1
|
Rodriguez Garcia M, Schmeckpeper J, Landim-Vieira M, Coscarella IL, Fang X, Ma W, Spran PA, Yuan S, Qi L, Kahmini AR, Shoemaker MB, Atkinson JB, Kekenes-Huskey PM, Irving TC, Chase PB, Knollmann BC, Pinto JR. Disruption of Z-Disc Function Promotes Mechanical Dysfunction in Human Myocardium: Evidence for a Dual Myofilament Modulatory Role by Alpha-Actinin 2. Int J Mol Sci 2023; 24:14572. [PMID: 37834023 PMCID: PMC10572656 DOI: 10.3390/ijms241914572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.
Collapse
Affiliation(s)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Xuan Fang
- Department of Cell & Molecular Physiology, Loyola University, Chicago, IL 60660, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Payton A. Spran
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shengyao Yuan
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Lin Qi
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aida Rahimi Kahmini
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - M. Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James B. Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Björn C. Knollmann
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jose Renato Pinto
- Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Davis BNJ, Santoso JW, Walker MJ, Oliver CE, Cunningham MM, Boehm CA, Dawes D, Lasater SL, Huffman K, Kraus WE, Truskey GA. Modeling the Effect of TNF-α upon Drug-Induced Toxicity in Human, Tissue-Engineered Myobundles. Ann Biomed Eng 2019; 47:1596-1610. [PMID: 30963383 DOI: 10.1007/s10439-019-02263-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
Abstract
A number of significant muscle diseases, such as cachexia, sarcopenia, systemic chronic inflammation, along with inflammatory myopathies share TNF-α-dominated inflammation in their pathogenesis. In addition, inflammatory episodes may increase susceptibility to drug toxicity. To assess the effect of TNF-α-induced inflammation on drug responses, we engineered 3D, human skeletal myobundles, chronically exposed them to TNF-α during maturation, and measured the combined response of TNF-α and the chemotherapeutic doxorubicin on muscle function. First, the myobundle inflammatory environment was characterized by assessing the effects of TNF-α on 2D human skeletal muscle cultures and 3D human myobundles. High doses of TNF-α inhibited maturation in human 2D cultures and maturation and function in 3D myobundles. Then, a tetanus force dose-response curve was constructed to characterize doxorubicin's effects on function alone. The combination of TNF-α and 10 nM doxorubicin exhibited a synergistic effect on both twitch and tetanus force production. Overall, the results demonstrated that inflammation of a 3D, human skeletal muscle inflammatory system alters the response to doxorubicin.
Collapse
Affiliation(s)
- Brittany N J Davis
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Jeffrey W Santoso
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Michaela J Walker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Catherine E Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Michael M Cunningham
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christian A Boehm
- Department of Textile Technology, RWTH Aachen University, 52062, Aachen, Germany
| | - Danielle Dawes
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Samantha L Lasater
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Kim Huffman
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cardiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA. .,, 1395 FCIEMS, 101 Science Drive, Durham, NC, 27708-0281, USA.
| |
Collapse
|
3
|
Knezevic T, Myers VD, Gordon J, Tilley DG, Sharp TE, Wang J, Khalili K, Cheung JY, Feldman AM. BAG3: a new player in the heart failure paradigm. Heart Fail Rev 2016; 20:423-34. [PMID: 25925243 PMCID: PMC4463985 DOI: 10.1007/s10741-015-9487-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Tijana Knezevic
- />Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Valerie D. Myers
- />Department of Physiology, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Jennifer Gordon
- />Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Douglas G. Tilley
- />Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Thomas E. Sharp
- />Department of Physiology, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - JuFang Wang
- />Department of Medicine, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Kamel Khalili
- />Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Joseph Y. Cheung
- />Department of Medicine, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Arthur M. Feldman
- />Department of Physiology, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
- />Department of Medicine, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| |
Collapse
|
4
|
Ausma J, Schaart G, Thoné F, Shivalkar B, Flameng W, Depré C, Vanoverschelde JL, Ramaekers F, Borgers M. Chronic ischemic viable myocardium in man: Aspects of dedifferentiation. Cardiovasc Pathol 2015; 4:29-37. [PMID: 25850777 DOI: 10.1016/1054-8807(94)00028-p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/1994] [Accepted: 09/13/1994] [Indexed: 10/27/2022] Open
Abstract
Histologic analysis of biopsies derived from patients with chronic dysfunctional but viable (hibernating) myocardium showed characteristic cell alterations. These changes consisted of a partial to complete loss of sarcomeres, accumulation of glycogen, and disorganization and loss of sarcoplasmic reticulum. Most of the adaptive changes that these affected cells undergo are suggestive of dedifferentiation. In the present study the expression and organizational pattern of contractile and cytoskeletal proteins such as titin, cardiotin, and α-smooth muscle actin were assessed in hibernating and normal myocardium because the expression and organization of these constituents have been related to certain stages of cardiomyocyte differentiation. In normal cells titin shows a cross-striated staining pattern, whereas cardiotin displays a fibrillar array, parallel to the sarcomeres. α-Smooth muscle actin is not expressed in adult cardiomyocytes. The expression of titin in a punctated pattern and the marked decrease to virtual absence of cardiotin in hibernating cardiomyocytes speak in favor of an embryonic phenotype of these cells. The re-expression of α-smooth muscle actin in hibernating cells strongly supports this hypothesis. The observations on three different structural proteins of heart muscle suggest that hibernating myocardium acquired aspects of muscle cell dedifferentiation.
