1
|
Mast cell granule motility and exocytosis is driven by dynamic microtubule formation and kinesin-1 motor function. PLoS One 2022; 17:e0265122. [PMID: 35316306 PMCID: PMC8939832 DOI: 10.1371/journal.pone.0265122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Mast cells are tissue-resident immune cells that have numerous cytoplasmic granules which contain preformed pro-inflammatory mediators. Upon antigen stimulation, sensitized mast cells undergo profound changes to their morphology and rapidly release granule mediators by regulated exocytosis, also known as degranulation. We have previously shown that Rho GTPases regulate exocytosis, which suggests that cytoskeleton remodeling is involved in granule transport. Here, we used live-cell imaging to analyze cytoskeleton remodeling and granule transport in real-time as mast cells were antigen stimulated. We found that granule transport to the cell periphery was coordinated by de novo microtubule formation and not F-actin. Kinesore, a drug that activates the microtubule motor kinesin-1 in the absence of cargo, inhibited microtubule-granule association and significantly reduced exocytosis. Likewise, shRNA knock-down of Kif5b, the kinesin-1 heavy chain, also reduced exocytosis. Imaging showed granules accumulated in the perinuclear region after kinesore treatment or Kif5b knock-down. Complete microtubule depolymerization with nocodazole or colchicine resulted in the same effect. A biochemically enriched granule fraction showed kinesin-1 levels increase in antigen-stimulated cells, but are reduced by pre-treatment with kinesore. Kinesore had no effect on the levels of Slp3, a mast cell granule cargo adaptor, in the granule-enriched fraction which suggests that cargo adaptor recruitment to granules is independent of motor association. Taken together, these results show that granules associate with microtubules and are driven by kinesin-1 to facilitate exocytosis.
Collapse
|
2
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Mziaut H, Mulligan B, Hoboth P, Otto O, Ivanova A, Herbig M, Schumann D, Hildebrandt T, Dehghany J, Sönmez A, Münster C, Meyer-Hermann M, Guck J, Kalaidzidis Y, Solimena M. The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512. Mol Metab 2016; 5:656-668. [PMID: 27656403 PMCID: PMC5021679 DOI: 10.1016/j.molmet.2016.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 01/02/2023] Open
Abstract
Objective Insulin release from pancreatic islet β cells should be tightly controlled to avoid hypoglycemia and insulin resistance. The cortical actin cytoskeleton is a gate for regulated exocytosis of insulin secretory granules (SGs) by restricting their mobility and access to the plasma membrane. Prior studies suggest that SGs interact with F-actin through their transmembrane cargo islet cell autoantigen 512 (Ica512) (also known as islet antigen 2/Ptprn). Here we investigated how Ica512 modulates SG trafficking and exocytosis. Methods Transcriptomic changes in Ica512−/− mouse islets were analyzed. Imaging as well as biophysical and biochemical methods were used to validate if and how the Ica512-regulated gene villin modulates insulin secretion in mouse islets and insulinoma cells. Results The F-actin modifier villin was consistently downregulated in Ica512−/− mouse islets and in Ica512-depleted insulinoma cells. Villin was enriched at the cell cortex of β cells and dispersed villin−/− islet cells were less round and less deformable. Basal mobility of SGs in villin-depleted cells was enhanced. Moreover, in cells depleted either of villin or Ica512 F-actin cages restraining cortical SGs were enlarged, basal secretion was increased while glucose-stimulated insulin release was blunted. The latter changes were reverted by overexpressing villin in Ica512-depleted cells, but not vice versa. Conclusion Our findings show that villin controls the size of the F-actin cages restricting SGs and, thus, regulates their dynamics and availability for exocytosis. Evidence that villin acts downstream of Ica512 also indicates that SGs directly influence the remodeling properties of the cortical actin cytoskeleton for tight control of insulin secretion. Ica512-depletion reduces the genetic expression of the F-actin modifier villin. Villin-depletion enhances basal insulin granule mobility and exocytosis. Villin regulates the size of actin cages restraining insulin granules. Villin acts downstream of insulin granule cargo Ica512. The Ica512-villin genetic link enables granules to control cytoskeleton plasticity.
