1
|
Abstract
Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
- Department of Physics, University of Maryland, College Park, Maryland, USA;
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, Maryland, USA;
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| |
Collapse
|
2
|
Yanagawa M, Hiroshima M, Togashi Y, Abe M, Yamashita T, Shichida Y, Murata M, Ueda M, Sako Y. Single-molecule diffusion-based estimation of ligand effects on G protein-coupled receptors. Sci Signal 2018; 11:11/548/eaao1917. [PMID: 30228224 DOI: 10.1126/scisignal.aao1917] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are major drug targets. Developing a method to measure the activities of GPCRs is essential for pharmacology and drug screening. However, it is difficult to measure the effects of a drug by monitoring the receptor on the cell surface; thus, changes in the concentrations of downstream signaling molecules, which depend on the signaling pathway selectivity of the receptor, are often used as an index of receptor activity. We show that single-molecule imaging analysis provides an alternative method for assessing the effects of ligands on GPCRs. Using total internal reflection fluorescence microscopy (TIRFM), we monitored the dynamics of the diffusion of metabotropic glutamate receptor 3 (mGluR3), a class C GPCR, under various ligand conditions. Our single-molecule tracking analysis demonstrated that increases and decreases in the average diffusion coefficient of mGluR3 quantitatively reflected the ligand-dependent inactivation and activation of receptors, respectively. Through experiments with inhibitors and dual-color single-molecule imaging analysis, we found that the diffusion of receptor molecules was altered by common physiological events associated with GPCRs, including G protein binding, and receptor accumulation in clathrin-coated pits. We also confirmed that agonist also decreased the average diffusion coefficient for class A and B GPCRs, demonstrating that this parameter is a good index for estimating ligand effects on many GPCRs regardless of their phylogenetic groups, the chemical properties of the ligands, or G protein-coupling selectivity.
Collapse
Affiliation(s)
- Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Michio Hiroshima
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.,Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama, Japan
| | - Yuichi Togashi
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Cybermedia Center, Osaka University, 5-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.,Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Tan H, Gao S, Zhuang Y, Dong Y, Guan W, Zhang K, Xu J, Cui J. R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase. Mar Drugs 2016; 14:166. [PMID: 27626431 PMCID: PMC5039537 DOI: 10.3390/md14090166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 02/04/2023] Open
Abstract
R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex.
Collapse
Affiliation(s)
- Huixin Tan
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Shiyong Gao
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Yan Zhuang
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Yanhong Dong
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Wenhui Guan
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Kun Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Jian Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Jingru Cui
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
4
|
Johnson CK, Harms GS. Tracking and localization of calmodulin in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2017-26. [DOI: 10.1016/j.bbamcr.2016.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/20/2023]
|
5
|
Analysis of α3 GlyR single particle tracking in the cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:544-53. [DOI: 10.1016/j.bbamcr.2013.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022]
|
6
|
Thurner P, Gsandtner I, Kudlacek O, Choquet D, Nanoff C, Freissmuth M, Zezula J. A two-state model for the diffusion of the A2A adenosine receptor in hippocampal neurons: agonist-induced switch to slow mobility is modified by synapse-associated protein 102 (SAP102). J Biol Chem 2014; 289:9263-74. [PMID: 24509856 PMCID: PMC3979375 DOI: 10.1074/jbc.m113.505685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The A2A receptor is a class A/rhodopsin-like G protein-coupled receptor. Coupling to its cognate protein, Gs, occurs via restricted collision coupling and is contingent on the presence of cholesterol. Agonist activation slows diffusion of the A2A adenosine receptor in the lipid bilayer. We explored the contribution of the hydrophobic core and of the extended C terminus by examining diffusion of quantum dot-labeled receptor variants in dissociated hippocampal neurons. Single particle tracking of the A2A receptor(1–311), which lacks the last 101 residues, revealed that agonist-induced confinement was abolished and that the agonist-induced decrease in diffusivity was reduced substantially. A fragment comprising the SH3 domain and the guanylate kinase domain of synapse-associated protein 102 (SAP102) was identified as a candidate interactor that bound to the A2A receptor C terminus. Complex formation between the A2A receptor and SAP102 was verified by coimmunoprecipitation and by tracking its impact on receptor diffusion. An analysis of all trajectories by a hidden Markov model was consistent with two diffusion states where agonist activation reduced the transition between the two states and, thus, promoted the accumulation of the A2A receptor in the compartment with slow mobility. Overexpression of SAP102 precluded the access of the A2A receptor to a compartment with restricted mobility. In contrast, a mutated A2A receptor (with 383DVELL387 replaced by RVRAA) was insensitive to the action of SAP102. These observations show that the hydrophobic core per se does not fully account for the agonist-promoted change in mobility of the A2A receptor. The extended carboxyl terminus allows for regulatory input by scaffolding molecules such as SAP102.
