1
|
Dong S, Pang H, Li F, Hua M, Liang M, Song C. Immunoregulatory function of SP-A. Mol Immunol 2024; 166:58-64. [PMID: 38244369 DOI: 10.1016/j.molimm.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Surfactant protein A (SP-A), a natural immune molecule, plays an important role in lung health. SP-A recognizes and binds microbial surface glycogroups through the C-type carbohydrate recognition domain, and then binds corresponding cell surface receptors (such as C1qRp, CRT-CD91 complex, CD14, SP-R210, Toll-like receptor, SIRP-α, CR3, etc.) through collagen-like region, and subsequently mediates biological effects. SP-A regulates lung innate immunity by promoting surfactant absorption by alveolar type II epithelial cells and phagocytosis of pathogenic microorganisms by alveolar macrophages. SP-A also regulates lung adaptive immunity by inhibiting DC maturation, and T cell proliferation and differentiation. This article reviews latest relationships between SP-A and adaptive and intrinsic immunity.
Collapse
Affiliation(s)
- Shu Dong
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical University, Anhui 233030, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Anhui 233030, China
| | - Hongyuan Pang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical University, Anhui 233030, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Anhui 233030, China
| | - Fan Li
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical University, Anhui 233030, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Anhui 233030, China
| | - Mengqing Hua
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical University, Anhui 233030, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Anhui 233030, China
| | - Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical University, Anhui 233030, China.
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical University, Anhui 233030, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Anhui 233030, China.
| |
Collapse
|
2
|
Sotiriadis G, Dodagatta-Marri E, Kouser L, Alhamlan FS, Kishore U, Karteris E. Surfactant Proteins SP-A and SP-D Modulate Uterine Contractile Events in ULTR Myometrial Cell Line. PLoS One 2015; 10:e0143379. [PMID: 26641881 PMCID: PMC4671565 DOI: 10.1371/journal.pone.0143379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2015] [Accepted: 11/04/2015] [Indexed: 01/27/2023] Open
Abstract
Pulmonary surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules. However, there is extrapulmonary existence, especially in the amniotic fluid and at the feto-maternal interface. There is sufficient evidence to suggest that SP-A and SP-D are involved in the initiation of labour. This is of great importance given that preterm birth is associated with increased mortality and morbidity. In this study, we investigated the effects of recombinant forms of SP-A and SP-D (rhSP-A and rhSP-D, the comprising of trimeric lectin domain) on contractile events in vitro, using a human myometrial cell line (ULTR) as an experimental model. Treatment with rhSP-A or rhSP-D increased the cell velocity, distance travelled and displacement by ULTR cells. rhSP-A and rhSP-D also affected the contractile response of ULTRs when grown on collagen matrices showing reduced surface area. We investigated this effect further by measuring contractility-associated protein (CAP) genes. Treatment with rhSP-A and rhSP-D induced expression of oxytocin receptor (OXTR) and connexin 43 (CX43). In addition, rhSP-A and rhSP-D were able to induce secretion of GROα and IL-8. rhSP-D also induced the expression of IL-6 and IL-6 Ra. We provide evidence that SP-A and SP-D play a key role in modulating events prior to labour by reconditioning the human myometrium and in inducing CAP genes and pro-inflammatory cytokines thus shifting the uterus from a quiescent state to a contractile one.
Collapse
Affiliation(s)
- Georgios Sotiriadis
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Eswari Dodagatta-Marri
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Lubna Kouser
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Emmanouil Karteris
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- Institute of Environment, Heath and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
3
|
Farcal LR, Uboldi C, Mehn D, Giudetti G, Nativo P, Ponti J, Gilliland D, Rossi F, Bal-Price A. Mechanisms of toxicity induced by SiO2 nanoparticles of in vitro human alveolar barrier: effects on cytokine production, oxidative stress induction, surfactant proteins A mRNA expression and nanoparticles uptake. Nanotoxicology 2012; 7:1095-110. [PMID: 22769972 DOI: 10.3109/17435390.2012.710658] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
An in vitro human alveolar barrier established by the coculture of epithelial human cell line NCI-H441 with endothelial human cell line ISO-HAS1 was used to evaluate the effects of amorphous silicon dioxide nanoparticles (SiNPs), in the presence or absence of THP-1 cells (monocytes). SiNPs exposure induced production of proinflammatory cytokine and oxidative stress. A high release of TNF-α and IL-8 by epithelial/endothelial cells, potentiated in the presence of THP-1 cells could contribute to the observed downregulation of surfactant proteins A mRNA expression resulting in the damage of the alveolar barrier. The obtained results suggested that in vitro approach can be used to study pulmonary toxicity as long as the applied in vitro model mimics closely the complexity of in vivo situation.
Collapse
Affiliation(s)
- Lucian Romeo Farcal
- Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Validation of Alternative Methods Unit / EURL ECVAM , via E. Fermi 2749, Ispra VA, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sender V, Moulakakis C, Stamme C. Pulmonary surfactant protein A enhances endolysosomal trafficking in alveolar macrophages through regulation of Rab7. THE JOURNAL OF IMMUNOLOGY 2011; 186:2397-411. [PMID: 21248257 DOI: 10.4049/jimmunol.1002446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Surfactant protein A (SP-A), the most abundant pulmonary soluble collectin, modulates innate and adaptive immunity of the lung, partially via its direct effects on alveolar macrophages (AM), the most predominant intra-alveolar cells under physiological conditions. Enhanced phagocytosis and endocytosis are key functional consequences of AM/SP-A interaction, suggesting a SP-A-mediated modulation of small Rab (Ras related in brain) GTPases that are pivotal membrane organizers in both processes. In this article, we show that SP-A specifically and transiently enhances the protein expression of endogenous Rab7 and Rab7b, but not Rab5 and Rab11, in primary AM from rats and mice. SP-A-enhanced GTPases are functionally active as determined by increased interaction of Rab7 with its downstream effector Rab7 interacting lysosomal protein (RILP) and enhanced maturation of cathepsin-D, a function of Rab7b. In AM and RAW264.7 macrophages, the SP-A-enhanced lysosomal delivery of GFP-Escherichia coli is abolished by the inhibition of Rab7 and Rab7 small interfering RNA transfection, respectively. The constitutive expression of Rab7 in AM from SP-A(-/-) mice is significantly reduced compared with SP-A(+/+) mice and is restored by SP-A. Rab7 blocking peptides antagonize SP-A-rescued lysosomal delivery of GFP-E. coli in AM from SP-A(-/-) mice. Activation of Rab7, but not Rab7b, by SP-A depends on the PI3K/Akt/protein kinase Cζ (PKCζ) signal transduction pathway in AM and RAW264.7 macrophages. SP-A induces a Rab7/PKCζ interaction in these cells, and the disruption of PKCζ by small interfering RNA knockdown abolishes the effect of SP-A on Rab7. The data demonstrate a novel role for SP-A in modulating endolysosomal trafficking via Rab7 in primary AM and define biochemical pathways involved.