Collapse
Key Words
- D, diffusion coefficient
- EGFP, enhanced green fluorescent protein
- F-actin
- Granules
- IPGTT, intraperitoneal glucose tolerance test
- IVGTT, intravenous glucose tolerance test
- Ica512
- Ica512, islet cell autoantigen
- Insulin
- OGTT, oral glucose tolerance test
- RT-DC, real-time deformability cytometry
- SE, standard error
- SG, secretory granules
- Secretion
- TIRFM, total internal reflection fluorescence microscopy
- Villin
Collapse
Affiliation(s)
- Hassan Mziaut
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Bernard Mulligan
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Peter Hoboth
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Oliver Otto
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Anna Ivanova
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Maik Herbig
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Desiree Schumann
- Boehringer Ingelheim Pharma GmbH & Co. KG. Cardiometabolic Research, 88397 Biberach, Germany
| | - Tobias Hildebrandt
- Boehringer Ingelheim Pharma GmbH & Co. KG. Cardiometabolic Research, 88397 Biberach, Germany
| | - Jaber Dehghany
- Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre for Systems Biology (BRICS), 38124 Braunschweig, Germany
| | - Anke Sönmez
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Carla Münster
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Michael Meyer-Hermann
- Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre for Systems Biology (BRICS), 38124 Braunschweig, Germany
| | - Jochen Guck
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
4
|
Balletta A, Lorenz D, Rummel A, Gerhard R, Bigalke H, Wegner F. Clostridium difficile toxin B inhibits the secretory response of human mast cell line-1 (HMC-1) cells stimulated with high free-Ca²⁺ and GTPγS. Toxicology 2014; 328:48-56. [PMID: 25497110 DOI: 10.1016/j.tox.2014.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/19/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023]
Abstract
Clostridium difficile toxins A and B (TcdA and TcdB) belong to the class of large clostridial cytotoxins and inactivate by glucosylation some low molecular mass GTPases of the Rho-family (predominantly Rho, Rac and Cdc42), known as regulators of the actin cytoskeleton. TcdA and B also represent the main virulence factors of the anaerobic gram-positive bacterium that is the causal agent of pseudomembranous colitis. In our study, TcdB was chosen instead of TcdA for the well-known higher cytotoxic potency. Inactivation of Rho-family GTPases by this toxin in our experimental conditions induced morphological changes and reduction of electron-dense mast cell-specific granules in human mast cell line-1 (HMC-1) cells, but not cell death or permeabilisation of plasma-membranes. Previously reported patch-clamp dialysis experiments revealed that high intracellular free-Ca(2+) and GTPγS concentrations are capable of inducing exocytosis as indicated by significant membrane capacitance (Cm) increases in HMC-1 cells. In this study, we investigated the direct effects of TcdB upon HMC-1 cell "stimulated" Cm increase, as well as on "constitutive" secretion of hexosaminidase and interleukin-16 (IL-16). Compared to untreated control cells, HMC-1 cells incubated with TcdB for 3-24h exhibited a significant reduction of the mean absolute and relative Cm increase in response to free-Ca(2+) and GTPγS suggesting an inhibition of secretory processes by TcdB. In conclusion, the HMC-1 cell line represents a suitable model for the study of direct effects of C. difficile toxins on human mast cell secretory activity.
Collapse
Affiliation(s)
- Andrea Balletta
- Department of Toxicology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany; Department of Neurology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| | - Dorothea Lorenz
- Department of Cellular Imaging and Electron Microscopy, Leibniz Institute of Molecular Pharmacology, Robert Rössle Str. 10, 13125 Berlin, Germany.
| | - Andreas Rummel
- Department of Toxicology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| | - Ralf Gerhard
- Department of Toxicology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| | - Hans Bigalke
- Department of Toxicology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
5
|
Haddock BJ, Zhu Y, Doyle SP, Abdullah LH, Davis CW. Role of MARCKS in regulated secretion from mast cells and airway goblet cells. Am J Physiol Lung Cell Mol Physiol 2014; 306:L925-36. [PMID: 24705720 DOI: 10.1152/ajplung.00213.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MARCKS (myristoylated alanine-rich C kinase substrate) is postulated to regulate the passage of secretory granules through cortical actin in the early phase of exocytosis. There are, however, three proposed mechanisms of action, all of which were derived from studies using synthetic peptides representing either the central phosphorylation site domain or the upstream, NH2-terminal domain: it tethers actin to the plasma membrane and/or to secretory granules, and/or it sequesters PIP2. Using MARCKS-null mice, we probed for a loss of function secretory phenotype in mast cells harvested from embryonic livers and maturated in vivo [embryonic hepatic-derived mast cells (eHMCs)]. Both wild-type (WT) and MARCKS-null eHMCs exhibited full exocytic responses upon FcϵRI receptor activation with DNP-BSA (2,4-dinitrophenyl-BSA), whether they were in suspension or adherent. The secretory responses of MARCKS-null eHMCs were consistently higher than those of WT cells, but the differences had sporadic statistical significance. The MARCKS-null cells exhibited faster secretory kinetics, however, achieving the plateau phase of the response with a t½ ∼2.5-fold faster. Hence, MARCKS appears to be a nonessential regulatory protein in mast cell exocytosis but exerts a negative modulation. Surprisingly, the MARCKS NH2-terminal peptide, MANS, which has been reported to inhibit mucin secretion from airway goblet cells (Li Y, Martin LD, Spizz G, Adler KB. J Biol Chem 276: 40982-40990, 2001), inhibited hexosaminidase secretion from WT and MARCKS-null eHMCs, leading us to reexamine its effects on mucin secretion. Results from studies using peptide inhibitors with human bronchial epithelial cells and with binding assays using purified mucins suggested that MANS inhibited the mucin binding assay, rather than the secretory response.
