1
|
Simó A, Just-Borràs L, Cilleros-Mañé V, Hurtado E, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction. Front Mol Neurosci 2018; 11:207. [PMID: 29946239 PMCID: PMC6007318 DOI: 10.3389/fnmol.2018.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
Munc18-1, a neuron-specific member of the Sec1/Munc18 family, is involved in neurotransmitter release by binding tightly to syntaxin. Munc18-1 is phosphorylated by PKC on Ser-306 and Ser-313 in vitro which reduces the amount of Munc18-1 able to bind syntaxin. We have previously identified that PKC is involved in neurotransmitter release when continuous electrical stimulation imposes a moderate activity on the NMJ and that muscle contraction through TrkB has an important impact on presynaptic PKC isoforms levels, specifically cPKCβI and nPKCε. Therefore, the present study was designed to understand how Munc18-1 phosphorylation is affected by (1) synaptic activity at the neuromuscular junction, (2) nPKCε and cPKCβI isoforms activity, (3) muscle contraction per se, and (4) the BDNF/TrkB signaling in a neuromuscular activity-dependent manner. We performed immunohistochemistry and confocal techniques to evidence the presynaptic location of Munc18-1 in the rat diaphragm muscle. To study synaptic activity, we stimulated the phrenic nerve (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Specific inhibitory reagents were used to block nPKCε and cPKCβI activity and to modulate the tropomyosin receptor kinase B (TrkB). Main results obtained from Western blot experiments showed that phosphorylation of Munc18-1 at Ser-313 increases in response to a signaling mechanism initiated by synaptic activity and directly mediated by nPKCε. Otherwise, cPKCβI and TrkB activities work together to prevent this synaptic activity-induced Munc18-1 phosphorylation by a negative regulation of cPKCβI over nPKCε. Therefore, a balance between the activities of these PKC isoforms could be a relevant cue in the regulation of the exocytotic apparatus. The results also demonstrate that muscle contraction prevents the synaptic activity-induced Munc18-1 phosphorylation through a mechanism that opposes the TrkB/cPKCβI/nPKCε signaling.
Collapse
Affiliation(s)
- Anna Simó
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
2
|
Dobrowolny G, Martini M, Scicchitano BM, Romanello V, Boncompagni S, Nicoletti C, Pietrangelo L, De Panfilis S, Catizone A, Bouchè M, Sandri M, Rudolf R, Protasi F, Musarò A. Muscle Expression of SOD1 G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta. Antioxid Redox Signal 2018; 28:1105-1119. [PMID: 28931313 DOI: 10.1089/ars.2017.7054] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. RESULTS Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1G93A in transgenic MLC/SOD1G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. INNOVATION The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. CONCLUSIONS Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- 1 Center for Life Nano Science at Sapienza , Istituto Italiano di Tecnologia, Rome, Italy .,2 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Martina Martini
- 1 Center for Life Nano Science at Sapienza , Istituto Italiano di Tecnologia, Rome, Italy .,2 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Bianca Maria Scicchitano
- 3 Institute of Histology and Embryology, School of Medicine, Catholic University of the Sacred Heart , Rome, Italy
| | - Vanina Romanello
- 4 Department of Biomedical Science, University of Padova , Padova, Italy
| | - Simona Boncompagni
- 5 CeSI-Met-Center for Research on Ageing and Translational Medicine and DNICS-Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio of Chieti , Chieti, Italy
| | - Carmine Nicoletti
- 6 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Rome, Italy
| | - Laura Pietrangelo
- 5 CeSI-Met-Center for Research on Ageing and Translational Medicine and DNICS-Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio of Chieti , Chieti, Italy
| | - Simone De Panfilis
- 2 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Catizone
- 6 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Rome, Italy
| | - Marina Bouchè
- 6 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Rome, Italy
| | - Marco Sandri
- 4 Department of Biomedical Science, University of Padova , Padova, Italy
| | - Rüdiger Rudolf
- 7 Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany .,8 Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences , Mannheim, Germany .,9 Interdisciplinary Center for Neuroscience, University of Heidelberg , Heidelberg, Germany
| | - Feliciano Protasi
- 5 CeSI-Met-Center for Research on Ageing and Translational Medicine and DNICS-Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio of Chieti , Chieti, Italy
| | - Antonio Musarò
- 1 Center for Life Nano Science at Sapienza , Istituto Italiano di Tecnologia, Rome, Italy .,2 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
3
|
Hurtado E, Cilleros V, Just L, Simó A, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction. Front Mol Neurosci 2017; 10:270. [PMID: 28890686 PMCID: PMC5574929 DOI: 10.3389/fnmol.2017.00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.
Collapse
Affiliation(s)
- Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laia Just
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
4
|
Obis T, Hurtado E, Nadal L, Tomàs M, Priego M, Simon A, Garcia N, Santafe MM, Lanuza MA, Tomàs J. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol Brain 2015; 8:80. [PMID: 26625935 PMCID: PMC4665914 DOI: 10.1186/s13041-015-0171-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023] Open
Abstract
Background Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. Results We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca2+, stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3′,5′-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Conclusions Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.
Collapse
Affiliation(s)
- Teresa Obis
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Mercedes Priego
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Anna Simon
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Manel M Santafe
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
5
|
Abstract
Protein kinase Cθ (PKCθ) is a member of the novel calcium-independent PKC family, with a relatively selective tissue distribution. Most studies have focused on its unique role in T-lymphocyte activation and suggest that inhibition of PKCθ could represent a novel therapeutic approach in the treatment of chronic inflammation, autoimmunity and allograft rejection. However, considering that PKCθ is also expressed in other cell types, including skeletal muscle cells, it is important to understand its function in different tissues before proposing it as a molecular target for the treatment of immune-mediated diseases. A number of studies have highlighted the role of PKCθ in mediating several intracellular pathways, regulating muscle cell development, homoeostasis and remodelling, although a comprehensive picture is still lacking. Moreover, we recently showed that lack of PKCθ in a mouse model of Duchenne muscular dystrophy (DMD) ameliorates the progression of the disease. In the present article, we review new developments in our understanding of the involvement of PKCθ in intracellular mechanisms regulating skeletal muscle development, growth and maintenance under physiological conditions and recent advances showing a hitherto unrecognized role of PKCθ in promoting muscular dystrophy.
Collapse
|
6
|
Abstract
Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease.
