1
|
Hade MD, Suire CN, Suo Z. Significant Enhancement of Fibroblast Migration, Invasion, and Proliferation by Exosomes Loaded with Human Fibroblast Growth Factor 1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1969-1984. [PMID: 38181175 DOI: 10.1021/acsami.3c10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Exosomes possess several inherent properties that make them ideal for biomedical applications, including robust stability, biocompatibility, minimal immunogenicity, and the ability to cross biological barriers. These natural nanoparticles have recently been developed as drug delivery vesicles. To do so, therapeutic molecules must be efficiently loaded into exosomes first. Very recently, we developed a cell-penetrating peptide (CPP)-based platform for loading of nucleic acids and small molecules into exosomes by taking advantage of the membrane-penetration power of CPPs. Here, we extended this simple but effective platform by loading a protein cargo into exosomes isolated from either mesenchymal stem cells from three different sources or two different cancer cell lines. The protein cargo is a fusion protein YARA-FGF1-GFP through the covalent conjugation of a model CPP called YARA to human fibroblast growth factor 1 (FGF1) and green fluorescence protein (GFP). Loading of YARA-FGF1-GFP into exosomes was time-dependent and reached a maximum of about 1600 YARA-FGF1-GFP molecules in each exosome after 16 h. The ladened exosomes were effectively internalized by mammalian cells, and subsequently, the loaded protein cargo YARA-FGF1-GFP was delivered intracellularly. In comparison to YARA, YARA-FGF1-GFP, the unloaded exosomes, and the exosomes loaded with YARA, the exosomes loaded with YARA-FGF1-GFP substantially promoted the migration, proliferation, and invasion capabilities of mouse and human fibroblasts, which are important factors for wound repair. The work extended our CPP-based exosomal cargo loading platform and established a foundation for developing novel wound-healing therapies using exosomes loaded with FGF1 and other growth factors.
Collapse
Affiliation(s)
- Mangesh D Hade
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Caitlin N Suire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
2
|
Knaup I, Symmank J, Bastian A, Neuss S, Pufe T, Jacobs C, Wolf M. Impact of FGF1 on human periodontal ligament fibroblast growth, osteogenic differentiation and inflammatory reaction in vitro. J Orofac Orthop 2021; 83:42-55. [PMID: 34874457 DOI: 10.1007/s00056-021-00363-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To investigate in vitro the impact of fibroblast growth factor 1 (FGF1) in comparison to ascorbic acid (AscA) on human periodontal ligament fibroblast (HPdLF) growth, their osteogenic differentiation, and modulation of their inflammatory reaction to mechanical stress. METHODS The influence of different concentrations of FGF1 (12.5-200 ng/mL) on growth and proliferation of HPdLF cells was analyzed over 20 days by counting cell numbers and the percentage of Ki67-positive cells. Quantitative expression analysis of genes encoding the osteogenic markers alkaline phosphatase (ALPL), Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OSP), as well as the fibroblast markers vimentin (VIM) and fibroblast-specific protein 1 (FSP1), was performed after 2 and 20 days of cultivation. Metabolic activity was determined by MTT assay. For comparison with AscA, 50 ng/mL FGF1 was used for stimulation for 2 and 20 days. Cell number, percentage of Ki67-positive cells, and expression of osteoblast- and fibroblast-specific genes were examined. Alkaline phosphatase activity was visualized by NBT/BCIP and calcium deposits were stained with alizarin red. Cytokine (IL‑6, IL‑8, COX2/PGE2) expression and secretion were analyzed by qPCR and ELISA in 6 h mechanically compressed HPdLF cultured for 2 days with FGF1 or ascorbic acid. RESULTS Higher concentrations of FGF1 promoted cell proliferation upon short-term stimulation, whereas prolonged treatment induced the expression of osteogenic markers even with low concentrations. AscA promotes cell growth more markedly than FGF1 in short-term cultures, whereas FGF1 induced osteogenic cell fate more strongly in long-term culture. Both factors induced an increased inflammatory response of HPdLF to mechanical compression. CONCLUSION Our data suggest that FGF1 promotes an osteogenic phenotype of HPdLF and limits inflammatory response to mechanical forces compared to AscA.
