1
|
Abrahamian C, Tang R, Deutsch R, Ouologuem L, Weiden EM, Kudrina V, Blenninger J, Rilling J, Feldmann C, Kuss S, Stepanov Y, Rosato AS, Calvo GT, Soengas MS, Mayr D, Fröhlich T, Gudermann T, Biel M, Wahl-Schott C, Chen CC, Bartel K, Grimm C. Rab7a is an enhancer of TPC2 activity regulating melanoma progression through modulation of the GSK3β/β-Catenin/MITF-axis. Nat Commun 2024; 15:10008. [PMID: 39562548 PMCID: PMC11576762 DOI: 10.1038/s41467-024-54324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Melanoma arising from pigment-producing melanocytes is the deadliest form of skin cancer. Extensive ultraviolet light exposure is a major cause of melanoma and individuals with low levels of melanin are at particular risk. Humans carrying gain-of-function polymorphisms in the melanosomal/endolysosomal two-pore cation channel TPC2 present with hypopigmentation, blond hair, and albinism. Loss of TPC2 is associated with decreased cancer/melanoma proliferation, migration, invasion, tumor growth and metastasis formation, and TPC2 depleted melanoma cells show increased levels of melanin. How TPC2 activity is controlled in melanoma and the downstream molecular effects of TPC2 activation on melanoma development remain largely elusive. Here we show that the small GTPase Rab7a strongly enhances the activity of TPC2 and that effects of TPC2 on melanoma hallmarks, in vitro and in vivo strongly depend on the presence of Rab7a, which controls TPC2 activity to modulate GSK3β, β-Catenin, and MITF, a major regulator of melanoma development and progression.
Collapse
Affiliation(s)
- Carla Abrahamian
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Rachel Tang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Rebecca Deutsch
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Lina Ouologuem
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Eva-Maria Weiden
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Veronika Kudrina
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Julia Blenninger
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Julia Rilling
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Colin Feldmann
- Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Solveig Kuss
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Youli Stepanov
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Anna Scotto Rosato
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Guadalupe T Calvo
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | - Maria S Soengas
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Karin Bartel
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich/Frankfurt, Germany.
| |
Collapse
|
2
|
Neto MV, Hall MJ, Charneca J, Escrevente C, Seabra MC, Barral DC. Photoprotective Melanin Is Maintained within Keratinocytes in Storage Lysosomes. J Invest Dermatol 2024:S0022-202X(24)02100-6. [PMID: 39303907 DOI: 10.1016/j.jid.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
In the skin, melanin is synthesized by melanocytes within melanosomes and transferred to keratinocytes. After being phagocytosed by keratinocytes, melanin polarizes to supranuclear caps that protect against the genotoxic effects of UVR. We provide evidence that melanin-containing phagosomes undergo a canonical maturation process, with the sequential acquisition of early and late endosomal markers. Subsequently, these phagosomes fuse with active lysosomes, leading to the formation of a melanin-containing phagolysosome that we named melanokerasome. Melanokerasomes achieve juxtanuclear positioning through lysosomal trafficking regulators Rab7 and RILP. Mature melanokerasomes exhibit lysosomal markers, elude connections with the endo/phagocytic pathway, are weakly degradative, retain undigested cargo, and are likely tethered to the nuclear membrane. We propose that they represent a lysosomal-derived storage compartment that has exited the lysosome cycle, akin to the formation of lipofuscin in aged cells and dysfunctional lysosomes in lysosomal storage and age-related diseases. This storage lysosome allows melanin to persist for long periods, where it can exert its photoprotective effect efficiently.
Collapse
Affiliation(s)
- Matilde V Neto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Michael J Hall
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - João Charneca
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cristina Escrevente
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Fukushima N, Miyamoto Y, Yamauchi J. CRISPR/CasRx-Mediated Knockdown of Rab7B Restores Incomplete Cell Shape Induced by Pelizaeus-Merzbacher Disease-Associated PLP1 p.Ala243Val. Neurosci Insights 2024; 19:26331055241276873. [PMID: 39280331 PMCID: PMC11402064 DOI: 10.1177/26331055241276873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
Pelizaeus-Merzbacher disease (PMD, currently known as hypomyelinating leukodystrophy type 1 [HLD1]) is a hereditary hypomyelinating and/or demyelinating disease associated with the proteolipid protein 1 (plp1) gene in the central nervous system (CNS). One of the major causes of this condition is incomplete or defective oligodendroglial cell myelin sheath formation triggered by endoplasmic reticulum (ER) stress and subsequent unfolded protein response (UPR). The HLD1-associated Ala-243-to-Val mutation (p.Ala243Val) of PLP1 is widely recognized to trigger defective oligodendroglial cell morphological differentiation, primarily due to ER stress. We have previously reported that knockdown of Rab7B (also known as Rab42), a small GTP/GDP-binding protein involved in intracellular vesicle trafficking around the lysosome, can recover chemical ER stress-induced incomplete cell shapes in the FBD-102b cell line, a model of oligodendroglial cell morphological differentiation. Here, we present findings indicating that incomplete cell shapes induced by PLP1 p.Ala243Val can be restored by knockdown of Rab7B using the clustered regularly interspaced short palindromic repeats (CRISPR) and CasRx (also known as Cas13d) system. Also, the knockdown promoted the trafficking of PLP1 p.Ala243Val to lysosome-associated membrane protein 1 (LAMP1)-positive organelles. These results highlight the unique role of Rab7B knockdown in modulating oligodendroglial cell morphological changes and potentially facilitating the transport of mutated PLP1 to LAMP1-positive organelles, suggesting its potential as a therapeutic target for alleviating HLD1 phenotypes, at least in part, at the molecular and cellular levels.
Collapse
Affiliation(s)
- Nana Fukushima
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
4
|
Chen X, Li CG, Zhou X, Zhu M, Jin J, Wang P. A new perspective on the regulation of glucose and cholesterol transport by mitochondria-lysosome contact sites. Front Physiol 2024; 15:1431030. [PMID: 39290619 PMCID: PMC11405319 DOI: 10.3389/fphys.2024.1431030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mitochondria and lysosomes play a very important role in maintaining cellular homeostasis, and the dysfunction of these organelles is closely related to many diseases. Recent studies have revealed direct interactions between mitochondria and lysosomes, forming mitochondria-lysosome contact sites that regulate organelle network dynamics and mediate the transport of metabolites between them. Impaired function of these contact sites is not only linked to physiological processes such as glucose and cholesterol transport but also closely related to the pathological processes of metabolic diseases. Here, we highlight the recent progress in understanding the mitochondria-lysosome contact sites, elucidate their role in regulating metabolic homeostasis, and explore the potential implications of this pathway in metabolic disorders.
Collapse
Affiliation(s)
- Xiaolong Chen
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Minghua Zhu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jing Jin
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Ping Wang
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Wang Y, Xie Y, Qian L, Ding R, Pang R, Chen P, Zhang Q, Zhang S. RAB42 overexpression correlates with poor prognosis, immune cell infiltration and chemoresistance. Front Pharmacol 2024; 15:1445170. [PMID: 39101146 PMCID: PMC11294155 DOI: 10.3389/fphar.2024.1445170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
Background RAB42 (Ras-related protein 42) is a new small GTPase that controls the vesicular trafficking from endosomes to trans-Golgi network in mammalian cells. However, the role of RAB42 in multiple cancers, especially in liver hepatocellular carcinoma (LIHC), has not been well investigated. Methods A variety of cancer-related databases and online tools, including TCGA, GTEx, TARGET, QUANTISEQ, EPIC, RNAactDrug, CTR-DB, TIMER algorithms and Sangerbox, were applied to explore the correlation of RAB42 expression with prognosis, immune microenvironment, immune regulatory network, RNA modification, pathway activation and drug sensitivity in pan-cancer. The prognostic, immunomodulatory and tumor-promoting effects of RAB42 were verified in various malignancies and determined by a series of in vitro cellular experiments. Results RAB42 is significantly overexpressed in most cancers with advanced pathological stages. Its overexpression is correlated with poor survival in pan-cancer. RAB42 overexpression has a high diagnostic accuracy of various cancers (AUC > 0.80). RAB42 overexpression not only correlates with distinct stromal immune infiltration and level of immune checkpoint molecules, but also associates with weak immune cell infiltration, immunomodulatory genes expression, and immunotherapeutic response to immune checkpoint inhibitors (ICIs). Additionally, RAB42 overexpression correlates with enhanced expression of m6A RNA methylation-related genes (MRGs) and its interactors. Moreover, overexpression of RAB42 serves as a drug-resistant marker to certain chemotherapies and acts as a potential biomarker for LIHC. Notably, RAB42 overexpression or activation promotes the cellular proliferation, migration and invasion of LIHC. Conclusion Overexpressed RAB42 serves as a potential prognostic biomarker and therapeutic target in pan-cancer, especially in LIHC.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Youbang Xie
- Department of Hematology and Rheumatology, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Ran Ding
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Rongqing Pang
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Ping Chen
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qing Zhang
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Das S, Parray HA, Chiranjivi AK, Kumar P, Goswami A, Bansal M, Rathore DK, Kumar R, Samal S. Kennedy Epitope (KE)-dependent Retrograde Transport of Efficiently Cleaved HIV-1 Envelopes (Envs) and its Effect on Env Cell Surface Expression and Viral Particle Formation. Protein J 2024; 43:375-386. [PMID: 37794304 DOI: 10.1007/s10930-023-10161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Efficiently cleaved HIV-1 Envs are the closest mimics of functional Envs as they specifically expose only bNAb (broadly neutralizing antibody) epitopes and not non-neutralizing ones, making them suitable for developing vaccine immunogens. We have previously identified several efficiently cleaved Envs from clades A, B, C and B/C. We also described that truncation of the CT (C-terminal tail) of a subset of these Envs, but not others, impairs their ectodomain conformation/antigenicity on the cell surface in a CT conserved hydrophilic domain (CHD) or Kennedy epitope (KE)-dependent manner. Here, we report that those Envs (4 - 2.J41 and JRCSF), whose native-like ectodomain conformation/antigenicity on the cell surface is disrupted upon CT truncation, but not other Envs like JRFL, whose CT truncation does not have an effect on ectodomain integrity on the cell surface, are also defective in retrograde transport from early to late endosomes. Restoration of the CHD/KE in the CT of these Envs restores wild-type levels of distribution between early and late endosomes. In the presence of retrograde transport inhibitor Retro 2, cell surface expression of 4 - 2.J41 and JRCSF Envs increases [as does in the presence of Rab7a DN and Rab7b DN (DN: dominant negative)] but particle formation decreases for 4 - 2.J41 and JRCSF Env pseudotyped viruses. Our results show for the first time a correlation between CT-dependent, CHD/KE regulated retrograde transport and cell surface expression/viral particle formation of these efficiently cleaved Envs. Based on our results we hypothesize that a subset of these efficiently cleaved Envs use a CT-dependent, CHD/KE-mediated mechanism for assembly and release from late endosomes.
