1
|
Martin E, Girardello R, Dittmar G, Ludwig A. Time-resolved proximity proteomics uncovers a membrane tension-sensitive caveolin-1 interactome at the rear of migrating cells. eLife 2024; 13:e85601. [PMID: 39315773 PMCID: PMC11509677 DOI: 10.7554/elife.85601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to increased membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. Caveolae have also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and their role in mechanotransduction remains unclear. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disrupts the caveolar protein coat. Membrane tension also detaches caveolin-1 from focal adhesion proteins and several mechanosensitive regulators of cortical actin including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 associate with caveolin-1 in a manner dependent on membrane tension, with ARHGAP29 influencing caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.
Collapse
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| | - Rossana Girardello
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Li Z, Dang Q, Liu C, Liu Y, Wang C, Zhao F, Wang Q, Min W. Caveolin Regulates the Transport Mechanism of the Walnut-Derived Peptide EVSGPGYSPN to Penetrate the Blood-Brain Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19786-19799. [PMID: 39187786 DOI: 10.1021/acs.jafc.4c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Bioactive peptides, derived from short protein fragments, are recognized for their neuroprotective properties and potential therapeutic applications in treating central nervous system (CNS) diseases. However, a significant challenge for these peptides is their ability to penetrate the blood-brain barrier (BBB). EVSGPGYSPN (EV-10) peptide, a walnut-derived peptide, has demonstrated promising neuroprotective effects in vivo. This study aimed to investigate the transportability of EV-10 across the BBB, explore its capacity to penetrate this barrier, and elucidate the regulatory mechanisms underlying peptide-induced cellular internalization and transport pathways within the BBB. The results indicated that at a concentration of 100 μM and osmotic time of 4 h, the apparent permeability coefficient of EV-10 was Papp = 8.52166 ± 0.58 × 10-6 cm/s. The penetration efficiency of EV-10 was influenced by time, concentration, and temperature. Utilizing Western blot analysis, immunofluorescence, and flow cytometry, in conjunction with the caveolin (Cav)-specific inhibitor M-β-CD, we confirmed that EV-10 undergoes transcellular transport through a Cav-dependent endocytosis pathway. Notably, the tight junction proteins ZO-1, occludin, and claudin-5 were not disrupted by EV-10. Throughout its transport, EV-10 was localized within the mitochondria, Golgi apparatus, endoplasmic reticulum, lysosomes, endosomes, and cell membranes. Moreover, Cav-1 overexpression facilitated the release of EV-10 from lysosomes. Evidence of EV-10 accumulation was observed in mouse brains using brain slice scans. This study is the first to demonstrate that Cav-1 can facilitate the targeted delivery of walnut-derived peptide to the brain, laying a foundation for the development of functional foods aimed at CNS disease intervention.
Collapse
Affiliation(s)
- Zehui Li
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P. R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P. R. China
| | - Yan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Chongchong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Fanrui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Qianqian Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Weihong Min
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| |
Collapse
|
3
|
Raab JE, Hamilton DJ, Harju TB, Huynh TN, Russo BC. Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells. Infect Immun 2024; 92:e0052423. [PMID: 38661369 PMCID: PMC11385730 DOI: 10.1128/iai.00524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
For multiple intracellular bacterial pathogens, the ability to spread directly into adjacent epithelial cells is an essential step for disease in humans. For pathogens such as Shigella, Listeria, Rickettsia, and Burkholderia, this intercellular movement frequently requires the pathogens to manipulate the host actin cytoskeleton and deform the plasma membrane into structures known as protrusions, which extend into neighboring cells. The protrusion is then typically resolved into a double-membrane vacuole (DMV) from which the pathogen quickly escapes into the cytosol, where additional rounds of intercellular spread occur. Significant progress over the last few years has begun to define the mechanisms by which intracellular bacterial pathogens spread. This review highlights the interactions of bacterial and host factors that drive mechanisms required for intercellular spread with a focus on how protrusion structures form and resolve.
Collapse
Affiliation(s)
- Julie E. Raab
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Desmond J. Hamilton
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Tucker B. Harju
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Thao N. Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
4
|
Mohd S, Oder A, Specker E, Neuenschwander M, Von Kries JP, Daumke O. Identification of drug-like molecules targeting the ATPase activity of dynamin-like EHD4. PLoS One 2024; 19:e0302704. [PMID: 39074100 DOI: 10.1371/journal.pone.0302704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Eps15 (epidermal growth factor receptor pathway substrate 15) homology domain-containing proteins (EHDs) comprise a family of eukaryotic dynamin-related ATPases that participate in various endocytic membrane trafficking pathways. Dysregulation of EHDs function has been implicated in various diseases, including cancer. The lack of small molecule inhibitors which acutely target individual EHD members has hampered progress in dissecting their detailed cellular membrane trafficking pathways and their function during disease. Here, we established a Malachite green-based assay compatible with high throughput screening to monitor the liposome-stimulated ATPase of EHD4. In this way, we identified a drug-like molecule that inhibited EHD4's liposome-stimulated ATPase activity. Structure activity relationship (SAR) studies indicated sites of preferred substitutions for more potent inhibitor synthesis. Moreover, the assay optimization in this work can be applied to other dynamin family members showing a weak and liposome-dependent nucleotide hydrolysis activity.
Collapse
Affiliation(s)
- Saif Mohd
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Oder
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Edgar Specker
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Martin Neuenschwander
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Jens Peter Von Kries
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Ocket E, Matthaeus C. Insights in caveolae protein structure arrangements and their local lipid environment. Biol Chem 2024; 0:hsz-2024-0046. [PMID: 38970809 DOI: 10.1515/hsz-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Caveolae are 50-80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins. Recently, detailed structural information was obtained for the major caveolae protein caveolin1 showing the formation of a disc-like 11-mer protein complex. Furthermore, the importance of the cavin disordered regions in the generation of cavin trimers and caveolae at the plasma membrane were revealed. Thus, finally, structural insights about the assembly of the caveolar coat can be elucidated. Here, we review recent developments in caveolae structural biology with regard to caveolae coat formation and caveolae curvature generation. Secondly, we discuss the importance of specific lipid species necessary for caveolae curvature and formation. In the last years, it was shown that specifically sphingolipids, cholesterol and fatty acids can accumulate in caveolae invaginations and may drive caveolae endocytosis. Throughout, we summarize recent studies in the field and highlight future research directions.