Collapse
Affiliation(s)
- J Ausma
- Department of Molecular Cell Biology and Genetics, Cardiovascular Research Institute Maastricht, University of Limburg, Maastricht, The Netherlands
| | - G Schaart
- Department of Molecular Cell Biology and Genetics, Cardiovascular Research Institute Maastricht, University of Limburg, Maastricht, The Netherlands
| | - F Thoné
- Department of Morphology, Life Sciences, Janssen Research Foundation, Beerse, Belgium
| | - B Shivalkar
- Department of Cardiovascular Surgery, Catholic University of Leuven, Belgium
| | - W Flameng
- Department of Cardiovascular Surgery, Catholic University of Leuven, Belgium
| | - C Depré
- Division of Cardiology, University of Louvain Medical School, Brussels, Belgium
| | - J L Vanoverschelde
- Division of Cardiology, University of Louvain Medical School, Brussels, Belgium
| | - F Ramaekers
- Department of Molecular Cell Biology and Genetics, Cardiovascular Research Institute Maastricht, University of Limburg, Maastricht, The Netherlands
| | - M Borgers
- Department of Molecular Cell Biology and Genetics, Cardiovascular Research Institute Maastricht, University of Limburg, Maastricht, The Netherlands; Department of Morphology, Life Sciences, Janssen Research Foundation, Beerse, Belgium
| |
Collapse
|
5
|
Monici M, Cialdai F, Ranaldi F, Paoli P, Boscaro F, Moneti G, Caselli A. Effect of IR laser on myoblasts: a proteomic study. MOLECULAR BIOSYSTEMS 2014; 9:1147-61. [PMID: 23364335 DOI: 10.1039/c2mb25398d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Laser therapy is used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of this research was to get insight into possible benefits deriving from the application of an advanced IR laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of hypotrophic tissue. We studied the effect of IR laser treatment on proliferation, differentiation, cytoskeleton organization and global protein expression in C2C12 myoblasts. We found that laser treatment induced a decrease in the cell proliferation rate without affecting cell viability, while leading to cytoskeletal rearrangement and expression of the early differentiation marker MyoD. The differential proteome analysis revealed the up-regulation and/or modulation of many proteins known to be involved in cell cycle regulation, cytoskeleton organization and differentiation.
Collapse
Affiliation(s)
- Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Dept. Clinical Physiopathology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Linnemann A, van der Ven PFM, Vakeel P, Albinus B, Simonis D, Bendas G, Schenk JA, Micheel B, Kley RA, Fürst DO. The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin. Eur J Cell Biol 2010; 89:681-92. [PMID: 20554076 DOI: 10.1016/j.ejcb.2010.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/28/2022] Open
Abstract
Here we introduce myopodin as a novel filamin C binding partner. Corroborative yeast two-hybrid and biochemical analyses indicate that the central part of myopodin that shows high homology to the closely related protein synaptopodin and that is common to all its currently known or predicted variants interacts with filamin C immunoglobulin-like domains 20-21. A detailed characterization of the previously described interaction between myopodin and alpha-actinin demonstrates for the first time that myopodin contains three independent alpha-actinin-binding sites. Newly developed myopodin-specific antibodies reveal expression at the earliest stages of in vitro differentiation of human skeletal muscle cells preceding the expression of sarcomeric alpha-actinin. Myopodin colocalizes with filamin and alpha-actinin during all stages of muscle development. By contrast, colocalization with its previously identified binding partner zyxin is restricted to early developmental stages. Genetic and cellular analyses of skeletal muscle provided direct evidence for an alternative transcriptional start site in exon three, corroborating the expression of a myopodin variant lacking the PDZ domain encoded by exons 1 and 2 in skeletal muscle. We conclude that myopodin is a multiadapter protein of the sarcomeric Z-disc that links nascent myofibrils to the sarcolemma via zyxin, and might play a role in early assembly and stabilization of the Z-disc. Mutations in FLNC, ACTN2 and several other genes encoding Z-disc-related proteins cause myopathy and cardiomyopathy. Its localization and its association with the myopathy-associated proteins filamin C and alpha-actinin make myopodin an interesting candidate for a muscle disease gene.
Collapse
Affiliation(s)
- Anja Linnemann
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang Y, Ordahl CP. The pattern of MyoD and contractile protein localization in primary epaxial myotome reflects the dynamic progression of nascent myoblast differentiation. Dev Dyn 2006; 235:382-94. [PMID: 16278890 DOI: 10.1002/dvdy.20637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The localization of contractile and regulatory proteins in early stages of epaxial primary myotome development was analyzed by immunofluorescence microscopy. Contractile proteins that appear in an ordered sequence in the rostro-caudal axis of somite development were found to reiterate that sequence in the dorso-medial-to-ventro-lateral axis of primary epaxial myotome development. Pair-wise localization of MyoD-titin, desmin-titin, and desmin-myosin defined three zones extending from the dermomyotome dorso-medial lip (DML) into the primary myotome layer. Zones M1 and M2, which were positive for MyoD + titin and MyoD + titin + desmin, respectively, were restricted to the dorso-medial-most extremity of the myotome layer and did not expand during the course of myotome development. Zone M3 was positive for MyoD, desmin, titin, myosin, and cardiac troponin T and was the only zone that expanded during primary myotome development. Myotome fibers in zone M3 were unit-length, spanning the full rostro-caudal axis of the myotome while fibers in zones M1 and M2 were shorter than unit length. Anti-myoD immunofluorescence, when detected in cells lacking contractile-protein-positive cytoplasm, was restricted to the DML and nascent myotome cells immediately subjacent to the DML. These results demonstrate a dynamic spatio-temporal sequence in the differentiation program of nascent myotome cells as they emerge from the DML; zones M1 and M2 reflect standing waves of sequential contractile protein activation during the maturation of nascent myotomal myoblasts, while the expanding zone M3 reflects the accumulation of mature myotome fibers expressing a full cohort contractile proteins.
Collapse
Affiliation(s)
- Yagai Yang
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
8
|
Harris BN, Li H, Terry M, Ferrari MB. Calcium transients regulate titin organization during myofibrillogenesis. ACTA ACUST UNITED AC 2005; 60:129-39. [PMID: 15662726 DOI: 10.1002/cm.20054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Titin has a Ca2+-dependent kinase domain and may act as a molecular template for myofibrillogenesis. Therefore, we examined the relationship between endogenous Ca2+ transients and titin organization in embryonic myocytes. When transients were blocked during sarcomere assembly, titin organization was disrupted. Titin was distributed in punctate aggregates on an otherwise diffuse background, resulting in a 66% decrease in organization. Myosin, as reported previously, was also disrupted in a similar manner (75% decrease). In titin-actin-myosin triple-labeling experiments, myosin and titin were highly colocalized, although titin aggregates without significant myosin accumulation were also observed. This suggests that myosin-titin association is not dependent on Ca2+ transients, although terminal aspects of titin-myosin organization require transients. We also examined whether titin organization is dependent on actin filament dynamics. The data indicate that (1) the normal sarcomeric arrangement of titin depends on Ca2+ transients, (2) titin-myosin association does not require Ca2+ transients, and (3) titin filament organization does not depend on barbed-end actin dynamics.