Collapse
Affiliation(s)
- Isabel Knaup
- Department of Orthodontics, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Judit Symmank
- Department of Orthodontics, Jena University Hospital, Jena, Germany
| | - Asisa Bastian
- Department of Orthodontics, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Wendlingweg 2, 52074, Aachen, Germany
| | - Collin Jacobs
- Department of Orthodontics, Jena University Hospital, Jena, Germany
| | - Michael Wolf
- Department of Orthodontics, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
3
|
Pozniak M, Sokolowska-Wedzina A, Jastrzebski K, Szymczyk J, Porebska N, Krzyscik MA, Zakrzewska M, Miaczynska M, Otlewski J, Opalinski L. FGFR1 clustering with engineered tetravalent antibody improves the efficiency and modifies the mechanism of receptor internalization. Mol Oncol 2020; 14:1998-2021. [PMID: 32511887 PMCID: PMC7463352 DOI: 10.1002/1878-0261.12740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) transmits signals through the plasma membrane regulating essential cellular processes like division, motility, metabolism, and death. Overexpression of FGFR1 is observed in numerous tumors and thus constitutes an attractive molecular target for selective cancer treatment. Targeted anti‐cancer therapies aim for the precise delivery of drugs into cancer cells, sparing the healthy ones and thus limiting unwanted side effects. One of the key steps in targeted drug delivery is receptor‐mediated endocytosis. Here, we show that the efficiency and the mechanism of FGFR1 internalization are governed by the spatial distribution of the receptor in the plasma membrane. Using engineered antibodies of different valency, we demonstrate that dimerization of FGFR1 with bivalent antibody triggers clathrin‐mediated endocytosis (CME) of the receptor. Clustering of FGFR1 into larger oligomers with tetravalent antibody stimulates fast and highly efficient uptake of the receptor that occurs via two distinct mechanisms: CME and dynamin‐dependent clathrin‐independent endocytic routes. Furthermore, we show that all endocytic pathways engaged in FGFR1 internalization do not require receptor activation. Our data provide novel insights into the mechanisms of intracellular trafficking of FGFR1 and constitute guidelines for development of highly internalizing antibody‐based drug carriers for targeted therapy of FGFR1‐overproducing cancers.
Collapse
Affiliation(s)
- Marta Pozniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | | | - Kamil Jastrzebski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Poland
| | - Jakub Szymczyk
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Natalia Porebska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Mateusz Adam Krzyscik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland.,Faculty of Biotechnology, Department of Protein Biotechnology, University of Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Lukasz Opalinski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| |
Collapse
|
4
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
5
|
Kurt H, Eyüpoğlu AE, Sütlü T, Budak H, Yüce M. Plasmonic Selection of ssDNA Aptamers against Fibroblast Growth Factor Receptor. ACS COMBINATORIAL SCIENCE 2019; 21:578-587. [PMID: 31265241 DOI: 10.1021/acscombsci.9b00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe the selection of ssDNA aptamers targeting fibroblast growth factor receptor binding protein 3 K650E, which has roles in cell division, growth, and differentiation through the kinase cascade. The selection process was based on the label-free, real-time monitoring of binding interactions by surface plasmon resonance, allowing for convenient manipulation of the selection rounds. Next generation sequencing data provided four major motif families from which nine individual sequences were selected based on their abundance levels. Electrophoretic mobility shift assays revealed binding of the selected aptamers to the target protein without significant interference from fibroblast growth factor receptor binding protein 2, indicating the selectivity of the aptamers. The dissociation constant at equilibrium for the best aptamer candidate, SU-3, was found to be (28.2 ± 19.6) × 10-9 M (n = 5) using a single-cycle kinetic analysis method. Advantages of the experimental setup and potential applications of the selected aptamers are discussed.
Collapse
Affiliation(s)
- Hasan Kurt
- Istanbul Medipol University, School of Engineering and Natural Sciences, Beykoz, 34810 Istanbul, Turkey
- Nanosolar Plasmonics Ltd., Gebze, 41400 Kocaeli, Turkey
| | - Alp Ertunga Eyüpoğlu
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| | - Tolga Sütlü
- Sabanci University, SUNUM Nanotechnology Research Centre, Tuzla, 34956 Istanbul Turkey
| | - Hikmet Budak
- Montana State University, Cereal Genomics Lab, Bozeman, Montana 59717-2000, United States
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research Centre, Tuzla, 34956 Istanbul Turkey
| |
Collapse
|
6
|
Azubel M, Carter SD, Weiszmann J, Zhang J, Jensen GJ, Li Y, Kornberg RD. FGF21 trafficking in intact human cells revealed by cryo-electron tomography with gold nanoparticles. eLife 2019; 8:43146. [PMID: 30688648 PMCID: PMC6349402 DOI: 10.7554/elife.43146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
The fibroblast growth factor FGF21 was labeled with molecularly defined gold nanoparticles (AuNPs), applied to human adipocytes, and imaged by cryo-electron tomography (cryo-ET). Most AuNPs were in pairs about 80 Å apart, on the outer cell surface. Pairs of AuNPs were also abundant inside the cells in clathrin-coated vesicles and endosomes. AuNPs were present but no longer paired in multivesicular bodies. FGF21 could thus be tracked along the endocytotic pathway. The methods developed here to visualize signaling coupled to endocytosis can be applied to a wide variety of cargo and may be extended to studies of other intracellular transactions.