Collapse
|
7
|
Camerino GM, Bouchè M, De Bellis M, Cannone M, Liantonio A, Musaraj K, Romano R, Smeriglio P, Madaro L, Giustino A, De Luca A, Desaphy JF, Camerino DC, Pierno S. Protein kinase C theta (PKCθ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCθ. Pflugers Arch 2014; 466:2215-28. [PMID: 24643479 DOI: 10.1007/s00424-014-1495-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/02/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022]
Abstract
In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, 70125, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Besalduch N, Lanuza MA, Garcia N, Obis T, Santafe MM, Tomàs M, Priego M, Tomàs J. Cellular localization of the atypical isoforms of protein kinase C (aPKCζ/PKMζ and aPKCλ/ι) on the neuromuscular synapse. Neurosci Lett 2013; 556:166-9. [PMID: 24135336 DOI: 10.1016/j.neulet.2013.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
Several classic and novel protein kinase C (PKC) isoforms are selectively distributed in specific cell types of the adult neuromuscular junction (NMJ), in the neuron, glia and muscle components, and are involved in many functions, including neurotransmission. Here, we investigate the presence in this paradigmatic synapse of atypical PKCs, full-length atypical PKC zeta (aPKCζ), its separated catalytic part (PKMζ) and atypical lambda-iota PKC (aPKCλ/ι). High resolution immunohistochemistry was performed using a pan-atypical PKC antibody. Our results show moderate immunolabeling on the three cells (presynaptic motor nerve terminal, teloglial Schwann cell and postsynaptic muscle cell) suggesting the complex involvement of atypical PKCs in synaptic function.
Collapse
Affiliation(s)
- Núria Besalduch
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lanuza MA, Santafe MM, Garcia N, Besalduch N, Tomàs M, Obis T, Priego M, Nelson PG, Tomàs J. Protein kinase C isoforms at the neuromuscular junction: localization and specific roles in neurotransmission and development. J Anat 2013; 224:61-73. [PMID: 24102585 DOI: 10.1111/joa.12106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 11/29/2022] Open
Abstract
The protein kinase C family (PKC) regulates a variety of neural functions including neurotransmitter release. The selective activation of a wide range of PKC isoforms in different cells and domains is likely to contribute to the functional diversity of PKC phosphorylating activity. In this review, we describe the isoform localization, phosphorylation function, regulation and signalling of the PKC family at the neuromuscular junction. Data show the involvement of the PKC family in several important functions at the neuromuscular junction and in particular in the maturation of the synapse and the modulation of neurotransmission in the adult.
Collapse
Affiliation(s)
- Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Michalczyk I, Sikorski AF, Kotula L, Junghans RP, Dubielecka PM. The emerging role of protein kinase Cθ in cytoskeletal signaling. J Leukoc Biol 2012. [PMID: 23192428 DOI: 10.1189/jlb.0812371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal rearrangements often occur as the result of transduction of signals from the extracellular environment. Efficient awakening of this powerful machinery requires multiple activation and deactivation steps, which usually involve phosphorylation or dephosphorylation of different signaling units by kinases and phosphatases, respectively. In this review, we discuss the signaling characteristics of one of the nPKC isoforms, PKCθ, focusing on PKCθ-mediated signal transduction to cytoskeletal elements, which results in cellular rearrangements critical for cell type-specific responses to stimuli. PKCθ is the major PKC isoform present in hematopoietic and skeletal muscle cells. PKCθ plays roles in T cell signaling through the IS, survival responses in adult T cells, and T cell FasL-mediated apoptosis, all of which involve cytoskeletal rearrangements and relocation of this enzyme. PKCθ has been linked to the regulation of cell migration, lymphoid cell motility, and insulin signaling and resistance in skeletal muscle cells. Additional roles were suggested for PKCθ in mitosis and cell-cycle regulation. Comprehensive understanding of cytoskeletal regulation and the cellular "modus operandi" of PKCθ holds promise for improving current therapeutic applications aimed at autoimmune diseases.
Collapse
Affiliation(s)
- Izabela Michalczyk
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
11
|
Protein kinase C-theta in platelet activation. FEBS Lett 2011; 585:3208-15. [DOI: 10.1016/j.febslet.2011.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/20/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
|
12
|
High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in oral squamous cell carcinoma. Hum Pathol 2011; 43:276-81. [PMID: 21840039 DOI: 10.1016/j.humpath.2011.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/22/2022]
Abstract
Protein kinase Cs play important roles in many biological processes and tumorigenesis. This study examined the expression of protein kinase Cθ and assessed its significance in patients with oral squamous cell carcinoma. Immunohistochemical staining was carried out to investigate the expression of protein kinase Cθ in 59 cases of oral squamous cell carcinoma. The results were correlated with clinical characteristics and outcome of patients. Diffuse cytoplasmic protein kinase Cθ was identified in 53 (89.8%) of the 59 oral squamous cell carcinoma cases, and the expression was not statistically associated with any clinicopathologic parameter. Twenty (40.7%) of the 59 oral squamous cell carcinoma cases exhibited nuclear expression of protein kinase Cθ with different grade of intensity. χ(2) analysis indicated that high nuclear protein kinase Cθ expression correlated significantly with shorter 24-month survival (P = .043) and disease recurrence (P = .019). The Kaplan-Meier method also showed that high nuclear expression of protein kinase Cθ was significantly associated with poor overall survival (P = .034) and shorter time to recurrence (P = .003). Univariate analysis revealed that high nuclear protein kinase Cθ expression (P = .046; hazard ratio, 2.2), tumor size less than 2 cm (P = .049; hazard ratio, 4.7), lymph node metastasis (P = .003; hazard ratio, 3.0), and higher stage (P = .002; hazard ratio, 8.7) were each associated with shorter overall survival. We identified the aberrant nuclear expression of protein kinase Cθ in oral squamous cell carcinoma. High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in patients with oral squamous cell carcinoma.
Collapse
|
13
|
Besalduch N, Santafé MM, Garcia N, Gonzalez C, Tomás M, Tomás J, Lanuza MA. Transmitter release in the neuromuscular synapse of the protein kinase C theta-deficient adult mouse. J Comp Neurol 2011; 519:849-55. [PMID: 21280040 DOI: 10.1002/cne.22551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses.
Collapse
Affiliation(s)
- Núria Besalduch
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Fauconnier M, Bourigault ML, Meme S, Szeremeta F, Palomo J, Danneels A, Charron S, Fick L, Jacobs M, Beloeil JC, Ryffel B, Quesniaux VFJ. Protein kinase C-theta is required for development of experimental cerebral malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:212-21. [PMID: 21224058 DOI: 10.1016/j.ajpath.2010.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022]
Abstract
Cerebral malaria is the most severe neurologic complication in children and young adults infected with Plasmodium falciparum. T-cell activation is required for development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (CM). To characterize the T-cell activation pathway involved, the role of protein kinase C-theta (PKC-θ) in experimental CM development was examined. PKC-θ-deficient mice are resistant to CM development. In the absence of PKC-θ, no neurologic sign of CM developed after blood stage PbA infection. Resistance of PKC-θ-deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and magnetic resonance angiography, whereas wild-type mice developed distinct microvascular pathology. Recruitment and activation of CD8(+) T cells, and ICAM-1 and CD69 expression were reduced in the brain of resistant mice; however, the pulmonary inflammation and edema associated with PbA infection were still present in the absence of functional PKC-θ. Resistant PKC-θ-deficient mice developed high parasitemia, and died at 3 weeks with severe anemia. Therefore, PKC-θ signaling is crucial for recruitment of CD8(+) T cells and development of brain microvascular pathology resulting in fatal experimental CM, and may represent a novel therapeutic target of CM.