Collapse
Affiliation(s)
- Vicky Sender
- Division of Cellular Pneumology, Department of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23845 Borstel, Germany
| | | | | |
Collapse
|
5
|
van Rozendaal BAWM, van Golde LMG, Haagsman HP. Localization and Functions of SP-A and SP-D at Mucosal Surfaces. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513810109168824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
|
6
|
El Saleeby CM, Li R, Somes GW, Dahmer MK, Quasney MW, DeVincenzo JP. Surfactant protein A2 polymorphisms and disease severity in a respiratory syncytial virus-infected population. J Pediatr 2010; 156:409-14. [PMID: 19914637 DOI: 10.1016/j.jpeds.2009.09.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/17/2008] [Revised: 08/10/2009] [Accepted: 09/15/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To examine whether genetic variations within the surfactant protein A2 (SP-A2) gene are associated with respiratory syncytial virus (RSV) disease severity in infected children. STUDY DESIGN Naturally infected children aged < or =24 months were prospectively enrolled in 3 RSV seasons. SP-A2 genotyping was performed. Independent clinical predictors of disease severity were analyzed. The association of SP-A2 genetic diversity and disease severity was tested by using multivariate logistic regression models and 4 levels of disease gradation as outcome measures. RESULTS Homozygosity of the 1A(0) allele was protective against hospitalization (odds ratio [OR] = 0.15, P = .0010). This remained significant in African American patients (OR = 0.24, P = .042) and Caucasian patients (OR = 0.05, P = .021) after adjustment for other co-variates. Hospitalized children with the 1A(2) allele demonstrated significant protection from severe disease with univariate analyses, but only a trend for protection with multivariate analyses. Patients homozygous or heterozygous for an asparagine at amino acid position 9 were twice or more likely to need intensive care unit admission (OR = 2.15, P = .022), require intubation (OR = 3.04, P = .005), and have a hospitalization lasting > or =4 days (OR = 1.89, P = .02) compared with children homozygous for a threonine at this position. CONCLUSIONS SP-A2 polymorphisms are associated with the severity of RSV infection in infants.
Collapse
Affiliation(s)
- Chadi M El Saleeby
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Spyridakis S, Leondaritis G, Nakos G, Lekka ME, Galanopoulou D. A specific phospholipase C activity regulates phosphatidylinositol levels in lung surfactant of patients with acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2009; 42:357-62. [PMID: 19491339 DOI: 10.1165/rcmb.2009-0078oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Lung surfactant (LS) is a lipid-rich material lining the inside of the lungs. It reduces surface tension at the liquid/air interface and thus, it confers protection of the alveoli from collapsing. The surface-active component of LS is dipalmitoyl-phosphatidylcholine, while anionic phospholipids such as phosphatidylinositol (PtdIns) and primarily phosphatidylglycerol are involved in the stabilization of the LS monolayer. The exact role of PtdIns in this system is not well-understood; however, PtdIns levels change dramatically during the acute respiratory distress syndrome (ARDS) evolution. In this report we present evidence of a phosphoinositide-specific phospholipase C (PI-PLC) activity in bronchoalveolar lavage (BAL) fluid, which may regulate PtdIns levels. Characterization of this extracellular activity showed specificity for PtdIns and phosphatidylinositol 4,5-bisphosphate, sharing the typical substrate concentration-, pH-, and calcium-dependencies with mammalian PI-PLCs. Fractionation of BAL fluid showed that PI-PLC did not co-fractionate with large surfactant aggregates, but it was found mainly in the soluble fraction. Importantly, analysis of BAL samples from control subjects and from patients with ARDS showed that the PI-PLC specific activity was decreased by 4-fold in ARDS samples concurrently with the increase in BAL PtdIns levels. Thus, we have identified for the first time an extracellular PI-PLC enzyme activity that may be acutely involved in the regulation of PtdIns levels in LS.
Collapse
Affiliation(s)
- Spyros Spyridakis
- Department of Chemistry, University of Athens, Zografou, 15771 Athens, Greece
| | | | | | | | | |
Collapse
|
8
|
Gil M, McCormack FX, Levine AM. Surfactant protein A modulates cell surface expression of CR3 on alveolar macrophages and enhances CR3-mediated phagocytosis. J Biol Chem 2009; 284:7495-504. [PMID: 19155216 DOI: 10.1074/jbc.m808643200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023] Open
Abstract
Pulmonary surfactant protein A (SP-A), a member of the collectin family, plays an important role in innate immune defense of the lung. In this study, we examined the role of SP-A in modulating complement receptor-mediated phagocytosis. Complement receptors (CR), CR3 (CD11b), and CR4 (CD11c) were expressed at reduced levels on the surface of alveolar macrophages from Sp-a(-/-) compared with Sp-a(+/+) mice. Administration of intratracheal SP-A to Sp-a(-/-) mice induced the translocation of CR3 from alveolar macrophage intracellular pools to the cell surface. Intratracheal challenge with Haemophilus influenza enhanced CR3 expression on the surface of alveolar macrophages from Sp-a(-/-) and Sp-a(+/+) mice, but relative expression remained lower in the Sp-a(-/-) mice at all time points post-inoculation. The effects of SP-A on macrophage and neutrophil CR3 redistribution between intracellular and cell surface pools were restricted to cells isolated from the lung. SP-A augmented CR3-mediated phagocytosis in a manner that was attenuated by N-glycanase or collagenase treatment of SP-A, implicating the N-linked sugar and collagen-like domains in that function. The binding of CR3 to SP-A was calcium dependent and mediated by the I-domain of CR3 and to a lesser extent by the CR3 lectin domain. Mapping of the domains of SP-A that were required for optimal binding to CR3 revealed that the N-linked sugars were more critical than the collagen-like domain or the extent of oligomeric assembly. We conclude that SP-A modulates the cell surface expression of CR3 on alveolar macrophages, binds to CR3, and enhances CR3-mediated phagocytosis.