Collapse
Affiliation(s)
- Maia Azubel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jennifer Weiszmann
- Cardiometabolic Disorders, Amgen Inc. Discovery Research, South San Francisco, United states
| | - Jun Zhang
- Cardiometabolic Disorders, Amgen Inc. Discovery Research, South San Francisco, United states
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United states
| | - Yang Li
- Cardiometabolic Disorders, Amgen Inc. Discovery Research, South San Francisco, United states.,Surrozen Inc, South San Francisco, United states
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
7
|
Kostas M, Lampart A, Bober J, Wiedlocha A, Tomala J, Krowarsch D, Otlewski J, Zakrzewska M. Translocation of Exogenous FGF1 and FGF2 Protects the Cell against Apoptosis Independently of Receptor Activation. J Mol Biol 2018; 430:4087-4101. [DOI: 10.1016/j.jmb.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023]
|
8
|
Xia X, Kumru OS, Blaber SI, Middaugh CR, Li L, Ornitz DM, Suh JM, Atkins AR, Downes M, Evans RM, Tenorio CA, Bienkiewicz E, Blaber M. An S116R Phosphorylation Site Mutation in Human Fibroblast Growth Factor-1 Differentially Affects Mitogenic and Glucose-Lowering Activities. J Pharm Sci 2016; 105:3507-3519. [PMID: 27773526 PMCID: PMC5310217 DOI: 10.1016/j.xphs.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor-1 (FGF-1), a potent human mitogen and insulin sensitizer, signals through both tyrosine kinase receptor-mediated autocrine/paracrine pathways as well as a nuclear intracrine pathway. Phosphorylation of FGF-1 at serine 116 (S116) has been proposed to regulate intracrine signaling. Position S116 is located within a ∼17 amino acid C-terminal loop that contains a rich set of functional determinants including heparin∖heparan sulfate affinity, thiol reactivity, nuclear localization, pharmacokinetics, functional half-life, nuclear ligand affinity, stability, and structural dynamics. Mutational targeting of specific functionality in this region without perturbing other functional determinants is a design challenge. S116R is a non-phosphorylatable variant present in bovine FGF-1 and other members of the human FGF family. We show that the S116R mutation in human FGF-1 is accommodated with no perturbation of biophysical or structural properties, and is therefore an attractive mutation with which to elucidate the functional role of phosphorylation. Characterization of S116R shows reduction in NIH 3T3 fibroblast mitogenic stimulation, increase in fibroblast growth factor receptor-1c activation, and prolonged duration of glucose lowering in ob/ob hyperglycemic mice. A novel FGF-1/fibroblast growth factor receptor-1c dimerization interaction combined with non-phosphorylatable intracrine signaling is hypothesized to be responsible for these observed functional effects.
Collapse
Affiliation(s)
- Xue Xia
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 60047
| | - Sachiko I Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 60047
| | - Ling Li
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David M Ornitz
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jae Myoung Suh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Connie A Tenorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Ewa Bienkiewicz
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306.