Collapse
Affiliation(s)
- Supratik Das
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India.
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India.
| | - Hilal Ahmad Parray
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Adarsh Kumar Chiranjivi
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Prince Kumar
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Abhishek Goswami
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Manish Bansal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Deepak Kumar Rathore
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology - Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sweety Samal
- Infection and Immunology, Translational Research Program, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, Haryana, India
| |
Collapse
|
7
|
Tavares LA, Rodrigues RL, Santos da Costa C, Nascimento JA, Vargas de Carvalho J, Nogueira de Carvalho A, Mardones GA, daSilva LLP. AP-1γ2 is an adaptor protein 1 variant required for endosome-to-Golgi trafficking of the mannose-6-P receptor (CI-MPR) and ATP7B copper transporter. J Biol Chem 2024; 300:105700. [PMID: 38307383 PMCID: PMC10909764 DOI: 10.1016/j.jbc.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.
Collapse
Affiliation(s)
- Lucas Alves Tavares
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger Luiz Rodrigues
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristina Santos da Costa
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonas Alburqueque Nascimento
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julianne Vargas de Carvalho
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andreia Nogueira de Carvalho
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gonzalo A Mardones
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Luis L P daSilva
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
9
|
Fukushima N, Shirai R, Sato T, Nakamura S, Ochiai A, Miyamoto Y, Yamauchi J. Knockdown of Rab7B, But Not of Rab7A, Which Antagonistically Regulates Oligodendroglial Cell Morphological Differentiation, Recovers Tunicamycin-Induced Defective Differentiation in FBD-102b Cells. J Mol Neurosci 2023; 73:363-374. [PMID: 37248316 DOI: 10.1007/s12031-023-02117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
In the central nervous system (CNS), insulative myelin sheaths are generated from the differentiated plasma membranes of oligodendrocytes (oligodendroglial cells) and surround neuronal axons to achieve saltatory conduction. Despite the functional involvement of myelin sheaths in the CNS, the molecular mechanism by which oligodendroglial cells themselves undergo differentiation of plasma membranes remains unclear. It also remains to be explored whether their signaling mechanisms can be applied to treating diseases of the oligodendroglial cells. Here, we describe that Rab7B of Rab7 subfamily small GTPases negatively regulates oligodendroglial cell morphological differentiation using FBD-102b cells, which are model cells undergoing differentiation of oligodendroglial precursors. Knockdown of Rab7B or Rab7A by the respective specific siRNAs in cells positively or negatively regulated morphological differentiation, respectively. Consistently, these changes were supported by changes on differentiation- and myelination-related structural protein and protein kinase markers. We also found that knockdown of Rab7B has the ability to recover inhibition of morphological differentiation following tunicamycin-induced endoplasmic reticulum (ER) stress, which mimics one of the major molecular pathological causes of hereditary hypomyelinating disorders in oligodendroglial cells, such as Pelizaeus-Merzbacher disease (PMD). These results suggest that the respective molecules among very close Rab7 homologues exhibit differential roles in morphological differentiation and that knocking down Rab7B can recover defective differentiating phenotypes under ER stress, thereby adding Rab7B to the list of molecular therapeutic cues taking advantage of signaling mechanisms for oligodendroglial diseases like PMD.
Collapse
Affiliation(s)
- Nana Fukushima
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Sayumi Nakamura
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Arisa Ochiai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1, Setagaya, Tokyo, 157-8535, Japan.
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1, Setagaya, Tokyo, 157-8535, Japan.
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.
| |
Collapse
|
10
|
RAB7A GTPase Is Involved in Mitophagosome Formation and Autophagosome-Lysosome Fusion in N2a Cells Treated with the Prion Protein Fragment 106-126. Mol Neurobiol 2023; 60:1391-1407. [PMID: 36449254 DOI: 10.1007/s12035-022-03118-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
Failed communication between mitochondria and lysosomes causes dysfunctional mitochondria, which may induce mitochondria-related neurodegenerative diseases. Here, we show that RAB7A, a small GTPase of the Rab family, mediates the crosstalk between these two important organelles to maintain homeostasis in N2a cells treated with PrP106-126. Specifically, we demonstrate that mitophagy deficiency in N2a cells caused by PrP106-126 is associated with dysregulated RAB7A localization in mitochondria. Cells lacking RAB7A display decreased mitochondrial colocalization with lysosomes and significantly increased mitochondrial protein expression, resulting in inhibited mitophagy. In contrast, overexpression of GTP-bound RAB7A directly induces lysosome colocalization with mitochondria. Further study revealed that GTP-bound RAB7A protects mitochondrial homeostasis by supporting autophagosome biogenesis. Moreover, we suggest that depletion of RAB7A leads to gross morphological changes in lysosomes, which prevents autophagosome-lysosome fusion and interferes with the breakdown of autophagic cargo within lysosomes. Overexpression of GTP-bound RAB7A can also alleviate PrP106-126-induced morphological damage and dysfunction of mitochondria, reducing neuronal apoptosis. Collectively, our data demonstrate that RAB7A successfully drives mitochondria to the autophagosomal lumen for degradation, suggesting that the communication of proteotoxic stress from mitochondria to lysosomes requires RAB7A, as a signaling molecule, to establish a link between the disturbed mitochondrial network and its remodeling. These findings indicate that small molecules regulating mitophagy have the potential to modulate cellular homeostasis and the clinical course of neurodegenerative diseases. Proposed model of mitophagy regulated by RAB7A. (1) Accumulating PrP106-126 induced mitophagy. (2) RAB7A is recruited to mitochondria. (3) ATG5-12 and ATG9A (5) vesicles are recruited to the autophagosome formation sites in a RAB7A-dependent manner. The ATG5-12 complex recruits and anchors LC3-I to form active LC3-II (4), accelerating mitophagosomal formation. The ATG9A vesicles are thought to be a source of membranes for autophagosome assembly. The recruitment of proteins and lipids induces membrane expansion and subsequent closure to form the mitophagosome. (6) Maintenance of the normal low lysosomal PH depends on active (GTP-bound) RAB7A. (7) RAB7A recruits effector molecules responsible for tight membrane interactions, and directly or indirectly, the subsequent autophagosome merges with the lysosome, and the cargo is completely degraded.
Collapse
|
11
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
12
|
Localization of Chicken Rab22a in Cells and Its Relationship to BF or Ii Molecules and Genes. Animals (Basel) 2023; 13:ani13030387. [PMID: 36766276 PMCID: PMC9913282 DOI: 10.3390/ani13030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Rab22a is an important small GTPase protein the molecule that is involved in intracellular transportation and regulation of proteins. It also plays an important role in antigens uptake, transportation, regulation of endosome morphology, and also regulates the transport of antigens to MHC (Major Histocompatibility Complex) molecules. To investigate the role of Rab22a, the intracellular co-localization of chicken Rab22a (cRab22a) molecule and its relationship to BF and chicken invariant chain (cIi) molecules was studied. A 3D protein structure of Rab22a was constructed by using informatics tools (DNASTAR 4.0 and DNAMAN). Based on the model, the corresponding recombinant eukaryotic plasmids were constructed by point mutations in the protein's structural domains. HEK 293T cells were co-transfected with plasmids pEGFP-C1-cIi to observe the intracellular co-localization. Secondly, the DC2.4 Mouse Dendritic Cell and Murine RAW 264.7 cells were transfected with recombinant plasmids of pmCherry-cRab22a and pmCherry-mRab22a respectively. Subsequently, the intracellular localization of cRab22a in early and late endosomes was observed with specific antibodies against EEA1 and LAMP1 respectively. For gene expression-based studies, the cRab22a gene was down-regulated and up-regulated in HD11 cells, following the detection of transcription levels of the BFa (MHCIa) and cIi genes by real-time quantitative PCR (RT-qPCR). The interactions of the cRab22a gene with BFa and cIi were detected by co-immunoprecipitation (Co-IP) and Western blot. The results showed that the protein structures of chicken and mouse Rab22a were highly homologous (95.4%), and both localize to the early and late endosomes. Ser41 and Tyr74 are key amino acids in the Switch regions of Rab22a which maintain its intracellular localization. The down-regulation of cRab22a gene expression significantly reduced (p < 0.01) the transcription of BFa (MHCIa) and cIi in HD11 cells. However, when the expression of the cRab22a gene was increased 55 times as compared to control cells, the expression of the BFa (MHCIa) gene was increased 1.7 times compared to the control cells (p < 0.01), while the expression of the cIi gene did not significantly differ from control (p > 0.05). Western blot results showed that cRab22a could not directly bind to BFa and cIi. So, cRab22a can regulate BFa and cIi protein molecules indirectly. It is concluded that cRab22a was localized with cIi in the endosome. The Switch regions of cRab22a are the key domains that affect intracellular localization and colocalization of the cIi molecule.
