1
|
van Asperen JV, Kotaich F, Caillol D, Bomont P. Neurofilaments: Novel findings and future challenges. Curr Opin Cell Biol 2024; 87:102326. [PMID: 38401181 DOI: 10.1016/j.ceb.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/07/2024] [Indexed: 02/26/2024]
Abstract
Neurofilaments (NFs) are abundant cytoskeletal proteins that emerge as a critical hub for cell signalling within neurons. As we start to uncover essential roles of NFs in regulating microtubule and organelle dynamics, nerve conduction and neurotransmission, novel discoveries are expected to arise in genetics, with NFs identified as causal genes for various neurodegenerative diseases. This review will discuss how the latest advances in fundamental and translational research illuminate our understanding of NF biology, particularly their assembly, organisation, transport and degradation. We will emphasise the notion that filaments are not one entity and that future challenges will be to apprehend their diverse composition and structural heterogeneity and to scrutinize how this regulates signalling, sustains neuronal physiology and drives pathophysiology in disease.
Collapse
Affiliation(s)
- Jessy V van Asperen
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Farah Kotaich
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Damien Caillol
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Pascale Bomont
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France.
| |
Collapse
|
2
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
3
|
Guo YC, Wang YX, Ge YP, Yu LJ, Guo J. Analysis of subcellular structural tension in axonal growth of neurons. Rev Neurosci 2018; 29:125-137. [DOI: 10.1515/revneuro-2017-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/05/2017] [Indexed: 01/08/2023]
Abstract
AbstractThe growth and regeneration of axons are the core processes of nervous system development and functional recovery. They are also related to certain physiological and pathological conditions. For decades, it has been the consensus that a new axon is formed by adding new material at the growth cone. However, using the existing technology, we have studied the structural tension of the nerve cell, which led us to hypothesize that some subcellular structural tensions contribute synergistically to axonal growth and regeneration. In this review, we classified the subcellular structural tension, osmotic pressure, microfilament and microtubule-dependent tension involved controllably in promoting axonal growth. A squeezing model was built to analyze the mechanical mechanism underlying axonal elongation, which may provide a new view of axonal growth and inspire further research.
Collapse
|
4
|
Zhao J, Liem RKH. α-Internexin and Peripherin: Expression, Assembly, Functions, and Roles in Disease. Methods Enzymol 2015; 568:477-507. [PMID: 26795481 DOI: 10.1016/bs.mie.2015.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
α-Internexin and peripherin are neuronal-specific intermediate filament (IF) proteins. α-Internexin is a type IV IF protein like the neurofilament triplet proteins (NFTPs, which include neurofilament light chain, neurofilament medium chain, and neurofilament high chain) that are generally considered to be the primary components of the neuronal IFs. However, α-internexin is often expressed together with the NFTPs and has been proposed as the fourth subunit of the neurofilaments in the central nervous system. α-Internexin is also expressed earlier in the development than the NFTPs and is a maker for neuronal IF inclusion disease. α-Internexin can self-polymerize in vitro and in transfected cells and it is present in the absence of the NFTP in development and in granule cells in the cerebellum. In contrast, peripherin is a type III IF protein. Like α-internexin, peripherin is specific to the nervous system, but it is expressed predominantly in the peripheral nervous system (PNS). Peripherin can also self-assemble both in vitro and in transfected cells. It is as abundant as the NFTPs in the sciatic nerve and can be considered a fourth subunit of the neurofilaments in the PNS. Peripherin has multiple isoforms that arise from intron retention, cryptic intron receptor site or alternative translation initiation. The functional significance of these isoforms is not clear. Peripherin is a major component found in inclusions of patients with amyotrophic lateral sclerosis (ALS) and peripherin expression is upregulated in ALS patients.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, USA
| | - Ronald K H Liem
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, USA.
| |
Collapse
|
5
|
McLean JR, Smith GA, Rocha EM, Osborn TM, Dib S, Hayes MA, Beagan JA, Brown TB, Lawson TFS, Hallett PJ, Robertson J, Isacson O. ALS-associated peripherin spliced transcripts form distinct protein inclusions that are neuroprotective against oxidative stress. Exp Neurol 2014; 261:217-29. [PMID: 24907400 DOI: 10.1016/j.expneurol.2014.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 01/27/2023]
Abstract
Intracellular proteinaceous inclusions are well-documented hallmarks of the fatal motor neuron disorder amyotrophic lateral sclerosis (ALS). The pathological significance of these inclusions remains unknown. Peripherin, a type III intermediate filament protein, is upregulated in ALS and identified as a component within different types of ALS inclusions. The formation of these inclusions may be associated with abnormal peripherin splicing, whereby an increase in mRNA retaining introns 3 and 4 (Per-3,4) leads to the generation of an aggregation-prone isoform, Per-28. During the course of evaluating peripherin filament assembly in SW-13 cells, we identified that expression of both Per-3,4 and Per-28 transcripts formed inclusions with categorically distinct morphology: Per-3,4 was associated with cytoplasmic condensed/bundled filaments, small inclusions (<10μM), or large inclusions (≥10μM); while Per-28 was associated with punctate inclusions in the nucleus and/or cytoplasm. We found temporal and spatial changes in inclusion morphology between 12 and 48h post-transfected cells, which were accompanied by unique immunofluorescent and biochemical changes of other ALS-relevant proteins, including TDP-43 and ubiquitin. Despite mild cytotoxicity associated with peripherin transfection, Per-3,4 and Per-28 expression increased cell viability during H2O2-mediated oxidative stress in BE(2)-M17 neuroblastoma cells. Taken together, this study shows that ALS-associated peripherin isoforms form dynamic cytoplasmic and intranuclear inclusions, effect changes in local endogenous protein expression, and afford cytoprotection against oxidative stress. These findings may have important relevance to understanding the pathophysiological role of inclusions in ALS.
