1
|
Wang X, Li T, Xu J, Zhang F, Liu L, Wang T, Wang C, Ren H, Zhang Y. Distinct functions of microtubules and actin filaments in the transportation of the male germ unit in pollen. Nat Commun 2024; 15:5448. [PMID: 38937444 PMCID: PMC11211427 DOI: 10.1038/s41467-024-49323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.
Collapse
Affiliation(s)
- Xiangfei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Tonghui Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Jiuting Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Lifang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Chun Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Beijing Normal University, 519087, Zhuhai, China.
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
2
|
Nan Q, Liang H, Mendoza J, Liu L, Fulzele A, Wright A, Bennett EJ, Rasmussen CG, Facette MR. The OPAQUE1/DISCORDIA2 myosin XI is required for phragmoplast guidance during asymmetric cell division in maize. THE PLANT CELL 2023; 35:2678-2693. [PMID: 37017144 PMCID: PMC10291028 DOI: 10.1093/plcell/koad099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Formative asymmetric divisions produce cells with different fates and are critical for development. We show the maize (Zea mays) myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells before and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 becomes apparent during late cytokinesis, when the phragmoplast forms the nascent cell plate. Initial phragmoplast guidance in o1 is normal; however, as phragmoplast expansion continues o1 phragmoplasts become misguided. To understand how O1 contributes to phragmoplast guidance, we identified O1-interacting proteins. Maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs), which are also required for correct phragmoplast guidance, physically interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Hong Liang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Janette Mendoza
- Department of Botany, University of New Mexico, Albuquerque, NM 87131, USA
| | - Le Liu
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Amit Fulzele
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Amanda Wright
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Eric J Bennett
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Adhikari PB, Liu X, Kasahara RD. Mechanics of Pollen Tube Elongation: A Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:589712. [PMID: 33193543 PMCID: PMC7606272 DOI: 10.3389/fpls.2020.589712] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube (PT) serves as a vehicle that delivers male gametes (sperm cells) to a female gametophyte during double fertilization, which eventually leads to the seed formation. It is one of the fastest elongating structures in plants. Normally, PTs traverse through the extracellular matrix at the transmitting tract after penetrating the stigma. While the endeavor may appear simple, the molecular processes and mechanics of the PT elongation is yet to be fully resolved. Although it is the most studied "tip-growing" structure in plants, several features of the structure (e.g., Membrane dynamics, growth behavior, mechanosensing etc.) are only partially understood. In many aspects, PTs are still considered as a tissue rather than a "unique cell." In this review, we have attempted to discuss mainly on the mechanics behind PT-elongation and briefly on the molecular players involved in the process. Four aspects of PTs are particularly discussed: the PT as a cell, its membrane dynamics, mechanics of its elongation, and the potential mechanosensors involved in its elongation based on relevant findings in both plant and non-plant models.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ryushiro D. Kasahara
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Cai G, Parrotta L, Cresti M. Organelle trafficking, the cytoskeleton, and pollen tube growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:63-78. [PMID: 25263392 DOI: 10.1111/jipb.12289] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
The pollen tube is fundamental for the reproduction of seed plants. Characteristically, it grows relatively quickly and uni-directionally ("polarized growth") to extend the male gametophyte to reach the female gametophyte. The pollen tube forms a channel through which the sperm cells move so that they can reach their targets in the ovule. To grow quickly and directionally, the pollen tube requires an intense movement of organelles and vesicles that allows the cell's contents to be distributed to sustain the growth rate. While the various organelles distribute more or less uniformly within the pollen tube, Golgi-released secretory vesicles accumulate massively at the pollen tube apex, that is, the growing region. This intense movement of organelles and vesicles is dependent on the dynamics of the cytoskeleton, which reorganizes differentially in response to external signals and coordinates membrane trafficking with the growth rate of pollen tubes.
Collapse
Affiliation(s)
- Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | | | | |
Collapse
|
5
|
Buchnik L, Abu-Abied M, Sadot E. Role of plant myosins in motile organelles: is a direct interaction required? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:23-30. [PMID: 25196231 DOI: 10.1111/jipb.12282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Plant organelles are highly motile, with speed values of 3-7 µm/s in cells of land plants and about 20-60 µm/s in characean algal cells. This movement is believed to be important for rapid distribution of materials around the cell, for the plant's ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organelles within plant cells is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes: myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in all kingdoms. Paradoxically, while it was found that myosins from class XI regulate most organelle movement, it is not quite clear how or even if these motor proteins attach to the organelles whose movement they regulate.
Collapse
Affiliation(s)
- Limor Buchnik
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan, 50250, Israel
| | | | | |
Collapse
|
6
|
Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. Proc Natl Acad Sci U S A 2014; 111:11900-5. [PMID: 25074908 DOI: 10.1073/pnas.1323104111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that nuclear migration is important for eukaryotic development. Although nuclear migration is conserved in plants, its importance for plant development has not yet been established. The most extraordinary plant nuclear migration events involve plant fertilization, which is starkly different from that of animals. Instead of evolving self-propelled sperm cells (SCs), plants use pollen tubes to deliver SCs, in which the pollen vegetative nucleus (VN) and the SCs migrate as a unit toward the ovules, a fundamental but barely understood process. Here, we report that WPP domain-interacting proteins (WIPs) and their binding partners the WPP domain-interacting tail-anchored proteins (WITs) are essential for pollen nuclear migration. Loss-of-function mutations in WIT and/or WIP gene families resulted in impaired VN movement, inefficient SC delivery, and defects in pollen tube reception. WIPs are Klarsicht/ANC-1/Syne-1 Homology (KASH) analogs in plants. KASH proteins are key players in animal nuclear migration. Thus, this study not only reveals an important nuclear migration mechanism in plant fertilization but also, suggests that similar nuclear migration machinery is conserved between plants and animals.
Collapse
|
7
|
Griffis AHN, Groves NR, Zhou X, Meier I. Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease. FRONTIERS IN PLANT SCIENCE 2014; 5:129. [PMID: 24772115 PMCID: PMC3982112 DOI: 10.3389/fpls.2014.00129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/18/2014] [Indexed: 05/18/2023]
Abstract
While textbook figures imply nuclei as resting spheres at the center of idealized cells, this picture fits few real situations. Plant nuclei come in many shapes and sizes, and can be actively transported within the cell. In several contexts, this nuclear movement is tightly coupled to a developmental program, the response to an abiotic signal, or a cellular reprogramming during either mutualistic or parasitic plant-microbe interactions. While many such phenomena have been observed and carefully described, the underlying molecular mechanism and the functional significance of the nuclear movement are typically unknown. Here, we survey recent as well as older literature to provide a concise starting point for applying contemporary molecular, genetic and biochemical approaches to this fascinating, yet poorly understood phenomenon.
Collapse
Affiliation(s)
- Anna H. N. Griffis
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Center for RNA Biology, The Ohio State UniversityColumbus, OH, USA
| | - Norman R. Groves
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
| | - Xiao Zhou
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Center for RNA Biology, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
8
|
Egea G, Serra-Peinado C, Salcedo-Sicilia L, Gutiérrez-Martínez E. Actin acting at the Golgi. Histochem Cell Biol 2013; 140:347-60. [PMID: 23807268 DOI: 10.1007/s00418-013-1115-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 01/08/2023]
Abstract
The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.
