1
|
Gupta M, Kurth T, Heinemann F, Schwille P, Keil S, Knopf F, Brand M. Fine-tuning of Fgf8 morphogen gradient by heparan sulfate proteoglycans in the extracellular matrix. Biophys J 2024:S0006-3495(24)04070-0. [PMID: 39668564 DOI: 10.1016/j.bpj.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
Embryonic development is orchestrated by the action of morphogens, which spread out from a local source and activate, in a field of target cells, different cellular programs based on their concentration gradient. Fibroblast growth factor 8 (Fgf8) is a morphogen with important functions in embryonic organizing centers. It forms a gradient in the extracellular space by free diffusion, interaction with the extracellular matrix (ECM), and receptor-mediated endocytosis. However, morphogen gradient regulation by ECM is still poorly understood. Here, we show that specific heparan sulfate proteoglycans (HSPGs) bind Fgf8 with different affinities directly in the ECM of living zebrafish embryos, thus affecting its diffusion and signaling. Using single-molecule fluorescence correlation spectroscopy, we quantify this binding in vivo, and find two different modes of interaction. First, reducing or increasing the concentration of specific HSPGs in the extracellular space alters Fgf8 diffusion and, thus, its gradient shape. Second, ternary complex formation of Fgf8 ligand with Fgf receptors and HSPGs at the cell surface requires HSPG attachment to the cell membrane. Together, our results show that graded Fgf8 morphogen distribution is achieved by constraining free Fgf8 diffusion through successive interactions with HSPGs at the cell surface and in ECM space.
Collapse
Affiliation(s)
- Mansi Gupta
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Thomas Kurth
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Fabian Heinemann
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Sebastian Keil
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Franziska Knopf
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany; Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
| | - Michael Brand
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany; PoL - Excellence Cluster Physics of Life, Dresden, Germany.
| |
Collapse
|
2
|
Qiao Z, Wang X, Zhao H, Deng Y, Zeng W, Wu J, Chen Y. Research on the TSPAN6 regulating the secretion of ADSCs-Exos through syntenin-1 and promoting wound healing. Stem Cell Res Ther 2024; 15:430. [PMID: 39548518 PMCID: PMC11566053 DOI: 10.1186/s13287-024-04004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Exosomes (Exos) from adipose-derived stem cells (ADSCs) have a high inclusion content and low immunogenicity, which helps to control inflammation and accelerate the healing of wounds. Unfortunately, the yield of exosomes is poor, which raises the expense and lengthens the treatment period in addition to impairing exosomes' therapeutic impact. Thus, one of the key problems that needs to be resolved in the current exosome study is increasing the exosome yield. METHODS Tetraspanin-6 (TSPAN6) overexpression and knockdown models of ADSCs were constructed to determine the number of exosomes secreted by each group of cells as well as the number of multivesicular bodies (MVBs) and intraluminal vesicles (ILVs) within the cells. Subsequently, the binding region of the interaction between TSPAN6 and syntenin-1 was identified using the yeast two-hybrid assay, and the interaction itself was identified by immunoprecipitation. Finally, cellular and animal studies were conducted to investigate the role of each class of exosomes. RESULTS When compared to the control group, the number of intracellular MVBs and ILVs was significantly larger, and the number of ADSCsTSPAN6+-Exos was more than three times higher. However, TSPAN6's ability to stimulate exosome secretion was reduced as a result of syntenin-1 knockdown. Additional yeast two-hybrid assay demonstrated that the critical structures for their interaction were the N-terminal, Postsynaptic density protein 95/Discs large protein/Zonula occludens 1 (PDZ1), and PDZ2 domains of syntenin-1, and the C-terminal of TSPAN6. In animal trials, the wound healing rate was best in the ADSCsTSPAN6+-Exos group, while cellular experiments demonstrated that ADSCsTSPAN6+-Exos better enhanced the proliferation and migration of human skin fibroblasts (HSFs) and human umbilical vein endothelial cells (HUVECs). CONCLUSION TSPAN6 stimulates exosome secretion and formation, as well as the creation of MVBs and ILVs in ADSCs. Syntenin-1 is essential for TSPAN6's stimulation of ADSCs-Exos secretion. Furthermore, ADSCsTSPAN6+-Exos has a greater ability to support wound healing, angiogenesis, and the proliferation and migration of a variety of cells.
Collapse
Affiliation(s)
- Zhihua Qiao
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiancheng Wang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hongli Zhao
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwen Deng
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiliang Zeng
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingjing Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunzhu Chen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Cheng JC, Miller AL, Webb SE. Actin-mediated endocytosis in the E-YSL helps drive epiboly in zebrafish. ZYGOTE 2023; 31:517-526. [PMID: 37533161 DOI: 10.1017/s0967199423000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In zebrafish, a punctate band of F-actin is reported to develop in the external yolk syncytial layer (E-YSL) during the latter part of epiboly in zebrafish embryos. Here, electron microscopy (EM) and fluorescence confocal microscopy were conducted to investigate dynamic changes in the E-YSL membrane during epiboly. Using scanning EM, we report that the surface of the E-YSL is highly convoluted, consisting of a complex interwoven network of branching membrane surface microvilli-like protrusions. The region of membrane surface protrusions was relatively wide at 30% epiboly but narrowed as epiboly progressed. This narrowing was coincident with the formation of the punctate actin band. We also demonstrated using immunogold transmission EM that actin clusters were localized at the membrane surface mainly within the protrusions as well as in deeper locations of the E-YSL. Furthermore, during the latter part of epiboly, the punctate actin band was coincident with a region of highly dynamic endocytosis. Treatment with cytochalasin B led to the disruption of the punctate actin band and the membrane surface protrusions, as well as the attenuation of endocytosis. Together, our data suggest that, in the E-YSL, the region encompassing the membrane surface protrusions and its associated punctate actin band are likely to be an integral part of the localized endocytosis, which is important for the progression of epiboly in zebrafish embryos.
Collapse
Affiliation(s)
- Jackie C Cheng
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| |
Collapse
|
4
|
Castro-Cruz M, Lembo F, Borg JP, Travé G, Vincentelli R, Zimmermann P. The Human PDZome 2.0: Characterization of a New Resource to Test for PDZ Interactions by Yeast Two-Hybrid. MEMBRANES 2023; 13:737. [PMID: 37623798 PMCID: PMC10456741 DOI: 10.3390/membranes13080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
PSD95-disc large-zonula occludens (PDZ) domains are globular modules of 80-90 amino acids that co-evolved with multicellularity. They commonly bind to carboxy-terminal sequences of a plethora of membrane-associated proteins and influence their trafficking and signaling. We previously built a PDZ resource (PDZome) allowing us to unveil human PDZ interactions by Yeast two-hybrid. Yet, this resource is incomplete according to the current knowledge on the human PDZ proteome. Here we built the PDZome 2.0 library for Yeast two-hybrid, based on a PDZ library manually curated from online resources. The PDZome2.0 contains 305 individual clones (266 PDZ domains in isolation and 39 tandems), for which all boundaries were designed based on available PDZ structures. Using as bait the E6 oncoprotein from HPV16, a known promiscuous PDZ interactor, we show that PDZome 2.0 outperforms the previous resource.
Collapse
Affiliation(s)
- Monica Castro-Cruz
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium;
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| | - Frédérique Lembo
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| | - Jean-Paul Borg
- Marseille Proteomics Platform, CRCM, Institute Paoli-Calmettes, Aix-Marseille Université, Inserm, CNRS, 13009 Marseille, France;
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 67404 Illkirch, France;
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13009 Marseille, France;
| | - Pascale Zimmermann
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium;
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| |
Collapse
|
5
|
Lee KM, Seo EC, Lee JH, Kim HJ, Hwangbo C. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int J Mol Sci 2023; 24:ijms24119418. [PMID: 37298370 DOI: 10.3390/ijms24119418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.