Collapse
Affiliation(s)
- Patrick Thurner
- From the Institute for Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währinger Str. 13a, 1090 Vienna, Austria and
| | | | | | | | | | | | | |
Collapse
|
7
|
Alenghat FJ, Golan DE. Membrane protein dynamics and functional implications in mammalian cells. CURRENT TOPICS IN MEMBRANES 2013; 72:89-120. [PMID: 24210428 PMCID: PMC4193470 DOI: 10.1016/b978-0-12-417027-8.00003-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The organization of the plasma membrane is both highly complex and highly dynamic. One manifestation of this dynamic complexity is the lateral mobility of proteins within the plane of the membrane, which is often an important determinant of intermolecular protein-binding interactions, downstream signal transduction, and local membrane mechanics. The mode of membrane protein mobility can range from random Brownian motion to immobility and from confined or restricted motion to actively directed motion. Several methods can be used to distinguish among the various modes of protein mobility, including fluorescence recovery after photobleaching, single-particle tracking, fluorescence correlation spectroscopy, and variations of these techniques. Here, we present both a brief overview of these methods and examples of their use to elucidate the dynamics of membrane proteins in mammalian cells-first in erythrocytes, then in erythroblasts and other cells in the hematopoietic lineage, and finally in non-hematopoietic cells. This multisystem analysis shows that the cytoskeleton frequently governs modes of membrane protein motion by stably anchoring the proteins through direct-binding interactions, by restricting protein diffusion through steric interactions, or by facilitating directed protein motion. Together, these studies have begun to delineate mechanisms by which membrane protein dynamics influence signaling sequelae and membrane mechanical properties, which, in turn, govern cell function.
Collapse
Affiliation(s)
- Francis J. Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Golan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Notelaers K, Smisdom N, Rocha S, Janssen D, Meier JC, Rigo JM, Hofkens J, Ameloot M. Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3131-40. [PMID: 22906711 DOI: 10.1016/j.bbamem.2012.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/03/2012] [Accepted: 08/11/2012] [Indexed: 10/28/2022]
Abstract
The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane.
Collapse
Affiliation(s)
- Kristof Notelaers
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, Agoralaan gebouw C, 3590 Diepenbeek, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Karakikes I, Morrison IEG, O'Toole P, Metodieva G, Navarrete CV, Gomez J, Miranda-Sayago JM, Cherry RJ, Metodiev M, Fernandez N. Interaction of HLA-DR and CD74 at the cell surface of antigen-presenting cells by single particle image analysis. FASEB J 2012; 26:4886-96. [PMID: 22889831 DOI: 10.1096/fj.12-211466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Major histocompatibility complex (MHC) class II-associated antigen presentation involves an array of interacting molecules. CD74, the cell surface isoform of the MHC class II-associated invariant chain, is one such molecule; its role remains poorly defined. To address this, we have employed a high-resolution single-particle imaging method for quantifying the colocalization of CD74 with human leukocyte antigen (HLA)-DR molecules on human fibroblast cells known for their capacity to function as antigen-presenting cells. We have also examined whether the colocalization induces internalization of HLA-DR using HA(307-319), a "universal" peptide that binds specifically to the peptide-binding groove of all HLA-DR molecules, irrespective of their alleles. We have determined that 25 ± 1.3% of CD74 and 17 ± 0.3% of HLA-DR are colocalized, and the association of CD74 with HLA-DR and the internalization of HLA-DR are both inhibited by HA(307-319). A similar inhibition of HLA-DR internalization was observed in freshly isolated monocyte-derived dendritic cells. A key role of CD74 is to translocate HLA-DR molecules to early endosomes for reloading with peptides prior to recycling to the cell surface. We conclude that CD74 regulates the balance of peptide-occupied and peptide-free forms of MHC class II at the cell surface.
Collapse
Affiliation(s)
- Ioannis Karakikes
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester C04 3SQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 2009; 10:691-712. [PMID: 19416475 DOI: 10.1111/j.1600-0854.2009.00902.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.
Collapse
Affiliation(s)
- Fabien Pinaud
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.