Collapse
Affiliation(s)
- Gustavo Egea
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, C/Casanova, 143, 08036, Barcelona, Spain.
| | | | | | | |
Collapse
|
9
|
Rojas ER, Hotton S, Dumais J. Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 2012; 101:1844-53. [PMID: 22004737 DOI: 10.1016/j.bpj.2011.08.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/17/2011] [Accepted: 08/02/2011] [Indexed: 12/20/2022] Open
Abstract
Morphogenesis of plant cells is tantamount to the shaping of the stiff cell wall that surrounds them. To this end, these cells integrate two concomitant processes: 1), deposition of new material into the existing wall, and 2), mechanical deformation of this material by the turgor pressure. However, due to uncertainty regarding the mechanisms that coordinate these processes, existing models typically adopt a limiting case in which either one or the other dictates morphogenesis. In this report, we formulate a simple mechanism in pollen tubes by which deposition causes turnover of cell wall cross-links, thereby facilitating mechanical deformation. Accordingly, deposition and mechanics are coupled and are both integral aspects of the morphogenetic process. Among the key experimental qualifications of this model are: its ability to precisely reproduce the morphologies of pollen tubes; its prediction of the growth oscillations exhibited by rapidly growing pollen tubes; and its prediction of the observed phase relationships between variables such as wall thickness, cell morphology, and growth rate within oscillatory cells. In short, the model captures the rich phenomenology of pollen tube morphogenesis and has implications for other plant cell types.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
10
|
Zhang Z, Friedman H, Meir S, Belausov E, Philosoph-Hadas S. Actomyosin mediates gravisensing and early transduction events in reoriented cut snapdragon spikes. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1176-83. [PMID: 21388706 DOI: 10.1016/j.jplph.2011.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 05/08/2023]
Abstract
We investigated the involvement of the actomyosin network in the early events of the gravitropic response of cut snapdragon (Antirrhinum majus L.) spikes. The effects of the actin-modulating drug, cytochalasin D (CD) and/or the myosin inhibitor, 2,3-butanedione-2-monoxime (BDM) on amyloplast displacement, lateral auxin transport and consequently on stem bending were examined. The inhibitory effect on cytoskeleton integrity was studied by using indirect immunofluorescence double-labeling of actin and myosin. Our results demonstrate that no organizational changes in actin filaments occurred in cortical and endodermal cells of the stem bending zone during reorientation. These results suggest that actin depolymerization is not required for amyloplast sedimentation. Unlike the chloroplasts in the cortex, the amyloplasts in the endodermis were surrounded by actin and myosin, indicating that amyloplasts may be attached to the actin filaments via the motor protein, myosin. This suggests the involvement of myosin as part of the actomyosin complex in amyloplast movement in vertical as well as in reoriented stems. This suggestion was supported by the findings showing that: (a) BDM or CD disrupted the normal organization of actin either by altering characteristic distribution patterns of myosin-like protein in the cortex (BDM), or by causing actin fragmentation (CD); (b) both compounds inhibited the gravity-induced amyloplast displacement in the endodermis. Additionally, these compounds also inhibited lateral auxin transport across the stem and stem gravitropic bending. Our study suggests that during stem reorientation amyloplasts possibly remain attached to the actin filaments, using myosin as a motor protein. Thus, gravisensing and early transduction events in the gravitropic response of snapdragon spikes, manifested by amyloplast displacement and lateral auxin transport, are mediated by the actomyosin complex.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan 50250, Israel
| | | | | | | | | |
Collapse
|
11
|
Abstract
An extracellular form of the calcium-dependent protein-cross-linking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein: His6–Xpr–GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activity was observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization.
Collapse
|
12
|
Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z. Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. THE PLANT CELL 2009; 21:3868-84. [PMID: 20023198 PMCID: PMC2814512 DOI: 10.1105/tpc.109.068700] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 11/07/2009] [Accepted: 11/18/2009] [Indexed: 05/18/2023]
Abstract
Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an actin nucleation factor responsible for the formation of longitudinal actin cables in pollen tubes. The Arabidopsis AFH3 gene encodes a 785-amino acid polypeptide, which contains a formin homology 1 (FH1) and a FH2 domain. In vitro analysis revealed that the AFH3 FH1FH2 domains interact with the barbed end of actin filaments and have actin nucleation activity in the presence of G-actin or G actin-profilin. Overexpression of AFH3 in tobacco (Nicotiana tabacum) pollen tubes induced excessive actin cables, which extended into the tubes' apices. Specific downregulation of AFH3 eliminated actin cables in Arabidopsis pollen tubes and reduced the level of actin polymers in pollen grains. This led to the disruption of the reverse fountain streaming pattern in pollen tubes, confirming a role for actin cables in the regulation of cytoplasmic streaming. Furthermore, these tubes became wide and short and swelled at their tips, suggesting that actin cables may regulate growth polarity in pollen tubes. Thus, AFH3 regulates the formation of actin cables, which are important for cytoplasmic streaming and polarized growth in pollen tubes.
Collapse
Affiliation(s)
- Jianrong Ye
- College of Biological Science, China Agricultural University, Beijing 100193, China
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yiyan Zheng
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - An Yan
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Naizhi Chen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhangkui Wang
- College of Biological Science, China Agricultural University, Beijing 100193, China
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to or
| | - Zhenbiao Yang
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Address correspondence to or
| |
Collapse
|
13
|
Higashi-Fujime S, Nakamura A. Cell and molecular biology of the fastest myosins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:301-47. [PMID: 19584016 DOI: 10.1016/s1937-6448(09)76007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chara myosin is a class XI plant myosin in green algae Chara corallina and responsible for fast cytoplasmic streaming. The Chara myosin exhibits the fastest sliding movement of F-actin at 60 mum/s as observed so far, 10-fold of the shortening speed of muscle. It has some distinct properties differing from those of muscle myosin. Although knowledge about Chara myosin is very limited at present, we have tried to elucidate functional bases of its characteristics by comparing with those of other myosins. In particular, we have built the putative atomic model of Chara myosin by using the homology-based modeling system and databases. Based on the putative structure of Chara myosin obtained, we have analyzed the relationship between structure and function of Chara myosin to understand its distinct properties from various aspects by referring to the accumulated knowledge on mechanochemical and structural properties of other classes of myosin, particularly animal and fungal myosin V. We will also discuss the functional significance of Chara myosin in a living cell.
Collapse
Affiliation(s)
- Sugie Higashi-Fujime
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
14
|
Cai G, Cresti M. Organelle motility in the pollen tube: a tale of 20 years. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:495-508. [PMID: 19112169 DOI: 10.1093/jxb/ern321] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organelle movement is an evident feature of pollen tubes and is essential for the process of tube growth because it enables the proper distribution of organelles and the accumulation of secretory vesicles in the tube apex. Organelles move along the actin filaments through dynamic interactions with myosin but other proteins are probably responsible for control of this activity. The role of microtubules and microtubule-based motors is less clear and somewhat enigmatic. Nevertheless, the pollen tube is an excellent cell model in which to study and analyse the molecular mechanisms that drive and control organelle motility in relation to plant cell expansion. Current knowledge and the main scientific discoveries in this field of research over the last 20 years are summarized here. Future prospects in the study of the molecular mechanisms that mediate organelle transport and vesicle accumulation during pollen tube elongation are also discussed.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze Ambientali, Università di Siena, via Mattioli 4, I-53100 Siena, Italy.
| | | |
Collapse
|
15
|
Cruz JR, Moreno Díaz de la Espina S. Subnuclear compartmentalization and function of actin and nuclear myosin I in plants. Chromosoma 2008; 118:193-207. [PMID: 18982342 DOI: 10.1007/s00412-008-0188-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 01/08/2023]
Abstract
Actins are highly conserved proteins that serve as the basic building blocks of cytoskeletal microfilaments. In animal cells, specific nuclear actin adopts unconventional conformations that are involved in multiple nuclear functions and that associate with nuclear actin binding proteins. However, there is practically no information available about nuclear actin in plants. Indeed, actin has not been detected in the nuclear proteomes of many plants, and orthologs of the main structural nuclear actin-binding proteins have yet to be identified. Here, we have investigated the characteristics, intranuclear compartmentalization, and function of actin in isolated Allium cepa nuclei as well as that of its motor protein nuclear myosin I (NMI). Using conformation-specific antibodies for nuclear actin isoforms, ss-actin, and NMI, the distribution of these proteins was studied in Western blots and by immunocytochemistry. Moreover, the participation of nuclear actin in transcription was analyzed in run on in situ assays and inhibition of RNA polymerases I and II. We show that actin isoforms with distinct solubilities are present in onion nuclei with a consistent subnuclear compartmentalization. Actin and NMI are highly enriched in foci that are similar to transcription foci, although actin is also distributed diffusely in the nucleus and nucleolus as well as accumulating in a subset of the Cajal bodies. Immunogold labeling identified both proteins in the nuclear transcription subdomains and in other subnuclear compartments. In addition, actin and NMI were diffusely distributed in the nuclear matrix.