Collapse
Affiliation(s)
- Brittany N Harris
- School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
9
|
Komati H, Naro F, Mebarek S, De Arcangelis V, Adamo S, Lagarde M, Prigent AF, Némoz G. Phospholipase D is involved in myogenic differentiation through remodeling of actin cytoskeleton. Mol Biol Cell 2004; 16:1232-44. [PMID: 15616193 PMCID: PMC551488 DOI: 10.1091/mbc.e04-06-0459] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We investigated the role of phospholipase D (PLD) and its product phosphatidic acid (PA) in myogenic differentiation of cultured L6 rat skeletal myoblasts. Arginine-vasopressin (AVP), a differentiation inducer, rapidly activated PLD in a Rho-dependent way, as shown by almost total suppression of activation by C3 exotoxin pretreatment. Addition of 1-butanol, which selectively inhibits PA production by PLD, markedly decreased AVP-induced myogenesis. Conversely, myogenesis was potentiated by PLD1b isoform overexpression but not by PLD2 overexpression, establishing that PLD1 is involved in this process. The expression of the PLD isoforms was differentially regulated during differentiation. AVP stimulation of myoblasts induced the rapid formation of stress fiber-like actin structures (SFLSs). 1-Butanol selectively inhibited this response, whereas PLD1b overexpression induced SFLS formation, showing that it was PLD dependent. Endogenous PLD1 was located at the level of SFLSs, and by means of an intracellularly expressed fluorescent probe, PA was shown to be accumulated along these structures in response to AVP. In addition, AVP induced a PLD-dependent neosynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), which also was accumulated along actin fibers. These data support the hypothesis that PLD participates in myogenesis through PA- and PIP2-dependent actin fiber formation.
Collapse
Affiliation(s)
- Hiba Komati
- Laboratoire de Physiopathologie des Lipides et Membranes, Institut National de la Santé et de la Recherche Médicale Unité 585, Institut National des Sciences Appliquées de Lyon, 69621 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Li H, Cook JD, Terry M, Spitzer NC, Ferrari MB. Calcium transients regulate patterned actin assembly during myofibrillogenesis. Dev Dyn 2004; 229:231-42. [PMID: 14745949 DOI: 10.1002/dvdy.10428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The highly ordered arrangement of sarcomeric myosin during striated muscle development requires spontaneous calcium (Ca(2+)) transients. Here, we show that blocking transients also compromises patterned assembly of actin thin filaments, titin, and capZ. Because a conserved temporal assembly pattern has been described for these proteins, selective inhibitors of either thick or thin filament formation were used to determine their relative temporal interdependencies. For example, inhibition of myosin light chain kinase (MLCK) by application of a specific inhibitory peptide or phorbol myistate acetate (PMA) disrupts myosin assembly without significantly affecting formation of actin bands. The MLCK inhibitor ML-7, however, disrupted actin as well as myosin. Surprisingly, agents that interfere with actin dynamics, such as cytochalasin D, produced only minor organizational disruptions in actin, capZ, and titin staining. However, cytochalasin D and other actin disrupting compounds significantly perturbed myosin organization. The results indicate that (1) Ca(2+) transients regulate one or more of the earliest steps in sarcomere formation, (2) mature actin filaments can assemble independently of myosin band formation, and (3) myosin thick filament assembly is extremely sensitive to disruption of either the actin or titin filament systems.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | | | | | | | | |
Collapse
|
11
|
Volonte D, Peoples AJ, Galbiati F. Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C. Mol Biol Cell 2003; 14:4075-88. [PMID: 14517320 PMCID: PMC207001 DOI: 10.1091/mbc.e03-03-0161] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a approximately 95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans.
Collapse
Affiliation(s)
- Daniela Volonte
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
12
|
Schröder R, Kunz WS, Rouan F, Pfendner E, Tolksdorf K, Kappes-Horn K, Altenschmidt-Mehring M, Knoblich R, van der Ven PFM, Reimann J, Fürst DO, Blümcke I, Vielhaber S, Zillikens D, Eming S, Klockgether T, Uitto J, Wiche G, Rolfs A. Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy. J Neuropathol Exp Neurol 2002; 61:520-30. [PMID: 12071635 DOI: 10.1093/jnen/61.6.520] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations of the human plectin gene (Plec1) cause autosomal recessive epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). Here, we report on molecular mechanisms leading to severe dystrophic muscle alterations in EBS-MD. Analysis of a 25-yr-old EBS-MD patient carrying a novel homozygous 16-bp insertion mutation (13803ins16/13803ins16) close to the intermediate filament (IF) binding site of plectin showed severe disorganization of the myogenic IF cytoskeleton. Intermyofibrillar and subsarcolemmal accumulations of assembled but highly unordered desmin filaments may be attributed to impaired desmin binding capability of the mutant plectin. This IF pathology was also associated with severe mitochondrial dysfunction, suggesting that the muscle pathology of EBS-MD caused by IF disorganization leads not only to defects in mechanical force transduction but also to metabolic dysfunction. Beyond EBS-MD, our data may contribute to the understanding of other myopathies characterized by sarcoplasmic IF accumulations such as desminopathies or alpha-B-crystallinopathies.
Collapse
Affiliation(s)
- Rolf Schröder
- Department of Neurology, University of Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
van den Eijnde SM, van den Hoff MJ, Reutelingsperger CP, van Heerde WL, Henfling ME, Vermeij-Keers C, Schutte B, Borgers M, Ramaekers FC. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J Cell Sci 2001; 114:3631-42. [PMID: 11707515 DOI: 10.1242/jcs.114.20.3631] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell surface exposure of phosphatidylserine (PS) is shown to be part of normal physiology of skeletal muscle development and to mediate myotube formation. A transient exposure of PS was observed on mouse embryonic myotubes at E13, at a stage of development when primary myotubes are formed. The study of this process in cell cultures of differentiating C2C12 and H9C2 myoblasts also reveals a transient expression of PS at the cell surface. This exposure of PS locates mainly at cell-cell contact areas and takes place at a stage when the structural organization of the sarcomeric protein titin is initiated, prior to actual fusion of individual myoblast into multinucleated myotubes. Myotube formation in vitro can be inhibited by the PS binding protein annexin V, in contrast to its mutant M1234, which lacks the ability to bind to PS. Although apoptotic myoblasts also expose PS, differentiating muscle cells show neither loss of mitochondrial membrane potential nor detectable levels of active caspase-3 protein. Moreover, myotube formation and exposure of PS cannot be blocked by the caspase inhibitor zVAD(OMe)-fmk. Our findings indicate that different mechanisms regulate PS exposure during apoptosis and muscle cell differentiation, and that surface exposed PS plays a crucial role in the process of myotube formation.