Collapse
Affiliation(s)
- Esther Ocket
- Institute of Nutritional Science, Cellular Physiology of Nutrition, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 29, Room 0.08, D-14476 Potsdam, Germany
| | - Claudia Matthaeus
- Institute of Nutritional Science, Cellular Physiology of Nutrition, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 29, Room 0.08, D-14476 Potsdam, Germany
| |
Collapse
|
6
|
Zhu G, Zhang H, Xia M, Liu Y, Li M. EH domain-containing protein 2 (EHD2): Overview, biological function, and therapeutic potential. Cell Biochem Funct 2024; 42:e4016. [PMID: 38613224 DOI: 10.1002/cbf.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hu Zhang
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingyong Li
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Woods H, Leman JK, Meiler J. Modeling membrane geometries implicitly in Rosetta. Protein Sci 2024; 33:e4908. [PMID: 38358133 PMCID: PMC10868433 DOI: 10.1002/pro.4908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Interactions between membrane proteins (MPs) and lipid bilayers are critical for many cellular functions. In the Rosetta molecular modeling suite, the implicit membrane energy function is based on a "slab" model, which represent the membrane as a flat bilayer. However, in nature membranes often have a curvature that is important for function and/or stability. Even more prevalent, in structural biology research MPs are reconstituted in model membrane systems such as micelles, bicelles, nanodiscs, or liposomes. Thus, we have modified the existing membrane energy potentials within the RosettaMP framework to allow users to model MPs in different membrane geometries. We show that these modifications can be utilized in core applications within Rosetta such as structure refinement, protein-protein docking, and protein design. For MP structures found in curved membranes, refining these structures in curved, implicit membranes produces higher quality models with structures closer to experimentally determined structures. For MP systems embedded in multiple membranes, representing both membranes results in more favorable scores compared to only representing one of the membranes. Modeling MPs in geometries mimicking the membrane model system used in structure determination can improve model quality and model discrimination.
Collapse
Affiliation(s)
- Hope Woods
- Center of Structural Biology, Vanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Jens Meiler
- Center of Structural Biology, Vanderbilt UniversityNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Institute for Drug Discovery, Leipzig University Medical SchoolLeipzigGermany
| |
Collapse
|
8
|
Kenworthy AK, Han B, Ariotti N, Parton RG. The Role of Membrane Lipids in the Formation and Function of Caveolae. Cold Spring Harb Perspect Biol 2023; 15:a041413. [PMID: 37277189 PMCID: PMC10513159 DOI: 10.1101/cshperspect.a041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Caveolae are plasma membrane invaginations with a distinct lipid composition. Membrane lipids cooperate with the structural components of caveolae to generate a metastable surface domain. Recent studies have provided insights into the structure of essential caveolar components and how lipids are crucial for the formation, dynamics, and disassembly of caveolae. They also suggest new models for how caveolins, major structural components of caveolae, insert into membranes and interact with lipids.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
9
|
Sotodosos-Alonso L, Pulgarín-Alfaro M, Del Pozo MA. Caveolae Mechanotransduction at the Interface between Cytoskeleton and Extracellular Matrix. Cells 2023; 12:cells12060942. [PMID: 36980283 PMCID: PMC10047380 DOI: 10.3390/cells12060942] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The plasma membrane (PM) is subjected to multiple mechanical forces, and it must adapt and respond to them. PM invaginations named caveolae, with a specific protein and lipid composition, play a crucial role in this mechanosensing and mechanotransduction process. They respond to PM tension changes by flattening, contributing to the buffering of high-range increases in mechanical tension, while novel structures termed dolines, sharing Caveolin1 as the main component, gradually respond to low and medium forces. Caveolae are associated with different types of cytoskeletal filaments, which regulate membrane tension and also initiate multiple mechanotransduction pathways. Caveolar components sense the mechanical properties of the substrate and orchestrate responses that modify the extracellular matrix (ECM) according to these stimuli. They perform this function through both physical remodeling of ECM, where the actin cytoskeleton is a central player, and via the chemical alteration of the ECM composition by exosome deposition. Here, we review mechanotransduction regulation mediated by caveolae and caveolar components, focusing on how mechanical cues are transmitted through the cellular cytoskeleton and how caveolae respond and remodel the ECM.
Collapse
Affiliation(s)
- Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Marta Pulgarín-Alfaro
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
10
|
Zudeh G, Franca R, Lucafò M, Bonten EJ, Bramuzzo M, Sgarra R, Lagatolla C, Franzin M, Evans WE, Decorti G, Stocco G. PACSIN2 as a modulator of autophagy and mercaptopurine cytotoxicity: mechanisms in lymphoid and intestinal cells. Life Sci Alliance 2023; 6:e202201610. [PMID: 36596605 PMCID: PMC9811133 DOI: 10.26508/lsa.202201610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
PACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve autophagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of inflammatory bowel disease pediatric patients at diagnosis. PACSIN2 was identified as an inhibitor of autophagy, putatively through inhibition of autophagosome formation by a protein-protein interaction with LC3-II, mediated by a LIR motif. Moreover, PACSIN2 resulted a modulator of mercaptopurine-induced cytotoxicity in intestinal cells, suggesting that PACSIN2-regulated autophagy levels might influence thiopurine sensitivity. However, PACSIN2 modulates cellular thiopurine methyltransferase activity via mechanisms distinct from its modulation of autophagy.
Collapse
Affiliation(s)
- Giulia Zudeh
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Erik J Bonten
- Department of Chemical Biology and Therapeutics, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Matteo Bramuzzo
- Department of Gastroenterology, Digestive Endoscopy and Nutrition Unit, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Martina Franzin
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - William E Evans
- Department of Pharmaceutical Sciences, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuliana Decorti
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Correa F, Enríquez-Cortina C, Silva-Palacios A, Román-Anguiano N, Gil-Hernández A, Ostolga-Chavarría M, Soria-Castro E, Hernández-Rizo S, Heros PDL, Chávez-Canales M, Zazueta C. Actin-Cytoskeleton Drives Caveolae Signaling to Mitochondria during Postconditioning. Cells 2023; 12:492. [PMID: 36766835 PMCID: PMC9914812 DOI: 10.3390/cells12030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Caveolae-associated signaling toward mitochondria contributes to the cardioprotective mechanisms against ischemia-reperfusion (I/R) injury induced by ischemic postconditioning. In this work, we evaluated the role that the actin-cytoskeleton network exerts on caveolae-mitochondria communication during postconditioning. Isolated rat hearts subjected to I/R and to postconditioning were treated with latrunculin A, a cytoskeleton disruptor. Cardiac function was compared between these hearts and those exposed only to I/R and to the cardioprotective maneuver. Caveolae and mitochondria structures were determined by electron microscopy and maintenance of the actin-cytoskeleton was evaluated by phalloidin staining. Caveolin-3 and other putative caveolae-conforming proteins were detected by immunoblot analysis. Co-expression of caveolin-3 and actin was evaluated both in lipid raft fractions and in heart tissue from the different groups. Mitochondrial function was assessed by respirometry and correlated with cholesterol levels. Treatment with latrunculin A abolishes the cardioprotective postconditioning effect, inducing morphological and structural changes in cardiac tissue, reducing F-actin staining and diminishing caveolae formation. Latrunculin A administration to post-conditioned hearts decreases the interaction between caveolae-forming proteins, the co-localization of caveolin with actin and inhibits oxygen consumption rates in both subsarcolemmal and interfibrillar mitochondria. We conclude that actin-cytoskeleton drives caveolae signaling to mitochondria during postconditioning, supporting their functional integrity and contributing to cardiac adaption against reperfusion injury.
