10.1016/j.heliyon.2023.e23119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
In this study we present an inducible biosensor model for the Estrogen Receptor Beta (ERβ), GFP-ERβ:PRL-HeLa, a single-cell-based high throughput (HT) in vitro assay that allows direct visualization and measurement of GFP-tagged ERβ binding to ER-specific DNA response elements (EREs), ERβ-induced chromatin remodeling, and monitor transcriptional alterations via mRNA fluorescence in situ hybridization for a prolactin (PRL)-dsRED2 reporter gene. The model was used to accurately (Z' = 0.58-0.8) differentiate ERβ-selective ligands from ERα ligands when treated with a panel of selective agonists and antagonists. Next, we tested an Environmental Protection Agency (EPA)-provided set of 45 estrogenic reference chemicals with known ERα in vivo activity and identified several that activated ERβ as well, with varying sensitivity, including a subset that is completely novel. We then used an orthogonal ERE-containing transgenic zebrafish (ZF) model to cross validate ERβ and ERα selective activities at the organism level. Using this environmentally relevant ZF assay, some compounds were confirmed to have ERβ activity, validating the GFP-ERβ:PRL-HeLa assay as a screening tool for potential ERβ active endocrine disruptors (EDCs). These data demonstrate the value of sensitive multiplex mechanistic data gathered by the GFP-ERβ:PRL-HeLa assay coupled with an orthogonal zebrafish model to rapidly identify environmentally relevant ERβ EDCs and improve upon currently available screening tools for this understudied nuclear receptor.
Collapse
Affiliation(s)
- Derek A. Abbott
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Michael J. Bolt
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Kaley A. Neugebauer
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Daniel A. Gorelick
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Stossi F, Rivera Tostado A, Johnson HL, Mistry RM, Mancini MG, Mancini MA. Gene transcription regulation by ER at the single cell and allele level. Steroids 2023; 200:109313. [PMID: 37758052 PMCID: PMC10842394 DOI: 10.1016/j.steroids.2023.109313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
In this short review we discuss the current view of how the estrogen receptor (ER), a pivotal member of the nuclear receptor superfamily of transcription factors, regulates gene transcription at the single cell and allele level, focusing on in vitro cell line models. We discuss central topics and new trends in molecular biology including phenotypic heterogeneity, single cell sequencing, nuclear phase separated condensates, single cell imaging, and image analysis methods, with particular focus on the methodologies and results that have been reported in the last few years using microscopy-based techniques. These observations augment the results from biochemical assays that lead to a much more complex and dynamic view of how ER, and arguably most transcription factors, act to regulate gene transcription.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States.
| | | | - Hannah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Ragini M Mistry
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
4
|
Aghayev Z, Szafran AT, Tran A, Ganesh HS, Stossi F, Zhou L, Mancini MA, Pistikopoulos EN, Beykal B. Machine Learning Methods for Endocrine Disrupting Potential Identification Based on Single-Cell Data. Chem Eng Sci 2023; 281:119086. [PMID: 37637227 PMCID: PMC10448728 DOI: 10.1016/j.ces.2023.119086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Humans are continuously exposed to a variety of toxicants and chemicals which is exacerbated during and after environmental catastrophes such as floods, earthquakes, and hurricanes. The hazardous chemical mixtures generated during these events threaten the health and safety of humans and other living organisms. This necessitates the development of rapid decision-making tools to facilitate mitigating the adverse effects of exposure on the key modulators of the endocrine system, such as the estrogen receptor alpha (ERα), for example. The mechanistic stages of the estrogenic transcriptional activity can be measured with high content/high throughput microscopy-based biosensor assays at the single-cell level, which generates millions of object-based minable data points. By combining computational modeling and experimental analysis, we built a highly accurate data-driven classification framework to assess the endocrine disrupting potential of environmental compounds. The effects of these compounds on the ERα pathway are predicted as being receptor agonists or antagonists using the principal component analysis (PCA) projections of high throughput, high content image analysis descriptors. The framework also combines rigorous preprocessing steps and nonlinear machine learning algorithms, such as the Support Vector Machines and Random Forest classifiers, to develop highly accurate mathematical representations of the separation between ERα agonists and antagonists. The results show that Support Vector Machines classify the unseen chemicals correctly with more than 96% accuracy using the proposed framework, where the preprocessing and the PCA steps play a key role in suppressing experimental noise and unraveling hidden patterns in the dataset.
Collapse
Affiliation(s)
- Zahir Aghayev
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT
| | - Adam T. Szafran
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Anh Tran
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
- Texas A&M Energy Institute, Texas A&M University, College Station, TX
| | - Hari S. Ganesh
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India
| | - Fabio Stossi
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX
| | - Michael A. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX
| | - Efstratios N. Pistikopoulos
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
- Texas A&M Energy Institute, Texas A&M University, College Station, TX
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT
| |
Collapse
|
5
|
Abstract
Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
- Department of Physics, University of Maryland, College Park, Maryland, USA;
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, Maryland, USA;
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| |
Collapse
|
6
|
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet 2022; 38:1019-1047. [PMID: 35811173 PMCID: PMC9474616 DOI: 10.1016/j.tig.2022.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
Gene regulation by transcriptional enhancers is the dominant mechanism driving cell type- and signal-specific transcriptional diversity in metazoans. However, over four decades since the original discovery, how enhancers operate in the nuclear space remains largely enigmatic. Recent multidisciplinary efforts combining real-time imaging, genome sequencing, and biophysical strategies provide insightful but conflicting models of enhancer-mediated gene control. Here, we review the discovery and progress in enhancer biology, emphasizing the recent findings that acutely activated enhancers assemble regulatory machinery as mesoscale architectural structures with distinct physical properties. These findings help formulate novel models that explain several mysterious features of the assembly of transcriptional enhancers and the mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Varticovski L, Stavreva DA, McGowan A, Raziuddin R, Hager GL. Endocrine disruptors of sex hormone activities. Mol Cell Endocrinol 2022; 539:111415. [PMID: 34339825 PMCID: PMC8762672 DOI: 10.1016/j.mce.2021.111415] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022]
Abstract
Sex hormones, such as androgens, estrogens and progestins are naturally occurring compounds that tightly regulate endocrine systems in a variety of living organisms. Uncontrolled environmental exposure to these hormones or their biological and synthetic mimetics has been widely documented. Furthermore, water contaminants penetrate soil to affect flora, fauna and ultimately humans. Because endocrine systems evolved to respond to very small changes in hormone levels, the low levels found in the environment cannot be ignored. The combined actions of sex hormones with glucocorticoids and other nuclear receptors disruptors creates additional level of complexity including the newly described "dynamic assisted loading" mechanism. We reviewed the extensive literature pertaining to world-wide detection of these disruptors and created a detailed Table on the development and current status of methods used for their analysis.