Collapse
Affiliation(s)
- Mathilde Fauconnier
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orléans, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lanuza MA, Besalduch N, González C, Santafé MM, Garcia N, Tomàs M, Nelson PG, Tomàs J. Decreased phosphorylation of δ and ε subunits of the acetylcholine receptor coincides with delayed postsynaptic maturation in PKC θ deficient mouse. Exp Neurol 2010; 225:183-95. [PMID: 20599977 DOI: 10.1016/j.expneurol.2010.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 06/11/2010] [Accepted: 06/20/2010] [Indexed: 11/30/2022]
Abstract
Protein kinase C (PKC) activity is involved in the nicotinic acetylcholine receptor (nAChR) redistribution at the neuromuscular junction in vivo during postnatal maturation. Here we studied, in PKC theta (PKCtheta) deficient mice (KO), how the theta isoform of PKC is involved in the nAChR cluster maturation that is accompanied by the developmental activity-dependent neuromuscular synapse elimination process. We found that axonal elimination and dispersion of nAChR from the postsynaptic plaques and its redistribution to form the mature postsynaptic apparatus were delayed but not totally suppressed in PKCtheta deficient mice. Moreover, the delay in the maturation of the morphology of the nAChR clusters during the early postnatal synapse elimination period in the PKCtheta deficient mice coincides with a reduction in the PKCtheta-mediated phosphorylation on the delta subunit of the nAChR. In addition, we show evidence for PKCtheta regulation of PKA in normally phosphorylating the epsilon subunit of nAChR. We have also found that the theta isoform of PKC is located on the postsynaptic component of the neuromuscular junction but is also expressed by motoneurons in the spinal cord and in the motor nerve terminals. The results allow us to hypothesize that a spatially specific and opposing action of PKCtheta and PKA may result in activity-dependent alterations to synaptic connectivity at both the nerve inputs and the postsynaptic nAChR clusters.
Collapse
Affiliation(s)
- Maria A Lanuza
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wei X, Liu J, Zhao C, Ju G, Wong-Riley M, Liu Y. Expressions of 5-HT/5-HT2A receptors and phospho-protein kinase C theta in the pre-Bötzinger complex in normal and chronic intermittent hypoxic rats. Neuroscience 2010; 168:61-73. [DOI: 10.1016/j.neuroscience.2010.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
|
17
|
Besalduch N, Tomàs M, Santafé MM, Garcia N, Tomàs J, Lanuza MA. Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse. J Comp Neurol 2010; 518:211-28. [PMID: 19937712 DOI: 10.1002/cne.22220] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein kinase C (PKC) is essential for signal transduction in a variety of cells, including neurons and myocytes, and is involved in both acetylcholine release and muscle fiber contraction. Here, we demonstrate that the increases in synaptic activity by nerve stimulation couple PKC to transmitter release in the rat neuromuscular junction and increase the level of alpha, betaI, and betaII isoforms in the membrane when muscle contraction follows the stimulation. The phosphorylation activity of these classical PKCs also increases. It seems that the muscle has to contract in order to maintain or increase classical PKCs in the membrane. We use immunohistochemistry to show that PKCalpha and PKCbetaI were located in the nerve terminals, whereas PKCalpha and PKCbetaII were located in the postsynaptic and the Schwann cells. Stimulation and contraction do not change these cellular distributions, but our results show that the localization of classical PKC isoforms in the membrane is affected by synaptic activity.
Collapse
Affiliation(s)
- Núria Besalduch
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Tokugawa S, Sakuma K, Fujiwara H, Hirata M, Oda R, Morisaki S, Yasuhara M, Kubo T. The expression pattern of PKCθ in satellite cells of normal and regenerating muscle in the rat. Neuropathology 2009; 29:211-8. [DOI: 10.1111/j.1440-1789.2008.00967.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Downie D, Delday MI, Maltin CA, Sneddon AA. Clenbuterol increases muscle fiber size and GATA-2 protein in rat skeletal muscle in utero. Mol Reprod Dev 2008; 75:785-94. [DOI: 10.1002/mrd.20795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Norling LV, Sampaio ALF, Cooper D, Perretti M. Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. FASEB J 2007; 22:682-90. [PMID: 17965266 DOI: 10.1096/fj.07-9268com] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Galectin-1 (Gal-1) is a beta-galactoside-binding protein, the expression of which is increased in endothelial cells on exposure to proinflammatory stimuli. Through binding of several receptors (CD7, CD45, and CD43) Gal-1 is known to induce apoptosis of activated T lymphocytes, an effect thought to mediate the beneficial effects it exerts in various inflammatory models. The data presented here highlights another function for Gal-1, that of a negative regulator of T-cell recruitment to the endothelium under both physiological and pathophysiological conditions. We have shown, using siRNA to knockdown Gal-1 in endothelial cells, that endogenous Gal-1 limits T-cell capture, rolling, and adhesion to activated endothelial cells under flow. Furthermore, the reverse effect is observed when exogenous human recombinant Gal-1 is added to activated endothelial monolayers whereby a dramatic reduction in lymphocyte recruitment is seen. These findings are corroborated by studies in Gal-1 null mice in which homing of wild-type (WT) T lymphocytes is significantly increased to mesenteric lymph nodes and to the inflamed paw in a model of delayed-type hypersensitivity. In conclusion, mimicking endothelial Gal-1 actions would be a novel strategy for controlling aberrant T-cell trafficking, hence for the development of innovative anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Lucy V Norling
- The William Harvey Research Institute, Barts, and The London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | |
Collapse
|
21
|
Kim KM, Kang DW, Moon WS, Park JB, Park CK, Sohn JH, Jeong JS, Cho MY, Jin SY, Choi JS, Kang DY. PKCtheta expression in gastrointestinal stromal tumor. Mod Pathol 2006; 19:1480-6. [PMID: 16892012 DOI: 10.1038/modpathol.3800673] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gastrointestinal stromal tumor is characterized by a gain of function mutation of KIT gene and the expression of c-kit protein, but in 5% of cases, c-kit expression is negative although histological findings of gastrointestinal stromal tumor are most suspicious. The existence of c-kit-negative gastrointestinal stromal tumors points to the need of additional markers for making the diagnosis. In this study, we studied the expression of PKCtheta and correlated their expression with other immunohistochemical profiles of gastrointestinal stromal tumors and evaluated their usability as a diagnostic marker. For this purpose, 220 gastrointestinal stromal tumors were immunohistochemically stained for PKCtheta, c-kit, CD34, alpha-smooth muscle actin and S-100 protein. Additionally, genetic studies of KIT and PDGFRA genes were performed using c-kit-negative or PKCtheta-negative cases. All the 220 masses were either PKCtheta-positive or c-kit-positive. PKCtheta was positive in 212 (96%) cases and c-kit was positive in 216 (98%) cases in the cytoplasm of tumor cells with a diffuse staining pattern. Out of 212 PKCtheta-positive GISTs, 208 (98%) cases were c-kit-positive, 174 (82%) cases were CD34-positive, 62 (29%) cases were SMA-positive and S-100 protein was positive in 54 cases (26%). Genetic analyses on eight PKCtheta-negative cases showed exon 11 mutations of KIT gene in four cases. Two PKCtheta-positive and c-kit-negative GISTs showed mutations of PDGFRA gene. Our study shows that PKCtheta is a useful marker and it may play a role in the development of gastrointestinal stromal tumors. Together with c-kit, PKCtheta immunostaining can be used as an important diagnostic tool in the pathologic diagnosis of gastrointestinal stromal tumors with its high specificity and sensitivity.