Collapse
Affiliation(s)
- Brookelyn J Haddock
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Yunxiang Zhu
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and
| | - Sean P Doyle
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and
| | - Lubna H Abdullah
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and
| | - C William Davis
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Singh RK, Mizuno K, Wasmeier C, Wavre-Shapton ST, Recchi C, Catz SD, Futter C, Tolmachova T, Hume AN, Seabra MC. Distinct and opposing roles for Rab27a/Mlph/MyoVa and Rab27b/Munc13-4 in mast cell secretion. FEBS J 2013; 280:892-903. [PMID: 23281710 DOI: 10.1111/febs.12081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 11/29/2022]
Abstract
Mediator release from mast cells is a critical step in allergic and inflammatory disease. However, the processes regulating the latter stages of granule release are yet to be fully understood. Rab27 small GTPases regulate release of secretory lysosomes in a variety of cells, including mast cell granules. In the present study, using murine bone marrow-derived mast cells (BMMC) from Rab27-deficient mutant mice, we found that, in contrast to Rab27b, Rab27a primarily plays an inhibitory role in regulating degranulation. Immunofluorescence analysis revealed that resting Rab27a-deficient (ashen) BMMCs display abnormal cortical F-actin distribution. Actin disassembly prior to IgE cross-linking increased wild-type BMMC secretion to ashen levels, suggesting that changes in the integrity of cortical F-actin underlie the ashen phenotype. Comparison of the secretory impairment of Rab27b knockout and Rab27a/b double knockout BMMCs highlighted a secondary positive role for Rab27a in enhancing degranulation. Rab27 is known to interact with actin via its effectors melanophilin (Mlph) and myosin Va (MyoVa) in other cell types. To better understand the differing roles of Rab27 proteins, we analysed the secretory phenotype of BMMCs derived from mice lacking Rab27 effector proteins. These experiments revealed that the phenotype of BMMCs deficient in Mlph (leaden) and BMMCs deficient in MyoVa (dilute) resembles the hyper-secretion of ashen BMMCs, while Munc13-4-deficient (jinx) BMMCs phenocopy the Rab27b knockout and double Rab27a/b knockout secretory impairment. We conclude that Rab27a and Rab27b regulate distinct steps in the BMMC degranulation pathway, with Rab27a/Mlph/MyoVa regulating cortical actin stability upstream of Rab27a/b/Munc13-4-dependent granule exocytosis.
Collapse
Affiliation(s)
- Rajesh K Singh
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kitamura E, Gribanova YE, Farber DB. Regulation of retinoschisin secretion in Weri-Rb1 cells by the F-actin and microtubule cytoskeleton. PLoS One 2011; 6:e20707. [PMID: 21738583 PMCID: PMC3124475 DOI: 10.1371/journal.pone.0020707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/10/2011] [Indexed: 11/19/2022] Open
Abstract
Retinoschisin is encoded by the gene responsible for X-linked retinoschisis (XLRS), an early onset macular degeneration that results in a splitting of the inner layers of the retina and severe loss in vision. Retinoschisin is predominantly expressed and secreted from photoreceptor cells as a homo-oligomer protein; it then associates with the surface of retinal cells and maintains the retina cellular architecture. Many missense mutations in the XLRS1 gene are known to cause intracellular retention of retinoschisin, indicating that the secretion process of the protein is a critical step for its normal function in the retina. However, the molecular mechanisms underlying retinoschisin's secretion remain to be fully elucidated. In this study, we investigated the role of the F-actin cytoskeleton in the secretion of retinoschisin by treating Weri-Rb1 cells, which are known to secrete retinoschisin, with cytochalasin D, jasplakinolide, Y-27632, and dibutyryl cGMP. Our results show that cytochalasin D and jasplakinolide inhibit retinoschisin secretion, whereas Y-27632 and dibutyryl cGMP enhance secretion causing F-actin alterations. We also demonstrate that high concentrations of taxol, which hyperpolymerizes microtubules, inhibit retinoschisin secretion. Our data suggest that retinoschisin secretion is regulated by the F-actin cytoskeleton, that cGMP or inhibition of ROCK alters F-actin structure enhancing the secretion, and that the microtubule cytoskeleton is also involved in this process.