Collapse
Affiliation(s)
- Jesse R McLean
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Gaynor A Smith
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Emily M Rocha
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Teresia M Osborn
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Samar Dib
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Melissa A Hayes
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jonathan A Beagan
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tana B Brown
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tristan F S Lawson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
6
|
Mizuno Y, Fujita Y, Takatama M, Okamoto K. Peripherin partially localizes in Bunina bodies in amyotrophic lateral sclerosis. J Neurol Sci 2011; 302:14-8. [PMID: 21241994 DOI: 10.1016/j.jns.2010.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/13/2022]
Abstract
Peripherin is a type III intermediate filament protein expressed with low levels in spinal motor neurons. Amyotrophic lateral sclerosis (ALS) is characterized by the presence of Bunina bodies, skein-like inclusions, and Lewy body-like inclusions (LBLIs) in the remaining anterior horn cells, where the first and third structures are detected by Hematoxylin-Eosin (H & E) staining. We examined paraffin sections of lumbar spinal cords from six ALS patients, using H & E staining and immunostaining for human peripherin. The results demonstrated that there were a total of 73 anterior horn cells containing one or more Bunina bodies, and that twelve of these cells (approximately 16.4%) demonstrated peripherin-positive Bunina bodies. In fact, some part of chain-like Bunina bodies showed peripherin-positive reaction, although there were a much higher number of non-immunoreacitive Bunina bodies in each neuron. LBLIs were clearly immunostained for peripherin corresponding to the core, while some of them showed different types of immunoreactivities due to oblique cutting of inclusions. Our findings suggest that although the mechanisms underlying peripherin co-localization in Bunina bodies are unknown, peripherin could be involved in forming these inclusions. Furthermore, following cystatin C and transferrin, peripherin is the third most prevalent protein that partially localizes in Bunina bodies.
Collapse
Affiliation(s)
- Yuji Mizuno
- Department of Neurology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | |
Collapse
|
7
|
McLean J, Liu HN, Miletic D, Weng YC, Rogaeva E, Zinman L, Kriz J, Robertson J. Distinct biochemical signatures characterize peripherin isoform expression in both traumatic neuronal injury and motor neuron disease. J Neurochem 2010; 114:1177-92. [PMID: 20533992 DOI: 10.1111/j.1471-4159.2010.06846.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peripherin is a type III intermediate filament protein that is up-regulated during neuronal injury and is a major component of pathological inclusions found within degenerating motor neurons of patients with amyotrophic lateral sclerosis (ALS). The relationship between these inclusions and their protein constituents remains largely unknown. We have previously shown that peripherin expression is characterized by tissue-specific, intra-isoform associations that contribute to filament structure; changes to the normal isoform expression pattern is associated with malformed filaments and intracellular inclusions. Here, we profile peripherin isoform expression and ratio changes in traumatic neuronal injury, transgenic mouse models of motor neuron disease, and ALS. Extensive western blot analyses of Triton X-100 soluble and insoluble fractions of neuronal tissue from these conditions revealed significant changes in peripherin isoform content which could be differentiated by electrophoretic banding patterns to produce distinct peripherin biochemical signatures. Significantly, we found that the pattern of peripherin expression in ALS most closely approximates that of peripherin over-expressing mice, but differs with regard to inter-individual variations in isoform-specific expression. Overall, these results provide important insights into complex post-transcriptional processes that may underlie a continuum between peripherin-mediated neuronal repair and its role in the pathogenesis of motor neuron disease.
Collapse
Affiliation(s)
- Jesse McLean
- Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Perng MD, Wen SF, Gibbon T, Middeldorp J, Sluijs J, Hol EM, Quinlan RA. Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association. Mol Biol Cell 2008; 19:4521-33. [PMID: 18685083 DOI: 10.1091/mbc.e08-03-0284] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The glial fibrillary acidic protein (GFAP) gene is alternatively spliced to give GFAP-alpha, the most abundant isoform, and seven other differentially expressed transcripts including GFAP-delta. GFAP-delta has an altered C-terminal domain that renders it incapable of self-assembly in vitro. When titrated with GFAP-alpha, assembly was restored providing GFAP-delta levels were kept low (approximately 10%). In a range of immortalized and transformed astrocyte derived cell lines and human spinal cord, we show that GFAP-delta is naturally part of the endogenous intermediate filaments, although levels were low (approximately 10%). This suggests that GFAP filaments can naturally accommodate a small proportion of assembly-compromised partners. Indeed, two other assembly-compromised GFAP constructs, namely enhanced green fluorescent protein (eGFP)-tagged GFAP and the Alexander disease-causing GFAP mutant, R416W GFAP both showed similar in vitro assembly characteristics to GFAP-delta and could also be incorporated into endogenous filament networks in transfected cells, providing expression levels were kept low. Another common feature was the increased association of alphaB-crystallin with the intermediate filament fraction of transfected cells. These studies suggest that the major physiological role of the assembly-compromised GFAP-delta splice variant is as a modulator of the GFAP filament surface, effecting changes in both protein- and filament-filament associations as well as Jnk phosphorylation.
Collapse
Affiliation(s)
- Ming-Der Perng
- School of Biological and Biomedical Sciences, The University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
McLean J, Xiao S, Miyazaki K, Robertson J. A novel peripherin isoform generated by alternative translation is required for normal filament network formation. J Neurochem 2008; 104:1663-73. [PMID: 18205747 DOI: 10.1111/j.1471-4159.2007.05198.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peripherin is a type III neuronal intermediate filament protein detected within the intraneuronal inclusions characteristic of amyotrophic lateral sclerosis. The constitutively expressed peripherin isoform is encoded by all nine exons of the human and mouse peripherin genes to generate a protein species of approximately 58 kDa on sodium dodecyl sulfate-polyacrylamide gels. Expression of this isoform, termed Per-58, generates a filament network in transfected SW13 vim cells. On immunoblots of cell lysates derived from these transfected cells, we have consistently observed a second peripherin species of approximately 45 kDa. In this study, we show that this species is a novel peripherin isoform generated through the use of an in-frame downstream initiation codon. This isoform, that we have designated Per-45, is co-expressed together with Per-58 and, thus, constitutive in both human and mouse. Using mutational analysis, we show that Per-45 is required for normal network formation, with the absence of Per-45 leading to irregular filamentous structures. We further show that peripherin expression in the normal nervous system is characterized by tissue-specific Per-58 : Per-45 isoform ratios. Taken together, these results identify novel processing requirements for peripherin expression and indicate a hitherto unrecognized role for neuronal intermediate filament network formation through intra-isoform associations.