Collapse
|
13
|
High RAS-related protein Rab-7a (RAB7A) expression is a poor prognostic factor in pancreatic adenocarcinoma. Sci Rep 2022; 12:17492. [PMID: 36261459 PMCID: PMC9582019 DOI: 10.1038/s41598-022-22355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a frequent type of cancer in adults worldwide, and the search for better biomarkers is one of the current challenges. Although RAB7A is associated with tumour progression in multiple tumour types, there are only a few reports in PAAD. Therefore, in this paper, RNA sequencing data were obtained from TCGA(The Cancer Genome Atlas) and GTEx to analyse RAB7A expression and differentially expressed genes (DEGs) in PAAD. The functional enrichment of RAB7A-associated DEGs was analysed by protein‒protein interaction (PPI) networks, immune cell infiltration analysis and GO/KEGG analyses. Additionally, Kaplan‒Meier and Cox regression analyses were used to determine the clinical significance of RAB7A in PAAD. High RAB7A expression was associated with poor prognosis in 182 PAAD specimens, including subgroups of patients aged ≤ 65 years, with male sex, not receiving radiotherapy, and with a history of previous alcohol consumption (P < 0.05). Cox regression analysis showed that elevated RAB7A was an independent prognostic factor, and the prognostic nomogram model included radiotherapy status, presence of postoperative tumour residual and histologic grade. Overall, RAB7A overexpression may serve as a biomarker for poor outcome in pancreatic cancer. The DEGs and pathways revealed in this work provide a tentative molecular mechanism for the pathogenesis and progression of PAAD.
Collapse
|
14
|
Tan N, Liu T, Wang X, Shao M, Zhang M, Li W, Ling G, Jiang J, Wang Q, Li J, Li C, Wang W, Wang Y. The multi-faced role of FUNDC1 in mitochondrial events and human diseases. Front Cell Dev Biol 2022; 10:918943. [PMID: 35959490 PMCID: PMC9358025 DOI: 10.3389/fcell.2022.918943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Mitophagy plays a vital role in the selective elimination of dysfunctional and unwanted mitochondria. As a receptor of mitophagy, FUN14 domain containing 1 (FUNDC1) is attracting considerably critical attention. FUNDC1 is involved in the mitochondria fission, the clearance of unfolded protein, iron metabolism in mitochondria, and the crosstalk between mitochondria and endoplasmic reticulum besides mitophagy. Studies have demonstrated that FUNDC1 is associated with the progression of ischemic disease, cancer, and metabolic disease. In this review, we systematically examine the recent advancements in FUNDC1 and the implications of this protein in health and disease.
Collapse
Affiliation(s)
- Nannan Tan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhua Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guanjing Ling
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinchi Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Wei Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| |
Collapse
|
15
|
Matsui T, Sakamaki Y, Nakashima S, Fukuda M. Rab39 and its effector UACA regulate basolateral exosome release from polarized epithelial cells. Cell Rep 2022; 39:110875. [PMID: 35649370 DOI: 10.1016/j.celrep.2022.110875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes are small extracellular vesicles that originate from the intraluminal vesicles of multivesicular bodies (MVBs). We previously reported that polarized Madin-Darby canine kidney (MDCK) epithelial cells secrete two types of exosomes, apical and basolateral exosomes, from different MVBs. However, how these MVBs are selectively targeted to the apical or basolateral membrane remained unknown. Here, we analyze members of the Rab family small GTPases and show that different sets of Rabs mediate asymmetrical exosome release. Rab27, the best-known regulator of MVB transport for exosome release, is specifically but partially involved in apical exosome release, and Rab37, a close homolog of Rab27, is an additional apical exosome regulator. By contrast, Rab39 functions as a specific regulator of basolateral exosome release. Mechanistically, Rab39 interacts with its effector UACA, and UACA then recruits Lyspersin, a component of BLOC-1-related complex (BORC). Our findings suggest that the Rab39-UACA-BORC complex specifically mediates basolateral exosome release.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shumpei Nakashima
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
16
|
Early Endosomal Vps34-Derived Phosphatidylinositol-3-Phosphate Is Indispensable for the Biogenesis of the Endosomal Recycling Compartment. Cells 2022; 11:cells11060962. [PMID: 35326413 PMCID: PMC8946653 DOI: 10.3390/cells11060962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022] Open
Abstract
Phosphatidylinositol-3-phosphate (PI3P), a major identity tag of early endosomes (EEs), provides a platform for the recruitment of numerous cellular proteins containing an FYVE or PX domain that is required for PI3P-dependent maturation of EEs. Most of the PI3P in EEs is generated by the activity of Vps34, a catalytic component of class III phosphatidylinositol-3-phosphate kinase (PI3Ks) complex. In this study, we analyzed the role of Vps34-derived PI3P in the EE recycling circuit of unperturbed cells using VPS34-IN1 (IN1), a highly specific inhibitor of Vps34. IN1-mediated PI3P depletion resulted in the rapid dissociation of recombinant FYVE- and PX-containing PI3P-binding modules and endogenous PI3P-binding proteins, including EEA1 and EE sorting nexins. IN1 treatment triggered the rapid restructuring of EEs into a PI3P-independent functional configuration, and after IN1 washout, EEs were rapidly restored to a PI3P-dependent functional configuration. Analysis of the PI3P-independent configuration showed that the Vps34-derived PI3P is not essential for the pre-EE-associated functions and the fast recycling loop of the EE recycling circuit but contributes to EE maturation toward the degradation circuit, as previously shown in Vps34 knockout and knockdown studies. However, our study shows that Vps34-derived PI3P is also essential for the establishment of the Rab11a-dependent pathway, including recycling cargo sorting in this pathway and membrane flux from EEs to the pericentriolar endosomal recycling compartment (ERC). Rab11a endosomes of PI3P-depleted cells expanded and vacuolized outside the pericentriolar area without the acquisition of internalized transferrin (Tf). These endosomes had high levels of FIP5 and low levels of FIP3, suggesting that their maturation was arrested before the acquisition of FIP3. Consequently, Tf-loaded-, Rab11a/FIP5-, and Rab8a-positive endosomes disappeared from the pericentriolar area, implying that PI3P-associated functions are essential for ERC biogenesis. ERC loss was rapidly reversed after IN1 washout, which coincided with the restoration of FIP3 recruitment to Rab11a-positive endosomes and their dynein-dependent migration to the cell center. Thus, our study shows that Vps34-derived PI3P is indispensable in the recycling circuit to maintain the slow recycling pathway and biogenesis of the ERC.
Collapse
|
17
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
18
|
Xu D, Tang WJ, Zhu YZ, Liu Z, Yang K, Liang MX, Chen X, Wu Y, Tang JH, Zhang W. Hyperthermia promotes exosome secretion by regulating Rab7b while increasing drug sensitivity in adriamycin-resistant breast cancer. Int J Hyperthermia 2022; 39:246-257. [PMID: 35100921 DOI: 10.1080/02656736.2022.2029585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To investigate the mechanism through which hyperthermia promotes exosome secretion and drug sensitivity in adriamycin-resistant breast cancer. MATERIALS AND METHODS We first evaluated the effect of hyperthermia on adriamycin-resistant breast cancer viability and used transmission electron microscopy, nanoparticle tracking analysis, and a bicinchoninic acid kit to validate the effect of hyperthermia on exosome secretion. The effective targeting molecules and pathways changed by hyperthermia were explored by RNA microarray and verified in vitro. The adriamycin-resistant MCF-7/ADR cells co-incubated with the exosomes produced by MCF-7/ADR cells after hyperthermia were assessed. The uptake of exosomes by MCF-7/ADR cells after hyperthermia treatment was evaluated by confocal microscopy. Finally, the mechanism through which hyperthermia promotes exosome secretion by hyperthermia was determined. RESULTS Hyperthermia significantly suppressed the growth of adriamycin-resistant breast cancer cells and increased drug sensitivity by upregulating FOS and CREB5, genes related to longer overall survival in breast cancer patients. Moreover, hyperthermia promoted exosome secretion through Rab7b, a small GTPase that controls endosome transport. The upregulated FOS and CREB5 antioncogenes can be transferred to MCF-7/ADR cells by hyperthermia-treated MCF-7/ADR cell-secreted exosomes. CONCLUSIONS Our results demonstrated a novel function of hyperthermia in promoting exosome secretion in adriamycin-resistant breast cancer cells and revealed the effects of hyperthermia on tumor cell biology. These hyperthermia-triggered exosomes can carry antitumor genes to the residual tumor and tumor microenvironment, which may be more beneficial to the effects of hyperthermia. These results represent an exploration of the relationship between therapeutic strategies and exosome biology.