Collapse
Affiliation(s)
- L Varticovski
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - D A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A McGowan
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Raziuddin
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - G L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Bolt MJ, Singh P, Obkirchner CE, Powell RT, Mancini MG, Szafran AT, Stossi F, Mancini MA. Endocrine disrupting chemicals differentially alter intranuclear dynamics and transcriptional activation of estrogen receptor-α. iScience 2021; 24:103227. [PMID: 34712924 PMCID: PMC8529556 DOI: 10.1016/j.isci.2021.103227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Transcription is a highly regulated sequence of stochastic processes utilizing many regulators, including nuclear receptors (NR) that respond to stimuli. Endocrine disrupting chemicals (EDCs) in the environment can compete with natural ligands for nuclear receptors to alter transcription. As nuclear dynamics can be tightly linked to transcription, it is important to determine how EDCs affect NR mobility. We use an EPA-assembled set of 45 estrogen receptor-α (ERα) ligands and EDCs in our engineered PRL-Array model to characterize their effect upon transcription using fluorescence in situ hybridization and fluorescence recovery after photobleaching (FRAP). We identified 36 compounds that target ERα-GFP to a transcriptionally active, visible locus. Using a novel method for multi-region FRAP analysis we find a strong negative correlation between ERα mobility and inverse agonists. Our findings indicate that ERα mobility is not solely tied to transcription but affected highly by the chemical class binding the receptor. Development of a new algorithm for multi-foci FRAP analysis ERα agonists can be segregated into fast-moving and slow-moving receptor groups ERα inverse agonists receptor mobility inversely correlates with transcription Steroidal compounds result in a slower moving receptor than other classes
Collapse
Affiliation(s)
- Michael J Bolt
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA.,Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Pankaj Singh
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA.,Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Caroline E Obkirchner
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA.,Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam T Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA.,Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
9
|
Mukherjee R, Beykal B, Szafran AT, Onel M, Stossi F, Mancini MG, Lloyd D, Wright FA, Zhou L, Mancini MA, Pistikopoulos EN. Classification of estrogenic compounds by coupling high content analysis and machine learning algorithms. PLoS Comput Biol 2020; 16:e1008191. [PMID: 32970665 PMCID: PMC7538107 DOI: 10.1371/journal.pcbi.1008191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/06/2020] [Accepted: 07/25/2020] [Indexed: 12/28/2022] Open
Abstract
Environmental toxicants affect human health in various ways. Of the thousands of chemicals present in the environment, those with adverse effects on the endocrine system are referred to as endocrine-disrupting chemicals (EDCs). Here, we focused on a subclass of EDCs that impacts the estrogen receptor (ER), a pivotal transcriptional regulator in health and disease. Estrogenic activity of compounds can be measured by many in vitro or cell-based high throughput assays that record various endpoints from large pools of cells, and increasingly at the single-cell level. To simultaneously capture multiple mechanistic ER endpoints in individual cells that are affected by EDCs, we previously developed a sensitive high throughput/high content imaging assay that is based upon a stable cell line harboring a visible multicopy ER responsive transcription unit and expressing a green fluorescent protein (GFP) fusion of ER. High content analysis generates voluminous multiplex data comprised of minable features that describe numerous mechanistic endpoints. In this study, we present a machine learning pipeline for rapid, accurate, and sensitive assessment of the endocrine-disrupting potential of benchmark chemicals based on data generated from high content analysis. The multidimensional imaging data was used to train a classification model to ultimately predict the impact of unknown compounds on the ER, either as agonists or antagonists. To this end, both linear logistic regression and nonlinear Random Forest classifiers were benchmarked and evaluated for predicting the estrogenic activity of unknown compounds. Furthermore, through feature selection, data visualization, and model discrimination, the most informative features were identified for the classification of ER agonists/antagonists. The results of this data-driven study showed that highly accurate and generalized classification models with a minimum number of features can be constructed without loss of generality, where these machine learning models serve as a means for rapid mechanistic/phenotypic evaluation of the estrogenic potential of many chemicals. Chemical contaminants or toxicants pose environmental and health-related risks for exposure. The ability to rapidly understand their biological impact, specifically on a key modulator of important physiological and pathological states in the human body is essential for diagnosing and avoiding undesirable health outcomes during environmental emergencies. In this study, we use advanced data analytics for creating statistical models that can accurately predict the endocrinological activity of toxic chemicals based on high throughput/high content image analysis data. We focus on a subclass of chemicals that affect the estrogen receptor (ER), which is a pivotal transcriptional regulator in health and disease. The multidimensional imaging data of these benchmark chemicals are used to train a classification model to ultimately predict the impact of unknown compounds on the ER, either as agonists or antagonists. To this end, we evaluate linear and nonlinear classifiers for predicting the estrogenic activity of unknown compounds and use feature selection, data visualization, and model discrimination methodologies to identify the most informative features for the classification of ER agonists/antagonists.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| | - Burcu Beykal
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
| | - Adam T. Szafran
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melis Onel
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
| | - Fabio Stossi
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Maureen G. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Dillon Lloyd
- Bioinformatics Research Center, Center for Human Health and the Environment, Department of Statistics, North Carolina State University, Raleigh, NC, United States of America
| | - Fred A. Wright
- Bioinformatics Research Center, Center for Human Health and the Environment, Department of Statistics, North Carolina State University, Raleigh, NC, United States of America
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, United States of America
| | - Michael A. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
- Texas A&M University Institute for Bioscience and Technology, Houston, TX, United States of America
- Pharmacology and Chemical Genomics, Baylor College of Medicine, Houston, TX, United States of America
| | - Efstratios N. Pistikopoulos
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
10
|
Szafran AT, Bolt MJ, Obkirchner CE, Mancini MG, Helsen C, Claessens F, Stossi F, Mancini MA. A Mechanistic High-Content Analysis Assay Using a Chimeric Androgen Receptor That Rapidly Characterizes Androgenic Chemicals. SLAS DISCOVERY 2020; 25:695-708. [PMID: 32392092 DOI: 10.1177/2472555220922917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human health is at risk from environmental exposures to a wide range of chemical toxicants and endocrine-disrupting chemicals (EDCs). As part of understanding this risk, the U.S. Environmental Protection Agency (EPA) has been pursuing new high-throughput in vitro assays and computational models to characterize EDCs. EPA models have incorporated our high-content analysis-based green fluorescent protein estrogen receptor (GFP-ER): PRL-HeLa assay, which allows direct visualization of ER binding to DNA regulatory elements. Here, we characterize a modified functional assay based on the stable expression of a chimeric androgen receptor (ARER), wherein a region containing the native AR DNA-binding domain (DBD) was replaced with the ERα DBD (amino acids 183-254). We demonstrate that the AR agonist dihydrotestosterone induces GFP-ARER nuclear translocation, PRL promoter binding, and transcriptional activity at physiologically relevant concentrations (<1 nM). In contrast, the AR antagonist bicalutamide induces only nuclear translocation of the GFP-ARER receptor (at μM concentrations). Estradiol also fails to induce visible chromatin binding, indicating androgen specificity. In a screen of reference chemicals from the EPA and the Agency for Toxic Substances and Disease Registry, the GFP-ARER cell model identified and mechanistically grouped activity by known (anti-)androgens based on the ability to induce nuclear translocation and/or chromatin binding. Finally, the cell model was used to identify potential (anti-)androgens in environmental samples in collaboration with the Houston Ship Channel/Galveston Bay Texas A&M University EPA Superfund Research Program. Based on these data, the chromatin-binding, in vitro assay-based GFP-ARER model represents a selective tool for rapidly identifying androgenic activity associated with drugs, chemicals, and environmental samples.
Collapse
Affiliation(s)
- Adam T Szafran
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael J Bolt
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, TX, USA.,GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | | | - Maureen G Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium, Europe
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium, Europe
| | - Fabio Stossi
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Michael A Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, TX, USA.,GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| |
Collapse
|
11
|
Stossi F, Dandekar RD, Mancini MG, Gu G, Fuqua SAW, Nardone A, De Angelis C, Fu X, Schiff R, Bedford MT, Xu W, Johansson HE, Stephan CC, Mancini MA. Estrogen-induced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Res 2020; 48:1800-1810. [PMID: 31930333 PMCID: PMC7039002 DOI: 10.1093/nar/gkz1172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are pivotal modulators of pathophysiological processes in many organs, where they interact with nuclear receptors to regulate gene transcription. However, our understanding of hormone action at the single cell level remains incomplete. Here, we focused on estrogen stimulation of the well-characterized GREB1 and MYC target genes that revealed large differences in cell-by-cell responses, and, more interestingly, between alleles within the same cell, both over time and hormone concentration. We specifically analyzed the role of receptor level and activity state during allele-by-allele regulation and found that neither receptor level nor activation status are the determinant of maximal hormonal response, indicating that additional pathways are potentially in place to modulate cell- and allele-specific responses. Interestingly, we found that a small molecule inhibitor of the arginine methyltransferases CARM1 and PRMT6 was able to increase, in a gene specific manner, the number of active alleles/cell before and after hormonal stimulation, suggesting that mechanisms do indeed exist to modulate hormone receptor responses at the single cell and allele level.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
- Gulf Coast Consortia Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
| | - Radhika D Dandekar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Gulf Coast Consortia Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
| | - Guowei Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suzanne A W Fuqua
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Agostina Nardone
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyong Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Schiff
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | | | - Clifford C Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
- Gulf Coast Consortia Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Exploring Protein⁻Protein Interaction in the Study of Hormone-Dependent Cancers. Int J Mol Sci 2018; 19:ijms19103173. [PMID: 30326622 PMCID: PMC6213999 DOI: 10.3390/ijms19103173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptors promote target gene transcription when they form a dimer, in which two identical (homodimer) or different (heterodimer) proteins are bound to each other. In hormone-dependent cancers, hormone receptor dimerization plays pivotal roles, not only in the pathogenesis or development of the tumors, but also in the development of therapeutic resistance. Protein–protein interactions (PPIs), including dimerization and complex formation, have been also well-known to be required for proteins to exert their functions. The methods which could detect PPIs are genetic engineering (i.e., resonance energy transfer) and/or antibody technology (i.e., co-immunoprecipitation) using cultured cells. In addition, visualization of the target proteins in tissues can be performed using antigen–antibody reactions, as in immunohistochemistry. Furthermore, development of microscopic techniques (i.e., electron microscopy and confocal laser microscopy) has made it possible to visualize intracellular and/or intranuclear organelles. We have recently reported the visualization of estrogen receptor dimers in breast cancer tissues by using the in situ proximity ligation assay (PLA). PLA was developed along the lines of antibody technology development, and this assay has made it possible to visualize PPIs in archival tissue specimens. Localization of PPI in organelles has also become possible using super-resolution microscopes exceeding the resolution limit of conventional microscopes. Therefore, in this review, we summarize the methodologies used for studying PPIs in both cells and tissues, and review the recently reported studies on PPIs of hormones.