Collapse
Affiliation(s)
- Kwang-Min Lee
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Chan Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon 24414, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Pintor-Romero VG, Hurtado-Ortega E, Nicolás-Morales ML, Gutiérrez-Torres M, Vences-Velázquez A, Ortuño-Pineda C, Espinoza-Rojo M, Navarro-Tito N, Cortés-Sarabia K. Biological Role and Aberrant Overexpression of Syntenin-1 in Cancer: Potential Role as a Biomarker and Therapeutic Target. Biomedicines 2023; 11:biomedicines11041034. [PMID: 37189651 DOI: 10.3390/biomedicines11041034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Syntenin-1 is a 298 amino acid protein codified by the melanoma differentiation-associated gene-9 (MDA-9). Structurally, it is composed of four domains: N-terminal, PDZ1, PDZ2, and C-terminal. The PDZ domains of syntenin-1 are involved in the stability and interaction with other molecules such as proteins, glycoproteins, and lipids. Domains are also associated with several biological functions such as the activation of signaling pathways related to cell-to-cell adhesion, signaling translation, and the traffic of intracellular lipids, among others. The overexpression of syntenin-1 has been reported in glioblastoma, colorectal, melanoma, lung, prostate, and breast cancer, which promotes tumorigenesis by regulating cell migration, invasion, proliferation, angiogenesis, apoptosis, and immune response evasion, and metastasis. The overexpression of syntenin-1 in samples has been associated with worst prognostic and recurrence, whereas the use of inhibitors such as shRNA, siRNA, and PDZli showed a diminution of the tumor size and reduction in metastasis and invasion. Syntenin-1 has been suggested as a potential biomarker and therapeutic target in cancer for developing more effective diagnostic/prognostic tests or passive/active immunotherapies.
Collapse
|
7
|
Qin Y, Medina MW. Mechanism of the Regulation of Plasma Cholesterol Levels by PI(4,5)P 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:89-119. [PMID: 36988878 DOI: 10.1007/978-3-031-21547-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Elevated low-density lipoprotein (LDL) cholesterol (LDLc) is one of the most well-established risk factors for cardiovascular disease, while high levels of high-density lipoprotein (HDL) cholesterol (HDLc) have been associated with protection from cardiovascular disease. Cardiovascular disease remains one of the leading causes of death worldwide; thus it is important to understand mechanisms that impact LDLc and HDLc metabolism. In this chapter, we will discuss molecular processes by which phosphatidylinositol-(4,5)-bisphosphate, PI(4,5)P2, is thought to modulate LDLc or HDLc. Section 1 will provide an overview of cholesterol in the circulation, discussing processes that modulate the various forms of lipoproteins (LDL and HDL) carrying cholesterol. Section 2 will describe how a PI(4,5)P2 phosphatase, transmembrane protein 55B (TMEM55B), impacts circulating LDLc levels through its ability to regulate lysosomal decay of the low-density lipoprotein receptor (LDLR), the primary receptor for hepatic LDL uptake. Section 3 will discuss how PI(4,5)P2 interacts with apolipoprotein A-I (apoA1), the key apolipoprotein on HDL. In addition to direct mechanisms of PI(4,5)P2 action on circulating cholesterol, Sect. 4 will review how PI(4,5)P2 may indirectly impact LDLc and HDLc by affecting insulin action. Last, as cholesterol is controlled through intricate negative feedback loops, Sect. 5 will describe how PI(4,5)P2 is regulated by cholesterol.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Pediatrics, Division of Cardiology, University of California, San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, Division of Cardiology, University of California, San Francisco, Oakland, CA, USA.
| |
Collapse
|
8
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Tamalin Function Is Required for the Survival of Neurons and Oligodendrocytes in the CNS. Int J Mol Sci 2022; 23:ijms232113395. [PMID: 36362204 PMCID: PMC9654138 DOI: 10.3390/ijms232113395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Tamalin is a post-synaptic scaffolding protein that interacts with group 1 metabotropic glutamate receptors (mGluRs) and several other proteins involved in protein trafficking and cytoskeletal events, including neuronal growth and actin reorganization. It plays an important role in synaptic plasticity in vitro by controlling the ligand-dependent trafficking of group 1 mGluRs. Abnormal regulation of mGluRs in the central nervous system (CNS) is associated with glutamate-mediated neurodegenerative disorders. However, the pathological consequences of tamalin deficiency in the CNS are unclear. In this study, tamalin knockout (KO) zebrafish and mice exhibited neurodegeneration along with oligodendrocyte degeneration in the post-embryonic CNS to adulthood without any developmental defects, thus suggesting the function of tamalin is more important in the postnatal stage to adulthood than that in CNS development. Interestingly, hypomyelination was independent of axonal defects in the CNS of tamalin knockout zebrafish and mice. In addition, the loss of Arf6, a downstream signal of tamalin scaffolding protein, synergistically induced neurodegeneration in tamalin KO zebrafish even in the developing CNS. Furthermore, tamalin KO zebrafish displayed increased mGluR5 expression. Taken together, tamalin played an important role in neuronal and oligodendrocyte survival and myelination through the regulation of mGluR5 in the CNS.
Collapse
|
10
|
Gustafson CM, Gammill LS. Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. J Dev Biol 2022; 10:39. [PMID: 36278544 PMCID: PMC9589955 DOI: 10.3390/jdb10040039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, cells communicate with each other to determine cell fate, guide migration, and shape morphogenesis. While the relevant secreted factors and their downstream target genes have been characterized extensively, how these signals travel between embryonic cells is still emerging. Evidence is accumulating that extracellular vesicles (EVs), which are well defined in cell culture and cancer, offer a crucial means of communication in embryos. Moreover, the release and/or reception of EVs is often facilitated by fine cellular protrusions, which have a history of study in development. However, due in part to the complexities of identifying fragile nanometer-scale extracellular structures within the three-dimensional embryonic environment, the nomenclature of developmental EVs and protrusions can be ambiguous, confounding progress. In this review, we provide a robust guide to categorizing these structures in order to enable comparisons between developmental systems and stages. Then, we discuss existing evidence supporting a role for EVs and fine cellular protrusions throughout development.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Ferreira JV, da Rosa Soares A, Ramalho J, Máximo Carvalho C, Cardoso MH, Pintado P, Carvalho AS, Beck HC, Matthiesen R, Zuzarte M, Girão H, van Niel G, Pereira P. LAMP2A regulates the loading of proteins into exosomes. SCIENCE ADVANCES 2022; 8:eabm1140. [PMID: 35333565 PMCID: PMC8956266 DOI: 10.1126/sciadv.abm1140] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/04/2022] [Indexed: 05/21/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin that are released by practically all cell types across metazoans. Exosomes are active vehicles of intercellular communication and can transfer lipids, RNAs, and proteins between different cells, tissues, or organs. Here, we describe a mechanism whereby proteins containing a KFERQ motif pentapeptide are loaded into a subpopulation of exosomes in a process that is dependent on the membrane protein LAMP2A. Moreover, we demonstrate that this mechanism is independent of the ESCRT machinery but dependent on HSC70, CD63, Alix, Syntenin-1, Rab31, and ceramides. We show that the master regulator of hypoxia HIF1A is loaded into exosomes by this mechanism to transport hypoxia signaling to normoxic cells. In addition, by tagging fluorescent proteins with KFERQ-like sequences, we were able to follow the interorgan transfer of exosomes. Our findings open new avenues for exosome engineering by allowing the loading of bioactive proteins by tagging them with KFERQ-like motifs.