Collapse
Affiliation(s)
- Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Wen-Juan Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yi-Zhi Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Zhen Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Kai Yang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yang Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
19
|
Ai L, Ren Y, Zhu M, Lu S, Qian Y, Chen Z, Xu A. Synbindin restrains proinflammatory macrophage activation against microbiota and mucosal inflammation during colitis. Gut 2021; 70:2261-2272. [PMID: 33441378 DOI: 10.1136/gutjnl-2020-321094] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE As a canonical membrane tethering factor, the function of synbindin has been expanding and indicated in immune response. Here, we investigated the role of synbindin in the regulation of toll-like receptor 4 (TLR4) signalling and macrophage response to microbiota during colitis. DESIGN Three distinct mouse models allowing global, myeloid-specific or intestinal epithelial cell-specific synbindin heterozygous deletion were constructed and applied to reveal the function of synbindin during dextran sodium sulfate (DSS) colitis. Effects of synbindin on TLR4 signalling and macrophage activation in response to bacterial lipopolysaccharide (LPS) or Fusobacterium nucleatum were evaluated. The colocalisation and interaction between synbindin and Rab7b were determined by immunofluorescence and coimmunoprecipitation. Synbindin expression in circulating monocytes and intestinal mucosal macrophages of patients with active IBD was detected. RESULTS Global synbindin haploinsufficiency greatly exacerbated DSS-induced intestinal inflammation. The increased susceptibility to DSS was abolished by gut microbiota depletion, while phenocopied by specific synbindin heterozygous deletion in myeloid cells rather than intestinal epithelial cells. Profoundly aberrant proinflammatory gene signatures and excessive TLR4 signalling were observed in macrophages with synbindin interference in response to bacterial LPS or Fusobacterium nucleatum. Synbindin was significantly increased in intestinal mucosal macrophages and circulating monocytes from both mice with DSS colitis and patients with active IBD. Interleukin 23 and granulocyte-macrophage colony-stimulating factor were identified to induce synbindin expression. Mechanistic characterisation indicated that synbindin colocalised and directly interacted with Rab7b, which coordinated the endosomal degradation pathway of TLR4 for signalling termination. CONCLUSION Synbindin was a key regulator of TLR4 signalling and restrained the proinflammatory macrophage activation against microbiota during colitis.
Collapse
Affiliation(s)
- Luoyan Ai
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Zhu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Antao Xu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Surfactant protein A enhances the degradation of LPS-induced TLR4 in primary alveolar macrophages involving Rab7, β-arrestin2, and mTORC1. Infect Immun 2021; 90:e0025021. [PMID: 34780278 DOI: 10.1128/iai.00250-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory infections by Gram-negative bacteria are a major cause of global morbidity and mortality. Alveolar macrophages (AMs) play a central role in maintaining lung immune homeostasis and host defense by sensing pathogens via pattern recognition receptors (PRR). The PRR Toll-like receptor (TLR) 4 is a key sensor of lipopolysaccharide (LPS) from Gram-negative bacteria. Pulmonary surfactant is the natural microenvironment of AMs. Surfactant protein A (SP-A), a multifunctional host defense collectin, controls LPS-induced pro-inflammatory immune responses at the organismal and cellular level via distinct mechanisms. We found that SP-A post-transcriptionally restricts LPS-induced TLR4 protein expression in primary AMs from healthy humans, rats, wild-type and SP-A-/- mice by further decreasing cycloheximide-reduced TLR4 protein translation and enhances the co-localization of TLR4 with the late endosome/lysosome. Both effects as well as the SP-A-mediated inhibition of LPS-induced TNFα release are counteracted by pharmacological inhibition of the small GTPase Rab7. SP-A-enhanced Rab7 expression requires β-arrestin2 and, in β-arrestin2-/- AMs and after intratracheal LPS challenge of β-arrestin2-/- mice, SP-A fails to enhance TLR4/lysosome co-localization and degradation of LPS-induced TLR4. In SP-A-/- mice, TLR4 levels are increased after pulmonary LPS challenge. SP-A-induced activation of mechanistic target of rapamycin complex 1 (mTORC1) kinase requires β-arrestin2 and is critically involved in degradation of LPS-induced TLR4. The data suggest that SP-A post-translationally limits LPS-induced TLR4 expression in primary AMs by lysosomal degradation comprising Rab7, β-arrestin2, and mTORC1. This study may indicate a potential role of SP-A-based therapeutic interventions in unrestricted TLR4-driven immune responses to lower respiratory tract infections caused by Gram-negative bacteria.
Collapse
|
21
|
Vestre K, Persiconi I, Borg Distefano M, Mensali N, Guadagno NA, Bretou M, Wälchli S, Arnold-Schrauf C, Bakke O, Dalod M, Lennon-Dumenil AM, Progida C. Rab7b regulates dendritic cell migration by linking lysosomes to the actomyosin cytoskeleton. J Cell Sci 2021; 134:272095. [PMID: 34494097 PMCID: PMC8487646 DOI: 10.1242/jcs.259221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Lysosomal signaling facilitates the migration of immune cells by releasing Ca2+ to activate the actin-based motor myosin II at the cell rear. However, how the actomyosin cytoskeleton physically associates to lysosomes is unknown. We have previously identified myosin II as a direct interactor of Rab7b, a small GTPase that mediates the transport from late endosomes/lysosomes to the trans-Golgi network (TGN). Here, we show that Rab7b regulates the migration of dendritic cells (DCs) in one- and three-dimensional environments. DCs are immune sentinels that transport antigens from peripheral tissues to lymph nodes to activate T lymphocytes and initiate adaptive immune responses. We found that the lack of Rab7b reduces myosin II light chain phosphorylation and the activation of the transcription factor EB (TFEB), which controls lysosomal signaling and is required for fast DC migration. Furthermore, we demonstrate that Rab7b interacts with the lysosomal Ca2+ channel TRPML1 (also known as MCOLN1), enabling the local activation of myosin II at the cell rear. Taken together, our findings identify Rab7b as the missing physical link between lysosomes and the actomyosin cytoskeleton, allowing control of immune cell migration through lysosomal signaling. This article has an associated First Person interview with the first author of the paper. Summary: The small GTPase Rab7b bridges the lysosomal Ca2+ channel TRPML1 to myosin II, thus enabling the local activation of myosin II at the cell rear and promoting fast migration of dendritic cells.
Collapse
Affiliation(s)
- Katharina Vestre
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Irene Persiconi
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Nadia Mensali
- Department of Cellular Therapy, the Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Marine Bretou
- Institut Curie, Inserm U932, F-75005 Paris, France.,VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
| | - Sébastien Wälchli
- Department of Cellular Therapy, the Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Catharina Arnold-Schrauf
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France
| | | | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
22
|
Radyk MD, Spatz LB, Peña BL, Brown JW, Burclaff J, Cho CJ, Kefalov Y, Shih C, Fitzpatrick JAJ, Mills JC. ATF3 induces RAB7 to govern autodegradation in paligenosis, a conserved cell plasticity program. EMBO Rep 2021; 22:e51806. [PMID: 34309175 PMCID: PMC8419698 DOI: 10.15252/embr.202051806] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Differentiated cells across multiple species and organs can re-enter the cell cycle to aid in injury-induced tissue regeneration by a cellular program called paligenosis. Here, we show that activating transcription factor 3 (ATF3) is induced early during paligenosis in multiple cellular contexts, transcriptionally activating the lysosomal trafficking gene Rab7b. ATF3 and RAB7B are upregulated in gastric and pancreatic digestive-enzyme-secreting cells at the onset of paligenosis Stage 1, when cells massively induce autophagic and lysosomal machinery to dismantle differentiated cell morphological features. Their expression later ebbs before cells enter mitosis during Stage 3. Atf3-/- mice fail to induce RAB7-positive autophagic and lysosomal vesicles, eventually causing increased death of cells en route to Stage 3. Finally, we observe that ATF3 is expressed in human gastric metaplasia and during paligenotic injury across multiple other organs and species. Thus, our findings indicate ATF3 is an evolutionarily conserved gene orchestrating the early paligenotic autodegradative events that must occur before cells are poised to proliferate and contribute to tissue repair.