Collapse
Affiliation(s)
- Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Cristina Enríquez-Cortina
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Nadia Román-Anguiano
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Aurora Gil-Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Elizabeth Soria-Castro
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| | - Sharik Hernández-Rizo
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 14080, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
12
|
Larsson E, Morén B, McMahon KA, Parton RG, Lundmark R. Dynamin2 functions as an accessory protein to reduce the rate of caveola internalization. J Cell Biol 2023; 222:213853. [PMID: 36729022 PMCID: PMC9929934 DOI: 10.1083/jcb.202205122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
Caveolae are small membrane invaginations that generally are stably attached to the plasma membrane. Their release is believed to depend on the GTPase dynamin 2 (Dyn2), in analogy with its role in fission of clathrin-coated vesicles. The mechanistic understanding of caveola fission is, however, sparse. Here, we used microscopy-based tracking of individual caveolae in living cells to determine the role of Dyn2 in caveola dynamics. We report that Dyn2 stably associated with the bulb of a subset of caveolae, but was not required for formation or fission of caveolae. Dyn2-positive caveolae displayed longer plasma membrane duration times, whereas depletion of Dyn2 resulted in shorter duration times and increased caveola fission. The stabilizing role of Dyn2 was independent of its GTPase activity and the caveola stabilizing protein EHD2. Thus, we propose that, in contrast to the current view, Dyn2 is not a core component of the caveolae machinery, but rather functions as an accessory protein that restrains caveola internalization.
Collapse
Affiliation(s)
- Elin Larsson
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Björn Morén
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Kerrie-Ann McMahon
- https://ror.org/00rqy9422Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G. Parton
- https://ror.org/00rqy9422Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard Lundmark
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden,Correspondence to Richard Lundmark:
| |
Collapse
|
13
|
Kozlov MM, Taraska JW. Generation of nanoscopic membrane curvature for membrane trafficking. Nat Rev Mol Cell Biol 2023; 24:63-78. [PMID: 35918535 DOI: 10.1038/s41580-022-00511-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Cryo-electron tomography reveals structural insights into the membrane remodeling mode of dynamin-like EHD filaments. Nat Commun 2022; 13:7641. [PMID: 36496453 PMCID: PMC9741607 DOI: 10.1038/s41467-022-35164-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Eps15-homology domain containing proteins (EHDs) are eukaryotic, dynamin-related ATPases involved in cellular membrane trafficking. They oligomerize on membranes into filaments that induce membrane tubulation. While EHD crystal structures in open and closed conformations were previously reported, little structural information is available for the membrane-bound oligomeric form. Consequently, mechanistic insights into the membrane remodeling mechanism have remained sparse. Here, by using cryo-electron tomography and subtomogram averaging, we determined structures of nucleotide-bound EHD4 filaments on membrane tubes of various diameters at an average resolution of 7.6 Å. Assembly of EHD4 is mediated via interfaces in the G-domain and the helical domain. The oligomerized EHD4 structure resembles the closed conformation, where the tips of the helical domains protrude into the membrane. The variation in filament geometry and tube radius suggests a spontaneous filament curvature of approximately 1/70 nm-1. Combining the available structural and functional data, we suggest a model for EHD-mediated membrane remodeling.
Collapse
|
15
|
Li SC, Kabeer MH. Caveolae-Mediated Extracellular Vesicle (CMEV) Signaling of Polyvalent Polysaccharide Vaccination: A Host-Pathogen Interface Hypothesis. Pharmaceutics 2022; 14:pharmaceutics14122653. [PMID: 36559147 PMCID: PMC9784826 DOI: 10.3390/pharmaceutics14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County, 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave. Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
16
|
Matthaeus C, Sochacki KA, Dickey AM, Puchkov D, Haucke V, Lehmann M, Taraska JW. The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane. Nat Commun 2022; 13:7234. [PMID: 36433988 PMCID: PMC9700719 DOI: 10.1038/s41467-022-34958-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea M Dickey
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
18
|
Ohi MD, Kenworthy AK. Emerging Insights into the Molecular Architecture of Caveolin-1. J Membr Biol 2022; 255:375-383. [PMID: 35972526 PMCID: PMC9588732 DOI: 10.1007/s00232-022-00259-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
Abstract
Caveolins are an unusual family of membrane proteins whose primary biological function is to build small invaginated membrane structures at the surface of cells known as caveolae. Caveolins and caveolae regulate numerous signaling pathways, lipid homeostasis, intracellular transport, cell adhesion, and cell migration. They also serve as sensors and protect the plasma membrane from mechanical stress. Despite their many important functions, the molecular basis for how these 50-100 nm "little caves" are assembled and regulate cell physiology has perplexed researchers for 70 years. One major impediment to progress has been the lack of information about the structure of caveolin complexes that serve as building blocks for the assembly of caveolae. Excitingly, recent advances have finally begun to shed light on this long-standing question. In this review, we highlight new developments in our understanding of the structure of caveolin oligomers, including the landmark discovery of the molecular architecture of caveolin-1 complexes using cryo-electron microscopy.
Collapse
Affiliation(s)
- Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
19
|
Bending over backwards: BAR proteins and the actin cytoskeleton in mammalian receptor-mediated endocytosis. Eur J Cell Biol 2022; 101:151257. [PMID: 35863103 DOI: 10.1016/j.ejcb.2022.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.
Collapse
|
20
|
Nishimura T, Suetsugu S. Super-resolution analysis of PACSIN2 and EHD2 at caveolae. PLoS One 2022; 17:e0271003. [PMID: 35834519 PMCID: PMC9282494 DOI: 10.1371/journal.pone.0271003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Caveolae are plasma membrane invaginations that play important roles in both endocytosis and membrane tension buffering. Typical caveolae have invaginated structures with a high-density caveolin assembly. Membrane sculpting proteins, including PACSIN2 and EHD2, are involved in caveolar biogenesis. PACSIN2 is an F-BAR domain-containing protein with a membrane sculpting ability that is essential for caveolar shaping. EHD2 is also localized at caveolae and involved in their stability. However, the spatial relationship between PACSIN2, EHD2, and caveolin has not yet been investigated. We observed the single-molecule localizations of PACSIN2 and EHD2 relative to caveolin-1 in three-dimensional space. The single-molecule localizations were grouped by their proximity localizations into the geometric structures of blobs. In caveolin-1 blobs, PACSIN2, EHD2, and caveolin-1 had overlapped spatial localizations. Interestingly, the mean centroid of the PACSIN2 F-BAR domain at the caveolin-1 blobs was closer to the plasma membrane than those of EHD2 and caveolin-1, suggesting that PACSIN2 is involved in connecting caveolae to the plasma membrane. Most of the blobs with volumes typical of caveolae had PACSIN2 and EHD2, in contrast to those with smaller volumes. Therefore, PACSIN2 and EHD2 are apparently localized at typically sized caveolae.