Collapse
Affiliation(s)
- Malgorzata Gil
- Department of Pediatrics, Division of Critical Care Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
9
|
Mikerov AN, Umstead TM, Gan X, Huang W, Guo X, Wang G, Phelps DS, Floros J. Impact of ozone exposure on the phagocytic activity of human surfactant protein A (SP-A) and SP-A variants. Am J Physiol Lung Cell Mol Physiol 2007; 294:L121-30. [PMID: 17981957 DOI: 10.1152/ajplung.00288.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. SP-A1 and SP-A2 encode human (h) SP-A; SP-A2 products enhance phagocytosis more than SP-A1. Oxidation can affect SP-A function. We hypothesized that in vivo and in vitro ozone-induced oxidation of SP-A (as assessed by its carbonylation level) negatively affects its function in phagocytosis (as assessed by bacteria cell association). To test this, we used P. aeruginosa, rat alveolar macrophages (AMs), hSP-As with varying levels of in vivo (natural) oxidation, and ozone-exposed SP-A2 (1A, 1A0) and SP-A1 (6A2, 6A4) variants. SP-A oxidation levels (carbonylation) were measured; AMs were incubated with bacteria in the presence of SP-A, and the phagocytic index was calculated. We found: 1) the phagocytic activity of hSP-A is reduced with increasing levels of in vivo SP-A carbonylation; 2) in vitro ozone exposure of hSP-A decreases its function in a dose-dependent manner as well as its ability to enhance phagocytosis of either gram-negative or gram-positive bacteria; 3) the activity of both SP-A1 and SP-A2 decreases in response to in vitro ozone exposure of proteins with SP-A2 being affected more than SP-A1. We conclude that both in vivo and in vitro oxidative modifications of SP-A by carbonylation reduce its ability to enhance phagocytosis of bacteria and that the activity of SP-A2 is affected more by in vitro ozone-induced oxidation. We speculate that functional differences between SP-A1 and SP-A2 exist in vivo and that the redox status of the lung microenvironment differentially affects function of SP-A1 and SP-A2.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State Univ. College of Medicine, 500 University Dr. Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang G, Myers C, Mikerov A, Floros J. Effect of cysteine 85 on biochemical properties and biological function of human surfactant protein A variants. Biochemistry 2007; 46:8425-35. [PMID: 17580966 PMCID: PMC2531219 DOI: 10.1021/bi7004569] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Four "core" amino acid differences within the collagen-like domain distinguish the human surfactant protein A1 (SP-A1) variants from the SP-A2 variants. One of these, cysteine 85 that could form intermolecular disulfide bonds, is present in SP-A1 (Cys85) and absent in SP-A2 (Arg85). We hypothesized that residue 85 affects both the structure and function of SP-A1 and SP-A2 variants. To test this, wild-type (WT) variants, 6A2 of SP-A1 and 1A0 of SP-A2, and their mutants (6A2(C85R) and 1A0(R85C)) were generated and studied. We found the following: (1) Residue 85 affected the binding ability to mannose and the oligomerization pattern of SP-As. The 1A0(R85C) and 6A2(C85R) patterns were similar and/or resembled those of WT 6A2 and 1A0, respectively. (2) Both SP-A WT and mutants differentially induced rough LPS and Pseudomonas aeruginosa aggregation in the following order: 1A0 > 6A2 > 6A2(C85R) > 1A0(R85C) for Re-LPS aggregation and 1A0 > 6A2 = 6A2(C85R) = 1A0(R85C) for bacterial aggregation. (3) SP-A WT and mutants enhanced phagocytosis of P. aeruginosa by rat alveolar macrophages. Their phagocytic index order was 6A2(C85R) > 1A0 > 6A2 = 1A0(R85C). The activity of mutant 1A0(C85R) was significantly lower than WT 1A0 but similar to 6A2. Compared to WT 6A2, the 6A2(C85R) mutant exhibited a significantly higher activity. These results indicate that the SP-A variant/mutant with Arg85 exhibits a higher ability to enhance bacterial phagocytosis than that with Cys85. Residue 85 plays an important role in the structure and function of SP-A and is a major factor for the differences between SP-A1 and SP-A2 variants.
Collapse
Affiliation(s)
- Guirong Wang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Catherine Myers
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Anatoly Mikerov
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Joanna Floros
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- * Corresponding author: Joanna Floros, Ph. D. Department of Cellular and Molecular Physiology, H166, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA, Telephone: (717) 531-6972, FAX: (717) 531-7667, E-mail:
| |
Collapse
|
11
|
Giannoni E, Sawa T, Allen L, Wiener-Kronish J, Hawgood S. Surfactant proteins A and D enhance pulmonary clearance of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol 2006; 34:704-10. [PMID: 16456184 PMCID: PMC2644232 DOI: 10.1165/rcmb.2005-0461oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Surfactant protein (SP)-A and SP-D, members of the collectin family, are involved in innate host defenses against various bacterial and viral pathogens. In this study, we asked whether SP-A and SP-D enhance clearance of a nonmucoid strain of Pseudomonas aeruginosa from the lungs. We infected mice deficient in SP-A (SP-A-/-), SP-D (SP-D-/-) and both pulmonary collectins (SP-AD-/-) by intratracheal administration of P. aeruginosa. Six hours after infection, bacterial counts were significantly higher in SP-A-/-, SP-D-/-, and SP-AD-/- compared with wild-type (WT) mice. Forty-eight hours after infection, bacterial counts were significantly higher in SP-A-/- mice compared with WT mice and in SP-AD-/- mice compared with WT, SP-A-/-, and SP-D-/- mice. Phagocytosis of the bacteria by alveolar macrophages was decreased in SP-A-/- and SP-D-/- mice. Levels of macrophage inflammatory peptide-2 and IL-6 were more elevated in the lungs of SP-D and SP-AD-/- mice compared with WT mice. There was more infiltration by neutrophils in the lungs of SP-D-/- compared with WT and SP-A-/- mice 48 h after infection. This study shows that SP-A and SP-D enhance pulmonary clearance of P. aeruginosa by stimulating phagocytosis by alveolar macrophages and by modulating the inflammatory response in the lungs. These findings also show that the functions of SP-A and SP-D are not completely redundant in vivo.