Collapse
Affiliation(s)
- S M van den Eijnde
- Department of Molecular Cell Biology, Cardiovascular Research Institute Maastricht, University of Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ayme-Southgate A, Southgate R, McEliece MK. Drosophila projectin: a look at protein structure and sarcomeric assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:251-62; discussion 262-4. [PMID: 10987077 DOI: 10.1007/978-1-4615-4267-4_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The large projectin protein is found in all Drosophila muscles; however, it shows a dual sarcomeric localization depending on the muscle type. In larval and adult synchronous muscles, projectin is found localized over the A-band. Initial in vitro binding assays indicate interactions of several projectin regions with themselves and myosin heavy chain. These interactions might be critical for the assembly of projectin over the myosin filament during embryonic myofibrillogenesis and larval growth. On the other hand, projectin localizes over the I-Z-I region in indirect flight muscles. Correspondingly, projectin is found in association with forming Z-bands during pupation and colocalizes with alpha-actinin and kettin.
Collapse
Affiliation(s)
- A Ayme-Southgate
- Department of Biological Sciences, Lehigh University, Betheleham, PA, USA
| | | | | |
Collapse
|
15
|
van der Ven PF, Wiesner S, Salmikangas P, Auerbach D, Himmel M, Kempa S, Hayess K, Pacholsky D, Taivainen A, Schröder R, Carpén O, Fürst DO. Indications for a novel muscular dystrophy pathway. gamma-filamin, the muscle-specific filamin isoform, interacts with myotilin. J Cell Biol 2000; 151:235-48. [PMID: 11038172 PMCID: PMC2192634 DOI: 10.1083/jcb.151.2.235] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
gamma-Filamin, also called ABP-L, is a filamin isoform that is specifically expressed in striated muscles, where it is predominantly localized in myofibrillar Z-discs. A minor fraction of the protein shows subsarcolemmal localization. Although gamma-filamin has the same overall structure as the two other known isoforms, it is the only isoform that carries a unique insertion in its immunoglobulin (Ig)-like domain 20. Sequencing of the genomic region encoding this part of the molecule shows that this insert is encoded by an extra exon. Transient transfections of the insert-bearing domain in skeletal muscle cells and cardiomyocytes show that this single domain is sufficient for targeting to developing and mature Z-discs. The yeast two-hybrid method was used to identify possible binding partners for the insert-bearing Ig-like domain 20 of gamma-filamin. The two Ig-like domains of the recently described alpha-actinin-binding Z-disc protein myotilin were found to interact directly with this filamin domain, indicating that the amino-terminal end of gamma-filamin may be indirectly anchored to alpha-actinin in the Z-disc via myotilin. Since defects in the myotilin gene were recently reported to cause a form of autosomal dominant limb-girdle muscular dystrophy, our findings provide a further contribution to the molecular understanding of this disease.
Collapse
Affiliation(s)
- P F van der Ven
- Department of Cell Biology, University of Potsdam, D-14471 Potsdam, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
van der Ven PF, Bartsch JW, Gautel M, Jockusch H, Fürst DO. A functional knock-out of titin results in defective myofibril assembly. J Cell Sci 2000; 113 ( Pt 8):1405-14. [PMID: 10725223 DOI: 10.1242/jcs.113.8.1405] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Titin, also called connectin, is a giant muscle protein that spans the distance from the sarcomeric Z-disc to the M-band. Titin is thought to direct the assembly of sarcomeres and to maintain sarcomeric integrity by interacting with numerous sarcomeric proteins and providing a mechanical linkage. Since severe defects of such an important molecule are likely to result in embryonic lethality, a cell culture model should offer the best practicable tool to probe the cellular functions of titin. The myofibroblast cell line BHK-21/C13 was described to assemble myofibrils in culture. We have now characterized the sub-line BHK-21-Bi, which bears a small deletion within the titin gene. RNA analysis revealed that in this mutant cell line only a small internal portion of the titin mRNA is deleted. However, western blots, immunofluorescence microscopy and immunoprecipitation experiments showed that only the N-terminal, approx. 100 kDa central Z-disc portion of the 3 MDa titin protein is expressed, due to the homozygous deletion in the gene. Most importantly, in BHK-21-Bi cells the formation of thick myosin filaments and the assembly of myofibrils are impaired, although sarcomeric proteins are expressed. Lack of thick filament formation and of ordered actin-myosin arrays was confirmed by electron microscopy. Myogenisation induced by transfection with MyoD yielded myofibrils only in myotubes formed from wild type and not from mutant cells, ruling out that a principal failure in myogenic commitment of the BHK-21-Bi cells might cause the observed effects. These experiments provide the first direct evidence for the crucial role of titin in both thick filament formation as a molecular ruler and in the coordination of myofibrillogenesis.
Collapse
Affiliation(s)
- P F van der Ven
- Department of Cell Biology, University of Potsdam, Lennéstr. 7a, D-14471 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
17
|
Schröder R, Fürst DO, Klasen C, Reimann J, Herrmann H, van der Ven PF. Association of plectin with Z-discs is a prerequisite for the formation of the intermyofibrillar desmin cytoskeleton. J Transl Med 2000; 80:455-64. [PMID: 10780662 DOI: 10.1038/labinvest.3780051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plectin is a high-molecular mass protein (approximately 500 kd) that binds actin, intermediate filaments, and microtubules. Mutations of the plectin gene cause a generalized blistering skin disorder and muscular dystrophy. In adult muscle, plectin is colocalized with desmin at structures forming the intermyofibrillar scaffold and beneath the plasma membrane. To study the involvement of plectin in myofibrillogenesis, we analyzed the spatial and temporal expression patterns of plectin in cultured differentiating human skeletal muscle cells and its relationship to desmin intermediate filaments during this process. Northern and Western blot analyses demonstrated that at least two different plectin isoforms are expressed at all developmental stages from proliferating myoblasts to mature myotubes. Using immunocytochemistry, we show that the localization of plectin dramatically changes from a network-like distribution into a cross-striated distribution during maturation of myocytes. Double immunofluorescence experiments revealed that desmin and plectin are colocalized in premyofibrillar stages and in mature myotubes. Interestingly, plectin was often found to localize to the periphery of Z-discs during the actual alignment of neighboring myofibrils, and an obvious cross-striated plectin staining pattern was observed before desmin was localized in the Z-disc region. We conclude that the association of plectin with Z-discs is an early event in the lateral alignment of myofibrils that precedes the formation of the intermyofibrillar desmin cytoskeleton.