Collapse
Affiliation(s)
- Jesse McLean
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Yan Y, Jensen K, Brown A. The polypeptide composition of moving and stationary neurofilaments in cultured sympathetic neurons. ACTA ACUST UNITED AC 2007; 64:299-309. [PMID: 17285620 PMCID: PMC1978456 DOI: 10.1002/cm.20184] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies on the axonal transport of neurofilament proteins in cultured neurons have shown they move at fast rates, but their overall rate of movement is slow because they spend most of their time not moving. Using correlative light and electron microscopy, we have shown that these proteins move in the form of assembled neurofilament polymers. However, the polypeptide composition of these moving polymers is not known. To address this, we visualized neurofilaments in cultured neonatal mouse sympathetic neurons using GFP-tagged neurofilament protein M and performed time-lapse fluorescence microscopy of naturally occurring gaps in the axonal neurofilament array. When neurofilaments entered the gaps, we stopped them in their tracks using a rapid perfusion and permeabilization technique and then processed them for immunofluorescence microscopy. To compare moving neurofilaments to the total neurofilament population, most of which are stationary at any point in time, we also performed immunofluorescence microscopy on neurofilaments in detergent-splayed axonal cytoskeletons. All neurofilaments, both moving and stationary, contained NFL, NFM, peripherin and alpha-internexin along>85% of their length. NFH was absent due to low expression levels in these neonatal neurons. These data indicate that peripherin and alpha-internexin are integral and abundant components of neurofilament polymers in these neurons and that both moving and stationary neurofilaments in these neurons are complex heteropolymers of at least four different neuronal intermediate filament proteins.
Collapse
Affiliation(s)
- Yanping Yan
- Department of Neuroscience, Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
11
|
Xiao S, McLean J, Robertson J. Neuronal intermediate filaments and ALS: a new look at an old question. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1001-12. [PMID: 17045786 DOI: 10.1016/j.bbadis.2006.09.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/15/2023]
Abstract
One of the pathological hallmarks of ALS is the presence of axonal spheroids and perikaryal accumulations/aggregations comprised of the neuronal intermediate filament proteins, neurofilaments and peripherin. These abnormalities represent a point of convergence of both familial and sporadic forms of the disease and understanding their formation may reveal shared pathways in what is otherwise considered a highly heterogeneous disorder. Here we provide a review of the basic biology of neurofilaments and peripherin and the evidence linking them with ALS disease pathogenesis.
Collapse
Affiliation(s)
- Shangxi Xiao
- Department of Laboratory Medicine and Pathobiology, Centre for Research in Neurodegenerative Diseases, University of Toronto, Tanz Neuroscience Building, 6, Queen's Park Crescent West, Toronto, ON, Canada M5S 3H2
| | | | | |
Collapse
|
12
|
Millecamps S, Robertson J, Lariviere R, Mallet J, Julien JP. Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin. J Neurochem 2006; 98:926-38. [PMID: 16787413 DOI: 10.1111/j.1471-4159.2006.03932.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peripherin is a type III neuronal intermediate filament detected in motor neuron inclusions of amyotrophic lateral sclerosis (ALS) patients. We previously reported that overexpression of peripherin provokes late-onset motor neuron dysfunction in transgenic mice. Here, we show that peripherin overexpression slows down axonal transport of neurofilament (NF) proteins, and that the transport defect precedes by several months the appearance of axonal spheroids in adult mice. Defective NF transport by peripherin up-regulation was further confirmed with dorsal root ganglia (DRG) neurons cultured from peripherin transgenic embryos. Immunofluorescence microscopy and western blotting revealed that excess peripherin provokes reduction in levels of hyperphosphorylated NF-H species in DRG neurites. Similarly the transport of a green fluorescent protein (GFP)-tagged NF-M, delivered by means of a lentiviral construct, was impaired in DRG neurites overexpressing peripherin. These results demonstrate that peripherin overexpression can cause defective transport of type IV NF proteins, a phenomenon that may account for the progressive formation of ALS-like spheroids in axons.
Collapse
Affiliation(s)
- Stéphanie Millecamps
- Research Centre of Centre Hospitalier Universitaire de Québec, Department of Anatomy and Physiology of Laval University, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Leung CL, He CZ, Kaufmann P, Chin SS, Naini A, Liem RKH, Mitsumoto H, Hays AP. A pathogenic peripherin gene mutation in a patient with amyotrophic lateral sclerosis. Brain Pathol 2004; 14:290-6. [PMID: 15446584 PMCID: PMC8095763 DOI: 10.1111/j.1750-3639.2004.tb00066.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peripherin is a neuronal intermediate filament protein that is expressed chiefly in motor neurons and other nerve cells that project into the peripheral nervous system. Transgenic mice that over-express peripherin develop motor neuron degeneration, suggesting that mutations in peripherin could contribute to the development of motor neuron disease. In this paper, we report the identification of a homozygous mutation in the peripherin gene (PRPH) in a patient with amyotrophic lateral sclerosis (ALS). The mutation resulted in a substitution of aspartate with tyrosine at amino acid position 141, which is located within the first linker region of the rod domain. Immunocytochemical analysis of the spinal cord of the patient upon autopsy revealed distinctive large aggregates within the cell bodies of residual spinal motor neurons that contained peripherin and was also immunoreactive with antibodies to the neurofilament proteins. In order to study the effect of the mutation on peripherin assembly, we performed transient transfections. Unlike wild-type peripherin, which self-assembles to form a filamentous network, the mutant peripherin was prone to form aggregates in transfected cells, indicating that the mutation adversely affects peripherin assembly. Moreover, the neurofilament light (NF-L) protein was not able to rescue the mutant protein from forming aggregates. These data imply that mutation of PRPH is a contributing factor for ALS.