Collapse
Affiliation(s)
- Eric Giannoni
- Department of Pediatrics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143-0110, USA
| | | | | | | | | |
Collapse
|
12
|
Faure K, Leberre R, Guery B. Pseudomonas aeruginosa et surfactant rôle de SP-A et SP-D. Med Mal Infect 2006; 36:63-71. [PMID: 16406431 DOI: 10.1016/j.medmal.2005.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2005] [Accepted: 08/21/2005] [Indexed: 11/30/2022]
Abstract
Surfactant-associated proteins A and D (SP-A and SP-D) are two pulmonary collectins that bind to bacterial, fungal and viral pathogens and have multiples classes of receptors on pneumocyte and macrophage membrane. They are chemoattractant for phagocytes, enhance uptake and killing of bacteria by macrophages and neutrophils. These molecules also act as activation ligand on macrophages and neutrophils to enhance phagocytosis, resulting in an increased bacterial clearance. Depending on activation of cells by stimuli, SP-A and SP-D modulate production of antimicrobial free radicals by phagocytes and secretion of cytokines. In vivo, SP-A deficient mice infected with Pseudomonas aeruginosa (P. aeruginosa) have decreased bacterial clearance and exacerbated inflammatory response in the lungs. Serious alterations in macrophages and increased production of reactive oxygen species were found in non-infected SP-D deficient mice. Patients with cystic fibrosis are frequently colonized by P. aeruginosa. Decreased levels of SP-A and SP-D have been measured in bronchoalveolar lavage fluid of these patients, as well as patients with acute pneumonia but no chronic lung disease. P. aeruginosa secretes various proteases, among them, elastase and protease IV have been found to degrade SP-A and SP-D and abrogate their immune function. However, further investigations are necessary to examine whether these deficiencies facilitate P. aeruginosa infections or stand as consequences.
Collapse
Affiliation(s)
- K Faure
- Laboratoire de recherche en pathologie infectieuse, EA 2689, faculté de médecine de Lille, 59045 Lille, France.
| | | | | |
Collapse
|
13
|
Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KBM, Madan T, Chakraborty T. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 2005; 43:1293-315. [PMID: 16213021 DOI: 10.1016/j.molimm.2005.08.004] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2005] [Accepted: 08/23/2005] [Indexed: 12/11/2022]
Abstract
Surfactant proteins, SP-A and SP-D, are collagen-containing C-type (calcium dependent) lectins called collectins, which contribute significantly to surfactant homeostasis and pulmonary immunity. These highly versatile innate immune molecules are involved in a range of immune functions including viral neutralization, clearance of bacteria, fungi and apoptotic and necrotic cells, down regulation of allergic reaction and resolution of inflammation. Their basic structures include a triple-helical collagen region and a C-terminal homotrimeric lectin or carbohydrate recognition domain (CRD). The trimeric CRDs can recognize carbohydrate or charge patterns on microbes, allergens and dying cells, while the collagen region can interact with receptor molecules present on a variety of immune cells in order to initiate clearance mechanisms. Studies involving gene knock-out mice, murine models of lung hypersensitivity and infection, and functional characterization of cell surface receptors have revealed the diverse roles of SP-A and SP-D in the control of lung inflammation. A recently proposed model based on studies with the calreticulin-CD91 complex as a receptor for SP-A and SP-D has suggested an anti-inflammatory role for SP-A and SP-D in naïve lungs which would help minimise the potential damage that continual low level exposure to pathogens, allergens and apoptosis can cause. However, when the lungs are overwhelmed with exogenous insults, SP-A and SP-D can assume pro-inflammatory roles in order to complement pulmonary innate and adaptive immunity. This review is an update on the structural and functional aspects of SP-A and SP-D, with emphasis on their roles in controlling pulmonary infection, allergy and inflammation. We also try to put in perspective the controversial subject of the candidate receptor molecules for SP-A and SP-D.
Collapse
Affiliation(s)
- Uday Kishore
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Beharka AA, Crowther JE, McCormack FX, Denning GM, Lees J, Tibesar E, Schlesinger LS. Pulmonary Surfactant Protein A Activates a Phosphatidylinositol 3-Kinase/Calcium Signal Transduction Pathway in Human Macrophages: Participation in the Up-Regulation of Mannose Receptor Activity. THE JOURNAL OF IMMUNOLOGY 2005; 175:2227-36. [PMID: 16081790 DOI: 10.4049/jimmunol.175.4.2227] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
Surfactant protein A (SP-A), a major component of lung surfactant, binds to macrophages and has been shown to alter several macrophage biological functions, including up-regulation of macrophage mannose receptor (MR) activity. In the present study, we show that SP-A induces signal transduction pathway(s) that impact on MR expression. The addition of human, rat, or recombinant rat SP-A to human monocyte-derived macrophages significantly raised the level of cytosolic Ca2+ above baseline within 10 s of SP-A addition, as measured by spectrofluorometric analysis. SP-A induced a refractory state specific for SP-A consistent with homologous desensitization of a receptor(s) linked to calcium mobilization because a second application of SP-A did not induce a rise in cytosolic Ca2+ whereas the addition of platelet-activating factor did. Using site-directed mutations in SP-A, we determined that both the attached sugars and the collagen-like domain of SP-A are necessary to optimize Ca2+ mobilization. SP-A triggered the increase in cytosolic Ca2+ by inducing activation of phospholipase C, which leads to the hydrolysis of membrane phospholipids, yielding inositol 1,4,5-trisphosphate and mobilizing intracellularly stored Ca2+ by inositol triphosphate-sensitive channels. Finally, inhibition of PI3Ks, which appear to act upstream of phospholipase C in Ca2+ mobilization, decreased the SP-A-induced rise in MR expression, providing evidence that SP-A induction of MR activity involves the activation of a pathway in which PI3K is a component. These studies provide further evidence that SP-A produced in the lung plays a role in modulating macrophage biology, thereby contributing to the alternative activation state of the alveolar macrophage.