Collapse
Affiliation(s)
- R Schröder
- Department of Neurology, University Hospital Bonn, Germany
| | | | | | | | | | | |
Collapse
|
18
|
van der Ven PF, Obermann WM, Lemke B, Gautel M, Weber K, Fürst DO. Characterization of muscle filamin isoforms suggests a possible role of gamma-filamin/ABP-L in sarcomeric Z-disc formation. CELL MOTILITY AND THE CYTOSKELETON 2000; 45:149-62. [PMID: 10658210 DOI: 10.1002/(sici)1097-0169(200002)45:2<149::aid-cm6>3.0.co;2-g] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Filamin, also called actin binding protein-280, is a dimeric protein that cross-links actin filaments in the cortical cytoplasm. In addition to this ubiquitously expressed isoform (FLN1), a second isoform (ABP-L/gamma-filamin) was recently identified that is highly expressed in mammalian striated muscles. A monoclonal antibody was developed, that enabled us to identify filamin as a Z-disc protein in mammalian striated muscles by immunocytochemistry and immunoelectron microscopy. In addition, filamin was identified as a component of intercalated discs in mammalian cardiac muscle and of myotendinous junctions in skeletal muscle. Northern and Western blots showed that both, ABP-L/gamma-filamin mRNA and protein, are absent from proliferating cultured human skeletal muscle cells. This muscle specific filamin isoform is, however, up-regulated immediately after the induction of differentiation. In cultured myotubes, ABP-L/gamma-filamin localises in Z-discs already at the first stages of Z-disc formation, suggesting that ABP-L/gamma-filamin might play a role in Z-disc assembly.
Collapse
Affiliation(s)
- P F van der Ven
- University of Potsdam, Department of Cell Biology, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Ojima K, Lin ZX, Zhang ZQ, Hijikata T, Holtzer S, Labeit S, Sweeney HL, Holtzer H. Initiation and maturation of I-Z-I bodies in the growth tips of transfected myotubes. J Cell Sci 1999; 112 ( Pt 22):4101-12. [PMID: 10547369 DOI: 10.1242/jcs.112.22.4101] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While over a dozen I-Z-I proteins are expressed in postmitotic myoblasts and myotubes it is unclear how, when, or where these first assemble into transitory I-Z-I bodies (thin filament/Z-band precursors) and, a short time later, into definitive I-Z-I bands. By double-staining the growth tips of transfected myotubes expressing (a) MYC-tagged s-alpha-actinins (MYC/s-alpha-actinins) or (b) green fluorescent protein-tagged titin cap (GFP/T-cap) with antibodies against MYC and I-Z-I band proteins, we found that the de novo assembly of I-Z-I bodies and their maturation into I-Z-I bands involved relatively concurrent, cooperative binding and reconfiguration of, at a minimum, 5 integral Z-band molecules. These included s-alpha-actinin, nebulin, titin, T-cap and alpha-actin. Resolution of the approximately 1.0 microm polarized alpha-actin/nebulin/tropomyosin/troponin thin filament complexes occurred subsequent to the maturation of Z-bands into a dense tetragonal configuration. Of particular interest is finding that mutant MYC/s-alpha-actinin peptides (a) lacking spectrin-like repeats 1–4, or consisting of spectrin-like repeats 1–4 only, as well as (b) mutants/fragments lacking titin or alpha-actin binding sites, were promptly and exclusively incorporated into de novo assembling I-Z-I bodies and definitive I-Z-I bands as was exogenous full length MYC/s-alpha-actinin or GFP/T-cap.
Collapse
Affiliation(s)
- K Ojima
- Department of Physiology and Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, PA l9l04, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Guan K, Fürst DO, Wobus AM. Modulation of sarcomere organization during embryonic stem cell-derived cardiomyocyte differentiation. Eur J Cell Biol 1999; 78:813-23. [PMID: 10604658 DOI: 10.1016/s0171-9335(99)80032-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Myofibrillogenesis - sarcomeres - mouse embryonic stem cells - cardiomyocytes - beta1 integrin Mouse embryonic stem (ES) cells, when cultivated as embryoid bodies, differentiate in vitro into cardiomyocytes of ventricle-, atrium- and pacemaker-like cell types characterized by developmentally controlled expression of cardiac-specific genes, structural proteins and ion channels. Using this model system, we show here, (I) that during cardiac myofibrillogenesis sarcomeric proteins are organized in a developmentally regulated manner following the order: titin (Z-disk), alpha-actinin, myomesin, titin (M-band), myosin heavy chain, alpha-actin, cardiac troponin T and M-protein, recapitulating the sarcomeric organization in the chicken embryonal heart in vivo. Our data support the view that the formation of I-Z-I complexes is developmentally delayed with respect to A-band assembly. We show (2) that the process of cardiogenic differentiation in vitro is influenced by medium components: Using a culture medium supplemented with glucose, amino acids, vitamins and selenium ions, we were able to increase the efficiency of cardiac differentiation of wild-type, as well as of beta1 integrin-deficient (beta1-/-) ES cells, and to improve the degree of organization of sarcomeric structures in wild-type and in beta1-/- cardiac cells. The data demonstrate the plasticity of cardiogenesis during the differentiation of wild-type and of genetically modified ES cells.