Collapse
Affiliation(s)
- Yannis Kalaidzidis
- Max-Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Versatile analysis of single-molecule tracking data by comprehensive testing against Monte Carlo simulations. Biophys J 2008; 95:5988-6001. [PMID: 18805933 DOI: 10.1529/biophysj.108.141655] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We propose here an approach for the analysis of single-molecule trajectories which is based on a comprehensive comparison of an experimental data set with multiple Monte Carlo simulations of the diffusion process. It allows quantitative data analysis, particularly whenever analytical treatment of a model is infeasible. Simulations are performed on a discrete parameter space and compared with the experimental results by a nonparametric statistical test. The method provides a matrix of p-values that assess the probability for having observed the experimental data at each setting of the model parameters. We show the testing approach for three typical situations observed in the cellular plasma membrane: i), free Brownian motion of the tracer, ii), hop diffusion of the tracer in a periodic meshwork of squares, and iii), transient binding of the tracer to slowly diffusing structures. By plotting the p-value as a function of the model parameters, one can easily identify the most consistent parameter settings but also recover mutual dependencies and ambiguities which are difficult to determine by standard fitting routines. Finally, we used the test to reanalyze previous data obtained on the diffusion of the glycosylphosphatidylinositol-protein CD59 in the plasma membrane of the human T24 cell line.
Collapse
|
13
|
Faux MC, Coates JL, Catimel B, Cody S, Clayton AHA, Layton MJ, Burgess AW. Recruitment of adenomatous polyposis coli and beta-catenin to axin-puncta. Oncogene 2008; 27:5808-20. [PMID: 18591934 DOI: 10.1038/onc.2008.205] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The adenomatous polyposis coli (APC) tumour suppressor is a multifunctional protein involved in the regulation of Wnt signalling and cytoskeletal dynamics. Little is known about how APC controls these disparate functions. In this study, we have used APC- and axin-fluorescent fusion proteins to examine the interactions between these proteins and show that the functionally distinct populations of APC are also spatially separate. Axin-RFP forms cytoplasmic punctate structures, similar to endogenous axin puncta. Axin-RFP recruits beta-catenin destruction complex proteins, including APC, beta-catenin, glycogen synthase kinase-3-beta (GSK3-beta) and casein kinase-1-alpha (CK1-alpha). Recruitment into axin-RFP puncta sequesters APC from clusters at cell extensions and this prevents its microtubule-associated functions. The interaction between APC-GFP and axin-RFP within the cytoplasmic puncta is direct and dramatically alters the dynamic properties of APC-GFP. However, recruitment of APC to axin puncta is not absolutely required for beta-catenin degradation. Instead, formation of axin puncta, mediated by the DIX domain, is required for beta-catenin degradation. An axinDeltaDIX mutant did not form puncta, but still mediated recruitment of destruction complex proteins and phosphorylation of beta-catenin. We conclude that there are distinct pools of APC and that the formation of axin puncta, rather than the axin/APC complex, is essential for beta-catenin destruction.
Collapse
Affiliation(s)
- M C Faux
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Both MHC class II and its GPI-anchored form undergo hop diffusion as observed by single-molecule tracking. Biophys J 2008; 95:435-50. [PMID: 18339737 DOI: 10.1529/biophysj.107.123018] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously, investigations using single-fluorescent-molecule tracking at frame rates of up to 65 Hz, showed that the transmembrane MHC class II protein and its GPI-anchored modified form expressed in CHO cells undergo simple Brownian diffusion, without any influence of actin depolymerization with cytochalasin D. These results are at apparent variance with the view that GPI-anchored proteins stay with cholesterol-enriched raft domains, as well as with the observation that both lipids and transmembrane proteins undergo short-term confined diffusion within a compartment and long-term hop diffusion between compartments. Here, this apparent discrepancy has been resolved by reexamining the same paradigm, by using both high-speed single-particle tracking (50 kHz) and single fluorescent-molecule tracking (30 Hz). Both molecules exhibited rapid hop diffusion between 40-nm compartments, with an average dwell time of 1-3 ms in each compartment. Cytochalasin D hardly affected the hop diffusion, consistent with previous observations, whereas latrunculin A increased the compartment sizes with concomitant decreases of the hop rates, which led to an approximately 50% increase in the median macroscopic diffusion coefficient. These results indicate that the actin-based membrane skeleton influences the diffusion of both transmembrane and GPI-anchored proteins.
Collapse
|
15
|
Abstract
Biliproteins are a widespread group of brilliantly coloured photoreceptors characterized by linear tetrapyrrolic chromophores, bilins, which are covalently bound to the apoproteins via relatively stable thioether bonds. Covalent binding stabilizes the chromoproteins and is mandatory for phycobilisome assembly; and, it is also important in biliprotein applications such as fluorescence labelling. Covalent binding has, on the other hand, also considerably hindered biliprotein research because autocatalytic chromophore additions are rare, and information on enzymatic addition by lyases was limited to a single example, an EF-type lyase attaching phycocyanobilin to cysteine-alpha84 of C-phycocyanin. The discovery of new activities for the latter lyases, and of new types of lyases, have reinvigorated research activities in the subject. So far, work has mainly concentrated on cyanobacterial phycobiliproteins. Methodological advances in the process, however, as well as the finding of often large numbers of homologues, opens new possibilities for research on the subsequent assembly/disassembly of the phycobilisome in cyanobacteria and red algae, on the assembly and organization of the cryptophyte light-harvesting system, on applications in basic research such as protein folding, and on the use of phycobiliproteins for labelling.