Collapse
|
13
|
Matsuda KI, Hashimoto T, Kawata M. Intranuclear Mobility of Estrogen Receptor: Implication for Transcriptional Regulation. Acta Histochem Cytochem 2018; 51:129-136. [PMID: 30279614 PMCID: PMC6160615 DOI: 10.1267/ahc.18023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022] Open
Abstract
The estrogen receptor (ER) is a ligand-dependent transcription factor that has two subtypes: ERα and ERβ. ERs regulate transcription of estrogen-responsive genes through interactions with multiple intranuclear components, such as cofactors and the nuclear matrix. Live cell imaging using fluorescent protein-labeled ERs has revealed that ligand-activated ERs are highly mobile in the nucleus, with transient association with the DNA and nuclear matrix. Scaffold attachment factor B (SAFB) 1 and its paralogue, SAFB2, are nuclear matrix-binding proteins that negatively modulate ERα-mediated transcription. Expression of SAFB1 and SAFB2 reduces the mobility of ERα in the presence of ligand. This regulatory machinery is emerging as an epigenetic-like mechanism that alters transcriptional activity through control of intranuclear molecular mobility.
Collapse
Affiliation(s)
- Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Takashi Hashimoto
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences
| | | |
Collapse
|
14
|
Abstract
Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. The degree to which the arrangement of motif sites within regulatory elements determines their function remains unclear. Here, we show that the positional distribution of TF motif sites within nucleosome-depleted regions of DNA fall into six distinct classes. These patterns are highly consistent across cell types and bring together factors that have similar functional and binding properties. Furthermore, the position of motif sites appears to be related to their known functions. Our results suggest that TFs play distinct roles in forming a functional enhancer, facilitated by their position within a regulatory sequence. Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers.
Collapse
|
15
|
Rigo R, Dean WL, Gray RD, Chaires JB, Sissi C. Conformational profiling of a G-rich sequence within the c-KIT promoter. Nucleic Acids Res 2018; 45:13056-13067. [PMID: 29069417 PMCID: PMC5727440 DOI: 10.1093/nar/gkx983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/11/2017] [Indexed: 12/03/2022] Open
Abstract
G-quadruplexes (G4) within oncogene promoters are considered to be promising anticancer targets. However, often they undergo complex structural rearrangements that preclude a precise description of the optimal target. Moreover, even when solved structures are available, they refer to the thermodynamically stable forms but little or no information is supplied about their complex multistep folding pathway. To shed light on this issue, we systematically followed the kinetic behavior of a G-rich sequence located within the c-KIT proximal promoter (kit2) in the presence of monovalent cations K+ and Na+. A very short-lived intermediate was observed to start the G4 folding process in both salt conditions. Subsequently, the two pathways diverge to produce distinct thermodynamically stable species (parallel and antiparallel G-quadruplex in K+ and Na+, respectively). Remarkably, in K+-containing solution a branched pathway is required to drive the wild type sequence to distribute between a monomeric and dimeric G-quadruplex. Our approach has allowed us to identify transient forms whose relative abundance is regulated by the environment; some of them were characterized by a half-life within the timescale of physiological DNA processing events and thus may represent possible unexpected targets for ligands recognition.
Collapse
Affiliation(s)
- Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jonathan B Chaires
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
16
|
Stossi F, Dandekar RD, Bolt MJ, Newberg JY, Mancini MG, Kaushik AK, Putluri V, Sreekumar A, Mancini MA. High throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-regulator. Oncotarget 2017; 7:16962-74. [PMID: 26918604 PMCID: PMC4941363 DOI: 10.18632/oncotarget.7655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/17/2016] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer remains a deadly disease especially when patients become resistant to drugs that target the Androgen Receptor (AR) ligand binding domain. At this stage, patients develop recurring castrate-resistant prostate cancers (CRPCs). Interestingly, CRPC tumors maintain dependency on AR for growth; moreover, in CRPCs, constitutively active AR splice variants (e.g., AR-V7) begin to be expressed at higher levels. These splice variants lack the ligand binding domain and are rendered insensitive to current endocrine therapies. Thus, it is of paramount importance to understand what regulates the expression of AR and its splice variants to identify new therapeutic strategies in CRPCs. Here, we used high throughput microscopy and quantitative image analysis to evaluate effects of selected endocrine disruptors on AR levels in multiple breast and prostate cancer cell lines. Bisphenol AP (BPAP), which is used in chemical and medical industries, was identified as a down-regulator of both full length AR and the AR-V7 splice variant. We validated its activity by performing time-course, dose-response, Western blot and qPCR analyses. BPAP also reduced the percent of cells in S phase, which was accompanied by a ~60% loss in cell numbers and colony formation in anchorage-independent growth assays. Moreover, it affected mitochondria size and cell metabolism. In conclusion, our high content analysis-based screening platform was used to classify the effect of compounds on endogenous ARs, and identified BPAP as being capable of causing AR (both full-length and variants) down-regulation, cell cycle arrest and metabolic alterations in CRPC cell lines.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Radhika D Dandekar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin Y Newberg
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akash K Kaushik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Activity-Dependent Dynamics of the Transcription Factor of cAMP-Response Element Binding Protein in Cortical Neurons Revealed by Single-Molecule Imaging. J Neurosci 2017; 37:1-10. [PMID: 28053025 DOI: 10.1523/jneurosci.0943-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
Transcriptional regulation is crucial for neuronal activity-dependent processes that govern neuronal circuit formation and synaptic plasticity. An intriguing question is how neuronal activity influences the spatiotemporal interactions between transcription factors and their target sites. Here, using a single-molecule imaging technique, we investigated the activity dependence of DNA binding and dissociation events of cAMP-response element binding protein (CREB), a principal factor in activity-dependent transcription, in mouse cortical neurons. To visualize CREB at the single-molecule level, fluorescent-tagged CREB in living dissociated cortical neurons was observed by highly inclined and laminated optical sheet microscopy. We found that a significant fraction of CREB spots resided in the restricted locations in the nucleus for several seconds (dissociation rate constant: 0.42 s-1). In contrast, two mutant CREBs, which cannot bind to the cAMP-response element, scarcely exhibited long-term residence. To test the possibility that CREB dynamics depends on neuronal activity, pharmacological treatments and an optogenetic method involving channelrhodopsin-2 were applied to cultured cortical neurons. Increased neuronal activity did not appear to influence the residence time of CREB spots, but markedly increased the number of restricted locations (hot spots) where CREB spots frequently resided with long residence times (>1 s). These results suggest that neuronal activity promotes CREB-dependent transcription by increasing the frequency of CREB binding to highly localized genome locations. SIGNIFICANCE STATEMENT The transcription factor, cAMP response element-binding protein (CREB) is known to regulate gene expression in neuronal activity-dependent processes. However, its spatiotemporal interactions with the genome remain unknown. Single-molecule imaging in cortical neurons revealed that fluorescent-tagged CREB spots frequently reside at fixed nuclear locations in the time range of several seconds. Neuronal activity had little effect on the CREB residence time, but increased the rapid and frequent reappearance of long-residence CREB spots at the same nuclear locations. Thus, activity-dependent transcription is attributable to frequent binding of CREB to specific genome loci.