Collapse
Affiliation(s)
- Eiko Kitamura
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yekaterina E. Gribanova
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Debora B. Farber
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, Yeboah MM, Chatterjee PK, Tracey KJ, Metz CN. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. THE JOURNAL OF IMMUNOLOGY 2009; 183:552-9. [PMID: 19542466 DOI: 10.4049/jimmunol.0802684] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cholinergic anti-inflammatory pathway is a physiological mechanism that inhibits cytokine production and diminishes tissue injury during inflammation. Recent studies demonstrate that cholinergic signaling reduces adhesion molecule expression and chemokine production by endothelial cells and suppresses leukocyte migration during inflammation. It is unclear how vagus nerve stimulation regulates leukocyte trafficking because the vagus nerve does not innervate endothelial cells. Using mouse models of leukocyte trafficking, we show that the spleen, which is a major point of control for cholinergic modulation of cytokine production, is essential for vagus nerve-mediated regulation of neutrophil activation and migration. Administration of nicotine, a pharmacologic agonist of the cholinergic anti-inflammatory pathway, significantly reduces levels of CD11b, a beta(2)-integrin involved in cell adhesion and leukocyte chemotaxis, on the surface of neutrophils in a dose-dependent manner and this function requires the spleen. Similarly, vagus nerve stimulation significantly attenuates neutrophil surface CD11b levels only in the presence of an intact and innervated spleen. Further mechanistic studies reveal that nicotine suppresses F-actin polymerization, the rate-limiting step for CD11b surface expression. These studies demonstrate that modulation of leukocyte trafficking via cholinergic signaling to the spleen is a specific, centralized neural pathway positioned to suppress the excessive accumulation of neutrophils at inflammatory sites. Activating this mechanism may have important therapeutic potential for preventing tissue injury during inflammation.
Collapse
Affiliation(s)
- Jared M Huston
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
El-Sibai M, Backer JM. Phospholipase C gamma negatively regulates Rac/Cdc42 activation in antigen-stimulated mast cells. Eur J Immunol 2007; 37:261-70. [PMID: 17163445 DOI: 10.1002/eji.200635875] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Rho GTPases Rac and Cdc42 play a central role in the regulation of secretory and cytoskeletal responses in antigen-stimulated mast cells. In this study, we examine the kinetics and mechanism of Rac and Cdc42 activation in the rat basophilic leukemia RBL-2H3 cells. The activation kinetics of both Rac and Cdc42 show a biphasic profile, consisting of an early transient peak at 1 min and a late sustained activation phase at 20-40 min. The inhibition of phospholipase C (PLC)gamma causes a twofold increase in Rac and Cdc42 activation that coincides with a dramatic production of atypical filopodia-like structures. Inhibition of protein kinase C using bisindolylmaleimide mimics the effect of PLCgamma inhibition on Rac activation, but not on Cdc42 activation. In contrast, depletion of intracellular calcium leads to a complete inhibition of the early activation peak of both Rac and Cdc42, without significant effects on the late sustained activation. These data suggest that PLCgamma is involved in a negative feedback loop that leads to the inhibition of Rac and Cdc42. They also suggest that the presence of intracellular calcium is a prerequisite for both Rac and Cdc42 activation.