Collapse
Affiliation(s)
- H Scheer
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | | |
Collapse
|
16
|
WANG C, FU G, WANG J, WANG G, CHENG Y, XU ZZ. Direct visualization of the dynamics of membrane-anchor proteins in living cells. J Microsc 2008; 229:67-77. [DOI: 10.1111/j.1365-2818.2007.01865.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Jin S, Verkman AS. Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena. J Phys Chem B 2007; 111:3625-32. [PMID: 17388520 DOI: 10.1021/jp067187m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single particle tracking is being used increasingly to follow the motion of membrane-associated receptors and lipids. Anomalous and complex diffusive behaviors are generally found in cell membranes. We developed computational algorithms to simulate particle trajectories and to detect complex diffusive behaviors in two dimensions, including confined and convective diffusion, intramembrane barrier and raft phenomena, and interparticle interactions. Little useful information regarding barrier, raft, and interaction effects were provided by standard computational procedures for identification of anomalous diffusion, including analysis of mean squared displacement, distributions of diffusion rates and range, and time evolution of particle position. New algorithms were developed and optimized to detect complex diffusive behaviors from simulated single particle trajectories. A barrier detection algorithm was developed on the basis of spatial averaging of particle positions in trajectories. A raft detection algorithm utilized spatially resolved diffusion coefficients and particle density functions. An interaction algorithm utilized interparticle distance distributions. The algorithms developed here are applicable to identify biologically important diffusive phenomena in cell membranes.
Collapse
Affiliation(s)
- Songwan Jin
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA
| | | |
Collapse
|
18
|
Guldiken R, Makaram P, Bakhtari K, Park J, Busnaina AA. Nanoparticle scanning and detection on flat and structured surfaces using fluorescence microscopy. Microsc Res Tech 2007; 70:534-8. [PMID: 17479984 DOI: 10.1002/jemt.20477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new technique is proposed for the scanning and detection of nanoparticles on flat substrates and three-dimensional structures using fluorescence microscopy. This technique is utilized for particle removal measurements especially in semiconductor and hard disk manufacturing. This fluorescent particle scanning technique enables nanoscale particle detection. The technique shows that single particles down to 63 nm could be detected and counted. The technique is also capable of detecting particles in trenches that are as deep as 500 microm.
Collapse
Affiliation(s)
- Rasim Guldiken
- NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
19
|
Machin M, Santomaso A, Mazzucato M, Cozzi MR, Battiston M, De Marco L, Canu P. Single particle tracking across sequences of microscopical images: application to platelet adhesion under flow. Ann Biomed Eng 2006; 34:833-46. [PMID: 16708268 DOI: 10.1007/s10439-006-9086-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 01/31/2006] [Indexed: 11/26/2022]
Abstract
A versatile and automated image processing technique and data extraction procedure from videomicroscopic data is presented. The motivation is a detailed quantification of blood platelet adhesion from laminar flow onto a surface. The characteristics of the system under observation (type of cells, their speed of movement, and the quality of the optical image to analyze) provided the criteria for developing a new procedure enabling tracking for long image sequences. Specific features of the novel method include: automatic segmentation methodology which removes operator bias; platelet recognition across the series of images based on a probability density function (two-dimensional, Gaussian-like) tailored to the physics of platelet motion on the surface; options to automatically tune the procedure parameters to explore different applications; integrated analysis of the results (platelet trajectories) to obtain relevant information, such as deposition and removal rates, displacement distributions, pause times and rolling velocities. Synthetic images, providing known reference conditions, are used to test the method. The algorithm operation is illustrated by application to images obtained by fluorescence microscopy of the interaction between platelets and von Willebrand factor-coated surfaces in parallel-plate flow chambers. Potentials and limits are discussed, together with evaluation of errors resulting from an inaccurate tracking.