Collapse
|
18
|
Szafran AT, Stossi F, Mancini MG, Walker CL, Mancini MA. Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS One 2017; 12:e0180141. [PMID: 28704378 PMCID: PMC5509144 DOI: 10.1371/journal.pone.0180141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/10/2017] [Indexed: 12/17/2022] Open
Abstract
Animal studies have linked the estrogenic properties of bisphenol A (BPA) to adverse effects on the endocrine system. Because of concerns for similar effects in humans, there is a desire to replace BPA in consumer products, and a search for BPA replacements that lack endocrine-disrupting bioactivity is ongoing. We used multiple cell-based models, including an established multi-parametric, high throughput microscopy-based platform that incorporates engineered HeLa cell lines with visible ERα- or ERβ-regulated transcription loci, to discriminate the estrogen-like and androgen-like properties of previously uncharacterized substituted bisphenol derivatives and hydroquinone. As expected, BPA induced 70–80% of the estrogen-like activity via ERα and ERβ compared to E2 in the HeLa prolactin array cell line. 2,2’ BPA, Bisguaiacol F, CHDM 4-hydroxybuyl acrylate, hydroquinone, and TM modified variants of BPF showed very limited estrogen-like or androgen-like activity (< 10% of that observed with the control compounds). Interestingly, TM-BFP and CHDM 4-hydroxybuyl acrylate, but not their derivatives, demonstrated evidence of anti-estrogenic and anti-androgenic activity. Our findings indicate that Bisguaiacol F, TM-BFP-ER and TM-BPF-DGE demonstrate low potential for affecting estrogenic or androgenic endocrine activity. This suggest that the tested compounds could be suitable commercially viable alternatives to BPA.
Collapse
Affiliation(s)
- Adam T. Szafran
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabio Stossi
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maureen G. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cheryl L. Walker
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- DeepBio, Inc., Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Yao J. Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook. J Mol Biol 2017; 429:14-31. [DOI: 10.1016/j.jmb.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 01/07/2023]
|
20
|
Goldstein I, Baek S, Presman DM, Paakinaho V, Swinstead EE, Hager GL. Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response. Genome Res 2016; 27:427-439. [PMID: 28031249 PMCID: PMC5340970 DOI: 10.1101/gr.212175.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/21/2016] [Indexed: 02/03/2023]
Abstract
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Erin E Swinstead
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Genome-wide footprinting: ready for prime time? Nat Methods 2016; 13:222-228. [PMID: 26914206 DOI: 10.1038/nmeth.3766] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/31/2015] [Indexed: 01/16/2023]
Abstract
High-throughput sequencing technologies have allowed many gene locus-level molecular biology assays to become genome-wide profiling methods. DNA-cleaving enzymes such as DNase I have been used to probe accessible chromatin. The accessible regions contain functional regulatory sites, including promoters, insulators and enhancers. Deep sequencing of DNase-seq libraries and computational analysis of the cut profiles have been used to infer protein occupancy in the genome at the nucleotide level, a method introduced as 'digital genomic footprinting'. The approach has been proposed as an attractive alternative to the analysis of transcription factors (TFs) by chromatin immunoprecipitation followed by sequencing (ChIP-seq), and in theory it should overcome antibody issues, poor resolution and batch effects. Recent reports point to limitations of the DNase-based genomic footprinting approach and call into question the scope of detectable protein occupancy, especially for TFs with short-lived chromatin binding. The genomics community is grappling with issues concerning the utility of genomic footprinting and is reassessing the proposed approaches in terms of robust deliverables. Here we summarize the consensus as well as different views emerging from recent reports, and we describe the remaining issues and hurdles for genomic footprinting.
Collapse
|
22
|
Tesikova M, Dezitter X, Nenseth HZ, Klokk TI, Mueller F, Hager GL, Saatcioglu F. Divergent Binding and Transactivation by Two Related Steroid Receptors at the Same Response Element. J Biol Chem 2016; 291:11899-910. [PMID: 27056330 DOI: 10.1074/jbc.m115.684480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 01/19/2023] Open
Abstract
Transcription factor (TF) recruitment to chromatin is central to activation of transcription. TF-chromatin interactions are highly dynamic, which are evaluated by recovery half time (t1/2) in seconds, determined by fluorescence recovery experiments in living cells, and chromatin immunoprecipitation (ChIP) analysis, measured in minutes. These two states are related: the larger the t1/2, the longer the ChIP occupancy resulting in increased transcription. Here we present data showing that this relationship does not always hold. We found that histone deacetylase inhibitors (HDACis) significantly increased t1/2 of green fluorescent protein (GFP) fused androgen receptor (AR) on a tandem array of positive hormone response elements (HREs) in chromatin. This resulted in increased ChIP signal of GFP-AR. Unexpectedly, however, transcription was inhibited. In contrast, the GFP-fused glucocorticoid receptor (GR), acting through the same HREs, displayed a profile consistent with current models. We provide evidence that these differences are mediated, at least in part, by HDACs. Our results provide insight into TF action in living cells and show that very closely related TFs may trigger significantly divergent outcomes at the same REs.
Collapse
Affiliation(s)
- Martina Tesikova
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Xavier Dezitter
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Hatice Z Nenseth
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tove I Klokk
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Florian Mueller
- Computational Imaging and Modeling Unit, Institut Pasteur, 75015 Paris, France
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Fahri Saatcioglu
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway, Institute for Cancer Genetics and Informatics, Division of Cancer and Surgery, Oslo University Hospital, 0310 Oslo, Norway
| |
Collapse
|
23
|
Gusmao EG, Allhoff M, Zenke M, Costa IG. Analysis of computational footprinting methods for DNase sequencing experiments. Nat Methods 2016; 13:303-9. [PMID: 26901649 DOI: 10.1038/nmeth.3772] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
DNase-seq allows nucleotide-level identification of transcription factor binding sites on the basis of a computational search of footprint-like DNase I cleavage patterns on the DNA. Frequently in high-throughput methods, experimental artifacts such as DNase I cleavage bias affect the computational analysis of DNase-seq experiments. Here we performed a comprehensive and systematic study on the performance of computational footprinting methods. We evaluated ten footprinting methods in a panel of DNase-seq experiments for their ability to recover cell-specific transcription factor binding sites. We show that three methods--HINT, DNase2TF and PIQ--consistently outperformed the other evaluated methods and that correcting the DNase-seq signal for experimental artifacts significantly improved the accuracy of computational footprints. We also propose a score that can be used to detect footprints arising from transcription factors with potentially short residence times.
Collapse
Affiliation(s)
- Eduardo G Gusmao
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, Aachen, Germany
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Manuel Allhoff
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, Aachen, Germany
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, Aachen, Germany
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Stavreva DA, Hager GL. Chromatin structure and gene regulation: a dynamic view of enhancer function. Nucleus 2016; 6:442-8. [PMID: 26765055 DOI: 10.1080/19491034.2015.1107689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Localized chromatin organization is now recognized as an important determinant of cell identity and developmental pathways. Recent studies have demonstrated that these epigenetic states are unexpectedly dynamic and malleable. In this Extra view we will highlight the transient nature of stimulus-induced enhancer accessibility and its importance for transcription regulation. Using glucocorticoid receptor (GR) as a model system we will discuss spatiotemporal relationships between receptor/chromatin interactions, lifetimes of the DNase I hypersensitivity sites (DHSs), long-range interactions, and gene regulation. We propose that differential temporal activation and utilization of distal regulatory elements plays a role in directing divergent stimulus-induced transcriptional programs.
Collapse
Affiliation(s)
- Diana A Stavreva
- a Laboratory of Receptor Biology and Gene Expression; National Cancer Institute; National Institutes of Health ; Bethesda , MD USA
| | - Gordon L Hager
- a Laboratory of Receptor Biology and Gene Expression; National Cancer Institute; National Institutes of Health ; Bethesda , MD USA
| |
Collapse
|
25
|
Abstract
Mammals have at least 210 histologically diverse cell types (Alberts, Molecular biology of the cell. Garland Science, New York, 2008) and the number would be even higher if functional differences are taken into account. The genome in each of these cell types is differentially programmed to express the specific set of genes needed to fulfill the phenotypical requirements of the cell. Furthermore, in each of these cell types, the gene program can be differentially modulated by exposure to external signals such as hormones or nutrients. The basis for the distinct gene programs relies on cell type-selective activation of transcriptional enhancers, which in turn are particularly sensitive to modulation. Until recently we had only fragmented insight into the regulation of a few of these enhancers; however, the recent advances in high-throughput sequencing technologies have enabled the development of a large number of technologies that can be used to obtain genome-wide insight into how genomes are reprogrammed during development and in response to specific external signals. By applying such technologies, we have begun to reveal the cross-talk between metabolism and the genome, i.e., how genomes are reprogrammed in response to metabolites, and how the regulation of metabolic networks is coordinated at the genomic level.