Collapse
Affiliation(s)
- Kyoung-Mee Kim
- Department of Pathology, Sungkyunkwan University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Furlan I, Godinho RO. Developing skeletal muscle cells express functional muscarinic acetylcholine receptors coupled to different intracellular signaling systems. Br J Pharmacol 2006; 146:389-96. [PMID: 16041403 PMCID: PMC1576279 DOI: 10.1038/sj.bjp.0706329] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study analyzed the expression of muscarinic acetylcholine receptors (mAChRs) in the rat cultured skeletal muscle cells and their coupling to G protein, phospholipase C and adenylyl cyclase (AC). Our results showed the presence of a homogeneous population of [(3)H]methyl-quinuclidinyl benzilate-binding sites in the membrane fraction from the rat cultured muscle (K(D) = 0.4 nM, B(max) = 8.9 fmol mg protein(-1)). Specific muscarinic binding sites were also detected in denervated diaphragm muscles from adult rats and in myoblasts isolated from newborn rats. Activation of mAChRs with carbachol induced specific [(35)S]GTPgammaS binding to cultured muscle membranes and potentiated the forskolin-dependent stimulation of AC. These effects were totally inhibited by 0.1-1 microM atropine. In addition, mAChRs were able to stimulate generation of diacylglycerol (DAG) in response to acetylcholine, carbachol or selective mAChR agonist oxotremorine-M. The carbachol-dependent increase in DAG was inhibited in a concentration-dependent manner by mAChR antagonists atropine, pirenzepine and 4-DAMP mustard. Finally, activation of these receptors was correlated with increased synthesis of acetylcholinesterase, via a PKC-dependent pathway. Taken together, these results indicate that expression of mAChRs, coupled to G protein and distinct intracellular signaling systems, is a characteristic of noninnervated skeletal muscle cells and may be responsible for trophic influences of acetylcholine during formation of the neuromuscular synapse.
Collapse
Affiliation(s)
- Ingrid Furlan
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP-EPM), Rua 03 de maio 100, São Paulo 04044-020, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP-EPM), Rua 03 de maio 100, São Paulo 04044-020, Brazil
- Author for correspondence:
| |
Collapse
|
23
|
Blay P, Astudillo A, Buesa JM, Campo E, Abad M, García-García J, Miquel R, Marco V, Sierra M, Losa R, Lacave A, Braña A, Balbín M, Freije JMP. Protein Kinase C θ Is Highly Expressed in Gastrointestinal Stromal Tumors But Not in Other Mesenchymal Neoplasias. Clin Cancer Res 2004; 10:4089-95. [PMID: 15217944 DOI: 10.1158/1078-0432.ccr-04-0630] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: Gastrointestinal stromal tumors (GIST) are a distinctive group of mesenchymal neoplasms of the gastrointestinal tract. The oncogene KIT has a central role in the pathogenesis of GIST, with c-kit receptor tyrosine kinase (KIT) protein expression being the gold standard in its diagnosis. The identification of GIST patients has become crucial, because the tyrosine kinase inhibitor Imatinib is effective in the treatment of this malignancy. However, a small set of GISTs remain unrecognized, because KIT protein expression is not always evident. The aim of this study was the identification of new markers for the differential diagnosis of GIST.
Experimental Design: By analyzing publicly available data from transcriptional profiling of sarcomas, we found that protein kinase C θ (PKC-θ), a novel PKC isotype involved in T-cell activation, is highly and specifically expressed in GIST. PKC-θ expression in GIST was confirmed by reverse transcription-PCR and Western blot. PKC-θ was analyzed by immunohistochemistry in a panel of 26 GIST, 12 non-GIST soft-tissue sarcomas, and 35 tumors from other histologies.
Results: We found that all of the GISTs expressed PKC-θ, whereas this protein was undetectable in other mesenchymal or epithelial tumors, including non-GIST KIT-positive tumors. PKC-θ immunoreactivity was also observed in interstitial cells of Cajal.
Conclusions: Our results show that PKC-θ is easily detected by immunohistochemistry in GIST specimens and that it could be a sensitive and specific marker for the diagnosis of this malignancy.