Collapse
Affiliation(s)
- Mirvat El-Sibai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
10
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Guzmán RE, Bolaños P, Delgado A, Rojas H, DiPolo R, Caputo C, Jaffe EH. Depolymerisation and rearrangement of actin filaments during exocytosis in rat peritoneal mast cells: involvement of ryanodine-sensitive calcium stores. Pflugers Arch 2006; 454:131-41. [PMID: 17120017 DOI: 10.1007/s00424-006-0177-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/05/2006] [Accepted: 09/27/2006] [Indexed: 11/26/2022]
Abstract
Cytoskeletal F-actin associated with synaptic vesicles and granules plays an important role during Ca(2+)-mediated exocytosis. In the present work, we have used amperometry and confocal fluorescence to study the role of internal Ca(2+) in the rearrangement of F-actin (visualised with phalloidin-Alexa 546) during exocytosis in rat mast cells. The F-actin-depolymerising drug, latrunculin A, and the ryanodine receptor agonists ryanodine and caffeine that, per se did not induce exocytosis, enhanced the exocytotic responses elicited by compound 48/80 (C48/80). They also induced cortical actin depolymerisation in the presence or absence of external Ca(2+). Degranulation induced by C48/80 was accompanied by the formation of a cytoplasmic F-actin network. Depletion of internal Ca(2+) with cyclopiazonic acid inhibited latrunculin potentiation of C48/80-stimulated exocytosis and completely blocked the formation of the cytoplasmic F-actin network. This indicates that the mobilisation of Ca(2+) from ryanodine-sensitive intracellular stores plays an important role in the depolymerisation of the cortical F-actin barrier and possibly in the formation of the internal F-actin network during exocytotic activation of peritoneal mast cells.
Collapse
Affiliation(s)
- R E Guzmán
- Lab. Neuroquimica, CBB, IVIC, Apartado 21827, Caracas 1020-A, Venezuela
| | | | | | | | | | | | | |
Collapse
|
12
|
Hammond GRV, Dove SK, Nicol A, Pinxteren JA, Zicha D, Schiavo G. Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. J Cell Sci 2006; 119:2084-94. [PMID: 16687737 DOI: 10.1242/jcs.02912] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inositol lipid phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] is involved in a myriad of cellular processes, including the regulation of exocytosis and endocytosis. In this paper, we address the role of PtdIns(4,5)P2 in compound exocytosis from rat peritoneal mast cells. This process involves granule-plasma membrane fusion as well as homotypic granule membrane fusion and occurs without any immediate compensatory endocytosis. Using a novel quantitative immunofluorescence technique, we report that plasma membrane PtdIns(4,5)P2 becomes transiently depleted upon activation of exocytosis, and is not detected on the membranes of fusing granules. Depletion is caused by phospholipase C activity, and is mandatory for exocytosis. Although phospholipase C is required for Ca2+ release from internal stores, the majority of the requirement for PtdIns(4,5)P2 hydrolysis occurs downstream of Ca2+ signalling - as shown in permeabilised cells, where the inositol (1,4,5)-trisphosphate-Ca2+ pathway is bypassed. Neither generation of the PtdIns(4,5)P2 metabolite, diacylglycerol (DAG) or simple removal and/or sequestration of PtdIns(4,5)P2 are sufficient for exocytosis to occur. However, treatment of permeabilised cells with DAG induces a small potentiation of exocytosis, indicating that it may be required. We propose that a cycle of PtdIns(4,5)P2 synthesis and breakdown is crucial for exocytosis to occur in mast cells, and may have a more general role in all professional secretory cells.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Molecular Neuropathobiology, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Kettner A, Kumar L, Antón IM, Sasahara Y, de la Fuente M, Pivniouk VI, Falet H, Hartwig JH, Geha RS. WIP regulates signaling via the high affinity receptor for immunoglobulin E in mast cells. ACTA ACUST UNITED AC 2004; 199:357-68. [PMID: 14757742 PMCID: PMC2211794 DOI: 10.1084/jem.20030652] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Wiskott-Aldrich syndrome protein-interacting protein (WIP) stabilizes actin filaments and is important for immunoreceptor-mediated signal transduction leading to actin cytoskeleton rearrangement in T and B cells. Here we report a role for WIP in signaling pathways downstream of the high affinity receptor