Collapse
Affiliation(s)
- Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
26
|
Treviño LS, Bolt MJ, Grimm SL, Edwards DP, Mancini MA, Weigel NL. Differential Regulation of Progesterone Receptor-Mediated Transcription by CDK2 and DNA-PK. Mol Endocrinol 2015; 30:158-72. [PMID: 26652902 DOI: 10.1210/me.2015-1144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progesterone receptor (PR) function is altered by cell signaling, but the mechanisms of kinase-specific regulation are not well defined. To examine the role of cell signaling in the regulation of PR transcriptional activity, we have utilized a previously developed mammalian-based estrogen-response element promoter array cell model and automated cell imaging and analysis platform to visualize and quantify effects of specific kinases on different mechanistic steps of PR-mediated target gene activation. For these studies, we generated stable estrogen-response element array cell lines expressing inducible chimeric PR that contains a swap of the estrogen receptor-α DNA-binding domain for the DNA-binding domain of PR. We have focused on 2 kinases important for steroid receptor activity: cyclin-dependent kinase 2 and DNA-dependent protein kinase. Treatment with either a Cdk1/2 inhibitor (NU6102) or a DNA-dependent protein kinase inhibitor (NU7441) decreased hormone-mediated chromatin decondensation and transcriptional activity. Further, we observed a quantitative reduction in the hormone-mediated recruitment of select coregulator proteins with NU6102 that is not observed with NU7441. In parallel, we determined the effect of kinase inhibition on hormone-mediated induction of primary and mature transcripts of endogenous genes in T47D breast cancer cells. Treatment with NU6102 was much more effective than NU7441, in inhibiting induction of PR target genes that exhibit a rapid increase in primary transcript expression in response to hormone. Taken together, these results indicate that the 2 kinases regulate PR transcriptional activity by distinct mechanisms.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael J Bolt
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Sandra L Grimm
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Dean P Edwards
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael A Mancini
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Nancy L Weigel
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
27
|
Sugo N, Morimatsu M, Arai Y, Kousoku Y, Ohkuni A, Nomura T, Yanagida T, Yamamoto N. Single-Molecule Imaging Reveals Dynamics of CREB Transcription Factor Bound to Its Target Sequence. Sci Rep 2015; 5:10662. [PMID: 26039515 PMCID: PMC4454023 DOI: 10.1038/srep10662] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Proper spatiotemporal gene expression is achieved by selective DNA binding of transcription factors in the genome. The most intriguing question is how dynamic interactions between transcription factors and their target sites contribute to gene regulation by recruiting the basal transcriptional machinery. Here we demonstrate individual binding and dissociation events of the transcription factor cAMP response element-binding protein (CREB), both in vitro and in living cells, using single-molecule imaging. Fluorescent–tagged CREB bound to its target sequence cAMP-response element (CRE) for a remarkably longer period (dissociation rate constant: 0.21 s-1) than to an unrelated sequence (2.74 s-1). Moreover, CREB resided at restricted positions in the living cell nucleus for a comparable period. These results suggest that CREB stimulates transcription by binding transiently to CRE in the time range of several seconds.
Collapse
Affiliation(s)
- Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Yoshiyuki Arai
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshinori Kousoku
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Aya Ohkuni
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Toshio Yanagida
- 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan [2] Riken Quantitative Biological Center (QBic), Osaka, Japan
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
28
|
Bolt MJ, Stossi F, Callison AM, Mancini MG, Dandekar R, Mancini MA. Systems level-based RNAi screening by high content analysis identifies UBR5 as a regulator of estrogen receptor-α protein levels and activity. Oncogene 2015; 34:154-64. [PMID: 24441042 PMCID: PMC4871123 DOI: 10.1038/onc.2013.550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/15/2013] [Accepted: 11/08/2013] [Indexed: 12/17/2022]
Abstract
Estrogen receptor-α (ERα) is a central transcription factor that regulates mammary gland physiology and a key driver in breast cancer. In the present study, we aimed to identify novel modulators of ERα-mediated transcriptional regulation via a custom-built siRNA library screen. This screen was directed against a variety of coregulators, transcription modifiers, signaling molecules and DNA damage response proteins. By utilizing a microscopy-based, multi-end point, estrogen responsive biosensor cell line platform, the primary screen identified a wide range of factors that altered ERα protein levels, chromatin remodeling and mRNA output. We then focused on UBR5, a ubiquitin ligase and known oncogene that modulates ERα protein levels and transcriptional output. Finally, we demonstrated that UBR5 also affects endogenous ERα target genes and E2-mediated cell proliferation in breast cancer cells. In conclusion, our multi-end point RNAi screen identified novel modulators of ERα levels and activity, and provided a robust systems level view of factors involved in mechanisms of nuclear receptor action and pathophysiology. Utilizing a high throughput RNAi screening approach we identified UBR5, a protein commonly amplified in breast cancer, as a novel regulator of ERα protein levels and transcriptional activity.
Collapse
Affiliation(s)
- M J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - F Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A M Callison
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - M G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - R Dandekar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - M A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
29
|
Szafran AT, Mancini MA. The myImageAnalysis project: a web-based application for high-content screening. Assay Drug Dev Technol 2014; 12:87-99. [PMID: 24547743 DOI: 10.1089/adt.2013.532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A major challenge faced by screening centers developing image-based assays is the wide range of assays needed compared to the limited resources that are available to effectively analyze and manage them. To overcome this limitation, we have developed the web-based myImageAnalysis (mIA) application, integrated with an open database connectivity compliant database and powered by Pipeline Pilot (PLP) that incorporates dataset tracking, scheduling and archiving, image analysis, and data reporting. For system administrators, mIA provides automated methods for managing and archiving data. For the biologist, this application allows those without any programming or image analysis experience to quickly develop, validate, and share results of complex image-based assays. Further, the structure of the application within PLP allows those with experience in PLP programming to easily add additional analysis tools as required. The tools within mIA allow users to assess basic (cell count, protein per cell, protein subcellular localization) and more advanced (engineered cell lines analysis, cell toxicity) biological image-based assays that employ advanced statistics and provides key assay performance metrics.
Collapse
Affiliation(s)
- Adam T Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, Texas
| | | |
Collapse
|
30
|
Sung MH, Guertin MJ, Baek S, Hager GL. DNase footprint signatures are dictated by factor dynamics and DNA sequence. Mol Cell 2014; 56:275-285. [PMID: 25242143 DOI: 10.1016/j.molcel.2014.08.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/05/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022]
Abstract
Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleavage within accessible chromatin. This phenomenon is interpreted to imply protection of the critical nucleotides by the stably bound protein factor. However, this model conflicts with previous reports of many TFs exchanging with specific binding sites in living cells on a timescale of seconds. We show that TFs with short DNA residence times have no footprints at bound motif elements. Moreover, the nuclease cleavage profile within a footprint originates from the DNA sequence in the factor-binding site, rather than from the protein occupying specific nucleotides. These findings suggest a revised understanding of TF footprinting and reveal limitations in comprehensive reconstruction of the TF regulatory network using this approach.