| |
Collapse
|
9
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1422] [Impact Index Per Article: 142.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
10
|
Howard JD, Sarojini H, Wan R, Chien S. Rapid granulation tissue regeneration by intracellular ATP delivery--a comparison with Regranex. PLoS One 2014; 9:e91787. [PMID: 24637626 PMCID: PMC3956755 DOI: 10.1371/journal.pone.0091787] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/02/2014] [Indexed: 12/30/2022] Open
Abstract
This study tests a new intracellular ATP delivery technique for tissue regeneration and compares its efficacy with that of Regranex. Twenty-seven adult New Zealand white rabbits each underwent minimally invasive surgery to render one ear ischemic. Eight wounds were then created: four on the ischemic and four on the normal ear. Two wounds on one side of each ear were treated with Mg-ATP encapsulated lipid vesicles (ATP-vesicles) while the two wounds on the other side were treated with Regranex. Wound healing time was shorter when ATP-vesicles were used. The most striking finding was that new tissue growth started to appear in less than 1 day when ATP-vesicles were used. The growth continued and covered the wound area within a few days, without the formation of a provisional matrix. Regranex-treated wounds did not have this growth pattern. In wounds treated by ATP-vesicles, histologic studies revealed extremely rich macrophage accumulation, along with active proliferating cell nuclear antigen (PCNA) and positive BrdU staining, indicating in situ macrophage proliferation. Human macrophage culture suggested direct collagen production. These results support an entirely new healing process, which seems to have combined the conventional hemostasis, inflammation, and proliferation phases into a single one, thereby eliminating the lag time usually seen during healing process.
Collapse
Affiliation(s)
- Jeffrey D. Howard
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Harshini Sarojini
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Rong Wan
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Sufan Chien
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sletten T, Kostas M, Bober J, Sorensen V, Yadollahi M, Olsnes S, Tomala J, Otlewski J, Zakrzewska M, Wiedlocha A. Nucleolin regulates phosphorylation and nuclear export of fibroblast growth factor 1 (FGF1). PLoS One 2014; 9:e90687. [PMID: 24595027 PMCID: PMC3942467 DOI: 10.1371/journal.pone.0090687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
Extracellular fibroblast growth factor 1 (FGF1) acts through cell surface tyrosine kinase receptors, but FGF1 can also act directly in the cell nucleus, as a result of nuclear import of endogenously produced, non-secreted FGF1 or by transport of extracellular FGF1 via endosomes and cytosol into the nucleus. In the nucleus, FGF1 can be phosphorylated by protein kinase C δ (PKCδ), and this event induces nuclear export of FGF1. To identify intracellular targets of FGF1 we performed affinity pull-down assays and identified nucleolin, a nuclear multifunctional protein, as an interaction partner of FGF1. We confirmed a direct nucleolin-FGF1 interaction by surface plasmon resonance and identified residues of FGF1 involved in the binding to be located within the heparin binding site. To assess the biological role of the nucleolin-FGF1 interaction, we studied the intracellular trafficking of FGF1. In nucleolin depleted cells, exogenous FGF1 was endocytosed and translocated to the cytosol and nucleus, but FGF1 was not phosphorylated by PKCδ or exported from the nucleus. Using FGF1 mutants with reduced binding to nucleolin and a FGF1-phosphomimetic mutant, we showed that the nucleolin-FGF1 interaction is critical for the intranuclear phosphorylation of FGF1 by PKCδ and thereby the regulation of nuclear export of FGF1.
Collapse
Affiliation(s)
- Torunn Sletten
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Michal Kostas
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Joanna Bober
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Vigdis Sorensen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Mandana Yadollahi
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Sjur Olsnes
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Justyna Tomala
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Antoni Wiedlocha
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
12
|
Johnson HM, Noon-Song EN, Dabelic R, Ahmed CM. IFN signaling: how a non-canonical model led to the development of IFN mimetics. Front Immunol 2013; 4:202. [PMID: 23898330 PMCID: PMC3722551 DOI: 10.3389/fimmu.2013.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022] Open
Abstract
The classical model of cytokine signaling dominates our view of specific gene activation by cytokines such as the interferons (IFNs). The importance of the model extends beyond cytokines and applies to hormones such as growth hormone (GH) and insulin, and growth factors such as epidermal growth factor (EGF) and fibroblast growth factor (FGF). According to this model, ligand activates the cell via interaction with the extracellular domain of the receptor. This results in activation of receptor or receptor-associated tyrosine kinases, primarily of the Janus activated kinase (JAK) family, phosphorylation and dimerization of the signal transducer and activator of transcription (STAT) transcription factors, which dissociate from the receptor cytoplasmic domain and translocate to the nucleus. This view ascribes no further role to the ligand, JAK kinase, or receptor in either specific gene activation or the associated epigenetic events. The presence of dimeric STATs in the nucleus essentially explains it all. Our studies have resulted in the development of a non-canonical, more complex model of IFNγ signaling that is akin to that of steroid hormone (SH)/steroid receptor (SR) signaling. We have shown that ligand, receptor, activated JAKs, and STATs are associated with specific gene activation, where the receptor subunit IFNGR1 functions as a co-transcription factor and the JAKs are involved in associated epigenetic events. We found that the type I IFN system functions similarly. The fact that GH receptor, insulin receptor, EGF receptor, and FGF receptor undergo nuclear translocation upon ligand binding suggests that they may also function similarly. The SH/SR nature of type I and II IFN signaling provides insight into the specificity of signaling by members of cytokine families. The non-canonical model could also provide better understanding to more complex cytokine families such as those of IL-2 and IL-12, whose members often use the same JAKs and STATs, but also have different functions and properties.