Collapse
MESH Headings
- Adult
- Animals
- Binding Sites/immunology
- Calcium/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Collagen/physiology
- Cytosol/metabolism
- Dose-Response Relationship, Immunologic
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/physiology
- Intracellular Fluid/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/metabolism
- Lipopolysaccharides/pharmacology
- Macrophage Activation/genetics
- Macrophage Activation/immunology
- Macrophages/enzymology
- Macrophages/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/biosynthesis
- Mannose-Binding Lectins/metabolism
- Monocytes/enzymology
- Monocytes/immunology
- Monocytes/metabolism
- Oligosaccharides/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Protein Structure, Tertiary/physiology
- Pulmonary Surfactant-Associated Protein A/genetics
- Pulmonary Surfactant-Associated Protein A/pharmacology
- Pulmonary Surfactant-Associated Protein A/physiology
- Rats
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- U937 Cells
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Alison A Beharka
- Interdisciplinary Program in Immunology and Department of Internal Medicine, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Mikerov AN, Umstead TM, Huang W, Liu W, Phelps DS, Floros J. SP-A1 and SP-A2 variants differentially enhance association ofPseudomonas aeruginosawith rat alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2005; 288:L150-8. [PMID: 15377498 DOI: 10.1152/ajplung.00135.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Chronic airway inflammation caused by Pseudomonas aeruginosa is an important feature of cystic fibrosis (CF). Surfactant protein A (SP-A) enhances phagocytosis of P. aeruginosa. Two genes, SP-A1 and SP-A2, encode human SP-A. We hypothesized that genetically determined differences in the activity of SP-A1 and SP-A2 gene products exist. To test this, we studied association of a nonmucoid P. aeruginosa strain (ATCC 39018) with rat alveolar macrophages in the presence or absence of insect cell-expressed human SP-A variants. We used two trios, each consisting of SP-A1, SP-A2, and their coexpressed SP-A1/SP-A2 variants. We tested the 6A2and 6A4alleles (for SP-A1), the 1A0and 1A alleles (for SP-A2), and their respective coexpressed SP-A1/SP-A2 gene products. After incubation of alveolar macrophages with P. aeruginosa in the presence of the SP-A variants at 37°C for 1 h, the cell association of bacteria was assessed by light microscopy analysis. We found 1) depending on SP-A concentration and variant, SP-A2 variants significantly increased the cell association more than the SP-A1 variants (the phagocytic index for SP-A1 was ∼52–95% of the SP-A2 activity); 2) coexpressed variants at certain concentrations were more active than single gene products; and 3) the phagocytic index for SP-A variants was ∼18–41% of the human SP-A from bronchoalveolar lavage. We conclude that human SP-A variants in vitro enhance association of P. aeruginosa with rat alveolar macrophages differentially and in a concentration-dependent manner, with SP-A2 variants having a higher activity compared with SP-A1 variants.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
16
|
Alcorn JF, Wright JR. Surfactant protein A inhibits alveolar macrophage cytokine production by CD14-independent pathway. Am J Physiol Lung Cell Mol Physiol 2004; 286:L129-36. [PMID: 12959932 DOI: 10.1152/ajplung.00427.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The lung collectin surfactant protein A (SP-A) has both anti-inflammatory and prophagocytic activities. We and others previously showed that SP-A inhibits the macrophage production of tumor necrosis factor (TNF)-alpha stimulated by the gram-negative bacterial component LPS. We propose that SP-A decreases the production of proinflammatory cytokines by alveolar macrophages via a CD14-independent mechanism. SP-A inhibited LPS-simulated TNF-alpha production in rat and mouse macrophages in the presence and absence of serum (72% and 42% inhibition, respectively). In addition, SP-A inhibited LPS-induced mRNA levels for TNF-alpha, IL-1 alpha, and IL-1 beta as well as NF-kappa B DNA binding activity. SP-A also diminished ultrapure LPS-stimulated TNF-alpha produced by wild-type and CD14-null mouse alveolar macrophages by 58% and 88%, respectively. Additionally, SP-A inhibited TNF-alpha stimulated by PMA in both wild-type and TLR4-mutant macrophages. These data suggest that SP-A inhibits inflammatory cytokine production in a CD14-independent manner and also by mechanisms independent of the LPS signaling pathway.
Collapse
Affiliation(s)
- John F Alcorn
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Hickman-Davis JM, O'Reilly P, Davis IC, Peti-Peterdi J, Davis G, Young KR, Devlin RB, Matalon S. Killing of Klebsiella pneumoniae by human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2002; 282:L944-56. [PMID: 11943658 DOI: 10.1152/ajplung.00216.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
We investigated putative mechanisms by which human surfactant protein A (SP-A) effects killing of Klebsiella pneumoniae by human alveolar macrophages (AMs) isolated from bronchoalveolar lavagates of patients with transplanted lungs. Coincubation of AMs with human SP-A (25 microg/ml) and Klebsiella resulted in a 68% decrease in total colony forming units by 120 min compared with AMs infected with Klebsiella in the absence of SP-A, and this SP-A-mediated effect was abolished by preincubation with N(G)-monomethyl-L-arginine. Incubation of transplant AMs with SP-A increased intracellular Ca(2+) concentration ([Ca(2+)](i)) by 70% and nitrite and nitrate (NO(x)) production by 45% (from 0.24 +/- 0.02 to 1.3 +/- 0.21 nmol small middle dot 10(6) AMs(-1).h(-1)). Preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester inhibited the increase in [Ca(2+)](i) and abrogated the SP-A-mediated Klebsiella phagocytosis and killing. In contrast, incubation of AMs from normal volunteers with SP-A decreased both [Ca(2+)](i) and NO(x) production and did not result in killing of Klebsiella. Significant killing of Klebsiella was also seen in a cell-free system by sustained production of peroxynitrite (>1 microM/min) at pH 5 but not at pH 7.4. These findings indicate that SP-A mediates pathogen killing by AMs from transplant lungs by stimulating phagocytosis and production of reactive oxygen-nitrogen intermediates.