Collapse
Affiliation(s)
- João Vasco Ferreira
- Proteostasis and Proteolytic Signalling Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana da Rosa Soares
- Proteostasis and Proteolytic Signalling Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - José Ramalho
- Proteostasis and Proteolytic Signalling Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Catarina Máximo Carvalho
- Proteostasis and Proteolytic Signalling Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Maria Helena Cardoso
- Proteostasis and Proteolytic Signalling Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Petra Pintado
- Fish Facility, CEDOC, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mónica Zuzarte
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Henrique Girão
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Guillaume van Niel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Paulo Pereira
- Proteostasis and Proteolytic Signalling Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Corresponding author.
| |
Collapse
|
12
|
Müller J, Anghel N, Imhof D, Hänggeli K, Uldry AC, Braga-Lagache S, Heller M, Ojo KK, Ortega-Mora LM, Van Voorhis WC, Hemphill A. Common Molecular Targets of a Quinolone Based Bumped Kinase Inhibitor in Neospora caninum and Danio rerio. Int J Mol Sci 2022; 23:2381. [PMID: 35216497 PMCID: PMC8879773 DOI: 10.3390/ijms23042381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Neospora caninum is an apicomplexan parasite closely related to Toxoplasma gondii, and causes abortions, stillbirths and/or fetal malformations in livestock. Target-based drug development has led to the synthesis of calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs). Previous studies have shown that several BKIs have excellent efficacy against neosporosis in vitro and in vivo. However, several members of this class of compounds impair fertility in pregnant mouse models and cause embryonic malformation in a zebrafish (Danio rerio) model. Similar to the first-generation antiprotozoal drug quinine, some BKIs have a quinoline core structure. To identify common targets in both organisms, we performed differential affinity chromatography with cell-free extracts from N. caninum tachyzoites and D. rerio embryos using the 5-aminopyrazole-4-carboxamide (AC) compound BKI-1748 and quinine columns coupled to epoxy-activated sepharose followed by mass spectrometry. BKI-binding proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from BKI-1748 as well as quinine columns. In N. caninum, 12 proteins were bound specifically to BKI-1748 alone, and 105 proteins, including NcCDPK1, were bound to both BKI-1748 and quinine. For D. rerio, the corresponding numbers were 13 and 98 binding proteins, respectively. In both organisms, a majority of BKI-1748 binding proteins was involved in RNA binding and modification, in particular, splicing. Moreover, both datasets contained proteins involved in DNA binding or modification and key steps of intermediate metabolism. These results suggest that BKI-1748 interacts with not only specific targets in apicomplexans, such as CDPK1, but also with targets in other eukaryotes, which are involved in common, essential pathways.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| |
Collapse
|
13
|
Barua D, Nagel M, Winklbauer R. Cell-cell contact landscapes in Xenopus gastrula tissues. Proc Natl Acad Sci U S A 2021; 118:e2107953118. [PMID: 34544871 PMCID: PMC8488617 DOI: 10.1073/pnas.2107953118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 01/26/2023] Open
Abstract
Molecular and structural facets of cell-cell adhesion have been extensively studied in monolayered epithelia. Here, we perform a comprehensive analysis of cell-cell contacts in a series of multilayered tissues in the Xenopus gastrula model. We show that intercellular contact distances range from 10 to 1,000 nm. The contact width frequencies define tissue-specific contact spectra, and knockdown of adhesion factors modifies these spectra. This allows us to reconstruct the emergence of contact types from complex interactions of the factors. We find that the membrane proteoglycan Syndecan-4 plays a dominant role in all contacts, including narrow C-cadherin-mediated junctions. Glypican-4, hyaluronic acid, paraxial protocadherin, and fibronectin also control contact widths, and unexpectedly, C-cadherin functions in wide contacts. Using lanthanum staining, we identified three morphologically distinct forms of glycocalyx in contacts of the Xenopus gastrula, which are linked to the adhesion factors examined and mediate cell-cell attachment. Our study delineates a systematic approach to examine the varied contributions of adhesion factors individually or in combinations to nondiscrete and seemingly amorphous intercellular contacts.
Collapse
Affiliation(s)
- Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
14
|
Garcia M, Hoffer L, Leblanc R, Benmansour F, Feracci M, Derviaux C, Egea-Jimenez AL, Roche P, Zimmermann P, Morelli X, Barral K. Fragment-based drug design targeting syntenin PDZ2 domain involved in exosomal release and tumour spread. Eur J Med Chem 2021; 223:113601. [PMID: 34153575 DOI: 10.1016/j.ejmech.2021.113601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 μM and 47 μM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.
Collapse
Affiliation(s)
- Manon Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Raphaël Leblanc
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Fatiha Benmansour
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Mikael Feracci
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Carine Derviaux
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Antonio Luis Egea-Jimenez
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Pascale Zimmermann
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France; Department of Human Genetics, K. U. Leuven, B-3000, Leuven, Belgium
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Karine Barral
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France.
| |
Collapse
|
15
|
Overexpression of Human Syndecan-1 Protects against the Diethylnitrosamine-Induced Hepatocarcinogenesis in Mice. Cancers (Basel) 2021; 13:cancers13071548. [PMID: 33801718 PMCID: PMC8037268 DOI: 10.3390/cancers13071548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Syndecan-1 is a Janus-faced proteoglycan: depending on the type of cancer, it can promote or inhibit the development of tumors. Our previous in vitro experiments revealed that transfection of human syndecan-1 (hSDC1) into hepatoma cells, initiating hepatocyte-like differentiation. To further confirm the antitumor action of hSDC1 in the context of liver carcinogenesis, mice transgenic for albumin promoter-driven hSDC1 were created with exclusive expression of hSDC1 in the liver. Indeed, hSDC1 interfered with the development of liver cancer in diethylnitrosamine (DEN)-induced hepatocarcinogenesis experiments. The mechanism was found to be related to lipid metabolism that plays an important role in the induction of nonalcoholic liver cirrhosis. Nonalcoholic fatty liver disease is known to promote the development of cancer; therefore, the oncoprotective effect of hSDC1 may be mediated by a beneficial modulation of lipid metabolism. Abstract Although syndecan-1 (SDC1) is known to be dysregulated in various cancer types, its implication in tumorigenesis is poorly understood. Its effect may be detrimental or protective depending on the type of cancer. Our previous data suggest that SDC1 is protective against hepatocarcinogenesis. To further verify this notion, human SDC1 transgenic (hSDC1+/+) mice were generated that expressed hSDC1 specifically in the liver under the control of the albumin promoter. Hepatocarcinogenesis was induced by a single dose of diethylnitrosamine (DEN) at an age of 15 days after birth, which resulted in tumors without cirrhosis in wild-type and hSDC1+/+ mice. At the experimental endpoint, livers were examined macroscopically and histologically, as well as by immunohistochemistry, Western blot, receptor tyrosine kinase array, phosphoprotein array, and proteomic analysis. Liver-specific overexpression of hSDC1 resulted in an approximately six month delay in tumor formation via the promotion of SDC1 shedding, downregulation of lipid metabolism, inhibition of the mTOR and the β-catenin pathways, and activation of the Foxo1 and p53 transcription factors that lead to the upregulation of the cell cycle inhibitors p21 and p27. Furthermore, both of them are implicated in the regulation of intermediary metabolism. Proteomic analysis showed enhanced lipid metabolism, activation of motor proteins, and loss of mitochondrial electron transport proteins as promoters of cancer in wild-type tumors, inhibited in the hSDC1+/+ livers. These complex mechanisms mimic the characteristics of nonalcoholic steatohepatitis (NASH) induced human liver cancer successfully delayed by syndecan-1.