for immunoglobulin (Ig)E (FcepsilonRI) in mast cells. WIP-deficient bone marrow-derived mast cells (BMMCs) were impaired in their capacity to degranulate and secrete interleukin 6 after FcepsilonRI ligation. Calcium mobilization, phosphorylation of Syk, phospholipase C-g2, and c-Jun NH2-terminal kinase were markedly decreased in WIP-deficient BMMCs. WIP was found to associate with Syk after FcepsilonRI ligation and to inhibit Syk degradation as evidenced by markedly diminished Syk levels in WIP-deficient BMMCs. WIP-deficient BMMCs exhibited no apparent defect in their subcortical actin network and were normal in their ability to form protrusions when exposed to an IgE-coated surface. However, the kinetics of actin changes and the cell shape changes that follow FcepsilonRI signaling were altered in WIP-deficient BMMCs. These results suggest that WIP regulates FcepsilonRI-mediated mast cell activation by regulating Syk levels and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Alexander Kettner
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cabello-Agüeros JF, Hernández-González EO, Mújica A. The role of F-actin cytoskeleton-associated gelsolin in the guinea pig capacitation and acrosome reaction. ACTA ACUST UNITED AC 2003; 56:94-108. [PMID: 14506707 DOI: 10.1002/cm.10135] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The acrosomal reaction (AR) is a regulated sperm exocytotic process that involves fusion of the plasma membrane (PM) with the outer acrosomal membrane (OAM). Our group has described F-actin cytoskeletons associated to these membranes. It has been proposed that in regulated exocytosis, a cortical cytoskeleton acts as a barrier that obstructs membrane fusion, and must be disassembled for exocytosis to occur. Actin-severing proteins from the gelsolin family have been considered to break this barrier. The present study attempted to determine if gelsolin has a function in guinea pig sperm capacitation and AR. By indirect immunofluorescence (IIF), gelsolin was detected in the apical and postacrosomal regions of the head and in the flagellum in both capacitated and non-capacitated guinea pig spermatozoa. By Western blotting, gelsolin was detected in isolated PM and OAM of non-capacitated spermatozoa. Gelsolin and actin were detected in a mixture of PM-OAM obtained by sonication, and both proteins were absent in membranes of capacitated spermatozoa. Inhibition of three different pathways of PIP2 hydrolysis during capacitation did not cancel gelsolin loss from membranes. Gelsolin was detected by Western blotting associated to membrane cytoskeletons obtained after phalloidin F-actin stabilization and Triton-X treatment; additionally, by immunoprecipitation, it was shown that gelsolin is associated with actin. By electron microscopy we observed that skeletons disassemble during capacitation, but phalloidin prevents disassembly. A three-dimensional skeleton was observed that apparently joins PM with OAM. Exogenous gelsolin stimulates AR assayed in a permeabilized spermatozoa model. Results suggest that gelsolin disassembles F-actin cytoskeletons during capacitation, promoting AR.
Collapse
Affiliation(s)
- José F Cabello-Agüeros
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | | | | |
Collapse
|
15
|
Abstract
Roles for glycerophospholipids in exocytosis have been proposed, but remain controversial. Phospholipases are stimulated following the activation of the high-affinity receptor for immunoglobulin E (IgE) in mast cells. To study the biochemical sequelae that lead to degranulation, broken cell systems were employed. We demonstrate that the addition of three distinct types of exogenous phospholipases (i.e., bcPLC, scPLD, and tfPLA(2)), all of which hydrolyze phosphatidylcholine (PC), trigger degranulation in permeabilized RBL-2H3 cells, a mucosal mast cell line. Production of bioactive lipids by these phospholipases promotes release of granule contents through the plasma membrane and acts downstream of PKC, PIP(2), and Rho subfamily GTPases in regulated secretion. These exogenous phospholipase-induced degranulation pathways circumvent specific factors activated following stimulation of the IgE receptor as well as in ATP- and GTP-dependent intracellular pathways. Taken together, these results suggest that regulated secretion may be achieved in vitro in the absence of cytosolic factors via phospholipase activation and that products of PC hydrolysis can promote exocytosis in mast cells.