Collapse
Affiliation(s)
- Marianna Machin
- Department of Chemical Engineering Principles and Practice (DIPIC), University of Padova, Via Marzolo, 9, I-35131, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Gombos I, Kiss E, Detre C, László G, Matkó J. Cholesterol and sphingolipids as lipid organizers of the immune cells’ plasma membrane: Their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death. Immunol Lett 2006; 104:59-69. [PMID: 16388855 DOI: 10.1016/j.imlet.2005.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 11/20/2005] [Accepted: 11/20/2005] [Indexed: 12/11/2022]
Abstract
The possible regulatory mechanisms by which glycosphingolipid- and cholesterol-rich membrane microdomains, caveolar and non-caveolar lipid rafts, control the immune response are continuously expanding. In the present overview we will focus on how these membrane-organizing lipids are involved, in collaboration with tetraspanin proteins, in the formation of distinct MHC-I and MHC-II microdomains at the cell surface and will analyze the possible roles of MHC compartmentation in the processes of antigen presentation and regulation of various stages of the cellular immune response. Some basic, lipid raft- and tetraspan mediated mechanisms involved in the formation and function of immunological synapses between various APCs and T-cells will also be discussed. Finally, a new aspect of immune regulation by sphingolipids will be briefly described, namely how can the death or stress signals, leading to ceramide accumulation, result in raft-associated regulatory platforms controlling cell death or antigen-induced, TCRmediated signaling of T-lymphocytes. The influence of these signals and their cross-talk on the fate (death or survival) of T-cells and the outcome of T-cell response will also be discussed.
Collapse
Affiliation(s)
- Imre Gombos
- Institute of Biology, Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
21
|
Sun L, Wang S, Qiao Z. Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis. J Biotechnol 2006; 121:563-9. [PMID: 16188340 DOI: 10.1016/j.jbiotec.2005.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Accepted: 08/16/2005] [Indexed: 11/17/2022]
Abstract
Phycocyanin (PC) prepared from a cyanobacterium Spirulina platensis by the DEAE-DE52 cellulose column chromatography that was developed by gradient elution of 50-250 mM phosphate buffer (pH 7.0) was stabilized by its subunits cross-linked covalently with formaldehyde. The single blue band that the chemically stabilized PC showed in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the stabilized PC still maintained its trimeric aggregate form even after its incubation at 60 degrees C for 3h and at 100 degrees C for 10 min in the denatured buffer containing 5% (w/v) SDS. Moreover, the stabilized PC exhibited similar spectroscopic properties of absorption and fluorescence to those of the native PC, and showed adequate energy coupling with R-phycoerythrin (R-PE) after it was conjugated with R-PE via glutaraldehyde.
Collapse
Affiliation(s)
- Li Sun
- College of Chemical and Biological Sciences and Engineering, Yantai University, Shandong 264005, PR China.
| | | | | |
Collapse
|
22
|
Levi V, Ruan Q, Plutz M, Belmont AS, Gratton E. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J 2005; 89:4275-85. [PMID: 16150965 PMCID: PMC1366992 DOI: 10.1529/biophysj.105.066670] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 08/19/2005] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence points to a dynamical compartmentalization of the cell nucleus, yet the mechanisms by which interphase chromatin moves and is positioned within nuclei remain unclear. Here, we study the dynamics of chromatin in vivo applying a novel particle-tracking method in a two-photon microscope that provides approximately 10-fold higher spatial and temporal resolutions than previous measurements. We followed the motion of a chromatin sequence containing a lac-operator repeat in cells stably expressing lac repressor fused with enhanced green fluorescent protein, observing long periods of apparent constrained diffusion interrupted by relatively abrupt jumps of approximately 150 nm lasting 0.3-2 s. During these jumps, the particle moved an average of four times faster than in the periods between jumps and in paths more rectilinear than predicted for random diffusion motion. Additionally, the jumps were sensitive to the temperature and absent after ATP depletion. These experimental results point to an energy-dependent mechanism driving fast motion of chromatin in interphase cells.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratory for Fluorescence Dynamics, and Department of Cell and Structural Biology, Chemical and Life Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Current models for cellular plasma membranes focus on spatial heterogeneity and how this heterogeneity relates to cell function. In particular, putative lipid raft membrane domains have been postulated to exist based in large part on the results that a significant fraction of the membrane is detergent insoluble and that molecules facilitating key membrane processes like signal transduction are often found in the detergent-resistant membrane fraction. Yet, the in vivo existence of lipid rafts remains extremely controversial because, despite being sought for more than a decade, evidence for their presence in intact cell membranes is inconclusive. In this review, a variety of experimental techniques that have been or might be used to look for lipid microdomains in intact cell membranes are described. Experimental results are highlighted and the strengths and limitations of different techniques for microdomain identification and characterization are assessed.
Collapse
Affiliation(s)
- B Christoffer Lagerholm
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
24
|
Presley JF. Imaging the secretory pathway: The past and future impact of live cell optical techniques. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:259-72. [PMID: 15921767 DOI: 10.1016/j.bbamcr.2005.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/21/2005] [Accepted: 04/27/2005] [Indexed: 11/17/2022]
Abstract
Classically, the secretory pathway has been studied using a combination of electron microscopic, biochemical and genetic approaches. In the last 20 years with the arrival of molecular biology and epitope tagging, fluorescence microscopy has become more important than previously. Moreover, with the common availability of Green Fluorescent Protein (GFP) and confocal microscopes in the last 10 years, live cell imaging has become a major experimental approach. This review highlights the impact of the recent introduction of single-cell quantitative time-lapse imaging and photobleach techniques on the study of the secretory pathway, and the potential impact of those optical techniques which may play a significant future role in the study of the Golgi apparatus and the secretory pathway. Particular attention is paid to techniques (Fluorescence Resonance Energy Transfer, Fluorescence Correlation Spectroscopy) which can monitor protein-protein interactions in living cells.