Collapse
Affiliation(s)
- J R Cruz
- Department of Plant Biology, Centro Investigaciones Biológicas, CSIC, Madrid, Spain.
| | | |
Collapse
|
16
|
Esseling-Ozdoba A, Houtman D, VAN Lammeren AAM, Eiser E, Emons AMC. Hydrodynamic flow in the cytoplasm of plant cells. J Microsc 2008; 231:274-83. [PMID: 18778425 DOI: 10.1111/j.1365-2818.2008.02033.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Plant cells show myosin-driven organelle movement, called cytoplasmic streaming. Soluble molecules, such as metabolites do not move with motor proteins but by diffusion. However, is all of this streaming active motor-driven organelle transport? Our recent simulation study (Houtman et al., 2007) shows that active transport of organelles gives rise to a drag in the cytosol, setting up a hydrodynamic flow, which contributes to a fast distribution of proteins and nutrients in plant cells. Here, we show experimentally that actively transported organelles produce hydrodynamic flow that significantly contributes to the movement of the molecules in the cytosol. We have used fluorescence recovery after photobleaching and show that in tobacco Bright Yellow 2 (BY-2) suspension cells constitutively expressing cytoplasmic green fluorescent protein (GFP), free GFP molecules move faster in cells with active transport of organelles than in cells where this transport has been inhibited with the general myosin inhibitor BDM (2,3-butanedione monoxime). Furthermore, we show that the direction of the GFP movement in the cells with active transport is the same as that of the organelle movement and that the speed of the GFP in the cytosol is proportional to the speed of the organelle movement. In large BY-2 cells with fast cytoplasmic streaming, a GFP molecule reaches the other side of the cell approximately in the similar time frame (about 16 s) as in small BY-2 cells that have slow cytoplasmic streaming. With this, we suggest that hydrodynamic flow is important for efficient transport of cytosolic molecules in large cells. Hydrodynamic flow might also contribute to the movement of larger structures than molecules in the cytoplasm. We show that synthetic lipid (DOPG) vesicles and 'stealth' vesicles with PEG phospholipids moved in the cytoplasm.
Collapse
Affiliation(s)
- A Esseling-Ozdoba
- Laboratory of Plant Cell Biology, Department of Plant Sciences, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Sparkes IA, Teanby NA, Hawes C. Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2499-512. [PMID: 18503043 PMCID: PMC2423659 DOI: 10.1093/jxb/ern114] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/11/2008] [Accepted: 03/28/2008] [Indexed: 05/18/2023]
Abstract
Although organelle movement in higher plants is predominantly actin-based, potential roles for the 17 predicted Arabidopsis myosins in motility are only just emerging. It is shown here that two Arabidopsis myosins from class XI, XIE, and XIK, are involved in Golgi, peroxisome, and mitochondrial movement. Expression of dominant negative forms of the myosin lacking the actin binding domain at the amino terminus perturb organelle motility, but do not completely inhibit movement. Latrunculin B, an actin destabilizing drug, inhibits organelle movement to a greater extent compared to the effects of AtXIE-T/XIK-T expression. Amino terminal YFP fusions to XIE-T and XIK-T are dispersed throughout the cytosol and do not completely decorate the organelles whose motility they affect. XIE-T and XIK-T do not affect the global actin architecture, but their movement and location is actin-dependent. The potential role of these truncated myosins as genetically encoded inhibitors of organelle movement is discussed.
Collapse
Affiliation(s)
- Imogen A Sparkes
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK.
| | | | | |
Collapse
|
18
|
Zonia L, Munnik T. Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:861-73. [PMID: 18304978 DOI: 10.1093/jxb/ern007] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pollen tubes are one of the fastest growing eukaryotic cells. Rapid anisotropic growth is supported by highly active exocytosis and endocytosis at the plasma membrane, but the subcellular localization of these sites is unknown. To understand molecular processes involved in pollen tube growth, it is crucial to identify the sites of vesicle localization and trafficking. This report presents novel strategies to identify exocytic and endocytic vesicles and to visualize vesicle trafficking dynamics, using pulse-chase labelling with styryl FM dyes and refraction-free high-resolution time-lapse differential interference contrast microscopy. These experiments reveal that the apex is the site of endocytosis and membrane retrieval, while exocytosis occurs in the zone adjacent to the apical dome. Larger vesicles are internalized along the distal pollen tube. Discretely sized vesicles that differentially incorporate FM dyes accumulate in the apical, subapical, and distal regions. Previous work established that pollen tube growth is strongly correlated with hydrodynamic flux and cell volume status. In this report, it is shown that hydrodynamic flux can selectively increase exocytosis or endocytosis. Hypotonic treatment and cell swelling stimulated exocytosis and attenuated endocytosis, while hypertonic treatment and cell shrinking stimulated endocytosis and inhibited exocytosis. Manipulation of pollen tube apical volume and membrane remodelling enabled fine-mapping of plasma membrane dynamics and defined the boundary of the growth zone, which results from the orchestrated action of endocytosis at the apex and along the distal tube and exocytosis in the subapical region. This report provides crucial spatial and temporal details of vesicle trafficking and anisotropic growth.
Collapse
Affiliation(s)
- Laura Zonia
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section Plant Physiology Kruislaan 318, 1098 SM Amsterdam, Netherlands
| | | |
Collapse
|
19
|
Lovy-Wheeler A, Cárdenas L, Kunkel JG, Hepler PK. Differential organelle movement on the actin cytoskeleton in lily pollen tubes. ACTA ACUST UNITED AC 2007; 64:217-32. [PMID: 17245769 DOI: 10.1002/cm.20181] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined the arrangement and movement of three major compartments, the endoplasmic reticulum (ER), mitochondria, and the vacuole during oscillatory, polarized growth in lily pollen tubes. These movements are dependent on the actin cytoskeleton, because they are strongly perturbed by the anti-microfilament drug, latrunculin-B, and unaffected by the anti-microtubule agent, oryzalin. The ER, which has been labeled with mGFP5-HDEL or cytochalasin D tetramethylrhodamine, displays an oscillatory motion in the pollen tube apex. First it moves apically in the cortical region, presumably along the cortical actin fringe, and then periodically folds inward creating a platform that transects the apical domain in a plate-like structure. Finally, the ER reverses its direction and moves basipetally through the central core of the pollen tube. When subjected to cross-correlation analysis, the formation of the platform precedes maximal growth rates by an average of 3 s (35-40 degrees ). Mitochondria, labeled with Mitotracker Green, are enriched in the subapical region, and their movement closely resembles that of the ER. The vacuole, labeled with carboxy-dichlorofluorescein diacetate, consists of thin tubules arranged longitudinally in a reticulate network, which undergoes active motion. In contrast to the mitochondria and ER, the vacuole is located back from the apex, and never extends into the apical clear zone. We have not been able to decipher an oscillatory pattern in vacuole motion. Because this motion is dependent on actin and not tubulin, we think this is due to a different myosin from that which drives the ER and mitochondria.