Collapse
Affiliation(s)
- Tamako Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Japan
- * E-mail:
| |
Collapse
|
21
|
Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal 2022; 97:110399. [PMID: 35820545 DOI: 10.1016/j.cellsig.2022.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
22
|
Egorova AV, Baranich TI, Brydun AV, Glinkina VV, Sukhorukov VS. Morphological and Histophysiological Features of the Brain Capillary Endothelium. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
24
|
Park K, Yoo HS, Oh CK, Lee JR, Chung HJ, Kim HN, Kim SH, Kee KM, Kim TY, Kim M, Kim BG, Ra JS, Myung K, Kim H, Han SH, Seo MD, Lee Y, Kim DW. Reciprocal interactions among Cobll1, PACSIN2, and SH3BP1 regulate drug resistance in chronic myeloid leukemia. Cancer Med 2022; 11:4005-4020. [PMID: 35352878 PMCID: PMC9636508 DOI: 10.1002/cam4.4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cobll1 affects blast crisis (BC) progression and tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML). PACSIN2, a novel Cobll1 binding protein, activates TKI‐induced apoptosis in K562 cells, and this activation is suppressed by Cobll1 through the interaction between PACSIN2 and Cobll1. PACSIN2 also binds and inhibits SH3BP1 which activates the downstream Rac1 pathway and induces TKI resistance. PACSIN2 competitively interacts with Cobll1 or SH3BP1 with a higher affinity for Cobll1. Cobll1 preferentially binds to PACSIN2, releasing SH3BP1 to promote the SH3BP1/Rac1 pathway and suppress TKI‐mediated apoptosis and eventually leading to TKI resistance. Similar interactions among Cobll1, PACSIN2, and SH3BP1 control hematopoiesis during vertebrate embryogenesis. Clinical analysis showed that most patients with CML have Cobll1 and SH3BP1 expression at the BC phase and BC patients with Cobll1 and SH3BP1 expression showed severe progression with a higher blast percentage than those without any Cobll1, PACSIN2, or SH3BP1 expression. Our study details the molecular mechanism of the Cobll1/PACSIN2/SH3BP1 pathway in regulating drug resistance and BC progression in CML.
Collapse
Affiliation(s)
- Kibeom Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hee-Seop Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Anatomy, School of Medicine, Inje University, Busan, Republic of Korea
| | - Joo Rak Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hee Jin Chung
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ha-Neul Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Soo-Hyun Kim
- Leukemia Omics Research Institute, Eulji University-Uijeongbu Campus, Gyeonggi-do, Republic of Korea
| | - Kyung-Mi Kee
- Leukemia Omics Research Institute, Eulji University-Uijeongbu Campus, Gyeonggi-do, Republic of Korea
| | - Tong Yoon Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Hongtae Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Seung Hun Han
- Department of Medicine Quality Analysis, Andong Science College, Gyeongbuk, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Wook Kim
- Leukemia Omics Research Institute, Eulji University-Uijeongbu Campus, Gyeonggi-do, Republic of Korea.,Hematology Center, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
25
|
Dumont V, Lehtonen S. PACSIN proteins in vivo: Roles in development and physiology. Acta Physiol (Oxf) 2022; 234:e13783. [PMID: 34990060 PMCID: PMC9285741 DOI: 10.1111/apha.13783] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
Protein kinase C and casein kinase substrate in neurons (PACSINs), or syndapins (synaptic dynamin‐associated proteins), are a family of proteins involved in the regulation of cell cytoskeleton, intracellular trafficking and signalling. Over the last twenty years, PACSINs have been mostly studied in the in vitro and ex vivo settings, and only in the last decade reports on their function in vivo have emerged. We first summarize the identification, structure and cellular functions of PACSINs, and then focus on the relevance of PACSINs in vivo. During development in various model organisms, PACSINs participate in diverse processes, such as neural crest cell development, gastrulation, laterality development and neuromuscular junction formation. In mouse, PACSIN2 regulates angiogenesis during retinal development and in human, PACSIN2 associates with monosomy and embryonic implantation. In adulthood, PACSIN1 has been extensively studied in the brain and shown to regulate neuromorphogenesis, receptor trafficking and synaptic plasticity. Several genetic studies suggest a role for PACSIN1 in the development of schizophrenia, which is also supported by the phenotype of mice depleted of PACSIN1. PACSIN2 plays an essential role in the maintenance of intestinal homeostasis and participates in kidney repair processes after injury. PACSIN3 is abundant in muscle tissue and necessary for caveolar biogenesis to create membrane reservoirs, thus controlling muscle function, and has been linked to certain genetic muscular disorders. The above examples illustrate the importance of PACSINs in diverse physiological or tissue repair processes in various organs, and associations to diseases when their functions are disturbed.
Collapse
Affiliation(s)
- Vincent Dumont
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Pathology University of Helsinki Helsinki Finland
| |
Collapse
|
26
|
Leite DM, Seifi M, Ruiz-Perez L, Nguemo F, Plomann M, Swinny JD, Battaglia G. Syndapin-2 mediated transcytosis of amyloid-ß across the blood-brain barrier. Brain Commun 2022; 4:fcac039. [PMID: 35233527 PMCID: PMC8882007 DOI: 10.1093/braincomms/fcac039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/31/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
A deficient transport of amyloid-β across the blood–brain barrier, and its diminished clearance from the brain, contribute to neurodegenerative and vascular pathologies, such as Alzheimer’s disease and cerebral amyloid angiopathy, respectively. At the blood–brain barrier, amyloid-β efflux transport is associated with the low-density lipoprotein receptor-related protein 1. However, the precise mechanisms governing amyloid-β transport across the blood–brain barrier, in health and disease, remain to be fully understood. Recent evidence indicates that the low-density lipoprotein receptor-related protein 1 transcytosis occurs through a tubulation-mediated mechanism stabilized by syndapin-2. Here, we show that syndapin-2 is associated with amyloid-β clearance via low-density lipoprotein receptor-related protein 1 across the blood–brain barrier. We further demonstrate that risk factors for Alzheimer’s disease, amyloid-β expression and ageing, are associated with a decline in the native expression of syndapin-2 within the brain endothelium. Our data reveals that syndapin-2-mediated pathway, and its balance with the endosomal sorting, are important for amyloid-β clearance proposing a measure to evaluate Alzheimer’s disease and ageing, as well as a target for counteracting amyloid-β build-up. Moreover, we provide evidence for the impact of the avidity of amyloid-β assemblies in their trafficking across the brain endothelium and in low-density lipoprotein receptor-related protein 1 expression levels, which may affect the overall clearance of amyloid-β across the blood–brain barrier.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Mohsen Seifi
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Lorena Ruiz-Perez
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Filomain Nguemo
- Institute for Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Plomann
- Institute of Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jerome D. Swinny
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
27
|
Manso JA, Marcos T, Ruiz-Martín V, Casas J, Alcón P, Sánchez Crespo M, Bayón Y, de Pereda JM, Alonso A. PSTPIP1-LYP phosphatase interaction: structural basis and implications for autoinflammatory disorders. Cell Mol Life Sci 2022; 79:131. [PMID: 35152348 PMCID: PMC8840930 DOI: 10.1007/s00018-022-04173-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022]
Abstract
AbstractMutations in the adaptor protein PSTPIP1 cause a spectrum of autoinflammatory diseases, including PAPA and PAMI; however, the mechanism underlying these diseases remains unknown. Most of these mutations lie in PSTPIP1 F-BAR domain, which binds to LYP, a protein tyrosine phosphatase associated with arthritis and lupus. To shed light on the mechanism by which these mutations generate autoinflammatory disorders, we solved the structure of the F-BAR domain of PSTPIP1 alone and bound to the C-terminal homology segment of LYP, revealing a novel mechanism of recognition of Pro-rich motifs by proteins in which a single LYP molecule binds to the PSTPIP1 F-BAR dimer. The residues R228, D246, E250, and E257 of PSTPIP1 that are mutated in immunological diseases directly interact with LYP. These findings link the disruption of the PSTPIP1/LYP interaction to these diseases, and support a critical role for LYP phosphatase in their pathogenesis.