Collapse
Affiliation(s)
- Conrad L Leung
- Departments of Pathology, College of Physicians and Surgeons, Columbia University, NewYork, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Beaulieu JM, Nguyen MD, Julien JP. Late onset of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol 2004; 147:531-44. [PMID: 15132161 PMCID: PMC2151189 DOI: 10.1083/jcb.147.3.531] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripherin, a type III intermediate filament (IF) protein, upregulated by injury and inflammatory cytokines, is a component of IF inclusion bodies associated with degenerating motor neurons in sporadic amyotrophic lateral sclerosis (ALS). We report here that sustained overexpression of wild-type peripherin in mice provokes massive and selective degeneration of motor axons during aging. Remarkably, the onset of peripherin-mediated disease was precipitated by a deficiency of neurofilament light (NF-L) protein, a phenomenon associated with sporadic ALS. In NF-L null mice, the overexpression of peripherin led to early- onset formation of IF inclusions and to the selective death of spinal motor neurons at 6 mo of age. We also report the formation of similar peripherin inclusions in presymptomatic transgenic mice expressing a mutant form of superoxide dismutase linked to ALS. Taken together, these results suggest that IF inclusions containing peripherin may play a contributory role in motor neuron disease.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Centre for Research in Neurosciences, McGill University, The Montréal General Hospital Research Institute, Montréal, Québec, H3G 1A4, Canada
| | - Minh Dang Nguyen
- Centre for Research in Neurosciences, McGill University, The Montréal General Hospital Research Institute, Montréal, Québec, H3G 1A4, Canada
| | - Jean-Pierre Julien
- Centre for Research in Neurosciences, McGill University, The Montréal General Hospital Research Institute, Montréal, Québec, H3G 1A4, Canada
| |
Collapse
|
15
|
Strong MJ, Leystra-Lantz C, Ge WW. Intermediate filament steady-state mRNA levels in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2004; 316:317-22. [PMID: 15020220 DOI: 10.1016/j.bbrc.2004.02.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Indexed: 10/26/2022]
Abstract
We have examined the steady-state levels of intermediate filament mRNA in amyotrophic lateral sclerosis using the RNAse protection assay (NFL, NFM, NFH; corrected against GAPDH) or by PCR (peripherin, alpha-internexin, nestin, and vimentin; corrected against beta-actin). Significant elevations of NFL and peripherin mRNA levels were observed within the ALS cervical and lumbar spinal cord, with all other IF mRNA levels being comparable between control and ALS cases. These findings suggest that disturbances in both NFL and peripherin expression, independently known to contribute to the generation of motor neuron dysfunction in transgenic mice, are evident in ALS.
Collapse
Affiliation(s)
- Michael J Strong
- Cell Biology Research Group, Robarts Research Institute, London, Ont., Canada.
| | | | | |
Collapse
|
16
|
Lariviere RC, Julien JP. Functions of intermediate filaments in neuronal development and disease. ACTA ACUST UNITED AC 2004; 58:131-48. [PMID: 14598376 DOI: 10.1002/neu.10270] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Five major types of intermediate filament (IF) proteins are expressed in mature neurons: the three neurofilament proteins (NF-L, NF-M, and NF-H), alpha-internexin, and peripherin. While the differential expression of IF genes during embryonic development suggests potential functions of these proteins in axogenesis, none of the IF gene knockout experiments in mice caused gross developmental defects of the nervous system. Yet, deficiencies in neuronal IF proteins are not completely innocuous. Substantial developmental loss of motor axons was detected in mice lacking NF-L and in double knockout NF-M;NF-H mice, supporting the view of a role for IFs in axon stabilization. Moreover, the absence of peripherin resulted in approximately 30% loss of small sensory axons. Mice lacking NF-L had a scarcity of IF structures and exhibited a severe axonal hypotrophy, causing up to 50% reduction in conduction velocity, a feature that would be very detrimental for large animal species. Unexpectedly, the NF-M rather than NF-H protein turned out to be required for proper radial growth of large myelinated axons. Studies with transgenic mice suggest that some types of IF accumulations, reminiscent of those found in amyotrophic lateral sclerosis (ALS), can have deleterious effects and even cause neurodegeneration. Additional evidence for the involvement of IFs in pathogenesis came from the recent discovery of neurofilament gene mutations linked to ALS and Charcot-Marie-Tooth disease (CMT2E). Conversely, we discuss how certain types of perikaryal neurofilament aggregates might confer protection in motor neuron disease.