Collapse
Affiliation(s)
- Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | | | | | | |
Collapse
|
13
|
Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, Klimaschewski L. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol 2013; 139:135-48. [PMID: 22903848 DOI: 10.1007/s00418-012-1009-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase promoting tumor growth in a variety of cancers, including glioblastoma. Binding of FGFs triggers the intracellular Ras/Raf/ERK signaling pathway leading to cell proliferation. Down-regulation of FGFR1 and, consequently, inactivation of its signaling pathways represent novel treatment strategies for glioblastoma. In this study, we investigated the internalization and endocytic trafficking of FGFR1 in the human glioma cell line U373. Stimulation with FGF-2 induced cell rounding accompanied by increased BrdU and pERK labeling. The overexpression of FGFR1 (without FGF treatment) resulted in enhanced phosphorylated FGFR1 suggesting receptor autoactivation. Labeled ligand (FGF-2-Cy5.5) was endocytosed in a clathrin- and caveolin-dependent manner. About 25 % of vesicles carrying fluorescently tagged FGFR1 represented early endosomes, 15 % transferrin-positive recycling endosomes and 40 % Lamp1-positive late endosomal/lysosomal vesicles. Stimulation with FGF-2 increased the colocalization rate in each of these vesicle populations. The treatment with the lysosomal inhibitor leupeptin resulted in FGFR1 accumulation in lysosomes, but did not enhance receptor recycling as observed in neurons. Analysis of vesicle distributions revealed an accumulation of recycling endosomes in the perinuclear region. In conclusion, the shuttling of receptor tyrosine kinases can be directly visualized by overexpression of fluorescently tagged receptors which respond to ligand stimulation and follow the recycling and degradation pathways similarly to their endogenous counterparts.
Collapse
Affiliation(s)
- Regina Irschick
- Division of Neuroanatomy, Medical University Innsbruck, Muellerstrasse 59, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
Mercer SE, Cheng CH, Atkinson DL, Krcmery J, Guzman CE, Kent DT, Zukor K, Marx KA, Odelberg SJ, Simon HG. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One 2012; 7:e52375. [PMID: 23300656 PMCID: PMC3530543 DOI: 10.1371/journal.pone.0052375] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.
Collapse
Affiliation(s)
- Sarah E. Mercer
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - Chia-Ho Cheng
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts, United States of America
| | - Donald L. Atkinson
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jennifer Krcmery
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - Claudia E. Guzman
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - David T. Kent
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Katherine Zukor
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts, United States of America
| | - Shannon J. Odelberg
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hans-Georg Simon
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| |
Collapse
|
15
|
Zhen Y, Sørensen V, Skjerpen CS, Haugsten EM, Jin Y, Wälchli S, Olsnes S, Wiedlocha A. Nuclear Import of Exogenous FGF1 Requires the ER-Protein LRRC59 and the Importins Kpnα1 and Kpnβ1. Traffic 2012; 13:650-64. [DOI: 10.1111/j.1600-0854.2012.01341.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | | | - Sebastien Wälchli
- Department of Immunology; Institute for Cancer Research; The Norwegian Radium Hospital; Montebello; Oslo; 0310; Norway
| | | | | |
Collapse
|
16
|
Nakayama F, Yasuda T, Umeda S, Asada M, Imamura T, Meineke V, Akashi M. Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: involvement of internalization in the in vivo role of exogenous FGF12. J Biol Chem 2011; 286:25823-34. [PMID: 21518765 DOI: 10.1074/jbc.m110.198267] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular effect of fibroblast growth factor-12 (FGF12) remains unknown because FGF12 cannot activate any fibroblast growth factor receptors (FGFRs), and FGF12 is not currently thought to be released from cells. We reported previously that FGF12 plays an intracellular role in the inhibition of radiation-induced apoptosis. In this study, we demonstrated that recombinant FGF12 was able to be internalized into the cytoplasm of a rat intestinal epithelial cell line, IEC6, and this process was dependent on two novel cell-penetrating peptide (CPP) domains (CPP-M and CPP-C). In particular, CPP-C, composed of ∼10 amino acids, was identified as a specific domain of FGF12 and its subfamily in the C-terminal region (residues 140-149), although CPP-M was a common domain in the internal region of the FGF family. The absence of CPP-C from FGF12 or a mutation (E142L) in the CPP-C domain drastically reduced the internalization of FGF12 into cells. Therefore, CPP-C played an essential role in the internalization of FGF12. In addition, CPP-C was able to deliver other polypeptides into cells as a CPP because an FGF1/CPP-C chimeric protein was internalized into IEC6 cells more efficiently than wild-type FGF1. Finally, intraperitoneally added FGF12 inhibited radiation-induced apoptosis in the intestinal epithelial cells of BALB/c mice, and deletion of the CPP-C domain decreased the inhibition of the apoptosis. These findings suggest that exogenous FGF12 can play a role in tissues by translocating into cells through the plasma membrane, and the availability of this novel CPP provides a new tool for the intracellular delivery of bioactive molecules.