Collapse
Affiliation(s)
- Pilar Blay
- Servicios de Oncología Médica, Anatomía Patológica, and Traumatología, Instituto Universitario de Oncología, Hospital Central de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Serra C, Federici M, Buongiorno A, Senni MI, Morelli S, Segratella E, Pascuccio M, Tiveron C, Mattei E, Tatangelo L, Lauro R, Molinaro M, Giaccari A, Bouché M. Transgenic mice with dominant negative PKC-theta in skeletal muscle: a new model of insulin resistance and obesity. J Cell Physiol 2003; 196:89-97. [PMID: 12767044 DOI: 10.1002/jcp.10278] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein kinase C theta (PKC-theta) is the PKC isoform predominantly expressed in skeletal muscle, and it is supposed to mediate many signals necessary for muscle histogenesis and homeostasis, such as TGFbeta, nerve-dependent signals and insulin. To study the role of PKC-theta in these mechanisms we generated transgenic mice expressing a "kinase dead" mutant form of PKC-theta (PKC-thetaK/R), working as "dominant negative," specifically in skeletal muscle. These mice are viable and fertile, however, by the 6-7 months of age, they gain weight, mainly due to visceral fat deposition. Before the onset of obesity (4 months of age), they already show increased fasting and fed insulin levels and reduced insulin-sensitivity, as measured by ipITT, but normal glucose tolerance, as measured by ipGTT. After the 6-7 months of age, transgenic mice develop hyperinsulinemia in the fasting and fed state. The ipGTT revealed in the transgenic mice both hyperglycemia and hyperinsulinemia. At the molecular level, impaired activation of the IR/IRS/PI3K pathway and a significant decrease both in the levels and in insulin-stimulated activation of the serine/threonine kinase Akt were observed. Taken together these data demonstrate that over-expression of dominant negative PKC-theta in skeletal muscle causes obesity associated to insulin resistance, as demonstrated by defective receptor and post-receptorial activation of signaling cascade.
Collapse
Affiliation(s)
- C Serra
- Department of Histology and Medical Embryology, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miles K, Wagner M. Overexpression of nPKC theta is inhibitory for agrin-induced nicotinic acetylcholine receptor clustering in C2C12 myotubes. J Neurosci Res 2003; 71:188-95. [PMID: 12503081 DOI: 10.1002/jnr.10467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein kinase C (PKC) activity has been implicated in nicotinic acetylcholine receptor (nAChR) cluster disruption but the specific PKC isoforms involved have not been identified. We first tested whether phorbol esters, which activate PKCs, regulate agrin-induced nAChR clustering in C(2)C(12) cells. We found that extended phorbol ester treatment (6 hr) increased nAChR clustering by two-fold. This increase correlated in time with downregulation of PKCs, as indicated by the disappearance of cPKC alpha, suggesting that the presence of PKCs is inhibitory for maximal nAChR clustering. To address the question whether nPKC theta, a specific PKC isoform restricted in expression to skeletal muscle and localized to neuromuscular junctions, regulates agrin-induced nAChR cluster formation we overexpressed an nPKC theta -green fluorescent protein (GFP) fusion protein in C(2)C(12) myotubes. The number of nAChR clusters was significantly reduced in nPKC theta-GFP compared to GFP overexpressing myotubes at less-than-maximal clustering concentrations of agrin. These data indicate that nPKC theta activity inhibits nAChR cluster formation. To examine whether nPKC theta activation by phorbol esters regulates agrin-induced nAChR clustering, we treated overexpressing myotubes overnight with maximal agrin concentrations followed by phorbol esters for 1 hr. Phorbol ester treatment reduced preexisting nAChR cluster numbers in nPKC theta-GFP compared to GFP-overexpressing myotubes, suggesting that stimulating nPKC theta activity disrupts nAChR clusters in the presence of maximal clustering concentrations of agrin. Together these findings, that nPKC theta activity inhibits agrin-induced nAChR cluster formation and disrupts preexisting agrin-induced nAChR clusters, suggest that nPKC theta activity is inhibitory for agrin function.
Collapse
Affiliation(s)
- Kathryn Miles
- Department of Anatomy and Cell Biology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| | | |
Collapse
|
26
|
Kim S, Bondeva T, Nelson PG. Activation of protein kinase C isozymes in primary mouse myotubes by carbachol. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 137:13-21. [PMID: 12128250 DOI: 10.1016/s0165-3806(02)00362-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The activation of muscle PKC isozymes following treatment with carbachol, an acetylcholine receptor agonist, has been investigated. Primary mouse myotubes were treated with carbachol, and protein extracts from the cytosol and membrane fractions of the myotubes were subjected to Western blot analyses. Carbachol treatment resulted in a rapid translocation of PKC-theta; to the membrane. This effect was dependent on both carbachol concentration and incubation time. The treatment also resulted in a drastic increase of PKC-alpha in the cytosol followed by an increase of PKC-alpha in the membrane. The regulation of PKC-alpha in response to carbachol was quite distinct from that produced by the PKC activator, PMA, which rapidly translocated PKC-alpha from the cytosol to the membrane without any increases in PKC-alpha in the cytosol. Confocal microscopy demonstrated an enhanced membrane localization of PKC-theta; and overall increased intensity of PKC-alpha staining in the cytosol accompanied by a characteristic membrane staining of PKC-alpha in the myotubes treated with carbachol. Taken together, the results suggested that the activation of PKC isozymes in response to the receptor agonist is quite distinct, which indicates their diverse role in the muscle upon the release of neurotransmitter at the neuromuscular junction.
Collapse
Affiliation(s)
- Sunghee Kim
- Laboratory of Developmental Neurobiology, NICHD, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
27
|
Abstract
The novel protein kinase C (PKC) isoform, PKC theta, is selectively expressed in T lymphocytes and is a sine qua non for T cell antigen receptor (TCR)-triggered activation of mature T cells. Productive engagement of T cells by antigen-presenting cells (APCs) results in recruitment of PKC theta to the T cell-APC contact area--the immunological synapse--where it interacts with several signaling molecules to induce activation signals essential for productive T cell activation and IL-2 production. The transcription factors NF-kappa B and AP-1 are the primary physiological targets of PKC theta, and efficient activation of these transcription factors by PKC theta requires integration of TCR and CD28 costimulatory signals. PKC theta cooperates with the protein Ser/Thr phosphatase, calcineurin, in transducing signals leading to activation of JNK, NFAT, and the IL-2 gene. PKC theta also promotes T cell cycle progression and regulates programmed T cell death. The exact mode of regulation and immediate downstream substrates of PKC theta are still largely unknown. Identification of these molecules and determination of their mode of operation with respect to the function of PKC theta will provide essential information on the mechanism of T cell activation. The selective expression of PKC theta in T cells and its essential role in mature T cell activation establish it as an attractive drug target for immunosuppression in transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Noah Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | |
Collapse
|
28
|
Lanuza MA, Garcia N, Santafé M, González CM, Alonso I, Nelson PG, Tomàs J. Pre- and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination depends on protein kinase C. J Neurosci Res 2002; 67:607-17. [PMID: 11891773 DOI: 10.1002/jnr.10122] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of acetylcholine receptors (AChRs) within and around the neuromuscular junction changes dramatically during the first postnatal weeks, a period during which polyneuronal innervation is eliminated. We reported previously that protein kinase C (PKC) activation accelerates postnatal synapse loss. Because of the close relationship between axonal retraction and AChR cluster dispersal, we hypothesize that PKC can modulate morphological maturation changes of the AChR clusters in the postsynaptic membrane during neonatal axonal reduction. We applied substances affecting PKC activity to the neonatal rat levator auris longus muscle in vivo. Muscles were then stained immunohistochemically to detect both AChRs and axons. We found that, during the first postnatal days of normal development, substantial axonal loss preceded the formation of areas in synaptic sites that were free of AChRs, implying that axonal loss could occur independently of changes in AChR cluster organization. Nevertheless, there was a close relationship between axonal loss and AChR organization; PKC modulates both, although differently. Block of PKC activity with calphostin C prevented both AChR loss and axonal loss between postnatal days 4 and 6. PKC may act primarily to influence AChR clusters and not axons, insofar as phorbol ester activation of PKC accelerated changes in receptor aggregates but produced relatively little axon loss.