Collapse
Affiliation(s)
- Judy M Hickman-Davis
- Department of Anesthesiology, Division of Nephrology and Nephrology Research Training Center, School of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Khubchandani KR, Oberley RE, Snyder JM. Effects of surfactant protein A and NaCl concentration on the uptake of Pseudomonas aeruginosa by THP-1 cells. Am J Respir Cell Mol Biol 2001; 25:699-706. [PMID: 11726395 DOI: 10.1165/ajrcmb.25.6.4366] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
In the present study, we characterized a model system in which we examined the effects of human surfactant protein A (SP-A) on the uptake of a common human pulmonary pathogen, Pseudomonas aeruginosa, by a human monocytic/macrophage cell line, THP-1 cells. We found that SP-A significantly increases uptake of the bacteria in a dose-dependent manner. Bacterial uptake was temperature-dependent, because an effect of SP-A on bacterial uptake was observed at 37 degrees C and not at 4 degrees C. The continued presence of SP-A during the period when the bacteria and THP-1 cells were co-incubated was necessary for enhanced uptake. Pre-incubation of the bacteria or THP-1 cells with SP-A, followed by washing, abolished the effect of SP-A on bacterial uptake. The effect of SP-A could be inhibited by high concentrations of mannose, but was not affected by the removal or addition of lipopolysaccharide (LPS). Finally, we observed that the SP-A-mediated increase in uptake of P. aeruginosa by THP-1 cells was optimal in a narrow (100 mM and 150 mM) range of NaCl concentrations. We conclude that SP-A enhances the THP-1 cell-mediated uptake of P. aeruginosa in a manner dependent on temperature, the concentration of SP-A, and the concentration of NaCl.
Collapse
Affiliation(s)
- K R Khubchandani
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
19
|
Korfhagen TR. Surfactant protein A (SP-A)-mediated bacterial clearance: SP-A and cystic fibrosis. Am J Respir Cell Mol Biol 2001; 25:668-72. [PMID: 11726390 DOI: 10.1165/ajrcmb.25.6.f221] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- T R Korfhagen
- Division of Pulmonary Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
20
|
Hickman-Davis JM, Fang FC, Nathan C, Shepherd VL, Voelker DR, Wright JR. Lung surfactant and reactive oxygen-nitrogen species: antimicrobial activity and host-pathogen interactions. Am J Physiol Lung Cell Mol Physiol 2001; 281:L517-23. [PMID: 11504674 DOI: 10.1152/ajplung.2001.281.3.l517] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein (SP) A and SP-D are members of the collectin superfamily. They are widely distributed within the lung, are capable of antigen recognition, and can discern self versus nonself. SPs recognize bacteria, fungi, and viruses by binding mannose and N-acetylglucosamine residues on microbial cell walls. SP-A has been shown to stimulate the respiratory burst as well as nitric oxide synthase expression by alveolar macrophages. Although nitric oxide (NO.) is a well-recognized microbicidal product of macrophages, the mechanism(s) by which NO. contributes to host defense remains undefined. The purpose of this symposium was to present current research pertaining to the specific role of SPs and reactive oxygen-nitrogen species in innate immunity. The symposium focused on the mechanisms of NO*-mediated toxicity for bacterial, human, and animal models of SP-A- and NO.-mediated pathogen killing, microbial defense mechanisms against reactive oxygen-nitrogen species, specific examples and signaling pathways involved in the SP-A-mediated killing of pulmonary pathogens, the structure and binding of SP-A and SP-D to bacterial targets, and the immunoregulatory functions of SP-A.
Collapse
Affiliation(s)
- J M Hickman-Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama 35249, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Yang S, Milla C, Panoskaltsis-Mortari A, Ingbar DH, Blazar BR, Haddad IY. Human surfactant protein a suppresses T cell-dependent inflammation and attenuates the manifestations of idiopathic pneumonia syndrome in mice. Am J Respir Cell Mol Biol 2001; 24:527-36. [PMID: 11350821 DOI: 10.1165/ajrcmb.24.5.4400] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
We have previously shown an association between growth factor-induced upregulation of surfactant protein (SP)-A and suppression of alveolar inflammation in our murine model of donor T cell-dependent lung dysfunction after bone-marrow transplantation, referred to as idiopathic pneumonia syndrome (IPS). We hypothesized that SP-A protects the lung in vivo from IPS injury by downregulation of alveolar inflammation. Human SP-A (100 microg), purified by n-butanol extraction or preparative isoelectric focusing, was transtracheally instilled on Day 4 after BMT during a time of in vivo donor T-cell activation. At 48 h after treatment, immunohistochemical staining of lung sections showed that SP-A did not alter T cell- dependent cellular infiltration. However, macrophages from SP-A-instilled mice were less injured and spontaneously produced less tumor necrosis factor-alpha than did cells from buffer-instilled mice. Although exogenous SP-A did not significantly alter bronchoalveolar lavage fluid (BALF) high levels of total protein (TP), an inverse correlation between BALF SP-A and TP concentrations (r = -0.65; P = 0.02) was observed in SP-A-treated but not in buffer-instilled mice. The only difference between the effects of the two sources of SP-A was that butanol-extracted SP-A, but not isoelectric focusing-purified SP-A, suppressed the interferon-gamma/nitric oxide pathway. We conclude that SP-A downregulates T cell-dependent alveolar inflammation by multiple pathways leading to decreased IPS injury.