Collapse
Affiliation(s)
- Alenka Lovy-Wheeler
- Department of Biology and Plant Biology Graduate Program, Morrill Science Center III, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
20
|
Jiang SY, Cai M, Ramachandran S. ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiod-sensitive protein localizations. Dev Biol 2007; 304:579-92. [PMID: 17289016 DOI: 10.1016/j.ydbio.2007.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/29/2006] [Accepted: 01/04/2007] [Indexed: 11/22/2022]
Abstract
Myosins are actin-based motor proteins responsible for various motility and signal transduction. Only a small set of myosin classes is present inplants, and little is known about their functions. Here we showed how a rice myosin gene controlled pollen development by sensing changed environmental factors. The analysis is based on a gene-trapped Ds insertion mutant Oryza sativa myosin XI B (osmyoXIB). This mutant showed male sterility under short day length (SD) conditions and fertility under long day length (LD) conditions. Under both SD and LD conditions, the OSMYOXIB transcript was detected in whole anthers. However, under SD conditions, the OSMYOXIB-GUS fusion protein was localized only in the epidermal layer of anthers due to the lack of 3'-untranslated region (3'-UTR) and to dilute (DIL) domain sequences following the Ds insertion. As a result, mutant pollen development was affected, leading to male sterility. By contrast, under LD conditions, the fusion protein was localized normally in anthers. Despite normal localization, the protein was only partially functional due to the lack of DIL domain sequences, resulting in limited recovery of pollen fertility. This study also provides a case for a novel molecular aspect of gene expression, i.e., cell layer-specific translation in anthers.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore 117604, Singapore
| | | | | |
Collapse
|
21
|
Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M. Microtubule- and Actin Filament-Dependent Motors are Distributed on Pollen Tube Mitochondria and Contribute Differently to Their Movement. ACTA ACUST UNITED AC 2007; 48:345-61. [PMID: 17204488 DOI: 10.1093/pcp/pcm001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.
Collapse
Affiliation(s)
- Silvia Romagnoli
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, via Mattioli 4, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Malhó R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A. Signalling pathways in pollen germination and tube growth. PROTOPLASMA 2006; 228:21-30. [PMID: 16937051 DOI: 10.1007/s00709-006-0162-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/08/2005] [Indexed: 05/11/2023]
Abstract
Signalling is an integral component in the establishment and maintenance of cellular identity. In plants, tip-growing cells represent an ideal system to investigate signal transduction mechanisms, and among these, pollen tubes (PTs) are one of the favourite models. Many signalling pathways have been identified during germination and tip growth, namely, Ca(2+), calmodulin, phosphoinositides, protein kinases, cyclic AMP, and GTPases. These constitute a large and complex web of signalling networks that intersect at various levels such as the control of vesicle targeting and fusion and the physical state of the actin cytoskeleton. Here we discuss some of the most recent advances made in PT signal transduction cascades and their implications for our future research. For reasons of space, emphasis was given to signalling mechanisms that control PT reorientation, so naturally many other relevant works have not been cited.
Collapse
Affiliation(s)
- R Malhó
- Departamento de Biologia Vegetal, Instituto de Ciência Aplicada e Tecnologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
23
|
Hamada S, Sekimoto H, Tanabe Y, Tsuchikane Y, Ito M. Isolation of myosin XI genes from the Closterium peracerosum-strigosum-littorale complex and analysis of their expression during sexual reproduction. JOURNAL OF PLANT RESEARCH 2006; 119:105-13. [PMID: 16456621 DOI: 10.1007/s10265-005-0249-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/21/2005] [Indexed: 05/06/2023]
Abstract
Myosins comprise a large superfamily of molecular motors that generate mechanical force in ATP-dependent interactions with actin filaments. On the basis of their conserved motor domain sequences, myosins can be divided into at least 17 classes, 3 of which (VIII, XI, XIII) are found in plants. Although full sequences of myosins are available from several species of green plants, little is known about the functions of these proteins. Additionally, sequence information for algal myosin is incomplete, and little attention has been given to the molecular evolution of myosin from green plants. In the present study, the Closterium peracerosum-strigosum-littorale complex was used as a model system for investigating a unicellular basal charophycean alga. This organism has been well studied with respect to sexual reproduction between its two mating types. Three types of partial sequences belonging to class XI myosins were obtained using degenerate primers designed to amplify motor domain sequences. Real-time polymerase chain reaction analysis of the respective myosin genes during various stages of the algal life cycle showed that one of the genes was more highly expressed during sexual reproduction, and that expression was cell-cycle-dependent in vegetatively grown cells.
Collapse
Affiliation(s)
- Saeko Hamada
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
24
|
Hörmanseder K, Obermeyer G, Foissner I. Disturbance of endomembrane trafficking by brefeldin A and calyculin A reorganizes the actin cytoskeleton of Lilium longiflorum pollen tubes. PROTOPLASMA 2005; 227:25-36. [PMID: 16389491 DOI: 10.1007/s00709-005-0132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 05/31/2005] [Indexed: 05/06/2023]
Abstract
We investigated the effect of brefeldin A on membrane trafficking and the actin cytoskeleton of pollen tubes of Lilium longiflorum with fluorescent dyes, inhibitor experiments, and confocal laser scanning microscopy. The formation of a subapical brefeldin A-induced membrane aggregation (BIA) was associated with the formation of an actin basket from which filaments extended towards the tip. The orientation of these actin filaments correlated with the trajectories of membrane material stained by FM dyes, suggesting that the BIA-associated actin filaments are used as tracks for retrograde transport. Analysis of time series indicated that these tracks (actin filaments) were either stationary or glided along the plasma membrane towards the BIA together with the attached membranes or organelles. Disturbance of the actin cytoskeleton by cytochalasin D or latrunculin B caused immediate arrest of membrane trafficking, dissipation of the BIA and the BIA-associated actin basket, and reorganization into randomly oriented actin rods. Our observations suggest that brefeldin A causes ectopic activation of actin-nucleating proteins at the BIA, resulting in retrograde movement of membranes not only along but also together with actin filaments. We show further that subapical membrane aggregations and actin baskets supporting retrograde membrane flow can also be induced by calyculin A, indicating that dephosphorylation by type 2 protein phosphatases is required for proper formation of membrane coats and polar membrane trafficking.
Collapse
Affiliation(s)
- K Hörmanseder
- Fachbereich Molekulare Biologie, Universität Salzburg, Hellbrunnerstrasse, Salzburg, Austria
| | | | | |
Collapse
|
25
|
Cárdenas L, Lovy-Wheeler A, Wilsen KL, Hepler PK. Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. ACTA ACUST UNITED AC 2005; 61:112-27. [PMID: 15849722 DOI: 10.1002/cm.20068] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Actin polymerization is important in the control of pollen tube growth. Thus, treatment of pollen tubes with low concentrations of latrunculin B (Lat-B), which inhibits actin polymerization, permits streaming but reversibly blocks oscillatory growth. In the current study, we employ Jasplakinolide (Jas), a sponge cyclodepsipeptide that stabilizes actin microfilaments and promotes polymerization. Uniquely, Jas (2 microM) blocks streaming in the shank of the tube, but induces the formation of a toroidal-shaped domain in the swollen apex, of which longitudinal optical sections exhibit circles of motion. The polarity of this rotary motion is identical to that of reverse fountain motility in control pollen tubes, with the forward direction occurring at the edge of the cell and the rearward direction in the cell interior. Support for the idea that actin polymerization in the apical domain contributes to the formation of this rotary motility activity derives from the appearance therein of aggregates and flared cables of F-actin, using immunofluorescence, and by the reduction in G-actin as indicated with fluorescent DNAse. In addition, Jas reduces the tip-focused Ca2+ gradient. However, the alkaline band appears in the swollen apex and is spatially localized with the reverse fountain streaming activity. Taken together, our results support the idea that actin polymerization promotes reversal of streaming in the apex of the lily pollen tube.