Collapse
|
16
|
Syntenin-knock out reduces exosome turnover and viral transduction. Sci Rep 2021; 11:4083. [PMID: 33602969 PMCID: PMC7892569 DOI: 10.1038/s41598-021-81697-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomal transfers represent an important mode of intercellular communication. Syntenin is a small scaffold protein that, when binding ALIX, can direct endocytosed syndecans and syndecan cargo to budding endosomal membranes, supporting the formation of intraluminal vesicles that compose the source of a major class of exosomes. Syntenin, however, can also support the recycling of these same components to the cell surface. Here, by studying mice and cells with syntenin-knock out, we identify syntenin as part of dedicated machinery that integrates both the production and the uptake of secreted vesicles, supporting viral/exosomal exchanges. This study significantly extends the emerging role of heparan sulfate proteoglycans and syntenin as key components for macromolecular cargo internalization into cells.
Collapse
|
17
|
Leblanc R, Kashyap R, Barral K, Egea-Jimenez AL, Kovalskyy D, Feracci M, Garcia M, Derviaux C, Betzi S, Ghossoub R, Platonov M, Roche P, Morelli X, Hoffer L, Zimmermann P. Pharmacological inhibition of syntenin PDZ2 domain impairs breast cancer cell activities and exosome loading with syndecan and EpCAM cargo. J Extracell Vesicles 2020; 10:e12039. [PMID: 33343836 PMCID: PMC7737769 DOI: 10.1002/jev2.12039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes support cell-to-cell communication in physiology and disease, including cancer. We currently lack tools, such as small chemicals, capable of modifying exosome composition and activity in a specific manner. Building on our previous understanding of how syntenin, and its PDZ partner syndecan (SDC), impact on exosome composition we optimized a small chemical compound targeting the PDZ2 domain of syntenin. In vitro , in tests on MCF-7 breast carcinoma cells, this compound is non-toxic and impairs cell proliferation, migration and primary sphere formation. It does not affect the size or the number of secreted particles, yet it decreases the amounts of exosomal syntenin, ALIX and SDC4 while leaving other exosomal markers unaffected. Interestingly, it also blocks the sorting of EpCAM, a bona fide target used for carcinoma exosome immunocapture. Our study highlights the first characterization of a small pharmacological inhibitor of the syntenin-exosomal pathway, of potential interest for exosome research and oncology.
Collapse
Affiliation(s)
- R Leblanc
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - R Kashyap
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - K Barral
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - A L Egea-Jimenez
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - D Kovalskyy
- Enamine Ltd. Kyiv Ukraine.,Taras Shevchenko National University of Kyiv Kyiv Ukraine
| | - M Feracci
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - M Garcia
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - C Derviaux
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - S Betzi
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - R Ghossoub
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - M Platonov
- Enamine Ltd. Kyiv Ukraine.,Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Kyiv Ukraine
| | - P Roche
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - X Morelli
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - L Hoffer
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - Pascale Zimmermann
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France.,Department of Human Genetics K. U. Leuven Leuven Belgium
| |
Collapse
|
18
|
Abstract
Exosomes are secreted vesicles involved in signaling processes. The biogenesis of a class of these extracellular vesicles depends on syntenin, and on the interaction of this cytosolic protein with syndecans. Heparanase, largely an endosomal enzyme, acts as a regulator of the syndecan-syntenin-exosome biogenesis pathway. The upregulation of syntenin and heparanase in cancers may support the suspected roles of exosomes in tumor biology.
Collapse
|
19
|
Ageta H, Tsuchida K. Post-translational modification and protein sorting to small extracellular vesicles including exosomes by ubiquitin and UBLs. Cell Mol Life Sci 2019; 76:4829-4848. [PMID: 31363817 PMCID: PMC11105257 DOI: 10.1007/s00018-019-03246-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Exosomes, a type of small extracellular vesicles (sEVs), are secreted membrane vesicles that are derived from various cell types, including cancer cells, mesenchymal stem cells, and immune cells via multivesicular bodies (MVBs). These sEVs contain RNAs (mRNA, miRNA, lncRNA, and rRNA), lipids, DNA, proteins, and metabolites, all of which mediate cell-to-cell communication. This communication is known to be implicated in a diverse set of diseases such as cancers and their metastases and degenerative diseases. The molecular mechanisms, by which proteins are modified and sorted to sEVs, are not fully understood. Various cellular processes, including degradation, transcription, DNA repair, cell cycle, signal transduction, and autophagy, are known to be associated with ubiquitin and ubiquitin-like proteins (UBLs). Recent studies have revealed that ubiquitin and UBLs also regulate MVBs and protein sorting to sEVs. Ubiquitin-like 3 (UBL3)/membrane-anchored Ub-fold protein (MUB) acts as a post-translational modification (PTM) factor to regulate efficient protein sorting to sEVs. In this review, we focus on the mechanism of PTM by ubiquitin and UBLs and the pathway of protein sorting into sEVs and discuss the potential biological significance of these processes.
Collapse
Affiliation(s)
- Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
20
|
Das SK, Sarkar D, Emdad L, Fisher PB. MDA-9/Syntenin: An emerging global molecular target regulating cancer invasion and metastasis. Adv Cancer Res 2019; 144:137-191. [PMID: 31349898 DOI: 10.1016/bs.acr.2019.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With few exceptions, metastasis is the terminal stage of cancer with limited therapeutic options. Metastasis consists of numerous phenotypic and genotypic alterations of cells that are directly and indirectly induced by multiple intrinsic (cellular) and extrinsic (micro-environmental) factors. To metastasize, a cancer cell often transitions from an epithelial to mesenchymal morphology (EMT), modifies the extracellular matrix, forms emboli and survives in the circulation, escapes immune surveillance, adheres to sites distant from the initial tumor and finally develops a blood supply (angiogenesis) and colonizes in a secondary niche (a micrometastasis). Scientific advances have greatly enhanced our understanding of the precise molecular and genetic changes, operating independently or collectively, that lead to metastasis. This review focuses on a unique gene, melanoma differentiation associated gene-9 (also known as Syntenin-1; Syndecan Binding Protein (sdcbp); mda-9/syntenin), initially cloned and characterized from metastatic human melanoma and shown to be a pro-metastatic gene. In the last two decades, our comprehension of the diversity of actions of MDA-9/Syntenin on cellular phenotype has emerged. MDA-9/Sytenin plays pivotal regulatory roles in multiple signaling cascades and orchestrates both metastatic and non-metastatic events. Considering the relevance of this gene in controlling cancer invasion and metastasis, approaches have been developed to uniquely and selectively target this gene. We also provide recent updates on strategies that have been successfully employed in targeting MDA-9/Syntenin resulting in profound pre-clinical anti-cancer activity.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
21
|
Verweij FJ, Revenu C, Arras G, Dingli F, Loew D, Pegtel DM, Follain G, Allio G, Goetz JG, Zimmermann P, Herbomel P, Del Bene F, Raposo G, van Niel G. Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo. Dev Cell 2019; 48:573-589.e4. [PMID: 30745143 DOI: 10.1016/j.devcel.2019.01.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs) are released by most cell types but providing evidence for their physiological relevance remains challenging due to a lack of appropriate model organisms. Here, we developed an in vivo model to study EV function by expressing CD63-pHluorin in zebrafish embryos. A combination of imaging methods and proteomic analysis allowed us to study biogenesis, composition, transfer, uptake, and fate of individual endogenous EVs. We identified a subpopulation of EVs with exosome features, released in a syntenin-dependent manner from the yolk syncytial layer into the blood circulation. These exosomes are captured, endocytosed, and degraded by patrolling macrophages and endothelial cells in the caudal vein plexus (CVP) in a scavenger receptor- and dynamin-dependent manner. Interference with exosome biogenesis affected CVP growth, suggesting a role in trophic support. Altogether, our work represents a system for studying endogenous EV function in vivo with high spatiotemporal accuracy, demonstrating functional inter-organ communication by exosomes.