Collapse
Affiliation(s)
- S Yang
- Department of Pediatrics, Division of Pulmonary and Critical Care, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
22
|
Plattner H, Klauke N. Calcium in ciliated protozoa: sources, regulation, and calcium-regulated cell functions. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 201:115-208. [PMID: 11057832 DOI: 10.1016/s0074-7696(01)01003-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
In ciliates, a variety of processes are regulated by Ca2+, e.g., exocytosis, endocytosis, ciliary beat, cell contraction, and nuclear migration. Differential microdomain regulation may occur by activation of specific channels in different cell regions (e.g., voltage-dependent Ca2+ channels in cilia), by local, nonpropagated activation of subplasmalemmal Ca stores (alveolar sacs), by different sensitivity thresholds, and eventually by interplay with additional second messengers (cilia). During stimulus-secretion coupling, Ca2+ as the only known second messenger operates at approximately 5 microM, whereby mobilization from alveolar sacs is superimposed by "store-operated Ca2+ influx" (SOC), to drive exocytotic and endocytotic membrane fusion. (Content discharge requires binding of extracellular Ca2+ to some secretory proteins.) Ca2+ homeostasis is reestablished by binding to cytosolic Ca2+-binding proteins (e.g., calmodulin), by sequestration into mitochondria (perhaps by Ca2+ uniporter) and into endoplasmic reticulum and alveolar sacs (with a SERCA-type pump), and by extrusion via a plasmalemmal Ca2+ pump and a Na+/Ca2+ exchanger. Comparison of free vs total concentration, [Ca2+] vs [Ca], during activation, using time-resolved fluorochrome analysis and X-ray microanalysis, respectively, reveals that altogether activation requires a calcium flux that is orders of magnitude larger than that expected from the [Ca2+] actually required for local activation.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
23
|
Abstract
Surfactant proteins A and D (SP-A and SP-D) are members of the collectin family of polypeptides expressed in the respiratory tract that bind bacterial, fungal and viral pathogens, enhancing their opsonization and killing by phagocytic cells. Clearance of bacterial pathogens including group B streptococci, Haemophilus influenza, Pseudomonas aeruginosa and viral pathogens, respiratory syncytial virus, adenovirus and influenza A virus, was deficient in SP-A(-/-) mice. SP-A deficiency was associated with enhanced inflammation and synthesis of proinflammatory cytokines. SP-D(-/-) mice cleared these bacteria as efficiently as wild-type mice; however, clearance of viral pathogens was deficient in SP-D(-/-) mice and associated with increased inflammation. SP-A and SP-D play critical and distinct roles in the regulation of alveolar macrophage function and inflammation, contributing to innate defense of the lung.
Collapse
Affiliation(s)
- A M LeVine
- Children's Hospital Medical Center, Division of Neonatology and Pulmonary Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
24
|
Abstract
Surfactant protein A (SP-A) is the major protein component of pulmonary surfactant, a material secreted by the alveolar type II cell that reduces surface tension at the alveolar air-liquid interface. The function of SP-A in the alveolus is to facilitate the surface tension-lowering properties of surfactant phospholipids, regulate surfactant phospholipid synthesis, secretion, and recycling, and counteract the inhibitory effects of plasma proteins released during lung injury on surfactant function. It has also been shown that SP-A modulates host response to microbes and particulates at the level of the alveolus. More recently, several investigators have reported that pulmonary surfactant phospholipids and SP-A are present in nonalveolar pulmonary sites as well as in other organs of the body. We describe the structure and possible functions of alveolar SP-A as well as the sites of extra-alveolar SP-A expression and the possible functions of SP-A in these sites.
Collapse
Affiliation(s)
- K R Khubchandani
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
25
|
Mariencheck WI, Savov J, Dong Q, Tino MJ, Wright JR. Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain of P. aeruginosa. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L777-86. [PMID: 10516219 DOI: 10.1152/ajplung.1999.277.4.l777] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigate the interaction between surfactant protein A (SP-A) and a live, mucoid strain of Pseudomonas aeruginosa and identify a mechanism of clearance of this organism by alveolar macrophages. (125)I-labeled SP-A bound live, but not heat-killed, P. aeruginosa organisms in a concentration-dependent manner. Unlabeled SP-A bound live bacteria, protein isolated from whole organisms, and specific proteins of the P. aeruginosa outer membrane. The binding of SP-A to P. aeruginosa and outer membrane components was inhibited by either EDTA or mannose. Phagocytosis assays with fluorescent microscopy demonstrated that the percentage of macrophages with internalized FITC-labeled P. aeruginosa was increased 1.8-fold (19 vs. 35%) by pretreating the live bacteria with SP-A. This finding was confirmed by direct visualization of ingested bacteria by electron microscopy. Adhering macrophages to SP-A-coated surfaces attenuated the increased uptake of P. aeruginosa pretreated with SP-A, suggesting that SP-A acts as an opsonin to stimulate macrophage phagocytosis of this strain of P. aeruginosa.
Collapse
Affiliation(s)
- W I Mariencheck
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
26
|
Schagat TL, Tino MJ, Wright JR. Regulation of protein phosphorylation and pathogen phagocytosis by surfactant protein A. Infect Immun 1999; 67:4693-9. [PMID: 10456918 PMCID: PMC96796 DOI: 10.1128/iai.67.9.4693-4699.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Surfactant protein A (SP-A), a pulmonary member of the collectin family of proteins, facilitates the rapid clearance of pathogens by upregulating immune cell functions in the lungs. SP-A binds to bacteria and targets them for rapid phagocytosis by alveolar macrophages, but the mechanism by which this stimulation occurs is not clear. To characterize the intracellular events that may be involved, we examined the roles of protein phosphorylation and cytoskeletal polymerization in SP-A-stimulated phagocytosis. In rat alveolar macrophages, SP-A stimulated rapid tyrosine phosphorylation of specific proteins in a dose- and time-dependent manner. The pattern of proteins that were phosphorylated in response to SP-A, as resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was similar to that observed for immunoglobulin G (IgG)-stimulated macrophages. Both SP-A and IgG stimulated increases in phagocytosis of Streptococcus pneumoniae above levels in the absence of added protein by 394% +/- 81% and 200% +/- 25%, respectively. Phagocytosis in both cases was dependent on tyrosine kinases, protein kinase C, and actin polymerization but not on microtubule activity. These studies show that SP-A utilizes pathways similar to those used by IgG to increase macrophage phagocytosis of bacteria.
Collapse
Affiliation(s)
- T L Schagat
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
27
|
Korfhagen TR, LeVine AM, Whitsett JA. Surfactant protein A (SP-A) gene targeted mice. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1408:296-302. [PMID: 9813377 DOI: 10.1016/s0925-4439(98)00075-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/09/2023]
Abstract
Mice lacking surfactant protein A (SP-A) mRNA and protein in vivo were generated using gene targeting techniques. SP-A (-/-) mice have normal levels of SP-B, SP-C and SP-D mRNA and protein and survive and breed normally in vivarium conditions. Phospholipid composition, secretion and clearance, and incorporation of phospholipid precursors are normal in the SP-A (-/-) mice. Lungs of SP-A (-/-) mice have markedly decreased tubular myelin figures and clear Group B streptococci and Pseudomonas aeruginosa less efficiently than SP-A wild type mice. These studies of SP-A (-/-) mice demonstrate that SP-A has an important role in the innate immune system of the lung in vivo.