Collapse
Affiliation(s)
- Megan D Radyk
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Lillian B Spatz
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Bianca L Peña
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey W Brown
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Joseph Burclaff
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Charles J Cho
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Yan Kefalov
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Chien‐Cheng Shih
- Washington University Center for Cellular ImagingWashington University School of MedicineSt. LouisMOUSA
| | - James AJ Fitzpatrick
- Washington University Center for Cellular ImagingWashington University School of MedicineSt. LouisMOUSA
- Departments of Neuroscience and Cell Biology & PhysiologyWashington University School of MedicineSt. LouisMOUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Jason C Mills
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
- Present address:
Section of Gastroenterology and HepatologyDepartments of Medicine and PathologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
23
|
Marcelić M, Lučin HM, Begonja AJ, Zagorac GB, Lisnić VJ, Lučin P. Endosomal Phosphatidylinositol-3-Phosphate-Associated Functions Are Dispensable for Establishment of the Cytomegalovirus Pre-Assembly Compartment but Essential for the Virus Growth. Life (Basel) 2021; 11:859. [PMID: 34440603 PMCID: PMC8398575 DOI: 10.3390/life11080859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
Murine cytomegalovirus (MCMV) initiates the stepwise establishment of the pre-assembly compartment (pre-AC) in the early phase of infection by the expansion of the early endosome (EE)/endosomal recycling compartment (ERC) interface and relocation of the Golgi complex. We depleted Vps34-derived phosphatidylinositol-3-phosphate (PI(3)P) at EEs by VPS34-IN1 and inhibited PI(3)P-associated functions by overexpression of 2xFYVE- and p40PX PI(3)P-binding modules to assess the role of PI(3)P-dependent EE domains in the pre-AC biogenesis. We monitored the accumulation of Rab10 and Evectin-2 in the inner pre-AC and the relocation of GM130-positive cis-Golgi organelles to the outer pre-AC by confocal microscopy. Although PI(3)P- and Vps34-positive endosomes build a substantial part of pre-AC, the PI(3)P depletion and the inhibition of PI(3)P-associated functions did not prevent the establishment of infection and progression through the early phase. The PI(3)P depletion in uninfected and MCMV-infected cells rapidly dispersed PI(3)P-bond proteins and reorganized EEs, including ablation of EE-to-ERC transport and relocation of Rab11 endosomes. The PI(3)P depletion one hour before pre-AC initiation and overexpression of 2xFYVE and p40PX domains neither prevented Rab10- and Evectin-2 accumulation, nor Golgi unlinking and relocation. These data demonstrate that PI(3)P-dependent functions, including the Rab11-dependent EE-to-ERC route, are dispensable for pre-AC initiation. Nevertheless, the virus growth was drastically reduced in PI(3)P-depleted cells, indicating that PI(3)P-associated functions are essential for the late phase of infection.
Collapse
Affiliation(s)
- Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (H.M.L.); (G.B.Z.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (H.M.L.); (G.B.Z.)
- University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (H.M.L.); (G.B.Z.)
- University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (H.M.L.); (G.B.Z.)
- University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
24
|
Borchers AC, Langemeyer L, Ungermann C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol 2021; 220:212549. [PMID: 34383013 PMCID: PMC8366711 DOI: 10.1083/jcb.202105120] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.
Collapse
Affiliation(s)
- Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
25
|
Finetti F, Cassioli C, Cianfanelli V, Zevolini F, Onnis A, Gesualdo M, Brunetti J, Cecconi F, Baldari CT. The Intraflagellar Transport Protein IFT20 Recruits ATG16L1 to Early Endosomes to Promote Autophagosome Formation in T Cells. Front Cell Dev Biol 2021; 9:634003. [PMID: 33829015 PMCID: PMC8019791 DOI: 10.3389/fcell.2021.634003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Lymphocyte homeostasis, activation and differentiation crucially rely on basal autophagy. The fine-tuning of this process depends on autophagy-related (ATG) proteins and their interaction with the trafficking machinery that orchestrates the membrane rearrangements leading to autophagosome biogenesis. The underlying mechanisms are as yet not fully understood. The intraflagellar transport (IFT) system, known for its role in cargo transport along the axonemal microtubules of the primary cilium, has emerged as a regulator of autophagy in ciliated cells. Growing evidence indicates that ciliogenesis proteins participate in cilia-independent processes, including autophagy, in the non-ciliated T cell. Here we investigate the mechanism by which IFT20, an integral component of the IFT system, regulates basal T cell autophagy. We show that IFT20 interacts with the core autophagy protein ATG16L1 and that its CC domain is essential for its pro-autophagic activity. We demonstrate that IFT20 is required for the association of ATG16L1 with the Golgi complex and early endosomes, both of which have been identified as membrane sources for phagophore elongation. This involves the ability of IFT20 to interact with proteins that are resident at these subcellular localizations, namely the golgin GMAP210 at the Golgi apparatus and Rab5 at early endosomes. GMAP210 depletion, while leading to a dispersion of ATG16L1 from the Golgi, did not affect basal autophagy. Conversely, IFT20 was found to recruit ATG16L1 to early endosomes tagged for autophagosome formation by the BECLIN 1/VPS34/Rab5 complex, which resulted in the local accumulation of LC3. Hence IFT20 participates in autophagosome biogenesis under basal conditions by regulating the localization of ATG16L1 at early endosomes to promote autophagosome biogenesis. These data identify IFT20 as a new regulator of an early step of basal autophagy in T cells.
Collapse
Affiliation(s)
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Monica Gesualdo
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
26
|
Yong X, Mao L, Shen X, Zhang Z, Billadeau DD, Jia D. Targeting Endosomal Recycling Pathways by Bacterial and Viral Pathogens. Front Cell Dev Biol 2021; 9:648024. [PMID: 33748141 PMCID: PMC7970000 DOI: 10.3389/fcell.2021.648024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes are essential cellular stations where endocytic and secretory trafficking routes converge. Proteins transiting at endosomes can be degraded via lysosome, or recycled to the plasma membrane, trans-Golgi network (TGN), or other cellular destinations. Pathways regulating endosomal recycling are tightly regulated in order to preserve organelle identity, to maintain lipid homeostasis, and to support other essential cellular functions. Recent studies have revealed that both pathogenic bacteria and viruses subvert host endosomal recycling pathways for their survival and replication. Several host factors that are frequently targeted by pathogens are being identified, including retromer, TBC1D5, SNX-BARs, and the WASH complex. In this review, we will focus on the recent advances in understanding how intracellular bacteria, human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijack host endosomal recycling pathways. This exciting work not only reveals distinct mechanisms employed by pathogens to manipulate host signaling pathways, but also deepens our understanding of the molecular intricacies regulating endosomal receptor trafficking.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Gomha SM, Abdelhady HA, Hassain DZH, Abdelmonsef AH, El-Naggar M, Elaasser MM, Mahmoud HK. Thiazole-Based Thiosemicarbazones: Synthesis, Cytotoxicity Evaluation and Molecular Docking Study. Drug Des Devel Ther 2021; 15:659-677. [PMID: 33633443 PMCID: PMC7900779 DOI: 10.2147/dddt.s291579] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Hybrid drug design has developed as a prime method for the development of novel anticancer therapies that can theoretically solve much of the pharmacokinetic disadvantages of traditional anticancer drugs. Thus a number of studies have indicated that thiazole-thiophene hybrids and their bis derivatives have important anticancer activity. Mammalian Rab7b protein is a member of the Rab GTPase protein family that controls the trafficking from endosomes to the TGN. Alteration in the Rab7b expression is implicated in differentiation of malignant cells, causing cancer. METHODS 1-(4-Methyl-2-(2-(1-(thiophen-2-yl) ethylidene) hydrazinyl) thiazol-5-yl) ethanone was used as building block for synthesis of novel series of 5-(1-(2-(thiazol-2-yl) hydrazono) ethyl) thiazole derivatives. The bioactivities of the synthesized compounds were evaluated with respect to their antitumor activities against MCF-7 tumor cells using MTT assay. Computer-aided docking protocol was performed to study the possible molecular interactions between the newly synthetic thiazole compounds and the active binding site of the target protein Rab7b. Moreover, the in silico prediction of adsorption, distribution, metabolism, excretion (ADME) and toxicity (T) properties of synthesized compounds were carried out using admetSAR tool. RESULTS The results obtained showed that derivatives 9 and 11b have promising activity (IC50 = 14.6 ± 0.8 and 28.3 ± 1.5 µM, respectively) compared to Cisplatin (IC50 = 13.6 ± 0.9 µM). The molecular docking analysis reveals that the synthesized compounds are predicted to be fit into the binding site of the target Rab7b. In summary, the synthetic thiazole compounds 1-17 could be used as potent inhibitors as anticancer drugs. CONCLUSION Promising anticancer activity of compounds 9 and 11 compared with cisplatin reference drug suggests that these ligands may contribute as lead compounds in search of new anticancer agents to combat chemo-resistance.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Chemistry Department, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | - Hyam A Abdelhady
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | - Doaa Z H Hassain
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | | | - Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, 11371, Egypt
| | - Huda K Mahmoud
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| |
Collapse
|
28
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
29