Collapse
Affiliation(s)
- K Guan
- In Vitro Differentiation Group, IPK Gatersleben, Germany
| | | | | |
Collapse
|
21
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: the flow of information on titin. Rev Physiol Biochem Pharmacol 1999; 138:97-137. [PMID: 10396139 DOI: 10.1007/bfb0119625] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- M Gautel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Ehler E, Rothen BM, Hämmerle SP, Komiyama M, Perriard JC. Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 1999; 112 ( Pt 10):1529-39. [PMID: 10212147 DOI: 10.1242/jcs.112.10.1529] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myofibrillogenesis in situ was investigated by confocal microscopy of immunofluorescently labelled whole mount preparations of early embryonic chicken heart rudiments. The time-course of incorporation of several components into myofibrils was compared in triple-stained specimens, taken around the time when beating starts. All sarcomeric proteins investigated so far were already expressed before the first contractions and myofibril assembly happened within a few hours. No typical stress fibre-like structures or premyofibrils, structures observed in cultured cardiomyocytes, could be detected during myofibrillogenesis in the heart. Sarcomeric proteins like (α)-actinin, titin and actin were found in a defined localisation pattern even in cardiomyocytes that did not yet contain myofibrils, making up dense body-like structures. As soon as the heart started to beat, all myofibrillar proteins were already located at their exact position in the sarcomere. The maturation of the sarcomeres was characterised by a short delay in the establishment of the pattern for M-line epitopes of titin with respect to Z-disk epitopes and the incorporation of the M-line component myomesin, which preceded that of myosin binding protein-C. Thus dense body-like structures, made up of titin, (α)-actinin and actin filaments serve as the first organised complexes also during myofibrillogenesis in situ and titin functions as a ruler for sarcomere assembly as soon as its C termini have become localised. We suggest that assembly of thin and thick filament occurs independently during myofibrillogenesis in situ and that myomesin might be important for integrating thick filaments with the M-line end of titin.
Collapse
Affiliation(s)
- E Ehler
- Institute of Cell Biology, ETH-Zürich Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Foucrier J, Grand MC, De Conto F, Bassaglia Y, Géraud G, Scherrer K, Martelly I. Dynamic distribution and formation of a para-sarcomeric banding pattern of prosomes during myogenic differentiation of satellite cells in vitro. J Cell Sci 1999; 112 ( Pt 7):989-1001. [PMID: 10198281 DOI: 10.1242/jcs.112.7.989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myogenesis proceeds by fusion of proliferating myoblasts into myotubes under the control of various transcription factors. In adult skeletal muscle, myogenic stem cells are represented by the satellite cells which can be cultured and differentiate in vitro. This system was used to investigate the subcellular distribution of a particular type of prosomes at different steps of the myogenic process. Prosomes constitute the MCP core of the 26S proteasomes but were first observed as subcomplexes of the untranslated mRNPs; recently, their RNase activity was discovered. A monoclonal antibody raised against the p27K subunit showed that the p27K subunit-specific prosomes move transiently into the nucleus prior to the onset of myoblast fusion into myotubes; this represents possibly one of the first signs of myoblast switching into the differentiation pathway. Prior to fusion, the prosomes containing the p27K subunit return to the cytoplasm, where they align with the gradually formed lengthwise-running desmin-type intermediate filaments and the microfilaments, co-localizing finally with the actin bundles. The prosomes progressively form discontinuous punctate structures which eventually develop a pseudo-sarcomeric banding pattern. In myotubes just formed in vitro, the formation of this pattern seems to preceed that produced by the muscle-specific sarcomeric (alpha)-actin. Interestingly, this pattern of prosomes of myotubes in terminal in vitro differentiation was very similar to that of prosomes observed in vivo in foetal and adult muscle. These observations are discussed in relation to molecular myogenesis and prosome/proteasome function.
Collapse
Affiliation(s)
- J Foucrier
- CRRET, UPRESA-CNRS 7053, Université Paris 12, Av. du Général de Gaulle, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Schröder R, Warlo I, Herrmann H, van der Ven PF, Klasen C, Blümcke I, Mundegar RR, Fürst DO, Goebel HH, Magin TM. Immunogold EM reveals a close association of plectin and the desmin cytoskeleton in human skeletal muscle. Eur J Cell Biol 1999; 78:288-95. [PMID: 10350217 DOI: 10.1016/s0171-9335(99)80062-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plectin is a multifunctional cytoskeletal linker protein with an intermediate filament-binding site and sequence elements with high homology to actin-binding domains. Mutations of the human plectin gene as well as the targeted inactivation of its murine analog cause a generalized blistering skin disorder and muscular dystrophy, thus implying its essential role in cells that are exposed to mechanical stress. In the present study we report the characterization of two new domain-specific plectin antibodies as well as ultrastructural localization of plectin in normal human skeletal muscle. Using immunogold electron microscopy, we localized plectin at three prominent sites: 1) Plectin is found at regularly spaced intervals along the cytoplasmic face of the plasma membrane. 2) It is distinctly localized at filamentous bridges between Z-lines of peripheral myofibrils and the sarcolemma and 3) at structures forming the intermyofibrillar scaffold. At the latter two locations, plectin and desmin were found to colocalize. Our ultrastructural analysis suggests that plectin may have a central role in the structural and functional organization of the intermediate filament cytoskeleton in mature human skeletal muscle.
Collapse
Affiliation(s)
- R Schröder
- Department of Neurology, University Hospital Bonn, Institute of Genetics and Bonner Forum Biomedizin, University of Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: The flow of information on titin. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Mues A, van der Ven PF, Young P, Fürst DO, Gautel M. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 1998; 428:111-4. [PMID: 9645487 DOI: 10.1016/s0014-5793(98)00501-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The giant muscle protein titin/connectin plays a crucial role in myofibrillogenesis as a molecular ruler for sarcomeric protein sorting. We describe here that the N-terminal titin immunoglobulin domains Z1 and Z2 interact specifically with telethonin in yeast two-hybrid analysis and protein binding assays. Immunofluorescence with antibodies against the N-terminal region of titin and telethonin detects both proteins at the Z-disc of human myotubes. Longer titin fragments, comprising a serine-proline-rich phosphorylation site and the next domain, do not interact. The interaction of telethonin with titin is therefore conformation-dependent, reflecting a possible phosphorylation regulation during myofibrillogenesis.
Collapse
Affiliation(s)
- A Mues
- Structural Biology Division, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Obermann WM, van der Ven PF, Steiner F, Weber K, Fürst DO. Mapping of a myosin-binding domain and a regulatory phosphorylation site in M-protein, a structural protein of the sarcomeric M band. Mol Biol Cell 1998; 9:829-40. [PMID: 9529381 PMCID: PMC25310 DOI: 10.1091/mbc.9.4.829] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2-Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9-Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.