Collapse
Affiliation(s)
- T R Korfhagen
- Division of Pulmonary Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
28
|
Tino MJ, Wright JR. Interactions of surfactant protein A with epithelial cells and phagocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1408:241-63. [PMID: 9813349 DOI: 10.1016/s0925-4439(98)00071-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Surfactant protein A (SP-A) has been shown to bind to and regulate the functions of both alveolar type II cells and immune cells including alveolar macrophages. The interaction of SP-A with type II cells has been shown in vitro to inhibit lipid secretion and to promote the uptake of lipid by these cells and these observations led to the hypothesis that SP-A plays an important role in regulating surfactant turnover and metabolism. The finding that mice made deficient in SP-A by homologous recombination (SP-A -/- mice) have relatively normal surfactant pool sizes has raised the possibility that either redundant mechanisms function in vivo to keep pool sizes normal in the absence of SP-A or that the in vitro findings are not significant in the context of the whole, unstressed animal. The interaction of SP-A with immune cells has been shown to affect a variety of responses which, in general, function to promote host defense against infection. Although SP-A receptors have been identified, additional studies will be required to elucidate the mechanism of interaction of SP-A with these cells and the relative importance of the different receptors in SP-A mediated regulation of cell function.
Collapse
Affiliation(s)
- M J Tino
- Department of Cell Biology, Duke University Medical Center, Box 3709, 438 Nanaline Duke, Durham, NC 27710, USA
| | | |
Collapse
|
29
|
LeVine AM, Kurak KE, Bruno MD, Stark JM, Whitsett JA, Korfhagen TR. Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 1998; 19:700-8. [PMID: 9761768 DOI: 10.1165/ajrcmb.19.4.3254] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
To determine the role of surfactant protein-A (SP-A) in host defense, the murine SP-A locus was targeted by homologous recombination to produce mice lacking SP-A. SP-A-/- and wild-type mice were infected with mucoid Pseudomonas aeruginosa by intratracheal instillation. Pulmonary bacterial loads were greater in SP-A-/- than in wild-type mice, with increased numbers of mucoid P. aeruginosa in lung homogenates at 6 and 24 h after infection. Pulmonary infiltration with polymorphonuclear leukocytes (PMN) was similar in both groups; however, an earlier influx of PMN into the lung occurred in the SP-A-/- mice. The number of bacteria phagocytosed by alveolar macrophages was decreased in the SP-A-/- mice at 1 h after infection. Superoxide-radical generation by PMN was similar for the SP-A-/- and wild-type mice, but nitrite levels were increased in SP-A-/- mice. Concentrations of tumor necrosis factor-alpha, interleukin-6, and macrophage inflammatory protein-2 (proinflammatory cytokines) were greater in bronchoalveolar lavage fluid at 2 h after infection in SP-A-/- mice. SP-A plays an important role in the pathogenesis of mucoid P. aeruginosa infection in the lung in vivo by enhancing macrophage phagocytosis and clearance of bacteria, and by modifying the inflammatory response.
Collapse
Affiliation(s)
- A M LeVine
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The surfactant-associated proteins SP-A and SP-D are members of a family of collagenous host defense lectins, designated collectins. There is increasing evidence that these pulmonary epithelial-derived proteins are important components of the innate immune response to microbial challenge, and that they participate in other aspects of immune and inflammatory regulation within the lung. The collectins bind to glycoconjugates and/or lipid moieties expressed by a wide variety of microorganisms and certain other organic particles in vitro. Although binding may facilitate microbial clearance through aggregation or other direct effects on the organism, SP-A and SP-D also have the capacity to modulate leukocyte function and, in some circumstances, to enhance their killing of microorganisms. The biologic activity of cell wall components, such as gram-negative bacterial polysaccharides, may be altered by interactions with collectins. Complementary or cooperative interactions between SP-A and SP-D could contribute to the efficiency of this defense system. Collectins may play particularly important roles in settings of inadequate or impaired specific immunity. Acquired or genetic alterations in the levels of active proteins within the airspaces and distal airways may increase susceptibility to infection.
Collapse
Affiliation(s)
- E C Crouch
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
31
|
Abstract
Collectins are a group of multimeric proteins mostly consisting of 9-18 polypeptides organised into either 'bundle-of-tulips' or 'X-like' overall structures. Each polypeptide contains a short N-terminal segment followed by a collagen-like sequence and then by a C-terminal lectin domain. A collectin molecule is assembled from identical or very similar polypeptides by disulphide bonds at the N-terminal segment, formation of triple helices in the collagen-like region and clusters of three lectin domains at the peripheral ends of triple helices. These proteins can bind to sugar residues on microorganisms via the peripheral lectin domains and subsequently interact, via the collagen-like triple-helices, with receptor(s) on phagocytes and/or the complement system to bring about the killing and clearance of the targets without the involvement of antibodies. The collectins can also bind to phagocyte receptor(s) to enhance phagocytosis mediated by other phagocytic receptors. Lack, or low levels, of collectin expression can lead to higher susceptibility to infections, especially during childhood when specific immunity has not fully developed. Therefore, the collectins play important roles in the enhancement of innate immunity.
Collapse
Affiliation(s)
- J Lu
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Republic of Singapore.
| |
Collapse
|
32
|
Abstract
Recognition and phagocytosis of micro-organisms in a serum-poor environment represent innate immunity against many extracellular pathogens. As a paradigm for such processes, we discuss the recognition of Klebsiella pneumoniae by alveolar macrophages and monocyte-derived macrophages in the absence of serum. Macrophages recognize and subsequently kill Klebsiella expressing Man-alpha 2/3-Man or Rha-alpha 2/3-Rha sequences in their capsular polysaccharides by two mechanisms: (a) recognition of the capsular structures by macrophage mannose receptors, and (b) opsonization by the lung surfactant protein A (SP-A), which binds to the capsular polysaccharides of Klebsiella and to SP-A receptors on the macrophages. Sp-A may also enhance phagocytosis by increasing the activity of macrophage mannose receptors. We conclude that a specific microbial surface structure may be a target for recognition by macrophages via several mechanisms, as exemplified in the case of Klebsiella capsular polysaccharides. Multiple recognition mechanisms of pathogens by macrophages may be essential to provide innate immunity to reduce the frequency of infections caused by a relatively less virulent bacterium in the immuno-compromised host.
Collapse
Affiliation(s)
- Y Keisari
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | | | |
Collapse
|