Collapse
Affiliation(s)
- Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Michael J Guertin
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Nagarajan S, Hossan T, Alawi M, Najafova Z, Indenbirken D, Bedi U, Taipaleenmäki H, Ben-Batalla I, Scheller M, Loges S, Knapp S, Hesse E, Chiang CM, Grundhoff A, Johnsen SA. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription. Cell Rep 2014; 8:460-9. [PMID: 25017071 PMCID: PMC4747248 DOI: 10.1016/j.celrep.2014.06.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/13/2014] [Accepted: 06/11/2014] [Indexed: 12/24/2022] Open
Abstract
The estrogen receptor α (ERα) controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ERα-dependent cancers. We show that BRD4 regulates ERα-induced gene expression by affecting elongation-associated phosphorylation of RNA polymerase II (RNAPII) and histone H2B monoubiquitination. Consistently, BRD4 activity is required for proliferation of ER(+) breast and endometrial cancer cells and uterine growth in mice. Genome-wide studies revealed an enrichment of BRD4 on transcriptional start sites of active genes and a requirement of BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we demonstrate that BRD4 occupancy on distal EREs enriched for H3K27ac is required for recruitment and elongation of RNAPII on EREs and the production of ERα-dependent enhancer RNAs. These results uncover BRD4 as a central regulator of ERα function and potential therapeutic target.
Collapse
Affiliation(s)
- Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany; Institute for Molecular Oncology, University Medical Center Göttingen, 37077 Göttingen, Germany; Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tareq Hossan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany; Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany; Institute for Molecular Oncology, University Medical Center Göttingen, 37077 Göttingen, Germany; Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Upasana Bedi
- Institute for Molecular Oncology, University Medical Center Göttingen, 37077 Göttingen, Germany; Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hanna Taipaleenmäki
- Heisenberg-Group for Molecular Skeletal Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Isabel Ben-Batalla
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marina Scheller
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sonja Loges
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK; Target Discovery Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Eric Hesse
- Heisenberg-Group for Molecular Skeletal Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cheng-Ming Chiang
- University of Texas Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany; Institute for Molecular Oncology, University Medical Center Göttingen, 37077 Göttingen, Germany; Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
32
|
Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat Commun 2014; 5:4456. [PMID: 25034201 PMCID: PMC4144071 DOI: 10.1038/ncomms5456] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 06/19/2014] [Indexed: 12/22/2022] Open
Abstract
Although numerous live-cell measurements have shown that transcription factors (TFs) bind chromatin transiently, no measurements of transient binding have been reported at the endogenous response elements (REs) where transcription is normally induced. Here we show that at endogenous REs the transcriptionally productive specific binding of two TFs, p53 and the glucocorticoid receptor (GR), is transient. We also find that the transient residence times of GR at endogenous REs are roughly comparable to those at an artificial, multi-copy array of gene regulatory sites, supporting the use of multi-copy arrays for live-cell analysis of transcription. Finally, we find that at any moment only a small fraction of TF molecules are engaged in transcriptionally productive binding at endogenous REs. The small fraction of bound factors provides one explanation for gene bursting and it also indicates that REs may often be unoccupied, resulting in partial responses to transcriptional signals.
Collapse
|
33
|
Stossi F, Bolt MJ, Ashcroft FJ, Lamerdin JE, Melnick JS, Powell RT, Dandekar RD, Mancini MG, Walker CL, Westwick JK, Mancini MA. Defining estrogenic mechanisms of bisphenol A analogs through high throughput microscopy-based contextual assays. ACTA ACUST UNITED AC 2014; 21:743-53. [PMID: 24856822 DOI: 10.1016/j.chembiol.2014.03.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 11/26/2022]
Abstract
Environmental exposures to chemically heterogeneous endocrine-disrupting chemicals (EDCs) mimic or interfere with hormone actions and negatively affect human health. Despite public interest and the prevalence of EDCs in the environment, methods to mechanistically classify these diverse chemicals in a high throughput (HT) manner have not been actively explored. Here, we describe the use of multiparametric, HT microscopy-based platforms to examine how a prototypical EDC, bisphenol A (BPA), and 18 poorly studied BPA analogs (BPXs), affect estrogen receptor (ER). We show that short exposure to BPA and most BPXs induces ERα and/or ERβ loading to DNA changing target gene transcription. Many BPXs exhibit higher affinity for ERβ and act as ERβ antagonists, while they act largely as agonists or mixed agonists and antagonists on ERα. Finally, despite binding to ERs, some BPXs exhibit lower levels of activity. Our comprehensive view of BPXs activities allows their classification and the evaluation of potential harmful effects. The strategy described here used on a large-scale basis likely offers a faster, more cost-effective way to identify safer BPA alternatives.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Felicity J Ashcroft
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Reid T Powell
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Radhika D Dandekar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheryl L Walker
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | | | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Chatzimpaloglou A, Kolosov M, Eckols TK, Tweardy DJ, Sarli V. Synthetic and Biological Studies of Phaeosphaerides. J Org Chem 2014; 79:4043-54. [DOI: 10.1021/jo500545d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anthoula Chatzimpaloglou
- Faculty
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Mikhail Kolosov
- Department
of Medicine, Section of Infectious Diseases, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - T. Kris Eckols
- Department
of Medicine, Section of Infectious Diseases, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - David J. Tweardy
- Department
of Medicine, Section of Infectious Diseases, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Vasiliki Sarli
- Faculty
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
35
|
Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 2013; 15:69-81. [PMID: 24342920 DOI: 10.1038/nrg3623] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interaction of regulatory proteins with the complex nucleoprotein structures that are found in mammalian cells involves chromatin reorganization at multiple levels. Mechanisms that support these transitions are complex on many timescales, which range from milliseconds to minutes or hours. In this Review, we discuss emerging concepts regarding the function of regulatory elements in living cells. We also explore the involvement of these dynamic and stochastic processes in the evolution of fluctuating transcriptional activity states that are now commonly reported in eukaryotic systems.
Collapse
|
36
|
Luo Y, North JA, Rose SD, Poirier MG. Nucleosomes accelerate transcription factor dissociation. Nucleic Acids Res 2013; 42:3017-27. [PMID: 24353316 PMCID: PMC3950707 DOI: 10.1093/nar/gkt1319] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factors (TF) bind DNA-target sites within promoters to activate gene expression. TFs target their DNA-recognition sequences with high specificity by binding with resident times of up to hours in vitro. However, in vivo TFs can exchange on the order of seconds. The factors that regulate TF dynamics in vivo and increase dissociation rates by orders of magnitude are not known. We investigated TF binding and dissociation dynamics at their recognition sequence within duplex DNA, single nucleosomes and short nucleosome arrays with single molecule total internal reflection fluorescence (smTIRF) microscopy. We find that the rate of TF dissociation from its site within either nucleosomes or nucleosome arrays is increased by 1000-fold relative to duplex DNA. Our results suggest that TF binding within chromatin could be responsible for the dramatic increase in TF exchange in vivo. Furthermore, these studies demonstrate that nucleosomes regulate DNA–protein interactions not only by preventing DNA–protein binding but by dramatically increasing the dissociation rate of protein complexes from their DNA-binding sites.
Collapse
Affiliation(s)
- Yi Luo
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
37
|
Strehl C, Buttgereit F. Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol Cell Endocrinol 2013; 380:32-40. [PMID: 23403055 DOI: 10.1016/j.mce.2013.01.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 01/01/2023]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of a wide range of rheumatic and other inflammatory diseases. They exert their potent anti-inflammatory and immunosuppressive effects primarily via so called genomic mechanisms, mediated by the cytosolic glucocorticoid receptor (cGR). This mechanism of GC action can be divided into the transactivation and the transrepression processes. However, also rapid effects of GCs exist which are mediated by specific and unspecific non-genomic mechanisms. A clinical relevance of this mode of GC action is assumed for effects mediated by membrane-bound glucocorticoid receptors, but detailed knowledge on the underlying mechanisms is still missing. Great efforts have been made in the past to diminish GC-induced adverse effects, thus improving the benefit/risk ratio of the drugs. Besides approaches to improve the treatment with conventional glucocorticoids currently available to clinicians, new innovative GCs or GC receptor ligands are also being developed.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.