Collapse
Affiliation(s)
- Frederik J Verweij
- Institut Curie, PSL Research University, CNRS UMR144, Paris 75005, France; Institute for Psychiatry and Neuroscience Paris, Hopital Saint-Anne, Université Descartes, INSERM U894, Paris 75014, France.
| | - Celine Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Sorbonne Université, Paris 75005, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Gautier Follain
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Guillaume Allio
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Jacky G Goetz
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Marseille 13284, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, Paris 75015, France
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Sorbonne Université, Paris 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS UMR144, Paris 75005, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS UMR144, Paris 75005, France; Institute for Psychiatry and Neuroscience Paris, Hopital Saint-Anne, Université Descartes, INSERM U894, Paris 75014, France.
| |
Collapse
|
22
|
Yu Y, Li S, Wang K, Wan X. A PDZ Protein MDA-9/Syntenin: As a Target for Cancer Therapy. Comput Struct Biotechnol J 2019; 17:136-141. [PMID: 30766662 PMCID: PMC6360254 DOI: 10.1016/j.csbj.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
Melanoma differentiation-associated gene 9 (MDA-9)/Syntenin is a multidomain PDZ protein and identified as a key oncogene in melanoma initially. This protein contains a unique tandem PDZ domain architecture (PDZ1 and PDZ2 spaced by a 4-amino acid linker), an N-terminal domain (NTD) that is structurally uncharacterized and a short C-terminal domain (CTD). The PDZ1 domain is regarded as the PDZ signaling domain while PDZ2 served as the PDZ superfamily domain. It has various cellular roles by regulating many of major signaling pathways in numerous cancertypes. Through the use of novel drug design methods, such as dimerization and unnatural amino acid substitution of inhibitors in our group, the protein may provide a valuable therapeutic target. The objective of this review is to provide a current perspective on the cancer-specific role of MDA-9/Syntenin in order to explore its potential for cancer drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Shuangdi Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
23
|
Zhang W, Zhang Y, Li S, Wu Z, Yan Y, Li Y. Prmt7 regulates epiboly and gastrulation cell movements by facilitating syntenin. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1280-1287. [PMID: 30383201 DOI: 10.1093/abbs/gmy136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 02/01/2023] Open
Abstract
Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation. Despite of its fundamental function, little is known about the molecular mechanisms that control this coordinated cell movement. In this study, we investigated protein arginine methyltransferase 7 (Prmt7) morphants with an epibolic delay defect in zebrafish. The ratio of morphants with epiboly delay phenotypes increased as the dose of the injected morpholino (MO) increased. Here, syntenin transcripts are maternally deposited and ubiquitously expressed from the oocyte period to the early larva stage. Furthermore, we demonstrated that Prmt7 modulates epibolic movements of the enveloping layer by regulating F-actin organization. These defects can be partially rescued by re-expression of Prmt7 or syntenin protein. Analysis of the earliest cellular defects suggested a role of Prmt7 in the autonomous vegetal expansion of the yolk syncytial layer and the rearrangement of the actin cytoskeleton in extra-embryonic tissues. By a combination of knockdown studies and rescue experiments in zebrafish, we showed that epiboly relies on the molecular networking of Prmt7 by facilitating syntenin, which acts as a regulator for cytoskeleton. This study identifies the important function of the Prmt7 for the progression of zebrafish epiboly and establishes its key role in directional cell movements during early development.
Collapse
Affiliation(s)
- Wuwen Zhang
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunbin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shifeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhili Wu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanchang Yan
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiping Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Abstract
Viral-like nanovesicles of endosomal origin, or “exosomes,” are newly recognized vehicles of signals that cells use to communicate, in various systemic diseases, including cancer. Yet the molecular mechanisms that regulate the biogenesis and activity of exosomes remain obscure. Here, we establish that the oncogenic protein SRC stimulates the secretion of exosomes loaded with syntenin and syndecans, known co-receptors for a plethora of signaling and adhesion molecules. SRC phosphorylates conserved tyrosine residues in the syndecans and syntenin and stimulates their endosomal budding. Moreover, SRC-dependent exosomes have a promigratory activity that strictly depends on syntenin expression. This work sheds light on a function of SRC in cell-to-cell communication and mechanisms of exosome biogenesis and activity, with potential broad impact for physiopathology. The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin–syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell–cell communication, supported by syntenin exosomes, which is likely to contribute to tumor–host interactions.
Collapse
|
25
|
Egea-Jimenez AL, Gallardo R, Garcia-Pino A, Ivarsson Y, Wawrzyniak AM, Kashyap R, Loris R, Schymkowitz J, Rousseau F, Zimmermann P. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling. Nat Commun 2016; 7:12101. [PMID: 27386966 PMCID: PMC5515355 DOI: 10.1038/ncomms12101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/27/2016] [Indexed: 01/01/2023] Open
Abstract
PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.
Collapse
Affiliation(s)
- Antonio Luis Egea-Jimenez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Rodrigo Gallardo
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
- VIB Switch Laboratory, Department of Molecular Cellular and Molecular Medicine, VIB-KU Leuven, B-3000 Leuven, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Deptartment of Biotechnology (DBIT), Vrije Universiteit Brussel and Molecular Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Ylva Ivarsson
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Anna Maria Wawrzyniak
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Rudra Kashyap
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Remy Loris
- Structural Biology Brussels, Deptartment of Biotechnology (DBIT), Vrije Universiteit Brussel and Molecular Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Joost Schymkowitz
- VIB Switch Laboratory, Department of Molecular Cellular and Molecular Medicine, VIB-KU Leuven, B-3000 Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Department of Molecular Cellular and Molecular Medicine, VIB-KU Leuven, B-3000 Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| |
Collapse
|
26
|
Syndecan-4 modulates the proliferation of neural cells and the formation of CaP axons during zebrafish embryonic neurogenesis. Sci Rep 2016; 6:25300. [PMID: 27143125 PMCID: PMC4855150 DOI: 10.1038/srep25300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/14/2016] [Indexed: 02/05/2023] Open
Abstract
Syndecan-4 (Syn4), a single-pass transmembrane heparin sulphate proteoglycan (HSPG), plays significant role in the formation of focal adhesions and interacts with many growth factors to regulate cell migration and neural induction. Here, we show the new roles of syndecan-4(syn4) in zebrafish embryonic neurogenesis. Syn4 is broadly and dynamically expressed throughout the early stages of embryonic development. Knockdown of syn4 increases the expression of the marker genes of multiple types of neural cells. The increased expression of the marker genes is resulted from excessive proliferation of the neural cells. In addition, disrupting syn4 expression results in truncated and multiple aberrant branching of caudal primary (CaP) axons. Collectively, these data indicate that Syn4 suppresses the cellular proliferation during neurogenesis and is crucial for the formation of CaP axons during zebrafish embryogenesis.