Collapse
Affiliation(s)
- Luis Cárdenas
- Biology Department, and the Plant Biology Graduate Program, Morrill Science Center, University of Massachusetts, Amherst, USA.
| | | | | | | |
Collapse
|
26
|
Moscatelli A, Scali M, Prescianotto-Baschong C, Ferro M, Garin J, Vignani R, Ciampolini F, Cresti M. A methionine synthase homolog is associated with secretory vesicles in tobacco pollen tubes. PLANTA 2005; 221:776-89. [PMID: 15940464 DOI: 10.1007/s00425-005-1487-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Accepted: 12/18/2004] [Indexed: 05/02/2023]
Abstract
Seven isoforms of 85 kDa polypeptides (p85) were identified as methionine synthase (MetE) homologs by partial aminoacid sequencing in tobacco pollen tube extracts. Immunocytochemistry data showed a localization of the antigen on the surface of tip-focussed post-Golgi secretory vesicles (SVs), that appear to be partially associated with microtubules (Mts). The chemical dissection of pollen tube high speed supernatant (HSS) showed that two distinct pools of MetE are present in pollen tubes, one being the more acidic isoforms sedimenting at 15S and the remaining at 4S after zonal centrifugation through a sucrose density gradient. The identification of the MetE within the pollen tube and its possible participation as methyl donor in a wide range of metabolic reactions, makes it a good subject for studies on pollen tube growth regulation.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Biologia, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. PLANTA 2005; 221:95-104. [PMID: 15747143 DOI: 10.1007/s00425-004-1423-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 10/12/2004] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a crucial role in the growth and polarity of the pollen tube. Due to inconsistencies in the conventional preservation methods, we lack a unified view of the organization of actin microfilaments, especially in the apical domain, where tip growth occurs. In an attempt to improve fixation methods, we have developed a rapid freeze-whole mount procedure, in which growing pollen tubes (primarily lily) are frozen in liquid propane at -180 degrees C, substituted at -80 degrees C in acetone containing glutaraldehyde, rehydrated, quenched with sodium borohydride, and probed with antibodies. Confocal microscopy reveals a distinct organization of actin in the apical domain that consists of a dense cortical fringe or collar of microfilaments starting about 1-5 microm behind the extreme apex and extending basally for an additional 5-10 microm. In the shank of the pollen tube, basal to the fringe, actin forms abundant longitudinal filaments that are evenly dispersed throughout the cytoplasm. We have also developed an improved ambient-temperature chemical fixation procedure, modified from a protocol based on simultaneous fixation and phalloidin staining. We removed EGTA, elevated the pH to 9, and augmented the fixative with ethylene glycol bis[sulfosuccinimidylsuccinate] (sulfo-EGS). Notably, this protocol preserves the actin cytoskeleton in a pattern similar to that produced by cryofixation. These procedures provide a reproducible way to preserve the actin cytoskeleton; employing them, we find that a cortical fringe in the apex and finely dispersed longitudinal filaments in the shank are consistent features of the actin cytoskeleton.
Collapse
Affiliation(s)
- Alenka Lovy-Wheeler
- Department of Biology and Plant Biology Graduate Program, Morrill Science Center III, University of Massachusetts, 611 North Pleasant St., Amherst, MA 01003-9297, USA
| | | | | | | |
Collapse
|
28
|
Jiang S, Ramachandran S. Identification and Molecular Characterization of Myosin Gene Family in Oryza sativa Genome. ACTA ACUST UNITED AC 2004; 45:590-9. [PMID: 15169941 DOI: 10.1093/pcp/pch061] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myosins play an important role in various developmental processes in plants. We have identified 14 myosin genes in rice (Oryza sativa cv. Nipponbare) genome using sequence information available in public databases. Phylogenetic analysis of these sequences with other plant and non-plant myosins revealed that two of the predicted sequences belonged to class VIII and the others to class XI. All of these genes were distributed on seven chromosomes in the rice genome. Domain searches on these sequences indicated that a typical rice myosin consisted of Myosin_N, head domain, neck (IQ motifs), tail, and dilute (DIL) domain. Based on the sequence information obtained from predicted myosins, we isolated and sequenced two full-length cDNAs, OsMyoVIIIA and OsMyoXIE, representing each of the two classes of myosins. These two cDNAs isolated from different organs existed in isoforms due to differential splicing and showed minor differences from the predicted myosin in exon organization. Out of 14 myosin genes 11 were expressed in three major organs: leaves, panicles, and roots, among which three myosins exhibited different expression levels. On the other hand, three of the total myosin sequences showed organ-specific expression. The existence of different myosin genes and their isoforms in different organs or tissues indicates the diversity of myosin functions in rice.
Collapse
Affiliation(s)
- ShuYe Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore, Singapore 117604
| | | |
Collapse
|
29
|
Wang Z, Pesacreta TC. A subclass of myosin XI is associated with mitochondria, plastids, and the molecular chaperone subunit TCP-1? in maize. ACTA ACUST UNITED AC 2004; 57:218-32. [PMID: 14752806 DOI: 10.1002/cm.10168] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role and regulation of specific plant myosins in cyclosis is not well understood. In the present report, an affinity-purified antibody generated against a conserved tail region of some class XI plant myosin isoforms was used for biochemical and immunofluorescence studies of Zea mays. Myosin XI co-localized with plastids and mitochondria but not with nuclei, the Golgi apparatus, endoplasmic reticulum, or peroxisomes. This suggests that myosin XI is involved in the motility of specific organelles. Myosin XI was more than 50% co-localized with tailless complex polypeptide-1alpha (TCP-1alpha) in tissue sections of mature tissues located more than 1.0 mm from the apex, and the two proteins co-eluted from gel filtration and ion exchange columns. On Western blots, TCP-1alpha isoforms showed a developmental shift from the youngest 5.0 mm of the root to more mature regions that were more than 10.0 mm from the apex. This developmental shift coincided with a higher percentage of myosin XI /TCP-1alpha co-localization, and faster degradation of myosin XI by serine protease. Our results suggest that class XI plant myosin requires TCP-1alpha for regulating folding or providing protection against denaturation.
Collapse
Affiliation(s)
- Zhengyuan Wang
- Biology Department, University of Louisiana, Lafayette 70504, USA
| | | |
Collapse
|
30
|
Affiliation(s)
- Silvia Romagnoli
- Dipartimento Scienze Ambientali 'G. Sarfatti', Università di Siena, Via Mattioli 4, 53100 Siena (I), Italy.
| | | | | |
Collapse
|
31
|
Romagnoli S, Cai G, Cresti M. In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules. THE PLANT CELL 2003; 15:251-69. [PMID: 12509535 PMCID: PMC143495 DOI: 10.1105/tpc.005645] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2002] [Accepted: 10/08/2002] [Indexed: 05/17/2023]
Abstract
The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro-polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.
Collapse
Affiliation(s)
- Silvia Romagnoli
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, via Mattioli 4, 53100 Siena, Italy.
| | | | | |
Collapse
|
32
|
Abstract
Pollen tubes and root hairs are highly elongated, cylindrically shaped cells whose polarized growth permits them to explore the environment for the benefit of the entire plant. Root hairs create an enormous surface area for the uptake of water and nutrients, whereas pollen tubes deliver the sperm cells to the ovule for fertilization. These cells grow exclusively at the apex and at prodigious rates (in excess of 200 nm/s for pollen tubes). Underlying this rapid growth are polarized ion gradients and fluxes, turnover of cytoskeletal elements (actin microfilaments), and exocytosis and endocytosis of membrane vesicles. Intracellular gradients of calcium and protons are spatially localized at the growing apex; inward fluxes of these ions are apically directed. These gradients and fluxes oscillate with the same frequency as the oscillations in growth rate but not with the same phase. Actin microfilaments, which together with myosin generate reverse fountain streaming, undergo rapid turnover in the apical domain, possibly being regulated by key actin-binding proteins, e.g., profilin, villin, and ADF/cofilin, in concert with the ion gradients. Exocytosis of vesicles at the apex, also dependent on the ion gradients, provides precursor material for the continuously expanding cell wall of the growing cell. Elucidation of the interactions and of the dynamics of these different components is providing unique insight into the mechanisms of polarized growth.