Collapse
Affiliation(s)
- W M Obermann
- Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
28
|
Van der Loop FT, Van Eys GJ, Schaart G, Ramaekers FC. Titin expression as an early indication of heart and skeletal muscle differentiation in vitro. Developmental re-organisation in relation to cytoskeletal constituents. J Muscle Res Cell Motil 1996; 17:23-36. [PMID: 8740429 DOI: 10.1007/bf00140321] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Established myogenic cell lines of different species and tissue origin have been used to study expression and organisation of muscle-specific proteins during differentiation. Furthermore, primary cultures of rat myocard cells were used to examine these same processes during dedifferentiation. In particular, we were interested in the general mechanism that underlies the changes in the supramolecular organisation of titin during in vitro myogenesis. It became obvious that in the differentiating muscle cell cultures the redistribution of desmin, actin and myosin in a typical, differentiation state dependent fashion, always showed a certain delay when compared to titin. The sequence of changes in the assembly of cytoskeletal and sarcomeric structures observed during differentiation of the cell lines was reversed during the process of dedifferentiation in cultured rat myocard cells. These results all indicate that titin is an early marker of myogenic differentiation, both in vivo and in vitro, and the typical reorganisation of this giant molecule is independent of species or muscle cell type.
Collapse
Affiliation(s)
- F T Van der Loop
- Department of Molecular Cell Biology and Genetics, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands
| | | | | | | |
Collapse
|
29
|
|
30
|
Van der Ven PF, Jap PH, Barth PG, Sengers RC, Ramaekers FC, Stadhouders AM. Abnormal expression of intermediate filament proteins in X-linked myotubular myopathy is not reproduced in vitro. Neuromuscul Disord 1995; 5:267-75. [PMID: 7580238 DOI: 10.1016/0960-8966(94)00067-j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression patterns of the intermediate filament proteins (IFPs) desmin and vimentin, in biopsy material taken from a 1 day old boy with fatal neonatal X-linked myotubular myopathy (XLMTM) were compared with the expression of these proteins in cultured myotubes, from the same patient. Immunohistochemical studies revealed the persistence of high levels of desmin in virtually all, and vimentin in most, of the myofibres within the patient's biopsy. Analysis of intermediate filament expression in differentiating, cultured muscle cells did not reveal overt differences between XLMTM cultures and cultures of control muscle. Titin distribution patterns indicated a normal process of myofibrillogenesis in XLMTM myotubes. We conclude that the failure to properly regulate IFP-expression is not intrinsic to XLMTM muscle fibres. The possibility that this failure is due to a defective external, possibly neural factor, is discussed.
Collapse
Affiliation(s)
- P F Van der Ven
- Department of Cell Biology and Histology, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
McDonald KA, Lakonishok M, Horwitz AF. Alpha v and alpha 3 integrin subunits are associated with myofibrils during myofibrillogenesis. J Cell Sci 1995; 108 ( Pt 7):2573-81. [PMID: 7593298 DOI: 10.1242/jcs.108.7.2573] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the myofibrillar apparatus in skeletal muscle is a process in which transmembrane linkages with adhesion molecules are implicated. Integrins are one class of transmembrane adhesion receptors which appear to mediate these interactions. Two prominent linkages are at the myotendinous junction (MTJ), which resides at the ends of the cell and connects myofibrils to the tendon, and the costameres, which encircle the girth of the cell and connect the Z-disks to the sarcolemma. In this study we report that the alpha v integrin subunit is a prominent component of the costamere. The alpha v subunit is present initially on developing myotubes in a diffuse staining pattern with some concentration along nascent myofibrils. However, it appears in a striated pattern at the costamere and inconsistently at the M-line following the striation of alpha-actinin and titin but before that of desmin. Its recruitment to preformed striation suggests that it is incorporated into a pre-existing structure. The presence of alpha v in the costamere points to a role in lateral myofibrillar anchorage. In addition, we find that the alpha 3 subunit is transiently associated with myofibrils along portions of their lengths and at their ends during myofibrillogenesis. The alpha 3 subunit staining shows a novel localization and junctional structure. As myofibrils become striated the alpha 3 integrin dissociates from the localized pattern and becomes diffuse. This suggests a possible role in the stabilization of nascent myofibrils prior to striation. Antibody-induced perturbation of adhesion mediated by the integrin beta 1 subunit in developing myotubes inhibits assembly of the sarcomeric architecture.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K A McDonald
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign 61801, USA
| | | | | |
Collapse
|
32
|
van der Ven PF, Jap PH, ter Laak HJ, Nonaka I, Barth PG, Sengers RC, Stadhouders AM, Ramaekers FC. Immunophenotyping of congenital myopathies: disorganization of sarcomeric, cytoskeletal and extracellular matrix proteins. J Neurol Sci 1995; 129:199-213. [PMID: 7608737 DOI: 10.1016/0022-510x(94)00282-s] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the expression and distribution patterns of the intermediate filament proteins desmin and vimentin, the sarcomere components titin, nebulin and myosin, the basement membrane constituents collagen type IV and laminin, and the reticular layer component collagen type VI in skeletal muscle of patients with "classic" congenital myopathies (CM), using indirect immunofluorescence assays. In all biopsy specimens obtained from patients with central core disease (CCD), nemaline myopathy (NM), X-linked myotubular myopathy (XLMTM) and centronuclear myopathy (CNM), disease-specific desmin disturbances were observed. Vimentin was present in immature fibres in severe neonatal NM, and as sarcoplasmic aggregates in one case of CNM, while the amounts of vimentin and embryonic myosin, observed in XLMTM, decreased with age of the patients. Abnormal expression of myosin isoforms was found in several CM biopsies, although the organization of myosin and other sarcomere components was rarely disturbed. Basement membrane and reticular layer proteins were often prominently increased in severe cases of CM. We conclude that (i) desmin is a marker for individual types of CM and might be used for diagnostic purposes; (ii) the expression patterns of the differentiation markers desmin, vimentin and embryonic myosin in XLMTM, point either to a postnatal muscle fibre maturation or to a variable time-point of maturational arrest in individual patients; (iii) the correlation between the distribution patterns of extracellular matrix proteins and clinical presentation points to a role of these proteins in pathophysiology of CM.