| | | |
Collapse
|
38
|
Samsonov A, Zenser N, Zhang F, Zhang H, Fetter J, Malkov D. Tagging of genomic STAT3 and STAT1 with fluorescent proteins and insertion of a luciferase reporter in the cyclin D1 gene provides a modified A549 cell line to screen for selective STAT3 inhibitors. PLoS One 2013; 8:e68391. [PMID: 23950841 PMCID: PMC3732202 DOI: 10.1371/journal.pone.0068391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/29/2013] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogenic protein that is constitutively activated in numerous cancer cell lines and human cancers. Another STAT family member, STAT1, possesses cancer-inhibitory properties and can promote apoptosis in tumor cells upon activation. To better characterize these important cancer related genes, we tagged STAT3 and STAT1 loci with fluorescent protein (FP) sequences (RFP and GFP respectively) by targeted integration via zinc finger nuclease (ZFN)--mediated homologous recombination in A549 cells that express aberrantly activated STAT3. We inserted the FP transgenes at the N-terminus of the STAT3 locus and at the C-terminus of the STAT1 locus. The integration resulted in endogenous expression of fluorescent STAT3 and STAT1 chimeric fusion proteins. When stimulated with IL-6 or IFN-γ, the cells showed robust nuclear translocation of RFP-STAT3 or STAT1-GFP, respectively. Pre-incubation of cells with a known specific STAT3 inhibitor showed that IFN-γ-induced translocation of STAT1-GFP was not impaired. STAT3 activates multiple downstream targets such as genes involved in cell cycle progression - e.g. cyclin D1. To detect changes in expression of endogenous cyclin D1, we used ZFN technology to insert a secreted luciferase reporter behind the cyclin D1 promoter and separated the luciferase and cyclin D1 coding regions by a 2A sequence to induce a translational skip. The luciferase insertion was made in the RFP-STAT3/STAT1-GFP cell line to have all three reporters in a single cell line. Addition of a STAT3 inhibitor led to suppression of cyclin D1 promoter activity and cell growth arrest. The triple-modified cell line provides a simple and convenient method for high-content screening and pre-clinical testing of potential STAT3 inhibitors in live cells while ensuring that the STAT1 pathway is not affected. This approach of reporting endogenous gene activities using ZFN technology could be applied to other cancer targets.
Collapse
Affiliation(s)
- Andrey Samsonov
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Nathan Zenser
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Fan Zhang
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Hongyi Zhang
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - John Fetter
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Dmitry Malkov
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| |
Collapse
|
39
|
Herbomel G, Kloster-Landsberg M, Folco EG, Col E, Usson Y, Vourc’h C, Delon A, Souchier C. Dynamics of the full length and mutated heat shock factor 1 in human cells. PLoS One 2013; 8:e67566. [PMID: 23861773 PMCID: PMC3704536 DOI: 10.1371/journal.pone.0067566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/23/2013] [Indexed: 11/24/2022] Open
Abstract
Heat shock factor 1 is the key transcription factor of the heat shock response. Its function is to protect the cell against the deleterious effects of stress. Upon stress, HSF1 binds to and transcribes hsp genes and repeated satellite III (sat III) sequences present at the 9q12 locus. HSF1 binding to pericentric sat III sequences forms structures known as nuclear stress bodies (nSBs). nSBs represent a natural amplification of RNA pol II dependent transcription sites. Dynamics of HSF1 and of deletion mutants were studied in living cells using multi-confocal Fluorescence Correlation Spectroscopy (mFCS) and Fluorescence Recovery After Photobleaching (FRAP). In this paper, we show that HSF1 dynamics modifications upon heat shock result from both formation of high molecular weight complexes and increased HSF1 interactions with chromatin. These interactions involve both DNA binding with Heat Shock Element (HSE) and sat III sequences and a more transient sequence-independent binding likely corresponding to a search for more specific targets. We find that the trimerization domain is required for low affinity interactions with chromatin while the DNA binding domain is required for site-specific interactions of HSF1 with DNA.
Collapse
Affiliation(s)
- Gaëtan Herbomel
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | | | - Eric G. Folco
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Edwige Col
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Yves Usson
- University Grenoble I, CNRS, TIMC-IMAG UMR5525, La Tronche, France
| | - Claire Vourc’h
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Antoine Delon
- University Grenoble 1, CNRS, LIPhy UMR 5588, St Martin d’Hères, France
| | - Catherine Souchier
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
- * E-mail:
| |
Collapse
|
40
|
Bolt MJ, Stossi F, Newberg JY, Orjalo A, Johansson HE, Mancini MA. Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses. Nucleic Acids Res 2013; 41:4036-48. [PMID: 23444138 PMCID: PMC3627592 DOI: 10.1093/nar/gkt100] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nuclear receptors (NRs) are central regulators of pathophysiological processes; however, how their responses intertwine is still not fully understood. The aim of this study was to determine whether and how steroid NRs can influence each other’s activity under co-agonist treatment. We used a unique system consisting of a multicopy integration of an estrogen receptor responsive unit that allows direct visualization and quantification of estrogen receptor alpha (ERα) DNA binding, co-regulator recruitment and transcriptional readout. We find that ERα DNA loading is required for other type I nuclear receptors to be co-recruited after dual agonist treatment. We focused on ERα/glucocorticoid receptor interplay and demonstrated that it requires steroid receptor coactivators (SRC-2, SRC-3) and the mediator component MED14. We then validated this cooperative interplay on endogenous target genes in breast cancer cells. Taken together, this work highlights another layer of mechanistic complexity through which NRs cross-talk with each other on chromatin under multiple hormonal stimuli.
Collapse
Affiliation(s)
- Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
41
|
Muyan M, Callahan LM, Huang Y, Lee AJ. The ligand-mediated nuclear mobility and interaction with estrogen-responsive elements of estrogen receptors are subtype specific. J Mol Endocrinol 2012; 49:249-66. [PMID: 23014840 PMCID: PMC3674415 DOI: 10.1530/jme-12-0097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
17β-Estradiol (E(2)) plays important roles in functions of many tissues. E(2) effects are mediated by estrogen receptor (ER) α and β. ERs regulate transcriptions through estrogen-responsive element (ERE)-dependent and ERE-independent modes of action. ER binding to ERE constitutes the basis of the ERE-dependent pathway. Direct/indirect ER interactions with transcription complexes define ERE-independent signaling. ERs share functional features. Ligand-bound ERs nevertheless induce distinct transcription profiles. Live cell imaging indicates a dynamic nature of gene expressions by highly mobile ERs. However, the relative contribution of ER mobility at the ERE-independent pathway to the overall kinetics of ER mobility remains undefined. We used fluorescent recovery after a photo-bleaching approach to assess the ligand-mediated mobilities of ERE binding-defective ERs, ER(EBD). The decrease in ERα mobility with E(2) or the selective ER modulator 4-hydroxyl-tamoxifen (4HT) was largely due to the interaction of the receptor with ERE. Thus, ERα bound to E(2) or 4HT mediates transcriptions from the ERE-independent pathway with remarkably fast kinetics that contributes fractionally to the overall motility of the receptor. The antagonist Imperial Chemical Industries 182 780 immobilized ERαs. The mobilities of ERβ and ERβ(EBD) in the presence of ligands were indistinguishable kinetically. Thus, ERβ mobility is independent of the nature of ligands and the mode of interaction with target sites. Chimeric ERs indicated that the carboxyl-termini are critical regions for subtype-specific mobility. Therefore, while ERs are highly mobile molecules interacting with target sites with fast kinetics, an indication of the hit-and-run model of transcription, they differ mechanistically to modulate transcriptions.
Collapse
Affiliation(s)
- Mesut Muyan
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
42
|
Wu J, Shekhar N, Lele PP, Lele TP. FRAP analysis: accounting for bleaching during image capture. PLoS One 2012; 7:e42854. [PMID: 22912750 PMCID: PMC3415426 DOI: 10.1371/journal.pone.0042854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
The analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments involves mathematical modeling of the fluorescence recovery process. An important feature of FRAP experiments that tends to be ignored in the modeling is that there can be a significant loss of fluorescence due to bleaching during image capture. In this paper, we explicitly include the effects of bleaching during image capture in the model for the recovery process, instead of correcting for the effects of bleaching using reference measurements. Using experimental examples, we demonstrate the usefulness of such an approach in FRAP analysis.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
| | - Nandini Shekhar
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
| | - Pushkar P. Lele
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tanmay P. Lele
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
- * E-mail:
| |
Collapse
|
43
|
Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model. PLoS One 2012; 7:e30207. [PMID: 22879872 PMCID: PMC3412855 DOI: 10.1371/journal.pone.0030207] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/12/2011] [Indexed: 01/05/2023] Open
Abstract
Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24−/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24−/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors.