Collapse
Affiliation(s)
- Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.
| | | | | | | | | | | | | |
Collapse
|
29
|
Szalay J, Bruno P, Bhati R, Adjodha J, Schueler D, Summerville V, Vazeos R. Associations of PKC isoforms with the cytoskeleton of B16F10 melanoma cells. J Histochem Cytochem 2001; 49:49-66. [PMID: 11118478 DOI: 10.1177/002215540104900106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although PKC plays a major role in regulating the morphology and function of the cytoskeleton, little is known about in situ associations of specific isoforms with the cytoskeleton. We demonstrate that seven PKC isoforms are expressed in B16F10 melanoma cells and show different levels of induction by serum. Using cell cytoskeleton preparations (CSKs), confocal microscopy, and immunocytochemistry, all isoforms show specific patterns of localization to focal contact-like structures (alpha, delta), very small cytoplasmic granules/vesicles (all isoforms), dense ordered arrays of small granules in the perinuclear region (alpha, delta), granules/vesicles associated with a homogeneous framework in the cytoplasm adjacent to the nucleus (gamma), or irregular-shaped patches of granules at or near the nuclear perimeter (eta, theta). In addition, several isoforms are present as cytoplasmic granules/ vesicles in linear or curvilinear arrays (alpha, delta, epsilon, theta). When isoform localization is examined using 3.7% formaldehyde or methanol:acetone, the patterns of localization in CSKs are often difficult or impossible to detect, and many are described here for the first time. Double-labeling experiments with CSK demonstrate that PKC actin co-localizes with punctate alpha-rich particles above the nucleus, granules of epsilon throughout the cytoplasm, and with theta in irregular-shaped aggregates associated with the nucleus. Vimentin co-localizes with perinuclear granules of delta and beta(2), and alpha-tubulin co-localizes with theta in structures at or near the nuclear surface and in microtubules associated with the microtubule organizing center (MTOC). In summary, the present study demonstrates that seven PKC isoforms are endogenously expressed in B16F10 melanoma cells. These isoforms show various levels of induction by serum and specific patterns of association with various components of the detergent-resistant cell cytoskeleton.
Collapse
Affiliation(s)
- J Szalay
- Queens College, Department of Biology, Flushing, New York 11367, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Naik MU, Benedikz E, Hernandez I, Libien J, Hrabe J, Valsamis M, Dow-Edwards D, Osman M, Sacktor TC. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain. J Comp Neurol 2000; 426:243-58. [PMID: 10982466 DOI: 10.1002/1096-9861(20001016)426:2<243::aid-cne6>3.0.co;2-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region of the hippocampus. Multiple isoforms are transiently activated in the induction phase of long-term potentiation (LTP). In contrast, a single species, zeta, is persistently activated during the maintenance phase of LTP through the formation of an independent, constitutively active catalytic domain, protein kinase Mzeta (PKMzeta). In this study, we used immunoblot and immunocytochemical techniques with isoform-specific antisera to examine the distribution of the complete family of PKC isozymes and PKMzeta in rat brain. Each form of PKC showed a widespread distribution in the brain with a distinct regional pattern of high and low levels of expression. PKMzeta, the predominant form of PKM in brain, had high levels in hippocampus, frontal and occipital cortex, striatum, and hypothalamus. In the hippocampus, each isoform was expressed in a characteristic pattern, with zeta prominent in the CA1 stratum radiatum. These results suggest that the compartmentalization of PKC isoforms in neurons may contribute to their function, with the location of PKMzeta prominent in areas notable for long-term synaptic plasticity.
Collapse
Affiliation(s)
- M U Naik
- Departments of Physiology, Pharmacology, and Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lanuza MA, Li MX, Jia M, Kim S, Davenport R, Dunlap V, Nelson PG. Protein kinase C-mediated changes in synaptic efficacy at the neuromuscular junction in vitro: the role of postsynaptic acetylcholine receptors. J Neurosci Res 2000; 61:616-25. [PMID: 10972958 DOI: 10.1002/1097-4547(20000915)61:6<616::aid-jnr5>3.0.co;2-n] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of a mouse in vitro neuromuscular synapse produces a reduction in synaptic efficacy which is greater for nonactivated than for activated inputs to the myotubes. This has been shown to require thrombin and thrombin receptor activation and to involve a protein kinase C (PKC)-mediated step. We show in the present work that phorbol ester activation of PKC produces physiological loss of synapses in a time- and dose-related manner. We observe, using quantitative imaging methods, a parallel loss of acetylcholine receptors (AChR) from synaptically functional neurite-associated receptor aggregates in nerve-muscle cocultures. Biochemical measurements of total AChR show that PKC activation reduces both AChR stability (increases receptor loss) and receptor insertion into the surface membrane. Taken together, the data suggest that PKC activation decreases the stability of AChR aggregates in the muscle surface membrane. We conclude that PKC plays a crucial role in activity-dependent synapse reduction and does so, at least in part, by altering AChR stability.
Collapse
Affiliation(s)
- M A Lanuza
- Unitat díHistologia i Neurobiologia, Facultat Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Sneddon AA, Delday MI, Maltin CA. Amelioration of denervation-induced atrophy by clenbuterol is associated with increased PKC-alpha activity. Am J Physiol Endocrinol Metab 2000; 279:E188-95. [PMID: 10893339 DOI: 10.1152/ajpendo.2000.279.1.e188] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat soleus muscle was denervated for 3 or 7 days, and total membrane protein kinase C (PKC) activity and translocation and immunocytochemical localization of PKC isoforms were examined. Dietary administration of clenbuterol concomitant with denervation ameliorated the atrophic response and was associated with increased membrane PKC activity at both 3 (140%) and 7 (190%) days. Of the five PKC isoforms (alpha, epsilon, theta, zeta, and mu) detected in soleus muscle by Western immunoblotting, clenbuterol treatment affected only the PKC-alpha and PKC-theta forms. PKC-alpha was translocated to the membrane fraction upon denervation, and the presence of clenbuterol increased membrane-bound PKC-alpha and active PKC-alpha as assayed by Ser(657) phosphorylation. PKC-theta protein was downregulated upon denervation, and treatment with clenbuterol further decreased both cytosolic and membrane levels. Immunolocalization of PKC-theta showed differences for regulatory and catalytic domains, with the latter showing fast-fiber type specificity. The results suggest potential roles of PKC-alpha and PKC-theta in the mechanism of action of clenbuterol in alleviating denervation-induced atrophy.