Collapse
Affiliation(s)
- J S Cohen
- Department of Molecular Medicine, Veterinary Medical Center, and Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, New York 14853-6401, USA
| | | |
Collapse
|
16
|
Affiliation(s)
- L D Burtnick
- Chemistry Department, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | | | | |
Collapse
|
17
|
Pendleton A, Koffer A. Effects of latrunculin reveal requirements for the actin cytoskeleton during secretion from mast cells. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:37-51. [PMID: 11124709 DOI: 10.1002/1097-0169(200101)48:1<37::aid-cm4>3.0.co;2-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To investigate the role of the actin cytoskeleton in exocytosis, we have tested the effects of latrunculin B, a microfilament-disrupting drug, on secretion from intact and permeabilised rat peritoneal mast cells. The toxin strongly inhibited secretion from intact cells (attached or in suspension) responding to a polybasic agonist, compound 48/80. However, this effect was revealed only after a profound depletion of actin filaments. This was achieved by a long (1 h) exposure of cells to the drug before activation, together with its presence during activation. Maximal inhibition of secretion by such treatment was 85% at 40 microgram/ml latrunculin B. These results indicate that minimal actin structures are essential for the exocytotic response. In contrast, stimulus-induced cell spreading was prevented by latrunculin (5 microgram/ml) applied either before or after activation. The effects of the toxin on intact cells were fully reversible. The responses of permeabilised cells were affected differentially: secretion induced by calcium was more sensitive to latrunculin than that induced by GTP-gamma-S. The calcium response, therefore, is more dependent upon the integrity of the actin cytoskeleton than the response induced by GTP-gamma-S. Again, maximal inhibitory effects (approximately 65 and 25% at 40 microgram/ml) were observed only when cells were exposed to the toxin both before and after permeabilisation. Since the permeabilised cells system focuses on the final steps of exocytosis, the incomplete inhibition suggests that actin plays a modulatory rather than a central role at this stage.
Collapse
Affiliation(s)
- A Pendleton
- Physiology Department, University College London, University Street, London, United Kingdom
| | | |
Collapse
|
18
|
Serrander L, Skarman P, Rasmussen B, Witke W, Lew DP, Krause KH, Stendahl O, Nüsse O. Selective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2451-7. [PMID: 10946270 DOI: 10.4049/jimmunol.165.5.2451] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phagocytosis and the microbicidal functions of neutrophils require dynamic changes of the actin cytoskeleton. We have investigated the role of gelsolin, a calcium-dependent actin severing and capping protein, in peripheral blood neutrophils from gelsolin-null (Gsn-) mice. The phagocytosis of complement opsonized yeast was only minimally affected. In contrast, phagocytosis of IgG-opsonized yeast was reduced close to background level in Gsn- neutrophils. Thus, gelsolin is essential for efficient IgG- but not complement-mediated phagocytosis. Furthermore, attachment of IgG-opsonized yeast to Gsn- neutrophils was reduced ( approximately 50%) but not to the same extent as ingestion ( approximately 73%). This was not due to reduced surface expression of the Fcgamma-receptor or its lateral mobility. This suggests that attachment and ingestion of IgG-opsonized yeast by murine neutrophils are actin-dependent and gelsolin is important for both steps in phagocytosis. We also investigated granule exocytosis and several steps in phagosome processing, namely the formation of actin around the phagosome, translocation of granules, and activation of the NADPH-oxidase. All these functions were normal in Gsn- neutrophils. Thus, the role of gelsolin is specific for IgG-mediated phagocytosis. Our data suggest that gelsolin is part of the molecular machinery that distinguishes complement and IgG-mediated phagocytosis. The latter requires a more dynamic reorganization of the cytoskeleton.
Collapse
Affiliation(s)
- L Serrander
- Divison of Infectious Diseases, University of Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sullivan R, Burnham M, Török K, Koffer A. Calmodulin regulates the disassembly of cortical F-actin in mast cells but is not required for secretion. Cell Calcium 2000; 28:33-46. [PMID: 10942702 DOI: 10.1054/ceca.2000.0127] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Secretion is dependent on a rise in cytosolic Ca(2+)concentration and is associated with dramatic changes in actin organization. The actin cortex may act as a barrier between secretory vesicles and plasma membrane. Thus, disassembly of this cortex should precede late steps of exocytosis. Here we investigate regulation of both the actin cytoskeleton and secretion by calmodulin. Ca(2+), together with ATP, induces cortical F-actin disassembly in permeabilized rat peritoneal mast cells. This effect is strongly inhibited by removing endogenous calmodulin (using calmodulin inhibitory peptides), and increased by exogenous calmodulin. Neither treatment, however, affects secretion. Low concentrations ( approximately 1 microM) of a specific inhibitor of myosin light chain kinase, ML-7, prevent F-actin disassembly, but not secretion. In contrast, a myosin inhibitor affecting both conventional and unconventional myosins, BDM, decreases cortical disassembly as well as secretion. Observations of fluorescein-calmodulin, introduced into permeabilized cells, confirmed a strong (Ca(2+)-independent) association of calmodulin with the actin cortex. In addition, fluorescein-calmodulin enters the nuclei in a Ca(2+)-dependent manner. In conclusion, calmodulin promotes myosin II-based contraction of the membrane cytoskeleton, which is a prerequisite for its disassembly. The late steps of exocytosis, however, require neither calmodulin nor cortical F-actin disassembly, but may be modulated by unconventional myosin(s).