Collapse
Affiliation(s)
- José A Manso
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Tamara Marcos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Virginia Ruiz-Martín
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Javier Casas
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Pablo Alcón
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Yolanda Bayón
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - José M de Pereda
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Andrés Alonso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain.
| |
Collapse
|
28
|
Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization. Nat Commun 2021; 12:6550. [PMID: 34772909 PMCID: PMC8589976 DOI: 10.1038/s41467-021-26591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
In many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.
Collapse
|
29
|
Wong TH, Khater IM, Joshi B, Shahsavari M, Hamarneh G, Nabi IR. Single molecule network analysis identifies structural changes to caveolae and scaffolds due to mutation of the caveolin-1 scaffolding domain. Sci Rep 2021; 11:7810. [PMID: 33833286 PMCID: PMC8032680 DOI: 10.1038/s41598-021-86770-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022] Open
Abstract
Caveolin-1 (CAV1), the caveolae coat protein, also associates with non-caveolar scaffold domains. Single molecule localization microscopy (SMLM) network analysis distinguishes caveolae and three scaffold domains, hemispherical S2 scaffolds and smaller S1B and S1A scaffolds. The caveolin scaffolding domain (CSD) is a highly conserved hydrophobic region that mediates interaction of CAV1 with multiple effector molecules. F92A/V94A mutation disrupts CSD function, however the structural impact of CSD mutation on caveolae or scaffolds remains unknown. Here, SMLM network analysis quantitatively shows that expression of the CAV1 CSD F92A/V94A mutant in CRISPR/Cas CAV1 knockout MDA-MB-231 breast cancer cells reduces the size and volume and enhances the elongation of caveolae and scaffold domains, with more pronounced effects on S2 and S1B scaffolds. Convex hull analysis of the outer surface of the CAV1 point clouds confirms the size reduction of CSD mutant CAV1 blobs and shows that CSD mutation reduces volume variation amongst S2 and S1B CAV1 blobs at increasing shrink values, that may reflect retraction of the CAV1 N-terminus towards the membrane, potentially preventing accessibility of the CSD. Detection of point mutation-induced changes to CAV1 domains highlights the utility of SMLM network analysis for mesoscale structural analysis of oligomers in their native environment.
Collapse
Affiliation(s)
- Timothy H Wong
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ismail M Khater
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Bharat Joshi
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mona Shahsavari
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Ivan R Nabi
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
30
|
Abstract
Caveolae are bulb-like invaginations made up of two essential structural proteins, caveolin-1 and cavins, which are abundantly present at the plasma membrane of vertebrate cells. Since their discovery more than 60 years ago, the function of caveolae has been mired in controversy. The last decade has seen the characterization of new caveolae components and regulators together with the discovery of additional cellular functions that have shed new light on these enigmatic structures. Early on, caveolae and/or caveolin-1 have been involved in the regulation of several parameters associated with cancer progression such as cell migration, metastasis, angiogenesis, or cell growth. These studies have revealed that caveolin-1 and more recently cavin-1 have a dual role with either a negative or a positive effect on most of these parameters. The recent discovery that caveolae can act as mechanosensors has sparked an array of new studies that have addressed the mechanobiology of caveolae in various cellular functions. This review summarizes the current knowledge on caveolae and their role in cancer development through their activity in membrane tension buffering. We propose that the role of caveolae in cancer has to be revisited through their response to the mechanical forces encountered by cancer cells during tumor mass development.
Collapse
Affiliation(s)
- Vibha Singh
- UMR3666, INSERM U1143, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS, 75005, Paris, France
| | - Christophe Lamaze
- UMR3666, INSERM U1143, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS, 75005, Paris, France.
| |
Collapse
|
31
|
Abstract
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
Collapse
|
32
|
Abstract
Caveolin-1 (CAV1) has long been implicated in cancer progression, and while widely accepted as an oncogenic protein, CAV1 also has tumor suppressor activity. CAV1 was first identified in an early study as the primary substrate of Src kinase, a potent oncoprotein, where its phosphorylation correlated with cellular transformation. Indeed, CAV1 phosphorylation on tyrosine-14 (Y14; pCAV1) has been associated with several cancer-associated processes such as focal adhesion dynamics, tumor cell migration and invasion, growth suppression, cancer cell metabolism, and mechanical and oxidative stress. Despite this, a clear understanding of the role of Y14-phosphorylated pCAV1 in cancer progression has not been thoroughly established. Here, we provide an overview of the role of Src-dependent phosphorylation of tumor cell CAV1 in cancer progression, focusing on pCAV1 in tumor cell migration, focal adhesion signaling and metabolism, and in the cancer cell response to stress pathways characteristic of the tumor microenvironment. We also discuss a model for Y14 phosphorylation regulation of CAV1 effector protein interactions via the caveolin scaffolding domain.
Collapse
|
33
|
Abstract
Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.
Collapse
|
34
|
Peper J, Kownatzki-Danger D, Weninger G, Seibertz F, Pronto JRD, Sutanto H, Pacheu-Grau D, Hindmarsh R, Brandenburg S, Kohl T, Hasenfuss G, Gotthardt M, Rog-Zielinska EA, Wollnik B, Rehling P, Urlaub H, Wegener J, Heijman J, Voigt N, Cyganek L, Lenz C, Lehnart SE. Caveolin3 Stabilizes McT1-Mediated Lactate/Proton Transport in Cardiomyocytes. Circ Res 2021; 128:e102-e120. [PMID: 33486968 DOI: 10.1161/circresaha.119.316547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jonas Peper
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen
| | - Daniel Kownatzki-Danger
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen
| | - Gunnar Weninger
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology (F.S., J.R.D.P., N.V.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology (F.S., J.R.D.P., N.V.), University Medical Center Göttingen
| | - Henry Sutanto
- Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University (H.S., J.H.)
| | - David Pacheu-Grau
- Cellular Biochemistry, University Medical Center, Georg-August-University (D.P.G., P.R.)
| | - Robin Hindmarsh
- Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen
| | - Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Gerd Hasenfuss
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.)