Collapse
Affiliation(s)
- Roxanne C Lariviere
- Centre for Research in Neurosciences, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
17
|
Liem RKH, Leung CL. Neuronal intermediate filament overexpression and neurodegeneration in transgenic mice. Exp Neurol 2004; 184:3-8. [PMID: 14637070 DOI: 10.1016/s0014-4886(03)00291-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ronald K H Liem
- Department of Pathology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
18
|
Millecamps S, Julien JP. [35S]Methionine Metabolic Labeling to Study Axonal Transport of Neuronal Intermediate Filament Proteins In Vivo. Methods Cell Biol 2004; 78:555-71. [PMID: 15646631 DOI: 10.1016/s0091-679x(04)78019-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stéphanie Millecamps
- Research Center of CHUL and Department of Anatomy and Physiology, Laval University, Quebec, G1V 4G2, QC Canada
| | | |
Collapse
|
19
|
Abstract
Once thought to be a single pathological disease state, amyotrophic lateral sclerosis (ALS) is now recognized to be the limited phenotypic expression of a complex, heterogeneous group of biological processes, resulting in an unrelenting loss of motor neurons. On average, individuals affected with the disease live <5 years. In this article, the complex nature of the pathogenesis of ALS, including features of age dependency, environmental associations, and genetics, is reviewed. Once held to be uncommon, it is now clear that ALS is associated with a frontotemporal dementia and that this process may reflect disturbances in the microtubule-associated tau protein metabolism. The motor neuron ultimately succumbs in a state where significant disruptions in neurofilament metabolism, mitochondrial function, and management of oxidative stress exist. The microenvironment of the neuron becomes a complex milieu in which high levels of glutamate provide a source of chronic excitatory neurotoxicity, and the contributions of activated microglial cells lead to further cascades of motor neuron death, perhaps serving to propagate the disease once established. The final process of motor neuron death encompasses many features of apoptosis, but it is clear that this alone cannot account for all features of motor neuron loss and that aspects of a necrosis-apoptosis continuum are at play. Designing pharmacological strategies to mitigate against this process thus becomes an increasingly complex issue, which is reviewed in this article.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Clinical Neurological Sciences, Robarts Research Institute, Room 7OF 10, University Campus, London Health Sciences Centre, University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5.
| |
Collapse
|
20
|
Robertson J, Doroudchi MM, Nguyen MD, Durham HD, Strong MJ, Shaw G, Julien JP, Mushynski WE. A neurotoxic peripherin splice variant in a mouse model of ALS. J Cell Biol 2003; 160:939-49. [PMID: 12642616 PMCID: PMC2173778 DOI: 10.1083/jcb.200205027] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Peripherin, a neuronal intermediate filament (nIF) protein found associated with pathological aggregates in motor neurons of patients with amyotrophic lateral sclerosis (ALS) and of transgenic mice overexpressing mutant superoxide dismutase-1 (SOD1G37R), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. Mouse peripherin is unique compared with other nIF proteins in that three peripherin isoforms are generated by alternative splicing. Here, the properties of the peripherin splice variants Per 58, Per 56, and Per 61 have been investigated in transfected cell lines, in primary motor neurons, and in transgenic mice overexpressing peripherin or overexpressing SOD1G37R. Of the three isoforms, Per 61 proved to be distinctly neurotoxic, being assembly incompetent and inducing degeneration of motor neurons in culture. Using isoform-specific antibodies, Per 61 expression was detected in motor neurons of SOD1G37R transgenic mice but not of control or peripherin transgenic mice. The Per 61 antibody also selectively labeled motor neurons and axonal spheroids in two cases of familial ALS and immunoprecipitated a higher molecular mass peripherin species from disease tissue. This evidence suggests that expression of neurotoxic splice variants of peripherin may contribute to the neurodegenerative mechanism in ALS.
Collapse
Affiliation(s)
- Janice Robertson
- Centre for Research in Neurosciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Irobi J, Nelis E, Verhoeven K, De Vriendt E, Dierick I, De Jonghe P, Van Broeckhoven C, Timmerman V. Mutation analysis of 12 candidate genes for distal hereditary motor neuropathy type II (distal HMN II) linked to 12q24.3. J Peripher Nerv Syst 2002; 7:87-95. [PMID: 12090300 DOI: 10.1046/j.1529-8027.2002.02014.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Distal hereditary motor neuropathies (distal HMNs) are characterized by degeneration of anterior horn cells of the spinal cord resulting in muscle weakness and atrophy. Distal HMN type II is genetically linked to chromosome 12q24.3 and located within a 13 cM region flanked by D12S86 and D12S340. We previously excluded 5 positional and functional candidate genes for distal HMN II. Here, we report the exclusion of 12 additional candidate genes localized within the distal HMN II region; the genes include musashi (Drosophila) homolog 1 (MSI1), protein inhibitor of neuronal nitric oxide synthase (PIN), peripherin (PRPH), tubulin alpha ubiquitous (K-ALPHA-1), tubulin alpha 3 (TUBA3), tubulin alpha 6 (TUBA6), splicing factor arginine/serine-rich 9 (SFRS9), U5 snRNP 100 kd (U5- 100K), putative chemokine receptor, GTP-binding protein (HM74), MondoA, cut (Drosophila)-like homeobox 2 (CUX2) and ADP-ribosylation factor 3 (ARF3).
Collapse
Affiliation(s)
- Joy Irobi
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Born-Bunge Foundation (BBS), University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Undamatla J, Szaro BG. Differential expression and localization of neuronal intermediate filament proteins within newly developing neurites in dissociated cultures of Xenopus laevis embryonic spinal cord. CELL MOTILITY AND THE CYTOSKELETON 2001; 49:16-32. [PMID: 11309837 DOI: 10.1002/cm.1017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular subunit composition of neurofilaments (NFs) progressively changes during axon development. In developing Xenopus laevis spinal cord, peripherin emerges at the earliest stages of neurite outgrowth. NF-M and XNIF (an alpha-internexin-like protein) appear later, as axons continue to elongate, and NF-L is expressed after axons contact muscle. Because NFs are the most abundant component of the vertebrate axonal cytoskeleton, we must understand why these changes occur before we can fully comprehend how the cytoskeleton regulates axon growth and morphology. Knowing where these proteins are localized within developing neurites and how their expression changes with cell contact is essential for this understanding. Thus, we examined by immunofluorescence the expression and localization of these NF subunits within dissociated cultures of newly differentiating spinal cord neurons. In young neurites, peripherin was most abundant in distal neuritic segments, especially near branch points and extending into the central domain of the growth cone. In contrast, XNIF and NF-M were usually either absent from very young neurites or exhibited a proximal to distal gradient of decreasing intensity. In older neurites, XNIF and NF-M expression increased, whereas that of peripherin declined. All three of these proteins became more evenly distributed along the neurites, with some branches staining more intensely than others. At 24 h, NF-L appeared, and in 48-h cultures, its expression, along with that of NF-M, was greater in neurites contacting muscle cells, arguing that the upregulation of these two subunits is dependent on contact with target cells. Moreover, this contact had no effect on XNIF or peripherin expression. Our findings are consistent with a model in which peripherin plays an important structural role in growth cones, XNIF and NF-M help consolidate the intermediate filament cytoskeleton beginning in the proximal neurite, and increased levels of NF-L and NF-M help further solidify the cytoskeleton of axons that successfully reach their targets.