Collapse
Affiliation(s)
- John F Presley
- McGill University, Department of Anatomy and Cell Biology, 3640 University, Montreal, QC, Canada H3A 2B2.
| |
Collapse
|
25
|
Khan S, Reynolds AM, Morrison IEG, Cherry RJ. Stochastic modeling of protein motions within cell membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:041915. [PMID: 15903709 DOI: 10.1103/physreve.71.041915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Indexed: 05/02/2023]
Abstract
A simple model in which immobilizing events are imposed onto otherwise free Brownian diffusion [R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000) and a recent adaptation due to S. Khan and A. M. Reynolds, Physica A 350, 183 (2005)] is shown to encapsulate the peculiar transport characteristics of individual cell receptors within plasma membranes observed in single-particle tracking (SPT) experiments. These characteristics include the occurrence of normal diffusion; non-Gaussian subdiffusion; confined diffusion; a superdiffusive mode of transport that is not due to flow of the membrane or molecular motor attachment; and the occurrence of transitions between these transport modes. Model predictions are shown to be in close agreement with a reanalysis of existing SPT data.
Collapse
Affiliation(s)
- Sharon Khan
- Rothamsted Research, Harpenden, Hertfordshire AL5 2LQ, United Kingdom
| | | | | | | |
Collapse
|
26
|
Levi V, Ruan Q, Gratton E. 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 2005; 88:2919-28. [PMID: 15653748 PMCID: PMC1305386 DOI: 10.1529/biophysj.104.044230] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We developed a method for tracking particles in three dimensions designed for a two-photon microscope, which holds great promise to study cellular processes because of low photodamage, efficient background rejection, and improved depth discrimination. During a standard cycle of the tracking routine (32 ms), the laser beam traces four circular orbits surrounding the particle in two z planes above and below the particle. The radius of the orbits is half of the x,y-width of the point spread function, and the distance between the z planes is the z-width of the point spread function. The z-position is adjusted by moving the objective with a piezoelectric-nanopositioner. The particle position is calculated on the fly from the intensity profile obtained during the cycle, and these coordinates are used to set the scanning center for the next cycle. Applying this method, we were able to follow the motion of 500-nm diameter fluorescent polystyrene microspheres moved by a nanometric stage in either steps of 20-100 nm or sine waves of 0.1-10 microm amplitude with 20 nm precision. We also measured the diffusion coefficient of fluorospheres in glycerol solutions and recovered the values expected according to the Stokes-Einstein relationship for viscosities higher than 3.7 cP. The feasibility of this method for live cell measurements is demonstrated studying the phagocytosis of protein-coated fluorospheres by fibroblasts.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA.
| | | | | |
Collapse
|
27
|
Lommerse PHM, Spaink HP, Schmidt T. In vivo plasma membrane organization: results of biophysical approaches. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:119-31. [PMID: 15328044 DOI: 10.1016/j.bbamem.2004.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/29/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
In the last two decades, various biophysical techniques have been used to investigate the organization of the plasma membrane in live cells. This review describes some of the most important experimental findings and summarizes the characteristics and limitations of a few frequently used biophysical techniques. In addition, the current knowledge about three membrane organizational elements: the membrane-associated cytoskeleton, caveolae and lipid microdomains, is described in detail. Unresolved issues, experimental contradictions and future directions to integrate the variety of experimental data into a revised model of the plasma membrane of eukaryotic cells are discussed in the last section.