Collapse
Affiliation(s)
- Fumiaki Nakayama
- Department of Radiation Emergency Medicine, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice. Mamm Genome 2011; 22:290-305. [PMID: 21479780 PMCID: PMC3099004 DOI: 10.1007/s00335-011-9324-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/09/2011] [Indexed: 11/03/2022]
Abstract
The hush puppy mouse mutant has been shown previously to have skull and outer, middle, and inner ear defects, and an increase in hearing threshold. The fibroblast growth factor receptor 1 (Fgfr1) gene is located in the region of chromosome 8 containing the mutation. Sequencing of the gene in hush puppy heterozygotes revealed a missense mutation in the kinase domain of the protein (W691R). Homozygotes were found to die during development, at approximately embryonic day 8.5, and displayed a phenotype similar to null mutants. Reverse transcription PCR indicated a decrease in Fgfr1 transcript in heterozygotes and homozygotes. Generation of a construct containing the mutation allowed the function of the mutated receptor to be studied. Immunocytochemistry showed that the mutant receptor protein was present at the cell membrane, suggesting normal expression and trafficking. Measurements of changes in intracellular calcium concentration showed that the mutated receptor could not activate the IP3 pathway, in contrast to the wild-type receptor, nor could it initiate activation of the Ras/MAP kinase pathway. Thus, the hush puppy mutation in fibroblast growth factor receptor 1 appears to cause a loss of receptor function. The mutant protein appears to have a dominant negative effect, which could be due to it dimerising with the wild-type protein and inhibiting its activity, thus further reducing the levels of functional protein. A dominant modifier, Mhspy, which reduces the effect of the hush puppy mutation on pinna and stapes development, has been mapped to the distal end of chromosome 7 and may show imprinting.
Collapse
|
18
|
Zakrzewska M, Sørensen V, Jin Y, Wiedlocha A, Olsnes S. Translocation of exogenous FGF1 into cytosol and nucleus is a periodic event independent of receptor kinase activity. Exp Cell Res 2011; 317:1005-15. [DOI: 10.1016/j.yexcr.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/10/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
19
|
Romanelli RJ, Wood TL. Directing traffic in neural cells: determinants of receptor tyrosine kinase localization and cellular responses. J Neurochem 2010; 105:2055-68. [PMID: 18248622 DOI: 10.1111/j.1471-4159.2008.05263.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The trafficking of receptor tyrosine kinases (RTKs) to distinct subcellular locations is essential for the specificity and fidelity of signal transduction and biological responses. This is particularly important in the PNS and CNS in which RTKs mediate key events in the development and maintenance of neurons and glia through a wide range of neural processes, including survival, proliferation, differentiation, neurite outgrowth, and synaptogenesis. The mechanisms that regulate the targeting of RTKs to their subcellular destinations for appropriate signal transduction, however, are still elusive. In this review, we discuss evidence for the spatial organization of signaling machinery into distinct subcellular compartments, as well as the role for ligand specificity, receptor sorting signals, and lipid raft microdomains in RTK targeting and the resultant cellular responses in neural cells.