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin (M.G.).,Cardiology, Virchow Klinikum, Charité-University Medicine, Berlin (M.G.).,DZHK (German Center for Cardiovascular Research), partner site Berlin (M.G.)
| | - Eva A Rog-Zielinska
- University Heart Center, Faculty of Medicine, University of Freiburg (E.A.R.-Z.)
| | - Bernd Wollnik
- Institute of Human Genetics (B.W.), University Medical Center Göttingen.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.)
| | - Peter Rehling
- Cellular Biochemistry, University Medical Center, Georg-August-University (D.P.G., P.R.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.)
| | - Henning Urlaub
- Bioanalytics, Institute of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen (H.U., C.L.)
| | - Jörg Wegener
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Jordi Heijman
- Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University (H.S., J.H.)
| | - Niels Voigt
- Institute of Pharmacology and Toxicology (F.S., J.R.D.P., N.V.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.)
| | - Lukas Cyganek
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.)
| | - Christof Lenz
- Bioanalytics, Institute of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen (H.U., C.L.)
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen (J.P., D.K.-D., G.W., S.B., T.K., G.H., J.W., S.E.L.), University Medical Center Göttingen.,Cardiology & Pneumology (J.P., D.K.-D., G.W., R.H., S.B., T.K., G.H., J.W., L.C., S.E.L.), University Medical Center Göttingen.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen (F.S., S.B., T.K., G.H., J.W., N.V., L.C., S.E.L.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen (G.H., B.W., P.R., N.V., S.E.L.).,BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore (S.E.L.)
| |
Collapse
|
35
|
Matthaeus C, Taraska JW. Energy and Dynamics of Caveolae Trafficking. Front Cell Dev Biol 2021; 8:614472. [PMID: 33692993 PMCID: PMC7939723 DOI: 10.3389/fcell.2020.614472] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Caveolae are 70–100 nm diameter plasma membrane invaginations found in abundance in adipocytes, endothelial cells, myocytes, and fibroblasts. Their bulb-shaped membrane domain is characterized and formed by specific lipid binding proteins including Caveolins, Cavins, Pacsin2, and EHD2. Likewise, an enrichment of cholesterol and other lipids makes caveolae a distinct membrane environment that supports proteins involved in cell-type specific signaling pathways. Their ability to detach from the plasma membrane and move through the cytosol has been shown to be important for lipid trafficking and metabolism. Here, we review recent concepts in caveolae trafficking and dynamics. Second, we discuss how ATP and GTP-regulated proteins including dynamin and EHD2 control caveolae behavior. Throughout, we summarize the potential physiological and cell biological roles of caveolae internalization and trafficking and highlight open questions in the field and future directions for study.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Moo EV, van Senten JR, Bräuner-Osborne H, Møller TC. Arrestin-Dependent and -Independent Internalization of G Protein-Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling. Mol Pharmacol 2021; 99:242-255. [PMID: 33472843 DOI: 10.1124/molpharm.120.000192] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
Agonist-induced endocytosis is a key regulatory mechanism for controlling the responsiveness of the cell by changing the density of cell surface receptors. In addition to the role of endocytosis in signal termination, endocytosed G protein-coupled receptors (GPCRs) have been found to signal from intracellular compartments of the cell. Arrestins are generally believed to be the master regulators of GPCR endocytosis by binding to both phosphorylated receptors and adaptor protein 2 (AP-2) or clathrin, thus recruiting receptors to clathrin-coated pits to facilitate the internalization process. However, many other functions have been described for arrestins that do not relate to their role in terminating signaling. Additionally, there are now more than 30 examples of GPCRs that internalize independently of arrestins. Here we review the methods, pharmacological tools, and cellular backgrounds used to determine the role of arrestins in receptor internalization, highlighting their advantages and caveats. We also summarize key examples of arrestin-independent GPCR endocytosis in the literature and their suggested alternative endocytosis pathway (e.g., the caveolae-dependent and fast endophilin-mediated endocytosis pathways). Finally, we consider the possible function of arrestins recruited to GPCRs that are endocytosed independently of arrestins, including the catalytic arrestin activation paradigm. Technological improvements in recent years have advanced the field further, and, combined with the important implications of endocytosis on drug responses, this makes endocytosis an obvious parameter to include in molecular pharmacological characterization of ligand-GPCR interactions. SIGNIFICANCE STATEMENT: G protein-coupled receptor (GPCR) endocytosis is an important means to terminate receptor signaling, and arrestins play a central role in the widely accepted classical paradigm of GPCR endocytosis. In contrast to the canonical arrestin-mediated internalization, an increasing number of GPCRs are found to be endocytosed via alternate pathways, and the process appears more diverse than the previously defined "one pathway fits all."
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Potje SR, Paula TDC, Paulo M, Bendhack LM. The Role of Glycocalyx and Caveolae in Vascular Homeostasis and Diseases. Front Physiol 2021; 11:620840. [PMID: 33519523 PMCID: PMC7838704 DOI: 10.3389/fphys.2020.620840] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
This review highlights recent findings about the role that endothelial glycocalyx and caveolae play in vascular homeostasis. We describe the structure, synthesis, and function of glycocalyx and caveolae in vascular cells under physiological and pathophysiological conditions. Special focus will be given in glycocalyx and caveolae that are associated with impaired production of nitric oxide (NO) and generation of reactive oxygen species (ROS). Such alterations could contribute to the development of cardiovascular diseases, such as atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Simone Regina Potje
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tiago Dal-Cin Paula
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Michele Paulo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lusiane Maria Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
38
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Yu H, Li Y, Li L, Huang J, Wang X, Tang R, Jiang Z, Lv L, Chen F, Yu C, Yuan K. Functional reciprocity of proteins involved in mitosis and endocytosis. FEBS J 2020; 288:5850-5866. [PMID: 33300206 DOI: 10.1111/febs.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Mitosis and endocytosis are two fundamental cellular processes essential for maintaining a eukaryotic life. Mitosis partitions duplicated chromatin enveloped in the nuclear membrane into two new cells, whereas endocytosis takes in extracellular substances through membrane invagination. These two processes are spatiotemporally separated and seemingly unrelated. However, recent studies have uncovered that endocytic proteins have moonlighting functions in mitosis, and mitotic complexes manifest additional roles in endocytosis. In this review, we summarize important proteins or protein complexes that participate in both processes, compare their mechanism of action, and discuss the rationale behind this multifunctionality. We also speculate on the possible origin of the functional reciprocity from an evolutionary perspective.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Xujuan Wang
- The High School Attached to Hunan Normal University, Changsha, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
41
|
Gusmira A, Takemura K, Lee SY, Inaba T, Hanawa-Suetsugu K, Oono-Yakura K, Yasuhara K, Kitao A, Suetsugu S. Regulation of caveolae through cholesterol-depletion-dependent tubulation mediated by PACSIN2. J Cell Sci 2020; 133:jcs246785. [PMID: 32878944 DOI: 10.1242/jcs.246785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