Collapse
Affiliation(s)
- J Undamatla
- Neurobiology Research Center and the Department of Biological Sciences, University at Albany, State University of New York, Albany 12222, USA
| | | |
Collapse
|
23
|
Schweitzer SC, Klymkowsky MW, Bellin RM, Robson RM, Capetanaki Y, Evans RM. Paranemin and the organization of desmin filament networks. J Cell Sci 2001; 114:1079-89. [PMID: 11228152 DOI: 10.1242/jcs.114.6.1079] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
De novo expression of vimentin, GFAP or peripherin leads to the assembly of an extended intermediate filament network in intermediate filament-free SW13/cl.2 cells. Desmin, in contrast, does not form extended filament networks in either SW13/cl.2 or intermediate filament-free mouse fibroblasts. Rather, desmin formed short thickened filamentous structures and prominent spot-like cytoplasmic aggregates that were composed of densely packed 9–11 nm diameter filaments. Analysis of stably transfected cell lines indicates that the inability of desmin to form extended networks is not due to a difference in the level of transgene expression. Nestin, paranemin and synemin are large intermediate filament proteins that coassemble with desmin in muscle cells. Although each of these large intermediate filament proteins colocalized with desmin when coexpressed in SW-13 cells, expression of paranemin, but not synemin or nestin, led to the formation of an extended desmin network. A similar rescue of desmin network organization was observed when desmin was coexpressed with vimentin, which coassembles with desmin, or with keratins, which formed a distinct filament network. These studies demonstrate that desmin filaments differ in their organizational properties from the other vimentin-like intermediate filament proteins and appear to depend upon coassembly with paranemin, at least when they are expressed in non-muscle cells, in order to form an extended filament network.
Collapse
Affiliation(s)
- S C Schweitzer
- Department of Pathology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lowrie DJ, Stickney JT, Ip W. Properties of the nonhelical end domains of vimentin suggest a role in maintaining intermediate filament network structure. J Struct Biol 2000; 132:83-94. [PMID: 11162730 DOI: 10.1006/jsbi.2000.4315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the functional role of the nonhelical domains of the intermediate filament (IF) protein vimentin, we carried out transient transfection of constructs encoding fusion proteins of these domains with enhanced green fluorescent protein (EGFP). Expression of these fusion proteins did not have any effect on the endogenous IF networks of transfected cells. However, the head domain-EGFP fusion protein localized almost exclusively to the nucleus. This localization could be disrupted in a reversible fashion by chilling cells. Furthermore, the head domain was capable of targeting to the nucleus a strictly cytoplasmic protein, pyruvate kinase. Thus, the vimentin head domain contains information that specifically directs proteins into the nucleus. In contrast, the nonhelical tail domain of vimentin, when expressed as a fusion protein with EGFP, was retained in the cytoplasm. Cytoplasmic retention of tail domain-containing fusion proteins appeared to be dependent on the integrity of the microtubule network. Our results are consistent with a proposal that the nonhelical end domains of vimentin are involved in maintaining an extended IF network by exerting oppositely directed forces along the filaments. The head domains exert a nuclear-directed force while the tail domains extend the IF network toward the cell periphery via a microtubule-dependent mechanism.
Collapse
Affiliation(s)
- D J Lowrie
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | |
Collapse
|
25
|
Wong NK, He BP, Strong MJ. Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol 2000; 59:972-82. [PMID: 11089575 DOI: 10.1093/jnen/59.11.972] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because transgenic mice expressing an altered stoichiometry of neurofilament proteins develop a motor neuron degeneration associated with neurofilamentous aggregate formation similar to that found in amyotrophic lateral sclerosis (ALS), we studied the expression of intermediate filament proteins in sporadic ALS. Archival cervical spinal cord paraffin-embedded sections from 11 disease and 11 control cases were studied by either in situ hybridization using 35S-labeled riboprobes or immunohistochemically using specific antibodies for the individual neurofilament subunit proteins, alpha-internexin, nestin, peripherin, vimentin, beta-actin, or Talpha1-tubulin. Median NFL, alpha-internexin, and peripherin steady-state mRNA levels were significantly reduced in the lateral motor neuron cell column (p < 0.05) of ALS cases, while neither NFM nor NFH mRNA levels were altered. ALS cases demonstrated an elevation of beta-actin mRNA levels (p < 0.01) with no increase in Talpha1-tubulin mRNA levels. No motor neuronal expression of nestin or vimentin was observed. Ubiquitin-immunoreactive perikaryal aggregates were immunoreactive for NFH or beta-actin, but not for peripherin, alpha-internexin, vimentin, or nestin. In contrast, neuroaxonal spheroids were strongly immunoreactive for NFH and peripherin, but not for beta-actin, alpha-internexin, vimentin, or nestin. These findings suggest that the stoichiometry of cytoskeletal protein expression in ALS spinal motor neurons is significantly altered in a pattern conducive to the formation of neurofilamentous aggregates.