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identification of key microRNAs affecting melanogenesis of breast muscle in Muchuan black-boned chickens by RNA sequencing. Br Poult Sci 2020; 61:225-231. [PMID: 31918572 DOI: 10.1080/00071668.2019.1709619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Melanin content is considered an important indicator of meat quality in black-boned chickens, which have a high market value. To understand the complex physiological processes underlying muscle melanogenesis in this chicken, differentially expressed miRNAs (DEMs) were detected between black muscle (BM) and white muscle (WM) of chickens using high-throughput sequencing technology. Six small RNA libraries were constructed, and more than 16.75 million clean reads were obtained for each library. 2. A total of 582 known miRNAs and 65 novel miRNAs were identified from the six chicken sequence libraries. A total of 19 DEMs were identified between the two groups, of which nine were upregulated and 10 were downregulated. Furthermore, the DEMs were predicted to target 572 genes. 3. Certain DEMs (such as miR-204, miR-133b, and miR-12 229-3p) and their target genes may play an important role in muscle melanogenesis of chickens. These findings provide a foundation for clarifying the miRNA regulatory mechanisms involved in muscle pigmentation in avian species.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - M Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| |
Collapse
|
30
|
Han J, Goldstein LA, Hou W, Watkins SC, Rabinowich H. Involvement of CASP9 (caspase 9) in IGF2R/CI-MPR endosomal transport. Autophagy 2020; 17:1393-1409. [PMID: 32397873 DOI: 10.1080/15548627.2020.1761742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recently, we reported that increased expression of CASP9 pro-domain, at the endosomal membrane in response to HSP90 inhibition, mediates a cell-protective effect that does not involve CASP9 apoptotic activity. We report here that a non-apoptotic activity of endosomal membrane CASP9 facilitates the retrograde transport of IGF2R/CI-MPR from the endosomes to the trans-Golgi network, indicating the involvement of CASP9 in endosomal sorting and lysosomal biogenesis. CASP9-deficient cells demonstrate the missorting of CTSD (cathepsin D) and other acid hydrolases, accumulation of late endosomes, and reduced degradation of bafilomycin A1-sensitive proteins. In the absence of CASP9, IGF2R undergoes significant degradation, and its rescue is achieved by the re-expression of a non-catalytic CASP9 mutant. This endosomal activity of CASP9 is potentially mediated by herein newly identified interactions of CASP9 with the components of the endosomal membrane transport complexes. These endosomal complexes include the retromer VPS35 and the SNX dimers, SNX1-SNX5 and SNX2-SNX6, which are involved in the IGF2R retrieval mechanism. Additionally, CASP9 interacts with HGS/HRS/ESCRT-0 and the CLTC (clathrin heavy chain) that participate in the initiation of the endosomal ESCRT degradation pathway. We propose that endosomal CASP9 inhibits the endosomal membrane degradative subdomain(s) from initiating the ESCRT-mediated degradation of IGF2R, allowing its retrieval to transport-designated endosomal membrane subdomain(s). These findings are the first to identify a cell survival, non-apoptotic function for CASP9 at the endosomal membrane, a site distinctly removed from the cytoplasmic apoptosome. Via its non-apoptotic endosomal function, CASP9 impacts the retrograde transport of IGF2R and, consequently, lysosomal biogenesis.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; BafA1: bafilomycin A1; CASP: caspase; CLTC/CHC: clathrin, heavy chain; CTSD: cathepsin D; ESCRT: endosomal sorting complexes required for transport; HEXB: hexosaminidase subunit beta; HGS/HRS/ESCRT-0: hepatocyte growth factor-regulated tyrosine kinase substrate; IGF2R/CI-MPR: insulin like growth factor 2 receptor; ILV: intraluminal vesicles; KD: knockdown; KO: knockout; M6PR/CD-MPR: mannose-6-phosphate receptor, cation dependent; MEF: murine embryonic fibroblasts; MWU: Mann-Whitney U test; PepA: pepstatin A; RAB7A: RAB7, member RAS oncogene family; SNX-BAR: sorting nexin dimers with a Bin/Amphiphysin/Rvs (BAR) domain each; TGN: trans-Golgi network; TUBB: tubulin beta; VPS26: VPS26 retromer complex component; VPS29: VPS29 retromer complex component; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Jie Han
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Leslie A Goldstein
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Wen Hou
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Simon C Watkins
- Cell Biology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hannah Rabinowich
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Krempaska K, Barnowski S, Gavini J, Hobi N, Ebener S, Simillion C, Stokes A, Schliep R, Knudsen L, Geiser TK, Funke-Chambour M. Azithromycin has enhanced effects on lung fibroblasts from idiopathic pulmonary fibrosis (IPF) patients compared to controls [corrected]. Respir Res 2020; 21:25. [PMID: 31941499 PMCID: PMC6964061 DOI: 10.1186/s12931-020-1275-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease without a cure and new drug strategies are urgently needed. Differences in behavior between diseased and healthy cells are well known and drug response can be different between cells isolated from IPF patients and controls. The macrolide Azithromycin (AZT) has anti-inflammatory and immunomodulatory properties. Recently anti-fibrotic effects have been described. However, the anti-fibrotic effects on primary IPF-fibroblasts (FB) directly compared to control-FB are unknown. We hypothesized that IPF-FB react differently to AZT in terms of anti-fibrotic effects. METHODS Primary normal human lung and IPF-FB were exposed to TGF-β (5 ng/ml), Azithromycin (50 μM) alone or in combination prior to gene expression analysis. Pro-collagen Iα1 secretion was assessed by ELISA and protein expression by western blot (αSMA, Fibronectin, ATP6V1B2, LC3 AB (II/I), p62, Bcl-xL). Microarray analysis was performed to screen involved genes and pathways after Azithromycin treatment in control-FB. Apoptosis and intraluminal lysosomal pH were analyzed by flow cytometry. RESULTS AZT significantly reduced collagen secretion in TGF-β treated IPF-FB compared to TGF-β treatment alone, but not in control-FB. Pro-fibrotic gene expression was similarly reduced after AZT treatment in IPF and control-FB. P62 and LC3II/I western blot revealed impaired autophagic flux after AZT in both control and IPF-FB with significant increase of LC3II/I after AZT in control and IPF-FB, indicating enhanced autophagy inhibition. Early apoptosis was significantly higher in TGF-β treated IPF-FB compared to controls after AZT. Microarray analysis of control-FB treated with AZT revealed impaired lysosomal pathways. The ATPase and lysosomal pH regulator ATP6V0D2 was significantly less increased after additional AZT in IPF-FB compared to controls. Lysosomal function was impaired in both IPF and control FB, but pH was significantly more increased in TGF-β treated IPF-FB. CONCLUSION We report different treatment responses after AZT with enhanced anti-fibrotic and pro-apoptotic effects in IPF compared to control-FB. Possibly impaired lysosomal function contributes towards these effects. In summary, different baseline cell phenotype and behavior of IPF and control cells contribute to enhanced anti-fibrotic and pro-apoptotic effects in IPF-FB after AZT treatment and strengthen its role as a new potential anti-fibrotic compound, that should further be evaluated in clinical studies.
Collapse
Affiliation(s)
- Kristina Krempaska
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sandra Barnowski
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Jacopo Gavini
- Department of Visceral Surgery and Medicine, Department for BioMedical Research, Inselspital, Bern University Hospital and University of Bern, 3010, Bern, Switzerland
| | - Nina Hobi
- AlveoliX AG, Murtenstrasse 50, 3008, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, Organs-on-Chip Technologies, University of Bern, Bern, Switzerland
| | - Simone Ebener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Andrea Stokes
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ronja Schliep
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Thomas K Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Shao Q, Yang M, Liang C, Ma L, Zhang W, Jiang Z, Luo J, Lee JK, Liang C, Chen JF. C9orf72 and smcr8 mutant mice reveal MTORC1 activation due to impaired lysosomal degradation and exocytosis. Autophagy 2019; 16:1635-1650. [PMID: 31847700 DOI: 10.1080/15548627.2019.1703353] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
How lysosome and MTORC1 signaling interact remains elusive in terminally differentiated cells. A G4C2 repeat expansion in C9orf72 is the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS-FTD). We previously identified a C9orf72-SMCR8-containing complex. Here we found that c9orf72 and smcr8 double-knockout (dKO) mice exhibit similar but more severe immune defects than the individual knockouts. In c9orf72 or smcr8 mutant macrophages, lysosomal degradation and exocytosis were impaired due to the disruption of autolysosome acidification. As a result of impaired lysosomal degradation, MTOR protein was aberrantly increased, resulting in MTORC1 signaling overactivation. Inhibition of hyperactive MTORC1 partially rescued macrophage dysfunction, splenomegaly and lymphadenopathy in c9orf72 or smcr8 mutant mice. Pharmacological inhibition of lysosomal degradation upregulated MTOR protein and MTORC1 signaling in differentiated wild-type macrophages, which resemble phenotypes in KO mice. In contrast, C9orf72 or Smcr8 depletion in proliferating macrophages decreased MTORC1 signaling. Our studies causatively link C9orf72-SMCR8's cellular functions in lysosomal degradation, exocytosis, and MTORC1 signaling with their organism-level immune regulation, suggesting cell state (proliferation vs. differentiation)-dependent regulation of MTOR signaling via lysosomes.Abbreviations: ALS: amyotrophic lateral sclerosis; ATG13: autophagy related 13; BMDMs: bone marrow-derived macrophages; BafA1: bafilomycin A1; C9orf72: C9orf72, member of C9orf72-SMCR8 complex; CD68: CD68 antigen; ConA: concanamycin A; dKO: double knockout; DENN: differentially expressed in normal and neoplastic cells; FTD: frontotemporal dementia; GEF: guanine nucleotide exchange factor; IFNB1: interferon beta 1, fibroblast; IFNG: interferon gamma; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; iPSCs: induced pluripotent stem cells; LAMP1: lysosomal-associated membrane protein 1; LPOs: LAMP1-positive organelles; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; LPS: lipopolysaccharide; MTORC1: mechanistic target of rapamycin kinase complex 1; MEFs: mouse embryonic fibroblasts; MNs: motor neurons; NOS2/iNOS: nitric oxide synthase 2, inducible; RAN: repeat-associated non-AUG; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RPS6/S6: ribosomal protein S6; RPS6KB1/S6K1: ribosomal protein S6 kinase, polypeptide 1; SMCR8: Smith-Magenis syndrome chromosome region, candidate 8; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TNF: tumor necrosis factor; TSC1: TSC complex subunit 1; ULK1: unc-51 like kinase 1; v-ATPase: vacuolar-type H⁺-translocating ATPase.