The membrane-shaping ability of PACSIN2 (also known as syndapin II), which is mediated by its F-BAR domain, has been shown to be essential for caveolar morphogenesis, presumably through the shaping of the caveolar neck. Caveolar membranes contain abundant cholesterol. However, the role of cholesterol in PACSIN2-mediated membrane deformation remains unclear. Here, we show that the binding of PACSIN2 to the membrane can be negatively regulated by cholesterol. We prepared reconstituted membranes based on the lipid composition of caveolae. The reconstituted membrane with cholesterol had a weaker affinity for the F-BAR domain of PACSIN2 than a membrane without cholesterol. Consistent with this, upon depletion of cholesterol from the plasma membrane, PACSIN2 localized at tubules that had caveolin-1 at their tips, suggesting that cholesterol inhibits membrane tubulation mediated by PACSIN2. The tubules induced by PACSIN2 could be representative of an intermediate of caveolae endocytosis. Consistent with this, the removal of caveolae from the plasma membrane upon cholesterol depletion was diminished in the PACSIN2-deficient cells. These data suggest that PACSIN2-mediated caveolae internalization is dependent on the amount of cholesterol, providing a mechanism for cholesterol-dependent regulation of caveolae.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aini Gusmira
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Takemura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shin Yong Lee
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kayoko Oono-Yakura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Material Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
42
|
Liu Y, McDonald NA, Naegele SM, Gould KL, Wu JQ. The F-BAR Domain of Rga7 Relies on a Cooperative Mechanism of Membrane Binding with a Partner Protein during Fission Yeast Cytokinesis. Cell Rep 2020; 26:2540-2548.e4. [PMID: 30840879 PMCID: PMC6425953 DOI: 10.1016/j.celrep.2019.01.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
F-BAR proteins bind the plasma membrane (PM) to scaffold and organize the actin cytoskeleton. To understand how F-BAR proteins achieve their PM association, we studied the localization of a Schizosaccharomyces pombe F-BAR protein Rga7, which requires the coiled-coil protein Rng10 for targeting to the division site during cytokinesis. We find that the Rga7 F-BAR domain directly binds a motif in Rng10 simultaneously with the PM, and that an adjacent Rng10 motif independently binds the PM. Together, these multivalent interactions significantly enhance Rga7 F-BAR avidity for membranes at physiological protein concentrations, ensuring the division site localization of Rga7. Moreover, the requirement for the F-BAR domain in Rga7 localization and function in cytokinesis is bypassed by tethering an Rga7 construct lacking its F-BAR to Rng10, indicating that at least some F-BAR domains are necessary but not sufficient for PM targeting and are stably localized to specific cortical positions through adaptor proteins. Liu et al. show that the Rga7 F-BAR domain binds an adaptor protein Rng10, which contains a second membrane-binding module, to enhance Rga7 membrane avidity and stabilize its membrane association. The authors reveal a mechanism by which F-BAR domains can achieve high-avidity binding with the plasma membrane.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Shelby M Naegele
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Pol A, Morales-Paytuví F, Bosch M, Parton RG. Non-caveolar caveolins – duties outside the caves. J Cell Sci 2020; 133:133/9/jcs241562. [DOI: 10.1242/jcs.241562] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.
Collapse
Affiliation(s)
- Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Robert G. Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis (CMM) IMB, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
| |
Collapse
|
44
|
Bhattacharyya S, Pucadyil TJ. Cellular functions and intrinsic attributes of the ATP-binding Eps15 homology domain-containing proteins. Protein Sci 2020; 29:1321-1330. [PMID: 32223019 DOI: 10.1002/pro.3860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/14/2023]
Abstract
Several cellular processes rely on a cohort of dedicated proteins that manage tubulation, fission, and fusion of membranes. A notably large number of them belong to the dynamin superfamily of proteins. Among them is the evolutionarily conserved group of ATP-binding Eps15-homology domain-containing proteins (EHDs). In the two decades since their discovery, EHDs have been linked to a range of cellular processes that require remodeling or maintenance of specific membrane shapes such as during endocytic recycling, caveolar biogenesis, ciliogenesis, formation of T-tubules in skeletal muscles, and membrane resealing after rupture. Recent work has shed light on their structure and the unique attributes they possess in linking ATP hydrolysis to membrane remodeling. This review summarizes some of these recent developments and reconciles intrinsic protein functions to their cellular roles.
Collapse
Affiliation(s)
- Soumya Bhattacharyya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Thomas J Pucadyil
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
45
|
Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface. Biochem Soc Trans 2020; 48:155-163. [PMID: 32049332 PMCID: PMC7054752 DOI: 10.1042/bst20190386] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Caveolae are small Ω-shaped invaginations of the plasma membrane that play important roles in mechanosensing, lipid homeostasis and signaling. Their typical morphology is characterized by a membrane funnel connecting a spherical bulb to the membrane. Membrane funnels (commonly known as necks and pores) are frequently observed as transient states during fusion and fission of membrane vesicles in cells. However, caveolae display atypical dynamics where the membrane funnel can be stabilized over an extended period of time, resulting in cell surface constrained caveolae. In addition, caveolae are also known to undergo flattening as well as short-range cycles of fission and fusion with the membrane, requiring that the membrane funnel closes or opens up, respectively. This mini-review considers the transition between these different states and highlights the role of the protein and lipid components that have been identified to control the balance between surface association and release of caveolae.
Collapse
|
46
|
Abstract
Caveolae are small plasma membrane invaginations that are particularly abundant in adipocytes. Caveolae are implicated in lipid uptake, but the exact mechanism is not clear. Here, we characterized the physiological function of EHD2, a protein that is found at the neck of caveolae. We established a link between higher caveolar mobility induced by EHD2 loss and increased cellular fatty acid uptake. Concurrently, lipid droplets were enlarged in various tissues of EHD2-lacking mice. Our data suggest that EHD2 controls a cell-autonomous, caveolae-dependent fatty acid uptake pathway. Notably, obese patients express only low levels of EHD2, implicating a role of EHD2-controlled caveolar dynamics in obesity. Eps15-homology domain containing protein 2 (EHD2) is a dynamin-related ATPase located at the neck of caveolae, but its physiological function has remained unclear. Here, we found that global genetic ablation of EHD2 in mice leads to increased lipid droplet size in fat tissue. This organismic phenotype was paralleled at the cellular level by increased fatty acid uptake via a caveolae- and CD36-dependent pathway that also involves dynamin. Concomitantly, elevated numbers of detached caveolae were found in brown and white adipose tissue lacking EHD2, and increased caveolar mobility in mouse embryonic fibroblasts. EHD2 expression itself was down-regulated in the visceral fat of two obese mouse models and obese patients. Our data suggest that EHD2 controls a cell-autonomous, caveolae-dependent fatty acid uptake pathway and imply that low EHD2 expression levels are linked to obesity.