Collapse
Affiliation(s)
- N K Wong
- Department of Pathology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
26
|
Asch WS, Schechter N. Plasticin, a type III neuronal intermediate filament protein, assembles as an obligate heteropolymer: implications for axonal flexibility. J Neurochem 2000; 75:1475-86. [PMID: 10987827 DOI: 10.1046/j.1471-4159.2000.0751475.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The assembly characteristics of the neuronal intermediate filament protein plasticin were studied in SW13 cells in the presence and absence of a cytoplasmic filament network. Full-length plasticin cannot polymerize into homopolymers in filament-less SW13c1.2Vim(-) cells but efficiently coassembles with vimentin in SW13c1.1Vim(-) cells. By cotransfecting plasticin and vimentin in SW13c1.1Vim(-) cells, we show that plasticin assembly requires vimentin in noncatalytic amounts. Differing effects on assembly were seen with point mutations of plasticin monomers that were analogous to the keratin mutations that cause epidermolysis bullosa simplex (EBS). In particular, plasticin monomers with point mutations analogous to those in EBS do not uniformly inhibit neurofilament (NF) network formation. A point mutation in the helix termination sequence resulted in complete filament aggregation when coexpressed with vimentin but showed limited coassembly with low- and medium-molecular-weight NF proteins (NF-L and NF-M, respectively). In transfected SW13c1.1Vim(+) cells, a point mutation in the first heptad of the alpha-helical coil region formed equal amounts of filaments, aggregates, and a mixture of filaments and aggregates. Furthermore, coexpression of this point mutation with NF-L and NF-M was associated with a shift toward increased numbers of aggregates. These results suggest that there are important structural differences in assembly properties between homologous fish and mammalian intermediate filament proteins. These structural differences may contribute to the distinctive growth characteristics of the teleost visual pathway.
Collapse
Affiliation(s)
- W S Asch
- Department of Biochemistry and Cell Biology, Health Sciences Center, State University of New York, Stony Brook, New York 11794, USA
| | | |
Collapse
|
27
|
Ching GY, Liem RK. Analysis of the roles of the head domains of type IV rat neuronal intermediate filament proteins in filament assembly using domain-swapped chimeric proteins. J Cell Sci 1999; 112 ( Pt 13):2233-40. [PMID: 10362553 DOI: 10.1242/jcs.112.13.2233] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV neuronal intermediate filament proteins consist of alpha-internexin, which can self-assemble into filaments and the neurofilament triplet proteins, which are obligate heteropolymers, at least in rodents. These IF proteins therefore provide good systems for elucidating the mechanism of intermediate filament assembly. To analyze the roles of the head domains of these proteins in contributing to their differential assembly properties, we generated chimeric proteins by swapping the head domains between rat alpha-internexin and either rat NF-L or NF-M and examined their assembly properties in transfected cells that lack their own cytoplasmic intermediate filament network. Lalphaalpha and Malphaalpha, the chimeric proteins generated by replacing the head domain of alpha-internexin with those of NF-L and NF-M, respectively, were unable to self-assemble into filaments. In contrast, alphaLL, a chimeric NF-L protein generated by replacing the head domain of NF-L with that of alpha-internexin, was able to self-assemble into filaments, whereas MLL, a chimeric NF-L protein containing the NF-M head domain, was unable to do so. These results demonstrate that the alpha-internexin head domain is essential for alpha-internexin's ability to self-assemble. While coassembly of Lalphaalpha with NF-M and coassembly of Malphaalpha with NF-L resulted in formation of filaments, coassembly of Lalphaalpha with NF-L and coassembly of Malphaalpha with NF-M yielded punctate patterns. These coassembly results show that heteropolymeric filament formation requires that one partner has the NF-L head domain and the other partner has the NF-M head domain. Thus, the head domains of rat NF-L and NF-M play important roles in determining the obligate heteropolymeric nature of filament formation. The data obtained from these self-assembly and coassembly studies provide some new insights into the mechanism of intermediate filament assembly.
Collapse
Affiliation(s)
- G Y Ching
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
28
|
Elder GA, Friedrich VL, Pereira D, Tu PH, Zhang B, Lee VM, Lazzarini RA. Mice with disrupted midsized and heavy neurofilament genes lack axonal neurofilaments but have unaltered numbers of axonal microtubules. J Neurosci Res 1999; 57:23-32. [PMID: 10397632 DOI: 10.1002/(sici)1097-4547(19990701)57:1<23::aid-jnr3>3.0.co;2-a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian neurofilaments are assembled from the light (NF-L), midsized (NF-M), and heavy (NF-H) neurofilament proteins. While NF-M and NF-H cannot self-assemble into homopolymers, the data concerning NF-L has been more contradictory. In vitro bovine, porcine, and murine NF-L can homopolymerize in the absence of other subunits. However, in vivo studies suggest that neither rat nor mouse NF-L can form filaments when transfected alone into cells lacking endogenous intermediate filaments. By contrast, human NF-L forms homopolymers in similar cell lines. Recently we generated mice with null mutations in the NF-M and NF-H genes. To determine if mouse NF-L can homopolymerize in mouse axons, NF-M and NF-H null mutants were bred to create a line of double mutant animals. Here we show that axons in NF-M/H double mutant animals are largely devoid of 10-nm filaments. Instead, the axoplasm is transformed to a microtubule-based cytoskeleton-although the lack of any increase in tubulin levels per unit length of nerve or of increases in microtubule numbers relative to myelin sheath thickness argues that microtubules are not increased in response to the loss of neurofilaments. Thus in vivo rodent neurofilaments are obligate heteropolymers requiring NF-L plus either NF-M or NF-H to form a filamentous network.
Collapse
Affiliation(s)
- G A Elder
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Beaulieu JM, Robertson J, Julien JP. Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem Cell Biol 1999. [DOI: 10.1139/o99-003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurofilaments are the principal intermediate filament type expressed by neurons. They are formed by the co-assembly of three subunits: NF-L, NF-M, and NF-H. Peripherin is another intermediate filament protein expressed mostly in neurons of the peripheral nervous system. In contrast to neurofilaments, peripherin can self-assemble to establish an intermediate filament network in cultured cells. The co-expression of neurofilaments and peripherin is found mainly during development and regeneration. We used SW13 cells devoid of endogenous cytoplasmic intermediate filaments to assess the exact assembly characteristics of peripherin with each neurofilament subunit. Our results demonstrate that peripherin can assemble with NF-L. In contrast, the co-expression of peripherin with the large neurofilament subunits interferes with peripherin assembly. These results confirm the existence of interactions between peripherin and neurofilaments in physiological conditions. Moreover, they suggest that perturbations in the stoichiometry of neurofilaments can have an impact on peripherin assembly in vivo.Key words: peripherin, neurofilament, SW13 cells, intermediate filament.