Collapse
Affiliation(s)
- P H M Lommerse
- Department of Biophysics, Leiden University, Niels Bohrweg 2, 2333 CA, The Netherlands
| | | | | |
Collapse
|
28
|
Gombos I, Detre C, Vámosi G, Matkó J. Rafting MHC-II domains in the APC (presynaptic) plasma membrane and the thresholds for T-cell activation and immunological synapse formation. Immunol Lett 2004; 92:117-24. [PMID: 15081535 DOI: 10.1016/j.imlet.2003.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 11/21/2003] [Indexed: 11/26/2022]
Abstract
Glycosphingolipid- and cholesterol-rich membrane microdomains (rafts) in T-cells are important in triggering and regulation of T(H)-cell activation in immunological synapses (IS), which in turn may control the T-cell repertoire in lymph nodes and at the periphery. It is less known, however, how the "presynaptic side" controls formation and function of IS. We investigated here activation signals and synapse formation frequency of murine IP12-7 T(H) hybridoma cell specific to influenza virus HA-peptide upon stimulation with two B-lymphoma cells, A20 and 2PK3, pulsed with peptide antigen. Confocal microscopic colocalization and FRET data consonantly revealed clustered distribution and constitutive raft-association of a major fraction of MHC-II molecules in both APCs. Costimulatory molecules (CD80 and CD86), not associated constitutively with rafts, were expressed at much lower level in A20 cells. T-cells responded to 2PK3 APC with much higher signal strength than to A20 cells, in good correlation with the frequency of IS formation, as assessed by microscopic conjugation assay. Disruption of rafts by cholesterol depletion in 2PK3 cells largely decreased the magnitude of T(H) cell activation signals, especially at low peptide antigen doses, similarly to masking CD4 with mAb on T-cells. The frequency of IS formation was reduced by blocking LFA-1 on T-cells and CD80 on APCs, by lowering the temperature below the phase transition of the membrane or by disrupting actin cytoskeleton. These data together suggest that the surface density and affinity/stability of peptide-MHC-II complexes and the costimulatory level are primary determinants for an efficient TCR recognition and the strength of the subsequent T-cell signals, as well as of the IS formation, which additionally requires a cytoskeleton-dependent remodeling of APC surface after the initial TCR signal. The threshold of T-cell activation can be further set by rafting MHC-II domains via concentrating high affinity ligands and promoting thereby T-cells for sensing low density antigen. Our data also demonstrate that B-cells, similarly to dendritic cells, could also provide T-cells with antigen-independent weak survival signals, likely associated with integrin engagement.
Collapse
Affiliation(s)
- Imre Gombos
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | | | | | | |
Collapse
|
29
|
Morrison IEG, Karakikes I, Barber RE, Fernández N, Cherry RJ. Detecting and quantifying colocalization of cell surface molecules by single particle fluorescence imaging. Biophys J 2003; 85:4110-21. [PMID: 14645098 PMCID: PMC1303710 DOI: 10.1016/s0006-3495(03)74823-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 08/15/2003] [Indexed: 01/14/2023] Open
Abstract
Single particle fluorescence imaging (SPFI) uses the high sensitivity of fluorescence to visualize individual molecules that have been selectively labeled with small fluorescent particles. The positions of particles are determined by fitting the intensity profile of their images to a 2-D Gaussian function. We have exploited the positional information obtained from SPFI to develop a method for detecting colocalization of cell surface molecules. This involves labeling two different molecules with different colored fluorophores and determining their positions separately by dual wavelength imaging. The images are analyzed to quantify the overlap of the particle images and hence determine the extent of colocalization of the labeled molecules. Simulated images and experiments with a model system are used to investigate the extent to which colocalization occurs from chance proximity of randomly distributed molecules. A method of correcting for positional shifts that result from chromatic aberration is presented. The technique provides quantification of the extent of colocalization and can detect whether colocalized molecules occur singly or in clusters. We have obtained preliminary data for colocalization of molecules on intact cells. Cells often exhibit particulate autofluorescence that can interfere with the measurements; a method for overcoming this problem by triple wavelength imaging is described.
Collapse
Affiliation(s)
- Ian E G Morrison
- Department of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | | | | | | | | |
Collapse
|
30
|
Fernández EM, O'Toole PJ, Morrison IEG, Cherry RJ, Fernández N. Interaction of HLA-DR with actin microfilaments. Hum Immunol 2003; 64:327-37. [PMID: 12590977 DOI: 10.1016/s0198-8859(02)00803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capping of HLA-DR on the surface of a human lymphoblastoid cell line (RAJI) and a transfectant human fibroblast cell line (M1DR1) was studied by confocal microscopy. Capping was induced at 22 degrees C after treating cells with an HLA-DR specific monoclonal antibody, L243, followed by a secondary antibody conjugated with FITC. Cytoskeletal actin filaments (F-actin) accumulated under the caps were detected by rhodamine-phalloidin fluorescence. Two processes appear to take place: in the round lymphoblastoid cells, actin, initially distributed uniformly at the cell periphery, redistributes and becomes concentrated underneath HLA-DR patches or caps. In the non-round, substrate-attached fibroblasts, actin was organized in tightly packed filaments along the plasma membrane. It was observed that crosslinked HLA-DR receptors were associated with these filaments and were dragged toward the perinuclear area of the cells, where they coalesce to form a cap. The cytoskeleton-disrupting drugs that inhibit actin polymerisation were used to investigate the mechanism of capping of HLA-DR molecules. Sodium nitroprusside, a nitric oxide releasing agent, cytochalasin D both inhibited the percentage of capping in a dose-dependent manner. These data suggest that on antigen presenting cells, such as B cells and fibroblasts, actin microfilaments acts as a regulator of the movement and capping of HLA-DR receptors.