Collapse
|
27
|
Tan X, Thapa N, Choi S, Anderson RA. Emerging roles of PtdIns(4,5)P2--beyond the plasma membrane. J Cell Sci 2015; 128:4047-56. [PMID: 26574506 PMCID: PMC4712784 DOI: 10.1242/jcs.175208] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phosphoinositides are a collection of lipid messengers that regulate most subcellular processes. Amongst the seven phosphoinositide species, the roles for phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at the plasma membrane, such as in endocytosis, exocytosis, actin polymerization and focal adhesion assembly, have been extensively studied. Recent studies have argued for the existence of PtdIns(4,5)P2 at multiple intracellular compartments, including the nucleus, endosomes, lysosomes, autolysosomes, autophagic precursor membranes, ER, mitochondria and the Golgi complex. Although the generation, regulation and functions of PtdIns(4,5)P2 are less well-defined in most other intracellular compartments, accumulating evidence demonstrates crucial roles for PtdIns(4,5)P2 in endolysosomal trafficking, endosomal recycling, as well as autophagosomal pathways, which are the focus of this Commentary. We summarize and discuss how phosphatidylinositol phosphate kinases, PtdIns(4,5)P2 and PtdIns(4,5)P2-effectors regulate these intracellular protein and membrane trafficking events.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA Program in Cellular and Molecular Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
28
|
Kashyap R, Roucourt B, Lembo F, Fares J, Carcavilla AM, Restouin A, Zimmermann P, Ghossoub R. Syntenin controls migration, growth, proliferation, and cell cycle progression in cancer cells. Front Pharmacol 2015; 6:241. [PMID: 26539120 PMCID: PMC4612656 DOI: 10.3389/fphar.2015.00241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022] Open
Abstract
The scaffold protein syntenin abounds during fetal life where it is important for developmental movements. In human adulthood, syntenin gain-of-function is increasingly associated with various cancers and poor prognosis. Depending on the cancer model analyzed, syntenin affects various signaling pathways. We previously have shown that syntenin allows syndecan heparan sulfate proteoglycans to escape degradation. This indicates that syntenin has the potential to support sustained signaling of a plethora of growth factors and adhesion molecules. Here, we aim to clarify the impact of syntenin loss-of-function on cancer cell migration, growth, and proliferation, using cells from various cancer types and syntenin shRNA and siRNA silencing approaches. We observed decreased migration, growth, and proliferation of the mouse melanoma cell line B16F10, the human colon cancer cell line HT29 and the human breast cancer cell line MCF7. We further documented that syntenin controls the presence of active β1 integrin at the cell membrane and G1/S cell cycle transition as well as the expression levels of CDK4, Cyclin D2, and Retinoblastoma proteins. These data confirm that syntenin supports the migration and growth of tumor cells, independently of their origin, and further highlight the attractiveness of syntenin as potential therapeutic target.
Collapse
Affiliation(s)
- Rudra Kashyap
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, KU Leuven Leuven, Belgium ; Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Bart Roucourt
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, KU Leuven Leuven, Belgium
| | - Frederique Lembo
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Joanna Fares
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Ane Marcos Carcavilla
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, KU Leuven Leuven, Belgium
| | - Audrey Restouin
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Pascale Zimmermann
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, KU Leuven Leuven, Belgium ; Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| |
Collapse
|
29
|
Philley JV, Kannan A, Dasgupta S. MDA-9/Syntenin Control. J Cell Physiol 2015; 231:545-50. [PMID: 26291527 DOI: 10.1002/jcp.25136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/25/2023]
Abstract
MDA-9/Syntenin is a small PDZ domain containing scaffolding protein with diverse array of functions regulating membrane trafficking, cell adhesion, neural, and synaptic development, ubiquitination, and exosome biogenesis. An appreciable number of studies also established a pivotal role of MDA-9/Syntenin in cancer development and progression. In this review, we will discuss the dynamic role of MDA-9/Syntenin in regulating normal and abnormal fate of various cellular processes.
Collapse
Affiliation(s)
- Julie V Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Anbarasu Kannan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
30
|
Ningappa M, So J, Glessner J, Ashokkumar C, Ranganathan S, Min J, Higgs BW, Sun Q, Haberman K, Schmitt L, Vilarinho S, Mistry PK, Vockley G, Dhawan A, Gittes GK, Hakonarson H, Jaffe R, Subramaniam S, Shin D, Sindhi R. The Role of ARF6 in Biliary Atresia. PLoS One 2015; 10:e0138381. [PMID: 26379158 PMCID: PMC4574480 DOI: 10.1371/journal.pone.0138381] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/22/2015] [Indexed: 02/05/2023] Open
Abstract
Background & Aims Altered extrahepatic bile ducts, gut, and cardiovascular anomalies constitute the variable phenotype of biliary atresia (BA). Methods To identify potential susceptibility loci, Caucasian children, normal (controls) and with BA (cases) at two US centers were compared at >550000 SNP loci. Systems biology analysis was carried out on the data. In order to validate a key gene identified in the analysis, biliary morphogenesis was evaluated in 2-5-day post-fertilization zebrafish embryos after morpholino-antisense oligonucleotide knockdown of the candidate gene ADP ribosylation factor-6 (ARF6, Mo-arf6). Results Among 39 and 24 cases at centers 1 and 2, respectively, and 1907 controls, which clustered together on principal component analysis, the SNPs rs3126184 and rs10140366 in a 3’ flanking enhancer region for ARF6 demonstrated higher minor allele frequencies (MAF) in each cohort, and 63 combined cases, compared with controls (0.286 vs. 0.131, P = 5.94x10-7, OR 2.66; 0.286 vs. 0.13, P = 5.57x10-7, OR 2.66). Significance was enhanced in 77 total cases, which included 14 additional BA genotyped at rs3126184 only (p = 1.58x10-2, OR = 2.66). Pathway analysis of the 1000 top-ranked SNPs in CHP cases revealed enrichment of genes for EGF regulators (p<1 x10-7), ERK/MAPK and CREB canonical pathways (p<1 x10-34), and functional networks for cellular development and proliferation (p<1 x10-45), further supporting the role of EGFR-ARF6 signaling in BA. In zebrafish embryos, Mo-arf6 injection resulted in a sparse intrahepatic biliary network, several biliary epithelial cell defects, and poor bile excretion to the gall bladder compared with uninjected embryos. Biliary defects were reproduced with the EGFR-blocker AG1478 alone or with Mo-arf6 at lower doses of each agent and rescued with arf6 mRNA. Conclusions The BA-associated SNPs identify a chromosome 14q21.3 susceptibility locus encompassing the ARF6 gene. arf6 knockdown in zebrafish implicates early biliary dysgenesis as a basis for BA, and also suggests a role for EGFR signaling in BA pathogenesis.
Collapse
Affiliation(s)
- Mylarappa Ningappa
- Hillman Center for Pediatric Transplantation of the Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15224, United States of America
| | - Juhoon So
- Department of Developmental Biology and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Joseph Glessner
- Center for Applied Genomics of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America
| | - Chethan Ashokkumar
- Hillman Center for Pediatric Transplantation of the Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15224, United States of America
| | - Sarangarajan Ranganathan
- Department of Pathology, Division of Pediatric Pathology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, United States of America
| | - Jun Min
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92013, United States of America
| | - Brandon W. Higgs
- Hillman Center for Pediatric Transplantation of the Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15224, United States of America
| | - Qing Sun
- Hillman Center for Pediatric Transplantation of the Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15224, United States of America
| | - Kimberly Haberman
- Hillman Center for Pediatric Transplantation of the Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15224, United States of America
| | - Lori Schmitt
- Histology Core Laboratory, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, United States of America
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Pramod K. Mistry
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Gerard Vockley
- Department of Pediatrics and Human Genetics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, United States of America
| | - Anil Dhawan
- Paediatric Liver, GI, and Nutrition, King’s College Hospital, London, WC2R 2LS, England
| | - George K. Gittes
- Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America
| | - Ronald Jaffe
- Histology Core Laboratory, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, United States of America
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92013, United States of America
| | - Donghun Shin
- Department of Developmental Biology and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation of the Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15224, United States of America
- * E-mail:
| |
Collapse
|
31
|
Friand V, David G, Zimmermann P. Syntenin and syndecan in the biogenesis of exosomes. Biol Cell 2015; 107:331-41. [PMID: 26032692 DOI: 10.1111/boc.201500010] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022]
Abstract
Cells communicate with their environment in various ways, including by secreting vesicles. Secreted vesicles are loaded with proteins, lipids and RNAs that compose 'a signature' of the cell of origin and potentially can reprogram recipient cells. Secreted vesicles recently gained in interest for medicine. They represent potential sources of biomarkers that can be collected from body fluids and, by disseminating pathogenic proteins, might also participate in systemic diseases like cancer, atherosclerosis and neurodegeneration. The mechanisms controlling the biogenesis and the uptake of secreted vesicles are poorly understood. Some of these vesicles originate from endosomes and are called 'exosomes'. In this review, we recapitulate recent insight on the role of the syndecan (SDC) heparan sulphate proteoglycans, the small intracellular adaptor syntenin and associated regulators in the biogenesis and loading of exosomes with cargo. SDC-syntenin-associated regulators include the endosomal sorting complex required for transport accessory component ALG-2-interacting protein X, the small GTPase adenosine 5'-diphosphate-ribosylation factor 6, the lipid-modifying enzyme phospholipase D2 and the endoglycosidase heparanase. All these molecules appear to support the budding of SDC-syntenin and associated cargo into the lumen of endosomes. This highlights a major mechanism for the formation of intraluminal vesicles that will be released as exosomes.