Collapse
Affiliation(s)
- Robert J Romanelli
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
20
|
Triantis V, Saeland E, Bijl N, Oude-Elferink RP, Jansen PLM. Glycosylation of fibroblast growth factor receptor 4 is a key regulator of fibroblast growth factor 19-mediated down-regulation of cytochrome P450 7A1. Hepatology 2010; 52:656-66. [PMID: 20683963 DOI: 10.1002/hep.23708] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED De novo bile acid synthesis in the liver needs to be tightly regulated in order to maintain optimal bile flow and prevent cholestasis. In the liver, fibroblast growth factor 19 (FGF19) regulates bile acid synthesis by down-regulating messenger RNA levels of cytochrome P450 7A1 (CYP7A1). FGF19 acts through fibroblast growth factor receptor 4 (FGFR4), and beta-Klotho has recently been recognized as a modulator of FGFR4 activity. However, its precise mechanism of action has not been thoroughly described. We show here that beta-Klotho is an endoplasmic reticulum-resident protein that affects the cellular abundance of different FGFR4 glycoforms. beta-Klotho binds and directs the core glycoform of FGFR4 to the proteasome, and it allows only a terminal glycoform to reach the plasma membrane. Only the terminal FGFR4 glycoform is phosphorylated upon FGF19 treatment of HepG2 cells, and this shows that only fully glycosylated FGFR4 is active in CYP7A1 down-regulation. CONCLUSION beta-Klotho enhances FGF19 signaling by binding the inactive, core-glycosylated FGFR4 and preventing it from reaching the surface. These results indicate that beta-Klotho is an indirect regulator of FGFR4, whereas glycosylation is the master switch for FGF19 activity and regulation of bile acid synthesis.
Collapse
Affiliation(s)
- Vassilis Triantis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: From Biology Through Engineering to Potential Medical Applications. Crit Rev Clin Lab Sci 2008; 45:91-135. [DOI: 10.1080/10408360701713120] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Kwiatkowski BA, Kirillova I, Richard RE, Israeli D, Yablonka-Reuveni Z. FGFR4 and its novel splice form in myogenic cells: Interplay of glycosylation and tyrosine phosphorylation. J Cell Physiol 2008; 215:803-17. [PMID: 18186042 DOI: 10.1002/jcp.21365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here, we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(-16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(-16) coincided with that of wild-type FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T(1/2)-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.
Collapse
Affiliation(s)
- Boguslaw A Kwiatkowski
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
23
|
Phosphorylation of fibroblast growth factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus. Mol Cell Biol 2008; 28:4129-41. [PMID: 18411303 DOI: 10.1128/mcb.02117-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exogenous fibroblast growth factor 1 (FGF1) signals through activation of transmembrane FGF receptors (FGFRs) but may also regulate cellular processes after translocation to the cytosol and nucleus of target cells. Translocation of FGF1 occurs across the limiting membrane of intracellular vesicles and is a regulated process that depends on the C-terminal tail of the FGFR. Here, we report that translocation of FGF1 requires activity of the alpha isoform of p38 mitogen-activated protein kinase (MAPK). FGF1 translocation was inhibited after chemical inhibition of p38 MAPK or after small interfering RNA knockdown of p38alpha. Translocation was increased after stimulation of p38 MAPK with anisomycin, mannitol, or H2O2. The activity level of p38 MAPK was not found to affect endocytosis or intracellular sorting of FGF1/FGFR1. Instead, we found that p38 MAPK regulates FGF1 translocation by phosphorylation of FGFR1 at Ser777. The FGFR1 mutation S777A abolished FGF1 translocation, while phospho-mimetic mutations of Ser777 to Asp or Glu allowed translocation to take place and bypassed the requirement for active p38 MAPK. Ser777 in FGFR1 was directly phosphorylated by p38alpha in a cell-free system. These data demonstrate a crucial role for p38alpha MAPK in the regulated translocation of exogenous FGF1 into the cytosol/nucleus, and they reveal a specific role for p38alpha MAPK-mediated serine phosphorylation of FGFR1.