Collapse
Affiliation(s)
- P K Hepler
- Department of Biology, University of Massachusetts, Morrill Science Center III, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
33
|
Abstract
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
34
|
Sokac AM, Bement WM. Regulation and expression of metazoan unconventional myosins. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 200:197-304. [PMID: 10965469 DOI: 10.1016/s0074-7696(00)00005-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unconventional myosins are molecular motors that convert adenosine triphosphate (ATP) hydrolysis into movement along actin filaments. On the basis of primary structure analysis, these myosins are represented by at least 15 distinct classes (classes 1 and 3-16), each of which is presumed to play a specific cellular role. However, in contrast to the conventional myosins-2, which drive muscle contraction and cytokinesis and have been studied intensively for many years in both uni- and multicellular organisms, unconventional myosins have only been subject to analysis in metazoan systems for a short time. Here we critically review what is known about unconventional myosin regulation, function, and expression. Several points emerge from this analysis. First, in spite of the high relative conservation of motor domains among the myosin classes, significant differences are found in biochemical and enzymatic properties of these motor domains. Second, the idea that characteristic distributions of unconventional myosins are solely dependent on the myosin tail domain is almost certainly an oversimplification. Third, the notion that most unconventional myosins function as transport motors for membranous organelles is challenged by recent data. Finally, we present a scheme that clarifies relationships between various modes of myosin regulation.
Collapse
Affiliation(s)
- A M Sokac
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
35
|
Abstract
This first analysis of monocotyledon myosin genes showed that at least five genes, one of which was probably spliced to yield two isoforms, were expressed in maize (Zea mays L.). The complete coding sequence of ZMM1 was determined, as were most of the sequences of two other myosin cDNAs (ZMM2 and ZMM3). ZMM1 and ZMM2 belonged to myosin class XI while ZMM3 was in class VIII. ZMM1 was abundantly expressed in leaves, roots, coleoptiles, and stems. ZMM3 showed a similar distribution but was expressed poorly in pollen. ZMM2 was predominantly expressed in seeds and may be part of a suite of cytoskeletal proteins in reproductive tissues. Phylogenetic analysis suggested that the origin of myosin classes VIII and XI predated that of angiosperms. Immunofluorescence studies using M11L1, a myosin XI antibody specific for the exposed loop 1 head region of myosin, indicated that myosin XI occurred in the cytoplasm of all root tip cells. The highest concentration of myosin XI was in the differentiating epidermal cells. In dividing cells, myosin XI was present near the cytokinetic apparatus at approximately the same concentration seen in other portions of the cytoplasm. Western blot analysis of subcellular fractions indicated that myosin XI was concentrated in mitochondria and low-density membranes.
Collapse
Affiliation(s)
- L Liu
- Biological Laboratories, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
36
|
Abstract
Actin microfilaments (MFs) are essential for the growth of the pollen tube. Although it is well known that MFs, together with myosin, deliver the vesicles required for cell elongation, it is becoming evident that the polymerization of new actin MFs, in a process that is independent of actomyosin-dependent vesicle translocation, is also necessary for cell elongation. Herein we review the recent literature that focuses on this subject, including brief discussions of the actin-binding proteins in pollen, and their possible role in regulating actin MF activity. We promote the view that polymerization of new actin MFs polarizes the cytoplasm at the apex of the tube. This process is regulated in part by the apical calcium gradient and by different actin-binding proteins. For example, profilin binds actin monomers and gives the cell control over the initiation of polymerization. A more recently discovered actin-binding protein, villin, stimulates the formation of unipolar bundles of MFs. Villin may also respond to the apical calcium gradient, fragmenting MFs, and thus locally facilitating actin remodeling. While much remains to be discovered, it is nevertheless apparent that actin MFs play a fundamental role in controlling apical cell growth in pollen tubes.
Collapse
Affiliation(s)
- L Vidali
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
37
|
Nebenführ A, Frohlick JA, Staehelin LA. Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. PLANT PHYSIOLOGY 2000; 124:135-51. [PMID: 10982429 PMCID: PMC59129 DOI: 10.1104/pp.124.1.135] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2000] [Accepted: 06/13/2000] [Indexed: 05/17/2023]
Abstract
We have followed the redistribution of Golgi stacks during mitosis and cytokinesis in living tobacco BY-2 suspension culture cells by means of a green fluorescent protein-tagged soybean alpha-1,2 mannosidase, and correlated the findings to cytoskeletal rearrangements and to the redistribution of endoplasmic reticulum, mitochondria, and plastids. In preparation for cell division, when the general streaming of Golgi stacks stops, about one-third of the peripheral Golgi stacks redistributes to the perinuclear cytoplasm, the phragmosome, thereby reversing the ratio of interior to cortical Golgi from 2:3 to 3:2. During metaphase, approximately 20% of all Golgi stacks aggregate in the immediate vicinity of the mitotic spindle and a similar number becomes concentrated in an equatorial region under the plasma membrane. This latter localization, the "Golgi belt," accurately predicts the future site of cell division, and thus forms a novel marker for this region after the disassembly of the preprophase band. During telophase and cytokinesis, many Golgi stacks redistribute around the phragmoplast where the cell plate is formed. At the end of cytokinesis, the daughter cells have very similar Golgi stack densities. The sites of preferential Golgi stack localization are specific for this organelle and largely exclude mitochondria and plastids, although some mitochondria can approach the phragmoplast. This segregation of organelles is first observed in metaphase and persists until completion of cytokinesis. Maintenance of the distinct localizations does not depend on intact actin filaments or microtubules, although the mitotic spindle appears to play a major role in organizing the organelle distribution patterns. The redistribution of Golgi stacks during mitosis and cytokinesis is consistent with the hypothesis that Golgi stacks are repositioned to ensure equal partitioning between daughter cells as well as rapid cell plate assembly.
Collapse
Affiliation(s)
- A Nebenführ
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | |
Collapse
|
38
|
Yokota, Yukawa, Muto, Sonobe, Shimmen. Biochemical and immunocytochemical characterization of two types of myosins in cultured tobacco bright yellow-2 cells. PLANT PHYSIOLOGY 1999; 121:525-34. [PMID: 10517844 PMCID: PMC59415 DOI: 10.1104/pp.121.2.525] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/1999] [Accepted: 06/14/1999] [Indexed: 05/21/2023]
Abstract
We have isolated a myosin (referred to as 170-kD myosin) from lily pollen tubes, which consists of 170-kD heavy chain and calmodulin (CaM) light chain and is responsible for cytoplasmic streaming. A 170-kD polypeptide that has similar antigenicity to the 170-kD myosin heavy chain of lily pollen tubes was also present in cultured tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells, and possessed the ability to interact with F-actin in an ATP-dependent manner. In addition to this myosin, we identified biochemically another kind of myosin in BY-2 cells. This myosin consisted of a CaM light chain and a 175-kD heavy chain with antigenicity different from the 170-kD myosin heavy chain. In the present study, we referred to this myosin as 175-kD myosin. This myosin was able to translocate rhodamine-phalloidin (RP)-labeled F-actin at an average velocity of about 9 &mgr;m/s in the motility assay in vitro. In contrast, the sliding velocity of RP-labeled F-actin translocated by fractions containing the 170-kD myosin was 3 to 4 &mgr;m/s. The velocity of cytoplasmic streaming in living BY-2 cells ranged from 2 to 9 &mgr;m/s. The motile activity of 175-kD myosin in vitro was inhibited by Ca(2+) at concentrations higher than 10(-6) M. Immunoblot analyses using an antiserum against the heavy chain of 170- or 175-kD myosin revealed that in tobacco plants, the 175-kD myosin was expressed in leaf, stem, and root, but not in germinating pollen, while 170-kD myosin was present in all of these plant parts and in germinating pollen. These results suggest that the two types of myosins, 170 and 175 kD, presumably participate in cytoplasmic streaming in BY-2 cells and other somatic cells of tobacco plants.