Collapse
Affiliation(s)
- Qiang Shao
- Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, CA, USA
| | - Mei Yang
- Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, CA, USA.,Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, P.R. China
| | - Chen Liang
- Department of Cellular Biology, University of Georgia , Athens, GA, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, CA, USA
| | - Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, CA, USA
| | - Zhiwen Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University , Dongguan, Guangdong, P.R. China
| | - Jun Luo
- Division of VIP Center, Stomatological Hospital of Chongqing Medical University , Chongqing, P.R. China
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia , Athens, GA, USA
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California , Los Angeles, CA, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
33
|
Cutrona MB, Simpson JC. A High-Throughput Automated Confocal Microscopy Platform for Quantitative Phenotyping of Nanoparticle Uptake and Transport in Spheroids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902033. [PMID: 31334922 DOI: 10.1002/smll.201902033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Indexed: 05/23/2023]
Abstract
There is a high demand for advanced, image-based, automated high-content screening (HCS) approaches to facilitate phenotypic screening in 3D cell culture models. A major challenge lies in retaining the resolution of fine cellular detail but at the same time imaging multicellular structures at a large scale. In this study, a confocal microscopy-based HCS platform in optical multiwell plates that enables the quantitative morphological profiling of populations of nonuniform spheroids obtained from HT-29 human colorectal cancer cells is described. This platform is then utilized to demonstrate a quantitative dissection of the penetration of synthetic nanoparticles (NP) in multicellular 3D spheroids at multiple levels of scale. A pilot RNA interference-based screening validates this methodology and identifies a subset of RAB GTPases that regulate NP trafficking in these spheroids. This technology is suitable for high-content phenotyping in 3D cell-based screening, providing a framework for nanomedicine drug development as applied to translational oncology.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), Galway, H91 W2TY, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), Galway, H91 W2TY, Ireland
| |
Collapse
|
34
|
Rab GTPases: Switching to Human Diseases. Cells 2019; 8:cells8080909. [PMID: 31426400 PMCID: PMC6721686 DOI: 10.3390/cells8080909] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.
Collapse
|
35
|
Delgado Cruz M, Kim K. The inner workings of intracellular heterotypic and homotypic membrane fusion mechanisms. J Biosci 2019. [DOI: 10.1007/s12038-019-9913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Finetti F, Cassioli C, Cianfanelli V, Onnis A, Paccagnini E, Kabanova A, Baldari CT. The intraflagellar transport protein IFT20 controls lysosome biogenesis by regulating the post-Golgi transport of acid hydrolases. Cell Death Differ 2019; 27:310-328. [PMID: 31142807 DOI: 10.1038/s41418-019-0357-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/16/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
The assembly and function of the primary cilium depends on multimolecular intraflagellar transport (IFT) complexes that shuttle their cargo along the axonemal microtubules through their interaction with molecular motors. The IFT system has been moreover recently implicated in a reciprocal interplay between autophagy and ciliogenesis. We have previously reported that IFT20 and other components of the IFT complexes participate in the assembly of the immune synapse in the non-ciliated T cell, suggesting that other cellular processes regulated by the IFT system in ciliated cells, including autophagy, may be shared by cells lacking a cilium. Starting from the observation of a defect in autophagic clearance and an accumulation of lipid droplets in IFT20-deficient T cells, we show that IFT20 is required for lysosome biogenesis and function by controlling the lysosomal targeting of acid hydrolases. This function involves its ability to regulate the retrograde traffic of the cation-independent mannose-6-phosphate receptor (CI-MPR) to the trans-Golgi network, which is achieved by coupling recycling CI-MPRs to the microtubule motor dynein. Consistent with the lysosomal defect, an upregulation of the TFEB-dependent expression of the lysosomal gene network can be observed in IFT20-deficient cells, which is associated with defective tonic T-cell antigen receptor signaling and mTOR activity. We additionally show that the lysosome-related function of IFT20 extends to non-ciliated cells other than T cells, as well as to ciliated cells. Our findings provide the first evidence that a component of the IFT system that controls ciliogenesis is implicated in the biogenesis of lysosomes.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Anna Onnis
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Eugenio Paccagnini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Anna Kabanova
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| |
Collapse
|
37
|
Rab7a and Mitophagosome Formation. Cells 2019; 8:cells8030224. [PMID: 30857122 PMCID: PMC6468461 DOI: 10.3390/cells8030224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
The small GTPase, Rab7a, and the regulators of its GDP/GTP-binding status were shown to have roles in both endocytic membrane traffic and autophagy. Classically known to regulate endosomal retrograde transport and late endosome-lysosome fusion, earlier work has indicated a role for Rab7a in autophagosome-lysosome fusion as well as autolysosome maturation. However, as suggested by recent findings on PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, Rab7a and its regulators are critical for the correct targeting of Atg9a-bearing vesicles to effect autophagosome formation around damaged mitochondria. This mitophagosome formation role for Rab7a is dependent on an intact Rab cycling process mediated by the Rab7a-specific guanine nucleotide exchange factor (GEF) and GTPase activating proteins (GAPs). Rab7a activity in this regard is also dependent on the retromer complex, as well as phosphorylation by the TRAF family-associated NF-κB activator binding kinase 1 (TBK1). Here, we discuss these recent findings and broadened perspectives on the role of the Rab7a network in PINK1-Parkin mediated mitophagy.
Collapse
|
38
|
Liu Y, Wang X, Zhang Z, Xiao B, An B, Zhang J. The overexpression of Rab9 promotes tumor progression regulated by XBP1 in breast cancer. Onco Targets Ther 2019; 12:1815-1824. [PMID: 30881034 PMCID: PMC6404677 DOI: 10.2147/ott.s183748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes and is involved in the recycling of mannose-6-phosphate receptors (MPRs). Materials and methods To determine new treatment strategies for breast cancer and to elucidate the mechanism underlying the phenomenon, we investigated the effects of Rab9 in the human breast cancer cell lines MCF7 and MDA-MB-231. Results We observed that knockdown of Rab9 inhibited the survival and proliferation of MCF7 and MDA-MB-231 cells, whereas Rab9 overexpression facilitated cell survival and proliferation by inducing or suppressing apoptosis. These results were further confirmed by the Bax/Bcl-2 ratio in affected MCF7 and MDA-MB-231 cells, which demonstrated whether the mitochondrial apoptotic pathway was triggered. Furthermore, the AKT/PI3K pathway is implicated in cell growth and survival and Rab9 changed the expression and phosphorylation of PI3K signaling pathway members. XBP1 is a key regulator of Rab9 and further confirmed that Rab9 play important roles in breast cancer tumorigenesis. Conclusion These data suggest that Rab9 is a good candidate for a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yansong Liu
- Breast Department, Shandong Cancer Hospital, Affiliated to Shandong University, Shandong, China,
| | - Xin Wang
- Breast Department, Yinan Country People's Hospital, Shandong, China
| | - Zhonghua Zhang
- Breast Department, Dongping Country People's Hospital, Shandong, China
| | - Bin Xiao
- Breast Department, Shanxian Hygeia Hospital, Shandong, China
| | - Baoming An
- Breast Department, Wulian Country People's Hospital, Shandong, China
| | - Jun Zhang
- Breast Department, Zhangqiu Hospital of Chinese Medicine, Shandong, China
| |
Collapse
|
39
|
Espinosa-Riquer ZP, Ibarra-Sánchez A, Vibhushan S, Bratti M, Charles N, Blank U, Rodríguez-Manzo G, González-Espinosa C. TLR4 Receptor Induces 2-AG-Dependent Tolerance to Lipopolysaccharide and Trafficking of CB2 Receptor in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:2360-2371. [PMID: 30814309 DOI: 10.4049/jimmunol.1800997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
Mast cells (MCs) contribute to the control of local inflammatory reactions and become hyporesponsive after prolonged TLR4 activation by bacterial LPS. The molecular mechanisms involved in endotoxin tolerance (ET) induction in MCs are not fully understood. In this study, we demonstrate that the endocannabinoid 2-arachidonoylglycerol (2-AG) and its receptor, cannabinoid receptor 2 (CB2), play a role in the establishment of ET in bone marrow-derived MCs from C57BL/6J mice. We found that CB2 antagonism prevented the development of ET and that bone marrow-derived MCs produce 2-AG in a TLR4-dependent fashion. Exogenous 2-AG induced ET similarly to LPS, blocking the phosphorylation of IKK and the p65 subunit of NF-κB and inducing the synthesis of molecular markers of ET. LPS caused CB2 receptor trafficking in Rab11-, Rab7-, and Lamp2-positive vesicles, indicating recycling and degradation of the receptor. 2-AG also prevented LPS-induced TNF secretion in vivo, in a MC-dependent model of endotoxemia, demonstrating that TLR4 engagement leads to 2-AG secretion, which contributes to the negative control of MCs activation. Our study uncovers a functional role for the endocannabinoid system in the inhibition of MC-dependent innate immune responses in vivo.
Collapse
Affiliation(s)
- Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico
| | - Shamila Vibhushan
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Manuela Bratti
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Nicolas Charles
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Ulrich Blank
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico;
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico;
| |
Collapse
|
40
|
Abstract
The Golgi apparatus is a central sorting station in the cell. It receives newly synthesized molecules from the endoplasmic reticulum and directs them to different subcellular destinations, such as the plasma membrane or the endocytic pathway. Importantly, in the last few years, it has emerged that the maintenance of Golgi structure is connected to the proper regulation of membrane trafficking. Rab proteins are small GTPases that are considered to be the master regulators of the intracellular membrane trafficking. Several of the over 60 human Rabs are involved in the regulation of transport pathways at the Golgi as well as in the maintenance of its architecture. This chapter will summarize the different roles of Rab GTPases at the Golgi, both as regulators of membrane transport, scaffold, and tethering proteins and in preserving the structure and function of this organelle.