Collapse
|
47
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
48
|
The role of membrane-shaping BAR domain proteins in caveolar invagination: from mechanistic insights to pathophysiological consequences. Biochem Soc Trans 2020; 48:137-146. [DOI: 10.1042/bst20190377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
Abstract
The formation of caveolae, bulb-shaped plasma membrane invaginations, requires the coordinated action of distinct lipid-interacting and -shaping proteins. The interdependence of caveolar structure and function has evoked substantial scientific interest given the association of human diseases with caveolar dysfunction. Model systems deficient of core components of caveolae, caveolins or cavins, did not allow for an explicit attribution of observed functional defects to the requirement of caveolar invagination as they lack both invaginated caveolae and caveolin proteins. Knockdown studies in cultured cells and recent knockout studies in mice identified an additional family of membrane-shaping proteins crucial for caveolar formation, syndapins (PACSINs) — BAR domain superfamily proteins characterized by crescent-shaped membrane binding interfaces recognizing and inducing distinct curved membrane topologies. Importantly, syndapin loss-of-function resulted exclusively in impairment of caveolar invagination without a reduction in caveolin or cavin at the plasma membrane, thereby allowing the specific role of the caveolar invagination to be unveiled. Muscle cells of syndapin III KO mice showed severe reductions of caveolae reminiscent of human caveolinopathies and were more vulnerable to membrane damage upon changes in membrane tensions. Consistent with the lack of syndapin III-dependent invaginated caveolae providing mechanoprotection by releasing membrane reservoirs through caveolar flattening, physical exercise of syndapin III KO mice resulted in pathological defects reminiscent of the clinical symptoms of human myopathies associated with caveolin 3 mutation suggesting that the ability of muscular caveolae to respond to mechanical forces is a key physiological process.
Collapse
|
49
|
Nguyen LP, Tran SC, Suetsugu S, Lim YS, Hwang SB. PACSIN2 Interacts with Nonstructural Protein 5A and Regulates Hepatitis C Virus Assembly. J Virol 2020; 94:e01531-19. [PMID: 31801866 PMCID: PMC7022371 DOI: 10.1128/jvi.01531-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a major etiologic agent of chronic liver diseases. HCV is highly dependent on cellular machinery for viral propagation. Using protein microarray analysis, we previously identified 90 cellular proteins as nonstructural 5A (NS5A) interacting partners. Of these, protein kinase C and casein kinase substrate in neurons protein 2 (PACSIN2) was selected for further study. PACSIN2 belongs to the PACSIN family, which is involved in the formation of caveolae. Protein interaction between NS5A and PACSIN2 was confirmed by pulldown assay and further verified by both coimmunoprecipitation and immunofluorescence assays. We showed that PACSIN2 interacted with domain I of NS5A and the Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) region of PACSIN2. Interestingly, NS5A specifically attenuated protein kinase C alpha (PKCα)-mediated phosphorylation of PACSIN2 at serine 313 by interrupting PACSIN2 and PKCα interaction. In fact, mutation of the serine 313 to alanine (S313A) of PACSIN2 increased protein interaction with NS5A. Silencing of PACSIN2 decreased both viral RNA and protein expression levels of HCV. Ectopic expression of the small interfering RNA (siRNA)-resistant PACSIN2 recovered the viral infectivity, suggesting that PACSIN2 was specifically required for HCV propagation. PACSIN2 was involved in viral assembly without affecting other steps of the HCV life cycle. Indeed, overexpression of PACSIN2 promoted NS5A and core protein (core) interaction. We further showed that inhibition of PKCα increased NS5A and core interaction, suggesting that phosphorylation of PACSIN2 might influence HCV assembly. Moreover, PACSIN2 was required for lipid droplet formation via modulating extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Taken together, these data indicate that HCV modulates PACSIN2 via NS5A to promote virion assembly.IMPORTANCE PACSIN2 is a lipid-binding protein that triggers the tubulation of the phosphatidic acid-containing membranes. The functional involvement of PACSIN2 in the virus life cycle has not yet been demonstrated. We showed that phosphorylation of PACSIN2 displayed a negative effect on NS5A and core interaction. The most significant finding is that NS5A prevents PKCα from binding to PACSIN2. Therefore, the phosphorylation level of PACSIN2 is decreased in HCV-infected cells. We showed that HCV NS5A interrupted PKCα-mediated PACSIN2 phosphorylation at serine 313, thereby promoting NS5A-PACSIN2 interaction. We further demonstrated that PACSIN2 modulated lipid droplet formation through ERK1/2 phosphorylation. These data provide evidence that PACSIN2 is a proviral cellular factor required for viral propagation.
Collapse
Affiliation(s)
- Lap P Nguyen
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Si C Tran
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Shiro Suetsugu
- Laboratory of Molecular Medicine and Cell Biology, Graduate School of Biosciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Soon B Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| |
Collapse
|
50
|
Dhanda AS, Yu C, Lulic KT, Vogl AW, Rausch V, Yang D, Nichols BJ, Kim SH, Polo S, Hansen CG, Guttman JA. Listeria monocytogenes Exploits Host Caveolin for Cell-to-Cell Spreading. mBio 2020; 11:e02857-19. [PMID: 31964732 PMCID: PMC6974566 DOI: 10.1128/mbio.02857-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes moves from one cell to another using actin-rich membrane protrusions that propel the bacterium toward neighboring cells. Despite cholesterol being required for this transfer process, the precise host internalization mechanism remains elusive. Here, we show that caveolin endocytosis is key to this event as bacterial cell-to-cell transfer is severely impaired when cells are depleted of caveolin-1. Only a subset of additional caveolar components (cavin-2 and EHD2) are present at sites of bacterial transfer, and although clathrin and the clathrin-associated proteins Eps15 and AP2 are absent from the bacterial invaginations, efficient L. monocytogenes spreading requires the clathrin-interacting protein epsin-1. We also directly demonstrated that isolated L. monocytogenes membrane protrusions can trigger the recruitment of caveolar proteins in a neighboring cell. The engulfment of these bacterial and cytoskeletal structures through a caveolin-based mechanism demonstrates that the classical nanometer-scale theoretical size limit for this internalization pathway is exceeded by these bacterial pathogens.IMPORTANCEListeria monocytogenes moves from one cell to another as it disseminates within tissues. This bacterial transfer process depends on the host actin cytoskeleton as the bacterium forms motile actin-rich membranous protrusions that propel the bacteria into neighboring cells, thus forming corresponding membrane invaginations. Here, we examine these membrane invaginations and demonstrate that caveolin-1-based endocytosis is crucial for efficient bacterial cell-to-cell spreading. We show that only a subset of caveolin-associated proteins (cavin-2 and EHD2) are involved in this process. Despite the absence of clathrin at the invaginations, the classical clathrin-associated protein epsin-1 is also required for efficient bacterial spreading. Using isolated L. monocytogenes protrusions added onto naive host cells, we demonstrate that actin-based propulsion is dispensable for caveolin-1 endocytosis as the presence of the protrusion/invagination interaction alone triggers caveolin-1 recruitment in the recipient cells. Finally, we provide a model of how this caveolin-1-based internalization event can exceed the theoretical size limit for this endocytic pathway.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Connie Yu
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katarina T Lulic
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - A Wayne Vogl
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valentina Rausch
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Sung Hyun Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- Dipartimento di oncologia ed emato-oncologia, Universita' degli Studi di Milano, Milan, Italy
| | - Carsten G Hansen
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|