Collapse
|
24
|
Li S, Christensen C, Kiselyov VV, Køhler LB, Bock E, Berezin V. Fibroblast growth factor-derived peptides: functional agonists of the fibroblast growth factor receptor. J Neurochem 2008; 104:667-82. [PMID: 18199118 DOI: 10.1111/j.1471-4159.2007.05070.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of peptides, termed dekafins, were derived from the beta10-beta11 loop regions of fibroblast growth factors (FGFs) 1, 2, 3, 5, 6, 8, 9, 10, and 17. The dekafins share a homologous amino acid sequence similar to a sequence in the first fibronectin type III module of the neural cell adhesion molecule. All dekafins were shown by surface plasmon resonance analysis to bind fibroblast growth factor receptor (FGFR)1-IIIc-Ig2-3 and FGFR2-IIIb-Ig2-3, respectively, with K(d) values of approximately 10(-7) to 10(-8) mol/L. Binding of dekafin1 to FGFR1-IIIc-Ig2-3 was inhibited by a heparin analog, sucrose octasulfate, indicating that heparin sulfate moiety can modulate dekafin binding to FGFRs. Treatment of transcription and mRNA export (TREX) cells permanently expressing Strep-tag-labeled FGFR1-IIIc with dekafins resulted in receptor phosphorylation. FGF1-induced FGFR1-IIIc phosphorylation was inhibited by dekafin1 and 10 in high concentrations, indicating that dekafins are FGFR partial agonists. The dekafins induced neuronal differentiation as reflected by neurite outgrowth from cerebellar granule neurons, an effect that was abolished by SU5402, a specific inhibitor of the FGFR tyrosine kinase, and by inositolhexaphosphate, an extracellularly acting FGFR antagonist. Some, but not all, dekafins were capable of promoting survival of cerebellar granule neurons induced to undergo apoptosis. Thus, the dekafins are functional FGFR agonists with apparent therapeutic potential.
Collapse
Affiliation(s)
- Shizhong Li
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark, and ENKAM Pharmaceuticals A/S, Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
25
|
McKenzie J, Johannes L, Taguchi T, Sheff D. Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. FEBS J 2008; 276:1581-95. [PMID: 19220458 DOI: 10.1111/j.1742-4658.2009.06890.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Both Shiga holotoxin and the isolated B subunit, navigate a retrograde pathway from the plasma membrane to the endoplasmic reticulum (ER) of mammalian cells to deliver catalytic A subunits into the cytosol. This route passes through early/recycling endosomes and then through the Golgi. Although passage through the endosomes takes only 30 min, passage through the Golgi is much slower, taking hours. This suggests that Golgi passage is a key step in retrograde traffic. However, there is no empirical data demonstrating that Golgi passage is required for the toxins to enter the ER. In fact, an alternate pathway bypassing the Golgi is utilized by SV40 virus. Here we find that blocking Shiga toxin B access to the entire Golgi with AlF(4)(-) treatment, temperature block or subcellular surgery prevented Shiga toxin B from reaching the ER. This suggests that there is no direct endosome to ER route available for retrograde traffic. Curiously, when Shiga toxin B was trapped in endosomes, it entered the cytosol directly from the endosomal compartment. Our results suggest that trafficking through the Golgi apparatus is required for Shiga toxin B to reach the ER and that diversion into the Golgi may prevent toxin escape from endosomes into the cytosol.
Collapse
Affiliation(s)
- Jenna McKenzie
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-2600, USA
| | | | | | | |
Collapse
|
26
|
Nilsen T, Rosendal KR, Sørensen V, Wesche J, Olsnes S, Wiedłocha A. A nuclear export sequence located on a beta-strand in fibroblast growth factor-1. J Biol Chem 2007; 282:26245-56. [PMID: 17616529 DOI: 10.1074/jbc.m611234200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Receptor-bound and endocytosed fibroblast growth factor-1 (FGF-1) is able to cross the vesicle membrane and translocate to cytosol and nucleus. This suggests an intracellular role of FGF-1, which also signals by activating transmembrane FGF receptors. Phosphorylation of internalized FGF-1 by nuclear protein kinase C delta induces rapid export from the nuclei by a leptomycin B-sensitive pathway. In the present work, we have searched for and identified a Leu-rich nuclear export sequence (NES) at the C terminus of FGF-1 required for its nuclear export and able to confer nuclear export activity to a reporter protein in an in vivo system. Mutants where hydrophobic amino acids within the NES were exchanged for alanine exhibited reduced or abolished nuclear export. As demonstrated in co-immunoprecipitation experiments, a complex containing FGF-1, exportin-1, and its co-factor Ran-GTP, was formed in vitro. Formation of this complex in vivo was demonstrated by a peroxisomal targeting assay. Formation of the FGF-1-exportin-1-Ran-GTP complex in vitro as well as nuclear export of FGF-1 in vivo was dependent on phosphorylation of FGF-1, and it was abolished by leptomycin B. The FGF-1 NES was found to be situated along a beta-strand, which has not been reported before, since NESs usually are alpha-helical.
Collapse
Affiliation(s)
- Trine Nilsen
- Centre for Cancer Biomedicine, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Montebello, University of Oslo, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|