Collapse
Affiliation(s)
- A A Sneddon
- The Rowett Research Institute, Bucksburn, Aberdeen, Scotland AB21 9SB.
| | | | | |
Collapse
|
33
|
Montgomery JM, Corfas G, Mills RG. Intracellular signaling molecules involved in an inhibitory factor-induced decrease in fetal-type AChR expression. JOURNAL OF NEUROBIOLOGY 2000; 42:190-201. [PMID: 10640326 DOI: 10.1002/(sici)1097-4695(20000205)42:2<190::aid-neu3>3.0.co;2-j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The innervation-induced down-regulation of fetal-type acetylcholine receptor (AChR) expression in developing muscle fibers has largely been attributed to nerve-evoked muscle activity; however, there is increasing evidence that a neural trophic factor also contributes to this receptor down-regulation. Previous studies from this laboratory have shown that neural extracts contain a factor which decreases fetal-type AChR expression in skeletal muscle cell lines and therefore may account for the proposed inhibitory neurotrophic influence. The current study investigated possible intracellular signaling molecules involved in this receptor down-regulation and demonstrated that activation of protein kinase C and p70(S6k) appeared to be important in receptor down-regulation. Decreases in AChR density were independent of myogenin. In addition, the receptor down-regulation was independent of neuregulin, which also induces p70(S6k) activity. These studies demonstrate that neural extracts contain an inhibitory factor which can down-regulate fetal-type AChR expression independently of nerve-evoked muscle activity through intracellular signaling molecules which are known to regulate AChR expression.
Collapse
Affiliation(s)
- J M Montgomery
- Department of Physiology, School of Medical Sciences, and Centre for Neurosciences, Otago University, PO Box 913, Dunedin, New Zealand
| | | | | |
Collapse
|
34
|
|
35
|
DiMario JX, Funk PE. Protein kinase C activity regulates slow myosin heavy chain 2 gene expression in slow lineage skeletal muscle fibers. Dev Dyn 1999; 216:177-89. [PMID: 10536057 DOI: 10.1002/(sici)1097-0177(199910)216:2<177::aid-dvdy8>3.0.co;2-m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the slow myosin heavy chain (MyHC) 2 gene defines slow versus fast avian skeletal muscle fiber types. Fetal, or secondary, skeletal muscle fibers express slow MyHC isoform genes in developmentally regulated patterns within the embryo, and this patterning is at least partly dependent on innervation in vivo. We have previously shown that slow MyHC 2 gene expression in vitro is regulated by a combination of innervation and cell lineage. This pattern of gene expression was indistinguishable from the pattern observed in vivo in that it was restricted to innervated muscle fibers of slow muscle origin. We show here that slow MyHC 2 gene expression in the slow muscle fiber lineage is regulated by protein kinase C (PKC) activity. Inhibition of PKC activity induced slow MyHC 2 gene expression, and the capacity to express the slow MyHC 2 gene was restricted to muscle fibers of slow muscle (medial adductor) origin. Fast muscle fibers derived from the pectoralis major did not express significant levels of slow MyHC 2 with or without inhibitors of PKC activity. This differential expression pattern coincided with different inherent PKC activities in fast versus slow muscle fiber types. Furthermore, over-expression of an unregulated PKCalpha mutant suppressed slow MyHC 2 gene expression in muscle fibers of the slow lineage. Lastly, denervation of skeletal muscles caused an increase in PKC activity, particularly in the slow medial adductor muscle. This increase in PKC activity was associated with lack of slow MyHC 2 gene expression in vivo. These results provide a mechanistic link between innervation, an intracellular signaling pathway mediated by PKC, and expression of a muscle fiber type-specific contractile protein gene. Dev Dyn 1999;216:177-189.
Collapse
Affiliation(s)
- J X DiMario
- Department of Cell Biology and Anatomy, The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | |
Collapse
|
36
|
Meller N, Elitzur Y, Isakov N. Protein kinase C-theta (PKCtheta) distribution analysis in hematopoietic cells: proliferating T cells exhibit high proportions of PKCtheta in the particulate fraction. Cell Immunol 1999; 193:185-93. [PMID: 10222061 DOI: 10.1006/cimm.1999.1478] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comparative analysis of protein kinase C-theta (PKCtheta) protein expression was performed in various mouse organs and tissues, freshly isolated populations of mouse and human hematopoietic cells, primary leukemias, and established cell lines of different histological origins. Results demonstrated a predominant expression of PKCtheta in lymphoid tissues and skeletal muscle. Expression levels of PKCtheta, as well as PKCalpha, delta, epsilon, zeta, and eta in the thymus, were not markedly changed during postnatal development. High levels of expression were observed in CD4(+) and CD8(+) single-positive T cells and CD4(+)CD8(+) double-positive thymocytes, while B cells were completely devoid of PKCtheta. PKCtheta was found also in platelets, but relatively low levels or no detection of PKCtheta expression were observed in neutrophils, monocytes, and macrophages. Highly proliferating leukemic T cells of established lines or primary tumors, but not freshly isolated resting peripheral blood T cells, exhibited high levels of membrane-bound PKCtheta. Increased proportions of PKCtheta in the particulate fraction was not restricted to malignant cells but correlated with the extent of proliferation of the T cells. Thus, human peripheral blood T cells that were induced to proliferate by exposure to mitogen and IL-2 expressed increased levels of PKCtheta in the particulate fraction. Significantly lower proportions of membrane-bound PKC were observed for five other isoenzymes expressed in T cells. The occurrence of PKCtheta in T, but not B, cells and its subcellular distribution in proliferating cells implicate PKCtheta in cellular mechanisms regulating the sustained proliferation of T cells.