Collapse
|
41
|
Borg Distefano M, Hofstad Haugen L, Wang Y, Perdreau-Dahl H, Kjos I, Jia D, Morth JP, Neefjes J, Bakke O, Progida C. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci 2018; 131:jcs.216630. [PMID: 30111580 DOI: 10.1242/jcs.216630] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023] Open
Abstract
Rab GTPases are key regulators of intracellular trafficking, and cycle between a GTP-bound active state and a GDP-bound inactive state. This cycle is regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several efforts have been made in connecting the correct GEFs and GAPs to their specific Rab. Here, we aimed to identify GAPs for Rab7b, the small GTPase involved in transport from late endosomes to the trans-Golgi. An siRNA screen targeting proteins containing TBC domains critical for Rab GAPs was performed and coupled to a phenotypic read-out that visualized the distribution of Rab7b. Silencing of TBC1D5 provided the strongest phenotype and this protein was subsequently validated in various in vitro and cell-based assays. TBC1D5 localizes to Rab7b-positive vesicles, interacts with Rab7b and has GAP activity towards Rab7b in vitro, which is further increased by retromer proteins. Similarly to the constitutively active mutant of Rab7b, inactivation of TBC1D5 also reduces the number of CI-MPR- and sortilin-positive vesicles. Together, the results show that TBC1D5 is a GAP for Rab7b in the control of endosomal transport to the trans-Golgi.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Harmonie Perdreau-Dahl
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jens Preben Morth
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, 2300 RC Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
42
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
43
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
45
|
Bärlocher K, Welin A, Hilbi H. Formation of the Legionella Replicative Compartment at the Crossroads of Retrograde Trafficking. Front Cell Infect Microbiol 2017; 7:482. [PMID: 29226112 PMCID: PMC5706426 DOI: 10.3389/fcimb.2017.00482] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Retrograde trafficking from the endosomal system through the Golgi apparatus back to the endoplasmic reticulum is an essential pathway in eukaryotic cells, serving to maintain organelle identity and to recycle empty cargo receptors delivered by the secretory pathway. Intracellular replication of several bacterial pathogens, including Legionella pneumophila, is restricted by the retrograde trafficking pathway. L. pneumophila employs the Icm/Dot type IV secretion system (T4SS) to form the replication-permissive Legionella-containing vacuole (LCV), which is decorated with multiple components of the retrograde trafficking machinery as well as retrograde cargo receptors. The L. pneumophila effector protein RidL is secreted by the T4SS and interferes with retrograde trafficking. Here, we review recent evidence that the LCV interacts with the retrograde trafficking pathway, discuss the possible sites of action and function of RidL in the retrograde route, and put forth the hypothesis that the LCV is an acceptor compartment of retrograde transport vesicles.
Collapse
Affiliation(s)
- Kevin Bärlocher
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
46
|
Kjos I, Borg Distefano M, Sætre F, Repnik U, Holland P, Jones AT, Engedal N, Simonsen A, Bakke O, Progida C. Rab7b modulates autophagic flux by interacting with Atg4B. EMBO Rep 2017; 18:1727-1739. [PMID: 28835545 PMCID: PMC5623852 DOI: 10.15252/embr.201744069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 11/11/2022] Open
Abstract
Autophagy (macroautophagy) is a highly conserved eukaryotic degradation pathway in which cytosolic components and organelles are sequestered by specialized autophagic membranes and degraded through the lysosomal system. The autophagic pathway maintains basal cellular homeostasis and helps cells adapt during stress; thus, defects in autophagy can cause detrimental effects. It is therefore crucial that autophagy is properly regulated. In this study, we show that the cysteine protease Atg4B, a key enzyme in autophagy that cleaves LC3, is an interactor of the small GTPase Rab7b. Indeed, Atg4B interacts and co‐localizes with Rab7b on vesicles. Depletion of Rab7b increases autophagic flux as indicated by the increased size of autophagic structures as well as the magnitude of macroautophagic sequestration and degradation. Importantly, we demonstrate that Rab7b regulates LC3 processing by modulating Atg4B activity. Taken together, our findings reveal Rab7b as a novel negative regulator of autophagy through its interaction with Atg4B.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Frank Sætre
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Petter Holland
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Arwyn T Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway .,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway .,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Pham CD, Smith CE, Hu Y, Hu JCC, Simmer JP, Chun YHP. Endocytosis and Enamel Formation. Front Physiol 2017; 8:529. [PMID: 28824442 PMCID: PMC5534449 DOI: 10.3389/fphys.2017.00529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage) and to reach final mineralization (maturation stage). Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.
Collapse
Affiliation(s)
- Cong-Dat Pham
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| | - Charles E. Smith
- Department of Anatomy and Cell Biology, McGill UniversityMontreal, QC, Canada
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yong-Hee P. Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| |
Collapse
|
48
|
Manganese-induced turnover of TMEM165. Biochem J 2017; 474:1481-1493. [PMID: 28270545 DOI: 10.1042/bcj20160910] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 01/13/2023]
Abstract
TMEM165 deficiencies lead to one of the congenital disorders of glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi manganese homeostasis defect and that Mn2+ supplementation was sufficient to rescue normal glycosylation. In the present paper, we highlight TMEM165 as a novel Golgi protein sensitive to manganese. When cells were exposed to high Mn2+ concentrations, TMEM165 was degraded in lysosomes. Remarkably, while the variant R126H was sensitive upon manganese exposure, the variant E108G, recently identified in a novel TMEM165-CDG patient, was found to be insensitive. We also showed that the E108G mutation did not abolish the function of TMEM165 in Golgi glycosylation. Altogether, the present study identified the Golgi protein TMEM165 as a novel Mn2+-sensitive protein in mammalian cells and pointed to the crucial importance of the glutamic acid (E108) in the cytosolic ELGDK motif in Mn2+-induced degradation of TMEM165.
Collapse
|
49
|
Niazy N, Temme S, Bocuk D, Giesen C, König A, Temme N, Ziegfeld A, Gregers TF, Bakke O, Lang T, Eis-Hübinger AM, Koch N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B. FASEB J 2017; 31:1650-1667. [PMID: 28119397 DOI: 10.1096/fj.201600521r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/01/2017] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus (HSV)-encoded glycoprotein B (gB) is the most abundant protein in the viral envelope and promotes fusion of the virus with the cellular membrane. In the present study, we found that gB impacts on the major histocompatibility complex (MHC)-II pathway of antigen presentation by fostering homotypic fusion of early endosomes and trapping MHC-II molecules in these altered endosomes. By using an overexpression approach, we demonstrated that transient expression of gB induces giant vesicles of early endosomal origin, which contained Rab5, early endosomal antigen 1 (EEA1), and large amounts of MHC-II molecules [human leukocyte antigen (HLA)-DR, and HLA-DM], but no CD63. In HSV-1-infected and stably transfected cell lines that expressed lower amounts of gB, giant endosomes were not observed, but strongly increased amounts of HLA-DR and HLA-DM were found in EEA1+ early endosomes. We used these giant vesicles as a model system and revealed that gB interacts with Rab5 and EEA1, and that gB-induced homotypic fusion of early endosomes to giant endosomes requires phosphatidylinositol 3-phosphate, the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and the cytosolic gB sequence 889YTQVPN894 We conclude that gB expression alters trafficking of molecules of the HLA-II processing pathway, which leads to increased retention of MHC-II molecules in early endosomal compartments, thereby intercepting antigen presentation.-Niazy, N., Temme, S., Bocuk, D., Giesen, C., König, A., Temme, N., Ziegfeld, A., Gregers, T. F., Bakke, O., Lang, T., Eis-Hübinger, A. M., Koch, N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B.
Collapse
Affiliation(s)
- Naima Niazy
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Sebastian Temme
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany;
| | - Derya Bocuk
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Carmen Giesen
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Angelika König
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Nadine Temme
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Angelique Ziegfeld
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Thorsten Lang
- Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | | | - Norbert Koch
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
50
|
Margiotta A, Progida C, Bakke O, Bucci C. Rab7a regulates cell migration through Rac1 and vimentin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:367-381. [PMID: 27888097 DOI: 10.1016/j.bbamcr.2016.11.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 01/17/2023]
Abstract
Rab7a, a small GTPase of the Rab family, is localized to late endosomes and controls late endocytic trafficking. The discovery of several Rab7a interacting proteins revealed that Rab7a function is closely connected to cytoskeletal elements. Indeed, Rab7a recruits on vesicles RILP and FYCO that are responsible for the movement of Rab7a-positive vesicles and/or organelles on microtubule tracks, but also directly interacts with Rac1, a fundamental regulator of actin cytoskeleton, and with peripherin and vimentin, two intermediate filament proteins. Considering all these interactions and, in particular, the fact that Rac1 and vimentin are key factors for cellular motility, we investigated a possible role of Rab7a in cell migration. We show here that Rab7a is needed for cell migration as Rab7a depletion causes slower migration of NCI H1299 cells affecting cell velocity and directness. Rab7a depletion negatively affects adhesion and spreading onto fibronectin substrates, altering β1-integrin activation, localization and intracellular trafficking, and myosin X localization. In fact, Rab7a-depleted cells show 40% less filopodia and active integrin accumulates at the leading edge of migrating cells. Furthermore, Rab7a depletion decreases the amount of active Rac1 but not its abundance and reduces the number of cells with vimentin filaments facing the wound, indicating that Rab7a has a role in the orientation of vimentin filaments during migration. In conclusion, our results demonstrate a key role of Rab7a in the regulation of different aspects of cell migration.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Biological and Environmental Sciences and Technologies, (DiSTeBA) University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy; Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, (DiSTeBA) University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy.
| |
Collapse
|