Collapse
Affiliation(s)
- Véronique Friand
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Universite', Institut Paoli-Calmettes, Marseille, 13009, France.,Department of Human Genetics, KU Leuven, Leuven, B-3000, Belgium
| | - Guido David
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Universite', Institut Paoli-Calmettes, Marseille, 13009, France.,Department of Human Genetics, KU Leuven, Leuven, B-3000, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Universite', Institut Paoli-Calmettes, Marseille, 13009, France.,Department of Human Genetics, KU Leuven, Leuven, B-3000, Belgium
| |
Collapse
|
32
|
Kegelman TP, Das SK, Emdad L, Hu B, Menezes ME, Bhoopathi P, Wang XY, Pellecchia M, Sarkar D, Fisher PB. Targeting tumor invasion: the roles of MDA-9/Syntenin. Expert Opin Ther Targets 2014; 19:97-112. [PMID: 25219541 DOI: 10.1517/14728222.2014.959495] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Melanoma differentiation-associated gene - 9 (MDA-9)/Syntenin has become an increasingly popular focus for investigation in numerous cancertypes. Originally implicated in melanoma metastasis, it has diverse cellular roles and is consistently identified as a regulator of tumor invasion and angiogenesis. As a potential target for inhibiting some of the most lethal aspects of cancer progression, further insight into the function of MDA-9/Syntenin is mandatory. AREAS COVERED Recent literature and seminal articles were reviewed to summarize the latest collective understanding of MDA-9/Syntenin's role in normal and cancerous settings. Insights into its participation in developmental processes are included, as is the functional significance of the N- and C-terminals and PDZ domains of MDA-9/Syntenin. Current reports highlight the clinical significance of MDA-9/Syntenin expression level in a variety of cancers, often correlating directly with reduced patient survival. Also presented are assessments of roles of MDA-9/Syntenin in cancer progression as well as its functions as an intracellular adapter molecule. EXPERT OPINION Multiple studies demonstrate the importance of MDA-9/Syntenin in tumor invasion and progression. Through the use of novel drug design approaches, this protein may provide a worthwhile therapeutic target. As many conventional therapies do not address, or even enhance, tumor invasion, an anti-invasive approach would be a worthwhile addition in cancer therapy.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Virginia Commonwealth University, School of Medicine, Department of Human and Molecular Genetics , Richmond, VA , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee SJ. Dynamic regulation of the microtubule and actin cytoskeleton in zebrafish epiboly. Biochem Biophys Res Commun 2014; 452:1-7. [PMID: 25117442 DOI: 10.1016/j.bbrc.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022]
Abstract
Gastrulation is a key developmental stage with striking changes in morphology. Coordinated cell movements occur to bring cells to their correct positions in a timely manner. Cell movements and morphological changes are accomplished by precisely controlling dynamic changes in cytoskeletal proteins, microtubules, and actin filaments. Among those cellular movements, epiboly produces the first distinct morphological changes in teleosts. In this review, I describe epiboly and its mechanics, and the dynamic changes in microtubule networks and actin structures, mainly in zebrafish embryos. The factors regulating those cytoskeletal changes will also be discussed.
Collapse
Affiliation(s)
- Shyh-Jye Lee
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for System Biology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
34
|
Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavík J, Machala M, Zimmermann P. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 2014; 5:3477. [PMID: 24637612 DOI: 10.1038/ncomms4477] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/20/2014] [Indexed: 12/17/2022] Open
Abstract
Exosomes are small vesicles that are secreted by cells and act as mediators of cell to cell communication. Because of their potential therapeutic significance, important efforts are being made towards characterizing exosomal contents. However, little is known about the mechanisms that govern exosome biogenesis. We have recently shown that the exosomal protein syntenin supports exosome production. Here we identify the small GTPase ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2) as regulators of syntenin exosomes. ARF6 and PLD2 affect exosomes by controlling the budding of intraluminal vesicles (ILVs) into multivesicular bodies (MVBs). ARF6 also controls epidermal growth factor receptor degradation, suggesting a role in degradative MVBs. Yet ARF6 does not affect HIV-1 budding, excluding general effects on Endosomal Sorting Complexes Required for Transport. Our study highlights a novel pathway controlling ILV budding and exosome biogenesis and identifies an unexpected role for ARF6 in late endosomal trafficking.