Collapse
Affiliation(s)
- N Meller
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | | | | |
Collapse
|
37
|
Sun JH, Zhu PH. Effects of high potassium and caffeine exposure on activities of Ca2+-dependent and Ca2+-independent protein kinase C in frog skeletal muscle. Cell Signal 1998; 10:569-74. [PMID: 9794255 DOI: 10.1016/s0898-6568(97)00193-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the use of histone III-S as a protein kinase C (PKC) substrate, the activities of total and Ca2+-independent PKC in frog skeletal muscle were measured, and their difference is designated Ca2+-dependent PKC. In resting muscle, the total PKC was almost equally associated with the cytosol and membrane, and the ratio of membrane to cytosol PKC was about 1. However, the distribution of PKC was subtype dependent. About 60% of Ca2+-dependent PKC was located in the cytosol, whereas Ca2+-independent PKC was mainly associated with the membrane. High potassium exposure not only caused a significant translocation of Ca2+-dependent PKC from the cytosol to the membrane, but also changed the distribution of Ca2+-independent PKC, although to a lesser extent. However, in the preparations exposed to caffeine, the translocation of PKC occurred only in a Ca2+-dependent subtype. In addition, the biphasic change in membrane-associated PKC seen in high K+ exposed muscles was absent with caffeine treatment. The possible mechanisms of these differences are discussed.
Collapse
Affiliation(s)
- J H Sun
- Shanghai Institute of Physiology, Chinese Academy of Sciences, Peoples' Republic of China
| | | |
Collapse
|
38
|
Meller N, Altman A, Isakov N. New perspectives on PKCtheta, a member of the novel subfamily of protein kinase C. Stem Cells 1998; 16:178-92. [PMID: 9617893 DOI: 10.1002/stem.160178] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the protein kinase C (PKC) family of serine/threonine protein kinases have been implicated in numerous cellular responses in a large variety of cell types. Expression patterns of individual members and differences in their cofactor requirements and potential substrate specificity suggest that each isoenzyme may be involved in specific regulatory processes. The PKCtheta isoenzyme exhibits a relatively restricted expression pattern with high protein levels found predominantly in hematopoietic cells and skeletal muscle. PKCtheta was found to be expressed in T, but not B lymphocytes, and to colocalize with the T-cell antigen receptor (TCR) at the site of contact between the antigen-responding T cell and the antigen-presenting cell (APC). Colocalization of PKCtheta with the TCR was selective for this isoenzyme and occurred only upon antigen-mediated responses leading to T-cell activation and proliferation. PKCtheta was found to be involved in the regulation of transcriptional activation of early-activation genes, predominantly AP-1, and its cellular distribution and activation were found to be regulated by the 14-3-3 protein. Other findings indicated that PKCtheta can associate with the HIV negative factor (Nef) protein, suggesting that altered regulation of PKCtheta by Nef may contribute to the T-cell impairments that are characteristic of infection by HIV. PKCtheta is expressed at relatively high levels in skeletal muscle, where it is suggested to play a role in signal transduction in both the developing and mature neuromuscular junction. In addition, PKCtheta appears to be involved in the insulin-mediated response of intact skeletal muscle, as well as in experimentally induced insulin resistance of skeletal muscle. Further studies suggest that PKCtheta is expressed in endothelial cells and is involved in multiple processes essential for angiogenesis and wound healing, including the regulation of cell cycle progression, formation and maintenance of actin cytoskeleton, and formation of capillary tubes. Here, we review recent progress in the study of PKCtheta and discuss its potential role in various cellular responses.
Collapse
Affiliation(s)
- N Meller
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
39
|
Blanco G, Brown SD. Genetic mapping of protein kinase C theta (Pkcq) to mouse chromosome 2. Mamm Genome 1997; 8:70-1. [PMID: 9021158 DOI: 10.1007/s003359900355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G Blanco
- MRC Mouse Genome Centre, Harwell, Oxon, UK
| | | |
Collapse
|
40
|
Limatola C, Palma E, Mileo AM, Eusebi F. Phorbol ester modulation of both delta-mutant and subunit-omitted nicotinic receptors expressed in Xenopus oocytes. Brain Res 1996; 742:172-6. [PMID: 9117392 DOI: 10.1016/s0006-8993(96)00961-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The action of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), the potent stimulator of protein kinase C (PKC), on acetylcholine-activated currents (I(Ach)) was investigated in voltage clamped Xenopus laevis oocytes injected with RNAs encoding murine embryonic nicotinic acetylcholine receptor (AChR) subunits. Comparable potentiation and acceleration of decay of I(ACh) were observed within minutes of phorbol ester application in oocytes injected with various RNA subunit combinations: (i) alpha beta gamma delta; (ii) alpha beta gamma; (iii) alpha beta delta; and (iv) alpha beta gamma delta(AAA), a mutant of the delta subunit with serine residues 360-361-362 mutated to alanine. Our findings indicate that the effects on I(ACh) induced by PKC stimulation are independent of both gamma and delta subunits and, accordingly, of the presence of PKC phosphorylation sites on delta subunit. It is here suggested a novel PKC-dependent modulatory mechanism of cholinergic receptor which does not involve direct phosphorylation of the AChR and requires phosphorylation of intermediate regulatory protein(s).
Collapse
Affiliation(s)
- C Limatola
- Laboratorio di Biofisica, Centro Ricerca Sperimentale, Istituto Regina Elena, Roma, Italy
| | | | | | | |
Collapse
|
41
|
McCord R, Klein A, Osborne NN. The occurrence of protein kinase C theta and lambda isoforms in retina of different species. Neurochem Res 1996; 21:259-66. [PMID: 9182251 DOI: 10.1007/bf02529143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The localization and immunochemical identification of the novel protein kinase C theta (nPKC theta) and the atypical protein kinase C lambda (aPKC lambda) isoforms in retinas of different species were analyzed by immunohistochemistry and SDS-PAGE/Western blotting. nPKC theta immunoreactivity is associated with bipolar cells of mammalian (rabbit, rat and guinea pig) retinas but not the non-mammalian goldfish retina which has a lower concentration of nPKC theta. However, SDS-PAGE and Western blotting data indicate the antigen recognized by the nPKC theta monoclonal antibody in the retina is of a lower molecular weight than that expected for nPKC theta. This would suggest nPKC theta is more susceptible to degradation/breakdown than other PKC isoforms found in the retina or that the nPKC theta antibody may be recognizing an unknown retinal antigen. A comparison of nPKC theta and cPKC alpha immunoreactivities in bipolar cells shows unique distributions exist for the two isoforms. nPKC theta is present in the developing retina at an earlier stage than cPKC alpha. The typical 'transport' of cPKC alpha toward axonal terminals by phorbol-12,13-dibutyrate does not occur for nPKC theta yet both are translocated from the cytosolic to membrane compartments. The inner plexiform layer and the inner nuclear layer (putative horizontal cells) of all species examined (rabbit, rat, guinea pig and goldfish) exhibited positive immunoreactivity for aPKC lambda as confirmed by SDS-PAGE/Western blotting.
Collapse
Affiliation(s)
- R McCord
- Nuffield Laboratory of Ophthalmology, Oxford University, Oxford, U.K
| | | | | |
Collapse
|