Collapse
|
44
|
Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation. Proc Natl Acad Sci U S A 2012; 109:13331-6. [PMID: 22853951 DOI: 10.1073/pnas.1203280109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cofactors for estrogen receptor α (ERα) can modulate gene activity by posttranslationally modifying histone tails at target promoters. Here, we found that stimulation of ERα-positive cells with 17β-estradiol (E2) promotes global citrullination of histone H3 arginine 26 (H3R26) on chromatin. Additionally, we found that the H3 citrulline 26 (H3Cit26) modification colocalizes with ERα at decondensed chromatin loci surrounding the estrogen-response elements of target promoters. Surprisingly, we also found that citrullination of H3R26 is catalyzed by peptidylarginine deiminase (PAD) 2 and not by PAD4 (which citrullinates H4R3). Further, we showed that PAD2 interacts with ERα after E2 stimulation and that inhibition of either PAD2 or ERα strongly suppresses E2-induced H3R26 citrullination and ERα recruitment at target gene promoters. Collectively, our data suggest that E2 stimulation induces the recruitment of PAD2 to target promoters by ERα, whereby PAD2 then citrullinates H3R26, which leads to local chromatin decondensation and transcriptional activation.
Collapse
|
45
|
Stavreva DA, Varticovski L, Hager GL. Complex dynamics of transcription regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:657-66. [PMID: 22484099 PMCID: PMC3371156 DOI: 10.1016/j.bbagrm.2012.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/10/2012] [Accepted: 03/15/2012] [Indexed: 01/10/2023]
Abstract
Transcription is a tightly regulated cellular function which can be triggered by endogenous (intrinsic) or exogenous (extrinsic) signals. The development of novel techniques to examine the dynamic behavior of transcription factors and the analysis of transcriptional activity at the single cell level with increased temporal resolution has revealed unexpected elements of stochasticity and dynamics of this process. Emerging research reveals a complex picture, wherein a wide range of time scales and temporal transcription patterns overlap to generate transcriptional programs. The challenge now is to develop a perspective that can guide us to common underlying mechanisms, and consolidate these findings. Here we review the recent literature on temporal dynamics and stochastic gene regulation patterns governed by intrinsic or extrinsic signals, utilizing the glucocorticoid receptor (GR)-mediated transcriptional model to illustrate commonality of these emerging concepts. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Building 41, B507, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
46
|
Featherstone K, White MRH, Davis JRE. The prolactin gene: a paradigm of tissue-specific gene regulation with complex temporal transcription dynamics. J Neuroendocrinol 2012; 24:977-90. [PMID: 22420298 PMCID: PMC3505372 DOI: 10.1111/j.1365-2826.2012.02310.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcription of numerous mammalian genes is highly pulsatile, with bursts of expression occurring with variable duration and frequency. The presence of this stochastic or 'noisy' expression pattern has been relatively unexplored in tissue systems. The prolactin gene provides a model of tissue-specific gene regulation resulting in pulsatile transcription dynamics in both cell lines and endocrine tissues. In most cell culture models, prolactin transcription appears to be highly variable between cells, with differences in transcription pulse duration and frequency. This apparently stochastic transcription is constrained by a transcriptional refractory period, which may be related to cycles of chromatin remodelling. We propose that prolactin transcription dynamics result from the summation of oscillatory cellular inputs and by regulation through chromatin remodelling cycles. Observations of transcription dynamics in cells within pituitary tissue show reduced transcriptional heterogeneity and can be grouped into a small number of distinct patterns. Thus, it appears that the tissue environment is able to reduce transcriptional noise to enable coordinated tissue responses to environmental change. We review the current knowledge on the complex tissue-specific regulation of the prolactin gene in pituitary and extra-pituitary sites, highlighting differences between humans and rodent experimental animal models. Within this context, we describe the transcription dynamics of prolactin gene expression and how this may relate to specific processes occurring within the cell.
Collapse
Affiliation(s)
- K Featherstone
- Developmental Biomedicine Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
47
|
Grøntved L, Hager GL. Impact of chromatin structure on PR signaling: transition from local to global analysis. Mol Cell Endocrinol 2012; 357:30-6. [PMID: 21958695 PMCID: PMC3290724 DOI: 10.1016/j.mce.2011.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/02/2011] [Indexed: 01/16/2023]
Abstract
The progesterone receptor (PR) interacts with chromatin in a highly dynamic manner that requires ongoing chromatin remodeling, interaction with chaparones and activity of the proteasome. Here we discuss dynamic interaction of steroid receptor with chromatin, with special attention not only to PR but also to the glucocorticoid receptor (GR), as these receptors share many similarities regarding interaction with, and remodeling of, chromatin. Both receptors can bind nucleosomal DNA and have accordingly been described as pioneering factors. However recent genomic approaches (ChIP-seq and DHS-seq) show that a large fraction of receptor binding events occur at pre-accessible chromatin. Thus factors which generate and maintain accessible chromatin during development, and in fully differentiated tissue, contribute a major fraction of receptor tissue specificity. In addition, chromosome conformation capture techniques suggest that steroid receptors preferentially sequester within distinct nuclear hubs. We will integrate dynamic studies from single cells and genomic studies from cell populations, and discuss how genomic approaches have reshaped our current understanding of mechanisms that control steroid receptor interaction with chromatin.
Collapse
Affiliation(s)
- Lars Grøntved
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
48
|
Palmer AC, Egan JB, Shearwin KE. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors. Transcription 2012; 2:9-14. [PMID: 21326903 DOI: 10.4161/trns.2.1.13511] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/19/2022] Open
Abstract
Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.
Collapse
Affiliation(s)
- Adam C Palmer
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
49
|
Abstract
Steroid hormone receptors initiate a genetic program tightly regulated by the chromatin environment of the responsive regions. Using the glucocorticoid receptor (GR) as a model factor for transcriptional initiation, we classified chromatin structure through formaldehyde-assisted isolation of regulatory elements (FAIRE). We looked at dynamic changes in FAIRE signals during GR activation specifically at regions of receptor interaction. We found a distribution of GR-responsive regions with diverse responses to activation and chromatin modulation. The majority of GR binding regions demonstrate increases in FAIRE signal in response to ligand. However, the majority GR-responsive regions shared a similar FAIRE signal in the basal chromatin state, suggesting a common chromatin structure for GR recruitment. Supporting this notion, global FAIRE sequencing (seq) data indicated an enrichment of signal surrounding the GR binding site prior to activation. Brg-1 knockdown showed response element-specific effects of ATPase-dependent chromatin remodeling. FAIRE induction was universally decreased by Brg-1 depletion, but to varying degrees in a target specific manner. Taken together, these data suggest classes of nuclear receptor response regions that react to activation through different chromatin regulatory events and identify a chromatin structure that classifies the majority of response elements tested.
Collapse
|
50
|
Endler A, Chen L, Zhang J, Xu GT, Shibasaki F. Binding of the ERα and ARNT1 AF2 domains to exon 21 of the SRC1 isoform SRC1e is essential for estrogen- and dioxin-related transcription. J Cell Sci 2012; 125:2004-16. [PMID: 22328528 DOI: 10.1242/jcs.097246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroid receptor co-activator 1 (SRC1) is a transcriptional co-activator of numerous transcription factors involving nuclear receptors. Aryl hydrocarbon receptor nuclear translocator 1 (ARNT1) is an obligatory transcriptional partner of the aryl hydrocarbon receptor (AhR) and hypoxia inducible factor-1α (HIF-1α), as well as a co-activator of estrogen receptors (ERs). To initiate transcription, the activation function 2 (AF2) domains of estrogen-activated ERs interact with LxxLL motifs in the nuclear receptor interaction domain (NID) of SRC1. Here we describe an estrogen and LxxLL domain-independent ERα AF2 binding to SRC1e exon 21. In addition, we found an AF2 domain in exon 16 of ARNT1 that also binds to SRC1e exon 21. Surprisingly, the interaction between SRC1e exon 21 and the AF2 domain of ERα functions as a crucial enhancer of estrogen-induced transcription. The binding of ARNT1 AF2 to SRC1e exon 21 enhances the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but the upregulation essentially depends on two cyclin destruction boxes (D-boxes), which are also located on exon 16 of ARNT1. Our findings reveal that a binding site for ERα and ARNT1 AF2 domains in the C-terminus of SRC1e upregulates estrogen- and TCDD-related responses in mammalian cells.
Collapse
Affiliation(s)
- Alexander Endler
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|