Collapse
Affiliation(s)
- Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Frédérique Lembo
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Aude Rubio
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Carole Baron Gaillard
- 1] Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France [2] Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Jérôme Bouchet
- 1] Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France [2] CNRS, URA-1961, 75015 Paris, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212, Centre National de la Recherche Scientifique, and Université de Strasbourg, 67084 Strasbourg, France
| | - Josef Slavík
- Veterinary Research Institute, Hudcova 70, CZ-621 00 Brno, Czech Republic
| | - Miroslav Machala
- Veterinary Research Institute, Hudcova 70, CZ-621 00 Brno, Czech Republic
| | - Pascale Zimmermann
- 1] Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France [2] Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
35
|
Kegelman TP, Das SK, Hu B, Bacolod MD, Fuller CE, Menezes ME, Emdad L, Dasgupta S, Baldwin AS, Bruce JN, Dent P, Pellecchia M, Sarkar D, Fisher PB. MDA-9/syntenin is a key regulator of glioma pathogenesis. Neuro Oncol 2013; 16:50-61. [PMID: 24305713 DOI: 10.1093/neuonc/not157] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The extraordinary invasiveness of human glioblastoma multiforme (GBM) contributes to treatment failure and the grim prognosis of patients diagnosed with this tumor. Consequently, it is imperative to define further the cellular mechanisms that control GBM invasion and identify promising novel therapeutic targets. Melanoma differentiation associated gene-9 (MDA-9/syntenin) is a highly conserved PDZ domain-containing scaffolding protein that promotes invasion and metastasis in vitro and in vivo in human melanoma models. To determine whether MDA-9/syntenin is a relevant target in GBM, we investigated its expression in tumor samples and involvement in GBM invasion and angiogenesis. MATERIALS We assessed MDA-9/syntenin levels in available databases, patient tumor samples, and human-derived cell lines. Through gain-of-function and loss-of-function studies, we analyzed changes in invasion, angiogenesis, and signaling in vitro. We used orthotopic xenografts with GBM6 cells to demonstrate the role of MDA-9/syntenin in GBM pathogenesis in vivo. RESULTS MDA-9/syntenin expression in high-grade astrocytomas is significantly higher than normal tissue counterparts. Forced overexpression of MDA-9/syntenin enhanced Matrigel invasion, while knockdown inhibited invasion, migration, and anchorage-independent growth in soft agar. Moreover, overexpression of MDA-9/syntenin increased activation of c-Src, p38 mitogen-activated protein kinase, and nuclear factor kappa-B, leading to elevated expression of matrix metalloproteinase 2 and secretion of interleukin-8 with corresponding changes observed upon knockdown. GBM6 cells that stably express small hairpin RNA for MDA-9/syntenin formed smaller tumors and had a less invasive phenotype in vivo. CONCLUSIONS Our findings indicate that MDA-9/syntenin is a novel and important mediator of invasion in GBM and a key regulator of pathogenesis, and we identify it as a potential target for anti-invasive treatment in human astrocytoma.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Corresponding author: Paul B. Fisher, MPh, PhD, Professor and Chairman, Department of Human and Molecular Genetics, Director, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, 1101 East Marshall Street, Sanger Hall Building, Room 11-015, Richmond, VA 23298-0033.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yu Y, Schachner M. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish. Eur J Neurosci 2013; 38:2280-9. [PMID: 23607754 DOI: 10.1111/ejn.12222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 02/05/2023]
Abstract
In contrast to mammals, adult zebrafish recover locomotor function after spinal cord injury, in part due to the capacity of the central nervous system to repair severed connections. To identify molecular cues that underlie regeneration, we conducted mRNA expression profiling and found that syntenin-a expression is upregulated in the adult zebrafish spinal cord caudal to the lesion site after injury. Syntenin is a scaffolding protein involved in mammalian cell adhesion and movement, axonal outgrowth, establishment of cell polarity, and protein trafficking. It could thus be expected to be involved in supporting regeneration in fish. Syntenin-a mRNA and protein are expressed in neurons, glia and newly generated neural cells, and upregulated caudal to the lesion site on days 6 and 11 following spinal cord injury. Treatment of spinal cord-injured fish with two different antisense morpholinos to knock down syntenin-a expression resulted in significant inhibition of locomotor recovery at 5 and 6 weeks after injury, when compared to control morpholino-treated fish. Knock-down of syntenin-a reduced regrowth of descending axons from brainstem neurons into the spinal cord caudal to the lesion site. These observations indicate that syntenin-a is involved in regeneration after traumatic insult to the central nervous system of adult zebrafish, potentially leading to novel insights into the cellular and molecular mechanisms that require activation in the regeneration-deficient mammalian central nervous system.
Collapse
Affiliation(s)
- Yong Yu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | | |
Collapse
|
37
|
Jacquemet G, Humphries MJ, Caswell PT. Role of adhesion receptor trafficking in 3D cell migration. Curr Opin Cell Biol 2013; 25:627-32. [PMID: 23797030 PMCID: PMC3759831 DOI: 10.1016/j.ceb.2013.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 01/28/2023]
Abstract
Adhesion receptor trafficking makes a major contribution to cell migration in 3D. Integrin and syndecan receptors synergise to control signals for migration. Specific integrin heterodimers perform different roles during migration.
This review discusses recent advances in our understanding of adhesion receptor trafficking in vitro, and extrapolates them as far as what is currently possible towards an understanding of migration in three dimensions in vivo. Our specific focus is the mechanisms for endocytosis and recycling of the two major classes of cell-matrix adhesion receptors, integrins and syndecans. We review the signalling networks that are employed to regulate trafficking and conversely the effects of trafficking on signalling itself. We then define the contribution that this element of the migration process makes to processes such as wound healing and tumour invasion.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | | | | |
Collapse
|
38
|
Jones DR, Ramirez IBR, Lowe M, Divecha N. Measurement of phosphoinositides in the zebrafish Danio rerio. Nat Protoc 2013; 8:1058-72. [DOI: 10.1038/nprot.2013.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Hofmeister W, Devine CA, Key B. Distinct expression patterns of syndecans in the embryonic zebrafish brain. Gene Expr Patterns 2013; 13:126-32. [DOI: 10.1016/j.gep.2013.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/21/2012] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
|
40
|
Ivarsson Y, Wawrzyniak AM, Kashyap R, Polanowska J, Betzi S, Lembo F, Vermeiren E, Chiheb D, Lenfant N, Morelli X, Borg JP, Reboul J, Zimmermann P. Prevalence, specificity and determinants of lipid-interacting PDZ domains from an in-cell screen and in vitro binding experiments. PLoS One 2013; 8:e54581. [PMID: 23390500 PMCID: PMC3563628 DOI: 10.1371/journal.pone.0054581] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. METHODOLOGY/PRINCIPAL FINDINGS We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. CONCLUSIONS/SIGNIFICANCE Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | | | - Rudra Kashyap
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Jolanta Polanowska
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Stéphane Betzi
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Frédérique Lembo
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Elke Vermeiren
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | - Driss Chiheb
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | - Nicolas Lenfant
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Xavier Morelli
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Jean-Paul Borg
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Jérôme Reboul
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Pascale Zimmermann
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
- * E-mail:
| |
Collapse
|
41
|
Wawrzyniak AM, Kashyap R, Zimmermann P. Phosphoinositides and PDZ domain scaffolds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:41-57. [PMID: 23775690 DOI: 10.1007/978-94-007-6331-9_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery that PSD-95/Discs large/ZO-1 (PDZ) domains can function as lipid-binding modules, in particular interacting with phosphoinositides (PIs), was made more than 10 years ago (Mol Cell 9(6): 1215-1225, 2002). Confirmatory studies and a series of functional follow-ups established PDZ domains as dual specificity modules displaying both peptide and lipid binding, and prompted a rethinking of the mode of action of PDZ domains in the control of cell signaling. In this chapter, after introducing PDZ domains, PIs and methods for studying protein-lipid interactions, we focus on (i) the prevalence and the specificity of PDZ-PIs interactions, (ii) the molecular determinants of PDZ-PIs interactions, (iii) the integration of lipid and peptide binding by PDZ domains, (iv) the common features of PIs interacting PDZ domains and (v) the regulation and functional significance of PDZ-PIs interactions.
Collapse
|
42
|
Lambaerts K, Van Dyck S, Mortier E, Ivarsson Y, Degeest G, Luyten A, Vermeiren E, Peers B, David G, Zimmermann P. Syntenin, a syndecan adaptor and an Arf6 phosphatidylinositol 4,5-bisphosphate effector, is essential for epiboly and gastrulation cell movements in zebrafish. Development 2012. [DOI: 10.1242/dev.082610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Ivarsson Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett 2012; 586:2638-47. [PMID: 22576124 PMCID: PMC7094393 DOI: 10.1016/j.febslet.2012.04.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022]
Abstract
The PDZ domain is a protein-protein interacting module that plays an important role in the organization of signaling complexes. The recognition of short intrinsically disordered C-terminal peptide motifs is the archetypical PDZ function, but the functional repertoire of this versatile module also includes recognition of internal peptide sequences, dimerization and phospholipid binding. The PDZ function can be tuned by various means such as allosteric effects, changes of physiological buffer conditions and phosphorylation of PDZ domains and/or ligands, which poses PDZ domains as dynamic regulators of cell signaling. This review is focused on the plasticity of the PDZ interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Extensions of PSD-95/discs large/ZO-1 (PDZ) domains influence lipid binding and membrane targeting of syntenin-1. FEBS Lett 2012; 586:1445-51. [DOI: 10.1016/j.febslet.2012.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/21/2022]
|