Collapse
Affiliation(s)
- R Sullivan
- Physiology Department, University College London, London, UK
| | | | | | | |
Collapse
|
20
|
Sullivan R, Price LS, Koffer A. Rho controls cortical F-actin disassembly in addition to, but independently of, secretion in mast cells. J Biol Chem 1999; 274:38140-6. [PMID: 10608885 DOI: 10.1074/jbc.274.53.38140] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Localized disassembly of cortical F-actin has long been considered necessary for facilitation of exocytosis. Exposure of permeabilized mast cells to calcium/ATP induces cortical F-actin disassembly (calmodulin-dependent) and secretion (calmodulin-independent). The delay in the onset of secretion is characteristic for the calcium/ATP response and is abolished by GTP. Here we report that a constitutively active mutant of Rho (V14RhoA) enhanced both secretion and cortical F-actin disassembly. In addition, V14RhoA mimicked GTP by abolishing the delay in secretion. Inhibition of Rho by C3 transferase prevented both secretion ( approximately 80%) and F-actin disassembly (approximately 20%). Thus, both Rho GTPase and calcium/calmodulin contribute to the control of cortical F-actin disassembly. Stabilization of actin filaments by high concentrations of phalloidin or by a calmodulin-inhibitory peptide (based on the calmodulin-binding domain of myosin light chain kinase) did not affect the extent of secretion or the secretion-enhancing effects of V14RhoA. These results further support the existence of divergent, Rho-dependent, pathways regulating actin and exocytosis. Furthermore, compound Y-27632, a specific inhibitor of Rho-associated protein kinase (p160(ROCK)), attenuated the Rho-induced loss of cortical F-actin without affecting secretion. A model is presented in which Rho regulates secretion and cortical F-actin in a manner dependent on and/or synergistic with calcium.
Collapse
Affiliation(s)
- R Sullivan
- Physiology Department, University College London, University Street, London WC1E 6JJ, United Kingdom
| | | | | |
Collapse
|
21
|
Becker KA, Hart NH. Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis. J Cell Sci 1999; 112 ( Pt 1):97-110. [PMID: 9841907 DOI: 10.1242/jcs.112.1.97] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The zebrafish egg provides a useful experimental system to study events of fertilization, including exocytosis. We show by differential interference contrast videomicroscopy that cortical granules are: (1) released nonsynchronously over the egg surface and (2) mobilized to the plasma membrane in two phases, depending upon vesicle size and location. Turbidometric assay measurements of the timing and extent of exocytosis revealed a steady release of small granules during the first 30 seconds of egg activation. This was followed by an explosive discharge of large granules, beginning at 30 seconds and continuing for 1–2 minutes. Stages of single granule exocytosis and subsequent remodeling of the egg surface were imaged by either real-time or time-lapse videomicroscopy as well as scanning electron microscopy. Cortical granule translocation and fusion with the plasma membrane were followed by the concurrent expansion of a fusion pore and release of granule contents. A dramatic rearrangement of the egg surface followed exocytosis. Cortical crypts (sites of evacuated granules) displayed a purse-string-like contraction, resulting in their gradual flattening and disappearance from the egg surface. We tested the hypothesis that subplasmalemmal filamentous (F-) actin acts as a physical barrier to secretion and is locally disassembled prior to granule release. Experimental results showed a reduction of rhodamine-phalloidin and antimyosin staining at putative sites of secretion, acceleration of the timing and extent of granule release in eggs pretreated with cytochalasin D, and dose-dependent inhibition of exocytosis in permeabilized eggs preincubated with phalloidin. An increase in assembled actin was detected by fluorometric assay during the period of exocytosis. Localization studies showed that F-actin and myosin-II codistributed with an inward-moving, membrane-delimited zone of cytoplasm that circumscribed cortical crypts during their transformation. Furthermore, cortical crypts displayed a distinct delay in transformation when incubated continuously with cytochalasin D following egg activation. We propose that closure of cortical crypts is driven by a contractile ring whose forces depend upon dynamic actin filaments and perhaps actomyosin interactions.
Collapse
Affiliation(s)
- K A Becker
- Rutgers University, Department of Cell Biology and Neuroscience, Busch Campus, Nelson Biology Laboratories, Piscataway, NJ 08854-8082, USA
| | | |
Collapse
|
22
|
|