Collapse
Affiliation(s)
- Yokota
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-12, Japan
| | | | | | | | | |
Collapse
|
39
|
Kandasamy MK, Meagher RB. Actin-organelle interaction: association with chloroplast in arabidopsis leaf mesophyll cells. CELL MOTILITY AND THE CYTOSKELETON 1999; 44:110-8. [PMID: 10506746 DOI: 10.1002/(sici)1097-0169(199910)44:2<110::aid-cm3>3.0.co;2-o] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The role of the cytoskeleton in the regulation of chloroplast motility and positioning has been investigated by studying: (1) structural relationship of actin microfilaments, microtubules, and chloroplasts in cryofixed and freeze-substituted leaf cells of Arabidopsis; and (2) the effects of anti-actin (Latrunculin B; LAT-B) and anti-microtubule (Oryzalin) drugs on intracellular distribution of chloroplasts. Immunolabeling of leaf cells with two plant-actin specific antibodies, which react equivalently with all the expressed Arabidopsis actins, revealed two arrangements of actin microfilaments: longitudinal arrays of thick actin bundles and randomly oriented thin actin filaments that extended from the bundles. Chloroplasts were either aligned along the actin bundles or closely associated with the fine filaments. Baskets of actin microfilaments were also observed around the chloroplasts. The leaf cells labeled with an anti-tubulin antibody showed dense transverse arrays of cortical microtubules that exhibited no apparent association with chloroplasts. The application of LAT-B severely disrupted actin filaments and their association with chloroplasts. In addition, LAT-B induced aberrant aggregation of chloroplasts in the mesophyll and bundle sheath cells. Double labeling of LAT-B treated cells with anti-actin and anti-tubulin antibodies revealed that the microtubules in these cells were unaffected. Moreover, depolymerization of microtubules with Oryzalin did not affect the distribution of chloroplasts. These results provide evidence for the involvement of actin, but not tubulin, in the movement and positioning of chloroplasts in leaf cells. We propose that using motor molecules, some chloroplasts migrate along the actin cables directly, while others are pulled along the cables by the fine actin filaments. The baskets of microfilaments may anchor the chloroplasts during streaming and allow control over proper three-dimensional orientation to light.
Collapse
Affiliation(s)
- M K Kandasamy
- Department of Genetics, Life Sciences Building, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
40
|
Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D, Kendrick-Jones J. Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:555-67. [PMID: 10504577 DOI: 10.1046/j.1365-313x.1999.00553.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Myosins are a large superfamily of motor proteins which, in association with actin, are involved in intra- cellular motile processes. In addition to the conventional myosins involved in muscle contractility, there is, in animal cells, a wide range of unconventional myosins implicated in membrane-associated processes, such as vesicle transport and membrane dynamics. In plant cells, however, very little is known about myosins. We have raised an antibody to the recombinant tail region of Arabidopsis thaliana myosin 1 (a class VIII myosin) and used it in immunofluorescence and EM studies on root cells from cress and maize. The plant myosin VIII is found to be concentrated at newly formed cross walls at the stage in which the phragmoplast cytoskeleton has depolymerized and the new cell plate is beginning to mature. These walls are rich in plasmodesmata and we show that they are the regions where the longitudinal actin cables appear to attach. Myosin VIII appears to be localized in these plasmodesmata and we suggest that this protein is involved in maturation of the cell plate and the re-establishment of cytoplasmic actin cables at sites of intercellular communication.
Collapse
Affiliation(s)
- S Reichelt
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Lazzaro MD. Microtubule organization in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae). AMERICAN JOURNAL OF BOTANY 1999; 86:759-766. [PMID: 10371717 DOI: 10.2307/2656696] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The organization of microtubules in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae) was examined using primarily confocal microscopy. Pollination in conifers differs from angiosperms in the number of mitotic divisions between the microspore and the sperm and in the growth rate of the pollen tube. These differences may be orchestrated by the cytoskeleton, and this study finds that there are important functional differences in microtubule organization within conifer pollen compared to the angiosperm model systems. Pollen from P. abies contains two degenerated prothallial cells, a body cell, a stalk cell, and a vegetative cell. The body cell produces the sperm. In the vegetative cell, microtubules form a continuous network from within the pollen grain, out through the aperture, and down the length of the tube to the elongating tip. Within the grain, this network extends from the pollen grain wall to the body and stalk cell complex. Microtubules within the body and stalk cells form a densely packed array that enmeshes amyloplasts and the nucleus. Microtubule bundles can be traced between the body and stalk cells from the cytoplasm of the body cell to the adjoining cell wall and into the cytoplasm of the stalk cell. Body and stalk cells are connected by plasmodesmata. The organization of microtubules and the presence of plasmodesmata suggest that microtubules form a path for intercellular communication by projecting from the cytoplasm to interconnecting plasmodesmata. Microtubules in the elongating tube form a net axial array that ensheathes the vegetative nucleus. Microtubules are enriched at the elongating tip, where they form an array beneath the plasma membrane that is perpendicular to the direction of tube growth. This enriched region extends back 20 μm from the tip. There is an abrupt transition from a net perpendicular to a net axial organization at the edge of the enriched region. In medial sections, microtubules are present in the core of the elongating tip. The organization of microtubules in the tip differs from that seen in angiosperm pollen tubes.
Collapse
Affiliation(s)
- M D Lazzaro
- Department of Botany, Stockholm University, S 106 91 Stockholm, Sweden
| |
Collapse
|
42
|
de Win AH, Pierson ES, Derksen J. Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J 1999; 76:1648-58. [PMID: 10049345 PMCID: PMC1300141 DOI: 10.1016/s0006-3495(99)77324-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To gain insight into the characteristics of organelle movement and the underlying actomyosin motility system in tobacco pollen tubes, we collected data points representing sequential organelle positions in control and cytochalasin-treated cells, and in a sample of extruded cytoplasm. These data were utilized to reconstruct approximately 900 tracks, representing individual organelle movements, and to produce a quantitative analysis of the movement properties, supported by statistical tests. Each reconstructed track appeared to be unique and to show irregularities in velocity and direction of movement. The regularity quotient was near 2 at the tip and above 3 elsewhere in the cell, indicating that movement is more vectorial in the tube area. Similarly, the progressiveness ratio showed that there were relatively more straight trajectories in the tube region than at the tip. Consistent with these data, arithmetical dissection revealed a high degree of randomlike movement in the apex, lanes with tip-directed movement along the flanks, and grain-directed movement in the center of the tube. Intercalated lanes with bidirectional movement had lower organelle velocity, suggesting that steric hindrance plays a role. The results from the movement analysis indicate that the axial arrangement of the actin filaments and performance of the actomyosin system increases from tip to base, and that the opposite polarity of the actin filaments in the peripheral (+-ends of acting filaments toward the tip) versus the central cytoplasm (+-ends of actin filaments toward to the grain) is installed within a few minutes in these tip-growing cells.
Collapse
Affiliation(s)
- A H de Win
- Laboratory of Plant Cell Biology, Department of Experimental Botany, Graduate School of Plant Science, Catholic University of Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
43
|
Bibikova TN, Blancaflor EB, Gilroy S. Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:657-665. [PMID: 10230063 DOI: 10.1046/j.1365-313x.1999.00415.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The polarized growth of cells as diverse as fungal hyphae, pollen tubes, algal rhizoids and root hairs is characterized by a highly localized regulation of cell expansion confined to the growing tip. In apically growing plant cells, a tip-focused [Ca2+]c gradient and the cytoskeleton have been associated with growth. Although actin has been established to be essential for the maintenance of elongation, the role of microtubules remains unclear. To address whether the microtubule cytoskeleton is involved in root hair growth and orientation, we applied microtubule antagonists to root hairs of Arabidopsis. In this report, we show that depolymerizing or stabilizing the microtubule cytoskeleton of these apically growing root hairs led to a loss of directionality of growth and the formation of multiple, independent growth points in a single root hair. Each growing point contained a tip-focused gradient of [Ca2+]c. Experimental generation of a new [Ca2+]c gradient in root hairs pre-treated with microtubule antagonists, using the caged-calcium ionophore Br-A23187, was capable of inducing the formation of a new growth point at the site of elevated calcium influx. These data indicate a role for microtubules in regulating the directionality and stability of apical growth in root hairs. In addition, these results suggest that the action of the microtubules may be mediated through interactions with the cellular machinery that maintains the [Ca2+]c gradient at the tip.