Collapse
|
30
|
Abstract
The distribution of neuronal intermediate filament proteins in the developing mouse olfactory bulb and olfactory epithelium was characterized by immunocytochemical approach. Antibodies against alpha-internexin, neurofilament triplet proteins (NFTPs; NF-L, NF-M, and NF-H) and peripherin were used to determine their expression at different developmental stages. Alpha-internexin and peripherin were first found to be co-localized in the olfactory neuroepithelium during early development. At the perinatal stage, expression patterns of alpha-internexin and peripherin are distinguishable by spatial and temporal manner: peripherin is predominantly expressed in the olfactory nerves; whereas alpha-internexin is expressed in both olfactory nerves and olfactory bulb. Our observation suggests that peripherin as well as alpha-internexin may play some roles in the process formation of olfactory nerves during development. In the developing olfactory periglomerulus, alpha-internexin was found around postnatal Day 3, whereas NFTPs were not observed until postnatal Day 7. Our data showed that the expression of alpha-internexin preceded those of the NFTPs in most neurons of the developing olfactory bulb. Some small neurons in the adult olfactory bulb were uniquely labeled with antibody to alpha-internexin. Our results suggest that alpha-internexin may play a functional role in the neuronal cytoarchitecture of developing olfactory system, and can be a neuronal marker for detecting postmitotic migrating neurons in the adult olfactory bulb.
Collapse
Affiliation(s)
- C L Chien
- Department of Anatomy, College of Medicine, National Taiwan University, Taipei, Republic of China
| | | | | |
Collapse
|
31
|
Ching GY, Liem RK. Roles of head and tail domains in alpha-internexin's self-assembly and coassembly with the neurofilament triplet proteins. J Cell Sci 1998; 111 ( Pt 3):321-33. [PMID: 9427681 DOI: 10.1242/jcs.111.3.321] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of the head and tail domains of alpha-internexin, a type IV neuronal intermediate filament protein, in its self-assembly and coassemblies with neurofilament triplet proteins, were examined by transient transfections with deletion mutants in a non-neuronal cell line lacking an endogenous cytoplasmic intermediate filament network. The results from the self-assembly studies showed that the head domain was essential for alpha-internexin's ability to self-assemble into a filament network and the tail domain was important for establishing a proper filament network. The data from the coassembly studies demonstrated that alpha-internexin interacted differentially with the neurofilament triplet protein subunits. Wild-type NF-L or NF-M, but not NF-H, was able to complement and form a normal filament network with the tailless alpha-internexin mutant, the alpha-internexin head-deletion mutant, or the alpha-internexin mutant missing the entire tail and some amino-terminal portion of the head domain. In contrast, neither the tailless NF-L mutant nor the NF-L head-deletion mutant was able to form a normal filament network with any of these alpha-internexin deletion mutants. However, coassembly of the tailless NF-M mutant with the alpha-internexin head-deletion mutant and coassembly of the NF-M head-deletion mutant with the tailless alpha-internexin mutant resulted in the formation of a normal filament network. Thus, the coassembly between alpha-internexin and NF-M exhibits some unique characteristics previously not observed with other intermediate filament proteins: only one intact tail and one intact head are required for the formation of a normal filament network, and they can be present within the same partner or separately in two partners.
Collapse
Affiliation(s)
- G Y Ching
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
32
|
Hemken PM, Bellin RM, Sernett SW, Becker B, Huiatt TW, Robson RM. Molecular characteristics of the novel intermediate filament protein paranemin. Sequence reveals EAP-300 and IFAPa-400 are highly homologous to paranemin. J Biol Chem 1997; 272:32489-99. [PMID: 9405460 DOI: 10.1074/jbc.272.51.32489] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Paranemin was initially found to copurify with the intermediate filament (IF) proteins vimentin and desmin from embryonic chick skeletal muscle and was described as an IF-associated protein (IFAP). We have purified paranemin from embryonic chick skeletal muscle, prepared antibodies, and demonstrated that they label at the Z-lines of both adult avian and porcine cardiac and skeletal muscle myofibrils. We determined the cDNA sequence of paranemin by immunoscreening a lambdagt22A cDNA library from embryonic chick skeletal muscle. Northern blot analysis revealed a single transcript of 5.3 kilobases, which is much smaller than predicted from the size of paranemin (280 kDa) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The derived amino acid sequence of paranemin (1,606 residues; 178,161 kDa) contains the conserved IF rod domain (308 amino acids), which has highest homology to the rod domains of nestin and tanabin. Thus, paranemin is an IF protein rather than an IFAP. Sequence analysis also revealed that the partial cDNA sequences of two proteins, namely EAP-300 and IFAPa-400, are almost identical to regions of the cDNA sequence of paranemin. The complete paranemin cDNA was expressed in a cell line (SW13) with, and without, detectable cytoplasmic IFs. Antibody labeling of these cells suggests that paranemin does not form IFs by itself, but rather is incorporated into heteropolymeric IFs with vimentin.
Collapse
Affiliation(s)
- P M Hemken
- Muscle Biology Group, Departments of Biochemistry and Biophysics and of Animal Science, Iowa State University, Ames, Iowa 50011-3260, USA
| | | | | | | | | | | |
Collapse
|
33
|
Athlan E, Sacher M, Mushynski W. Associations between intermediate filament proteins expressed in cultured dorsal root ganglion neurons. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970201)47:3<300::aid-jnr8>3.0.co;2-m] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|