Collapse
Affiliation(s)
- P F van der Ven
- Department of Cell Biology and Histology, University of Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
McDonald KA, Lakonishok M, Horwitz AF. Alpha v and alpha 3 integrin subunits are associated with myofibrils during myofibrillogenesis. J Cell Sci 1995; 108 ( Pt 3):975-83. [PMID: 7622624 DOI: 10.1242/jcs.108.3.975] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the myofibrillar apparatus in skeletal muscle is a process in which transmembrane linkages with adhesion molecules are implicated. Integrins are one class of transmembrane adhesion receptors which appear to mediate these interactions. Two prominent linkages are at the myotendinous junction (MTJ), which residues at the ends of the cell and connects myofibrils to the tendon, and the costameres, which encircle the girth of the cell and connect the Z-disks to the sarcolemma. In this study we report that the alpha v integrin subunit is a prominent component of the costamere. The alpha v subunit is present initially on developing myotubes in a diffuse staining pattern with some concentration along nascent myofibrils. However, it appears in a striated pattern at the costamere and inconsistently at the M-line following the striation of alpha-actinin and titin but before that of desmin. Its recruitment to preformed striation suggests that it is incorporated into a pre-existing structure. The presence of alpha v in the costamere points to a role in lateral myofibrillar anchorage. In addition, we find that the alpha 3 subunit is transiently associated with myofibrils along portions of their lengths and at their ends during myofibrillogenesis. The alpha 3 subunit staining shows a novel localization and junctional structure. As myofibrils become striated the alpha 3 integrin dissociates from the localized pattern and becomes diffuse. This suggests a possible role in the stabilization of nascent myofibrils prior to striation. Antibody-induced perturbation of adhesion mediated by the integrin beta 1 subunit in developing myotubes inhibits assembly of the sarcomeric architecture.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K A McDonald
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign 61801, USA
| | | | | |
Collapse
|
34
|
Abstract
Recent investigations of titin anchorage and elasticity have been supplemented with in vitro expression studies on isolated domains of titin and nebulin. These have yielded new insights into the molecular basis of the functions of these proteins in muscle. The characterization of a cellular (non-muscle) isoform of titin has extended the functional relevance of this family of proteins beyond the realm of muscle.
Collapse
Affiliation(s)
- T C Keller
- Department of Biological Science, Florida State University, Tallahassee 32306-3050, USA
| |
Collapse
|
35
|
Moncman CL, Wang K. Nebulette: a 107 kD nebulin-like protein in cardiac muscle. CELL MOTILITY AND THE CYTOSKELETON 1995; 32:205-25. [PMID: 8581976 DOI: 10.1002/cm.970320305] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 107-kD protein has been identified in primary cultures of chicken embryonic cardiomyocytes by immunoprecipitations with certain anti-nebulin monoclonal antibodies (mAbs). These mAbs, prepared against a fragment of human skeletal muscle nebulin located near the carboxyl terminus, detect a 107-kD protein in extracts of adult chicken heart, adult mouse heart, and adult rabbit heart by immunoblot analysis. A partial cDNA corresponding to this protein has been isolated by immunological screening of a chicken heart cDNA expression vector library. The partial cDNA encodes a 380-amino acid open reading frame composed entirely of nebulin-like 35-residue modules marked by the highly conserved sequence motifs: SXXXYK and TPD. The open reading frame exhibits 60-85% homology with skeletal muscle nebulins from a variety of species. This cDNA recognizes an approximately 8-kb transcript in cardiac RNA and does not hybridize to skeletal muscle RNAs by northern analysis. Immunofluorescence localization of this nebulin-like protein in primary cultures of chicken cardiomyocytes and embryonic chicken cardiac myofibrils indicates that the protein is localized to the I-Z-I complex of the myofibrils, extending approximately 25% of the thin filament length. Comparisons of the distribution of this protein relative to actin, myosin, and titin in spreading cardiomyocytes suggest that the cardiac nebulin-like protein becomes aligned with the nascent myofibrils early during myofibrillogenesis. To distinguish this petite nebulin-like protein from the 600-900 kD skeletal muscle nebulin, we have named it nebulette.
Collapse
Affiliation(s)
- C L Moncman
- Department of Chemistry and Biochemistry, University of Texas, Austin 78712, USA
| | | |
Collapse
|
36
|
Belkin AM, Burridge K. Expression and localization of the phosphoglucomutase-related cytoskeletal protein, aciculin, in skeletal muscle. J Cell Sci 1994; 107 ( Pt 7):1993-2003. [PMID: 7983164 DOI: 10.1242/jcs.107.7.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, a 60/63 kDa cytoskeletal protein, highly homologous to the glycolytic enzyme phosphoglucomutase (PGM 1), was isolated from smooth muscle tissue and shown to localize in various adherens-type junctions of muscle and some nonmuscle cells. Since this protein, tentatively named ‘aciculin’, was enriched in muscle tissues and cells, we have attempted to study its expression and localization during myodifferentiation. C2C12 mouse myoblasts did not express any aciculin before cell fusion in culture. Immediately after cell fusion aciculin became detectable and its content continued to rise during myotube maturation. In early myotubes aciculin appeared first at cell tips and was predominantly localized to focal adhesions of immature myotubes. As myotubes matured in culture, aciculin became associated with growing myofibrils, and finally was found redistributed in striations, corresponding to sarcomere Z-discs. Immunoblotting showed that aciculin content in chicken breast skeletal muscle remained very low until day 11 of embryogenesis, but significantly increased in late prenatal and early postnatal development. By immunofluorescence, aciculin was not revealed in thigh skeletal muscle of day 11 chicken embryos, but was prominently localized at myotendinous junctions in thigh muscle of day 16 embryos. Myotendinous junctions appeared to be major sites of aciculin accumulation in developing and mature skeletal muscle fibers in vivo, suggesting some role for this protein in thin filament-membrane interactions and, potentially, in force transmission at these cell-matrix contacts. In adult skeletal muscle faint aciculin staining appeared at the sarcolemma and as striations in register with Z-discs. Since the protein was not identified in glycerinated myofibrils but was localized to striations in C2C12 myotubes and within the limited areas on skeletal muscle tissue sections, we conclude that aciculin is a component of skeletal muscle costameres. In cultured C2C12 myotubes we found some codistribution of aciculin with clusters of acetylcholine receptors, suggesting its presence at neuromuscular junctions. However, we did not detect any significant concentration of aciculin at neuromuscular junctions in both embryonic and adult skeletal muscle. Taken together, our data show that aciculin expression in skeletal muscle is differentiation-dependent and upregulated during muscle development, and that this novel cytoskeletal protein is a component of various cell-matrix adherens junctions in muscle cells.
Collapse
Affiliation(s)
- A M Belkin
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599-7090
| | | |
Collapse
|