Collapse
Affiliation(s)
- T N Bibikova
- Department of Biology, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
44
|
von Witsch M, Baluska F, Staiger CJ, Volkmann D. Profilin is associated with the plasma membrane in microspores and pollen. Eur J Cell Biol 1998; 77:303-12. [PMID: 9930655 DOI: 10.1016/s0171-9335(98)80089-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In higher plants, a large number of isoforms for the actin monomer-binding protein profilin have been identified, whereas other organisms express only few profilins. Furthermore, plant profilin isoforms are expressed in a tissue-specific manner. These observations raise questions concerning functional and locational differences between isoforms of plant profilins. In this paper, we introduce three polyclonal antisera and one monoclonal antibody developed against purified pollen profilins from Zea mays and against recombinant maize profilin. Immunoblot analyses of native profilins and four recombinant maize pollen profilin isoforms show that three of the antibodies display a preference for certain isoforms. In situ immunofluorescence of pollen of Zea mays and two developmental stages of microspores of Betula pumila indicates that all antibodies label plasma membrane-associated domains. Thus, we show that at least some profilin isoforms are located at a distinct subcellular domain within developing microspores and, less distinctly, in mature pollen. This contrasts previously reported uniform distributions throughout the cytoplasm of mature pollen and pollen tubes. The results are discussed in light of the large number of profilins co-expressed in plants and with reference to accumulating evidence for functional differences between profilin isoforms.
Collapse
Affiliation(s)
- M von Witsch
- Abteilung für Zellbiologie der Pflanzen, Botanisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.
| | | | | | | |
Collapse
|
45
|
Tassoni A, Antognoni F, Sanvido O, Bagni N. Characterization of spermidine binding to solubilized plasma membrane proteins from zucchini hypocotyls. PLANT PHYSIOLOGY 1998; 117:971-7. [PMID: 9662539 PMCID: PMC34951 DOI: 10.1104/pp.117.3.971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/1998] [Accepted: 04/09/1998] [Indexed: 05/18/2023]
Abstract
In this work [14C]spermidine binding to total proteins solubilized from plasma membrane purified from zucchini (Cucurbita pepo L.) hypocotyls was investigated. Proteins were solubilized using octyl glucoside as a detergent. Specific polyamine binding was thermolabile, reversible, pH dependent with an optimum at pH 8.0, and had a Kd value of 5 &mgr;M, as determined by glass-fiber-filter assays. Sephadex G-25 M gel-filtration assays confirmed the presence of a spermidine-protein(s) complex with a specific binding activity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and native polyacrylamide gel electrophoresis of collected fractions having the highest specific spermidine-binding activity, several protein bands (113, 75, 66, and 44 kD) were identified. The specificity of spermidine binding was examined by gel-filtration competition experiments performed using other polyamines and compounds structurally related to spermidine. Partial purification on Sephadex G-200 led to the identification of 66- and 44-kD protein bands, which may represent the putative spermidine-binding protein(s) on the plasmalemma.
Collapse
Affiliation(s)
- A Tassoni
- Dipartimento di Biologia Evoluzionistica Sperimentale, Universita di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
46
|
Krauze K, Makuch R, Stepka M, Dabrowska R. The first caldesmon-like protein in higher plants. Biochem Biophys Res Commun 1998; 247:576-9. [PMID: 9647735 DOI: 10.1006/bbrc.1998.8833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using anti-caldesmon polyclonal and monoclonal (raised against the N-terminal fragment of chicken gizzard caldesmon) antibodies, a plant caldesmon-like protein, 107 kDa as determined by SDS-gel electrophoresis, has been identified based on Western blotting of total extracts of Ornithogalum virens pollen tubes. Biochemical investigations showed common properties of this protein with animal caldesmon--it binds to actin and, in a Ca(2+)-dependent manner, to calmodulin. In contrast to animal caldesmon, this plant cell counterpart is relatively resistant to proteolysis by endogenous proteases and sensitive to heat treatment. Our results show the presence of a caldesmon-like protein in higher plants for the first time.
Collapse
Affiliation(s)
- K Krauze
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
47
|
Abstract
There are two quite different modes of polar cell expansion in plant cells, namely, diffuse growth and tip growth. The direction of diffuse growth is determined by the orientation of cellulose microfibrils in the cell wall, which in turn are aligned by microtubules in the cell cortex. The orientation of the cortical microtubule array changes in response to developmental and environmental signals, and recent evidence indicates that microtubule disassembly/reassembly and microtubule translocation participate in reorientation of the array. Tip growth, in contrast, is governed mainly by F-actin, which has several putative forms and functions in elongating cells. Longitudinal cables are involved in vesicle transport to the expanding apical dome and, in some tip growers, a subapical ring of F-actin may participate in wall-membrane adhesions. The structure and function of F-actin within the apical dome may be variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in elongating tips suggests extensive regulation of this cytoskeletal array.
Collapse
Affiliation(s)
- D L Kropf
- University of Utah, Department of Biology, Salt Lake City 84112-0840, USA.
| | | | | |
Collapse
|
48
|
Mermall V, Post PL, Mooseker MS. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 1998; 279:527-33. [PMID: 9438839 DOI: 10.1126/science.279.5350.527] [Citation(s) in RCA: 524] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the past few years genetic, biochemical, and cytolocalization data have implicated members of the myosin superfamily of actin-based molecular motors in a variety of cellular functions including membrane trafficking, cell movements, and signal transduction. The importance of myosins is illustrated by the identification of myosin genes as targets for disease-causing mutations. The task at hand is to decipher how the multitude of myosins function at both the molecular and cellular level-a task facilitated by our understanding of myosin structure and function in muscle.
Collapse
Affiliation(s)
- V Mermall
- Department of Biology, Yale University 342 KBT, New Haven, CT 06520, USA
| | | | | |
Collapse
|
49
|
Li YQ, Moscatelli A, Cai G, Cresti M. Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 176:133-99. [PMID: 9394919 DOI: 10.1016/s0074-7696(08)61610-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pollen tube is a cellular system that plays a fundamental role during the process of fertilization in higher plants. Because it is so important, the pollen tube has been subjected to intensive studies with the aim of understanding its biology. The pollen tube represents a fascinating model for studying interactions between the internal cytoskeletal machinery, the membrane system, and the cell wall. These compartments, often studied as independent units, show several molecular interactions and can influence the structure and organization of each other. The way the cell wall is constructed, the dynamics of the endomembrane system, and functions of the cytoskeleton suggest that these compartments are a molecular "continuum," which represents a link between the extracellular environment and the pollen tube cytoplasm. Several experimental approaches have been used to understand how these interactions may translate the pollen-pistil interactions into differential processes of pollen tube growth.
Collapse
Affiliation(s)
- Y Q Li
- Dipartimento Biologia Ambientale, Università di Siena, Italy
| | | | | | | |
Collapse
|
50
|
Taylor LP, Hepler PK. POLLEN GERMINATION AND TUBE GROWTH. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 1997; 48:461-491. [PMID: 15012271 DOI: 10.1146/annurev.arplant.48.1.461] [Citation(s) in RCA: 390] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many aspects of Angiosperm pollen germination and tube growth are discussed including mechanisms of dehydration and rehydration, in vitro germination, pollen coat compounds, the dynamic involvement of cytoskeletal elements (actin, microtubules), calcium ion fluxes, extracellular matrix elements (stylar arabinogalactan proteins), and control mechanisms of gene expression in dehydrating and germinating pollen. We focus on the recent developments in pollen biology that help us understand how the male gamete survives and accomplishes its successful delivery to the ovule of the sperm to effect sexual reproduction.
Collapse
Affiliation(s)
- Loverine P. Taylor
- Department of Genetics and Cell Biology, Washington State University, Pullman, Washington 99164-4234, Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|