Collapse
Affiliation(s)
- Eva M Fernández
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | | | | | | |
Collapse
|
31
|
Brown FLH. Regulation of protein mobility via thermal membrane undulations. Biophys J 2003; 84:842-53. [PMID: 12547768 PMCID: PMC1302664 DOI: 10.1016/s0006-3495(03)74903-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 10/16/2002] [Indexed: 11/22/2022] Open
Abstract
The in-plane diffusivelike motion of membrane bound proteins on the surface of cells is considered. We suggest, on the basis of theoretical arguments and simulation, that thermally excited undulations of the lipid bilayer may serve as a mechanism for proteins to hop between adjacent regions on the cell surface separated by barriers composed of internal cellular structure (e.g., the cytoskeleton). We specifically investigate the mobility of band 3 dimer on the surface of red blood cells where the spectrin cytoskeletal meshwork defines a series of "corrals" on the cell surface known to hinder protein motion. Previous models of this system have postulated that the cytoskeleton must deform to allow passage of membrane bound proteins out of these corral regions and have ignored fluctuations of the bilayer. Our model provides a complementary mechanism and we posit that the mobility of real proteins in real cells is likely the result of several mechanisms acting in parallel.
Collapse
Affiliation(s)
- Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| |
Collapse
|
32
|
Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salomé L. Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys J 2003; 84:356-66. [PMID: 12524289 PMCID: PMC1302617 DOI: 10.1016/s0006-3495(03)74856-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the micro -opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients.
Collapse
MESH Headings
- Bacteriophage T7/chemistry
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/physiology
- Cell Membrane/ultrastructure
- Diffusion
- Fibroblasts/chemistry
- Fibroblasts/physiology
- Fibroblasts/ultrastructure
- GTP-Binding Protein Regulators/chemistry
- GTP-Binding Protein Regulators/physiology
- GTP-Binding Protein Regulators/ultrastructure
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/physiology
- GTP-Binding Proteins/ultrastructure
- Gold Colloid/chemistry
- Kidney/chemistry
- Kidney/physiology
- Kidney/ultrastructure
- Microscopy, Video/instrumentation
- Microscopy, Video/methods
- Microspheres
- Models, Biological
- Models, Chemical
- Motion
- Nanotechnology/instrumentation
- Nanotechnology/methods
- Particle Size
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/physiology
- Receptors, Cell Surface/ultrastructure
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/physiology
- Receptors, Opioid, mu/ultrastructure
- Signal Transduction/physiology
- Staining and Labeling/methods
Collapse
Affiliation(s)
- Frédéric Daumas
- Institut de Pharmacologie et Biologie Structurale, CNRS UMR 5089, 205, route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Vrljic M, Nishimura SY, Brasselet S, Moerner WE, McConnell HM. Translational diffusion of individual class II MHC membrane proteins in cells. Biophys J 2002; 83:2681-92. [PMID: 12414700 PMCID: PMC1302352 DOI: 10.1016/s0006-3495(02)75277-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Single-molecule epifluorescence microscopy was used to observe the translational motion of GPI-linked and native I-E(k) class II MHC membrane proteins in the plasma membrane of CHO cells. The purpose of the study was to look for deviations from Brownian diffusion that might arise from barriers to this motion. Detergent extraction had suggested that these proteins may be confined to lipid microdomains in the plasma membrane. The individual I-E(k) proteins were visualized with a Cy5-labeled peptide that binds to a specific extracytoplasmic site common to both proteins. Single-molecule trajectories were used to compute a radial distribution of displacements, yielding average diffusion coefficients equal to 0.22 (GPI-linked I-E(k)) and 0.18 microm(2)/s (native I-E(k)). The relative diffusion of pairs of proteins was also studied for intermolecular separations in the range 0.3-1.0 microm, to distinguish between free diffusion of a protein molecule and diffusion of proteins restricted to a rapidly diffusing small domain. Both analyses show that motion is predominantly Brownian. This study finds no strong evidence for significant confinement of either GPI-linked or native I-E(k) in the plasma membrane of CHO cells.
Collapse
Affiliation(s)
- Marija Vrljic
- Biophysics Program, Stanford University, Stanford, CA 94305-5080, USA
| | | | | | | | | |
Collapse
|
34
|
Georgiou G, Bahra SS, Mackie AR, Wolfe CA, O'Shea P, Ladha S, Fernandez N, Cherry RJ. Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe. Biophys J 2002; 82:1828-34. [PMID: 11916842 PMCID: PMC1301980 DOI: 10.1016/s0006-3495(02)75533-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The mobility of cell surface MHC class I molecules on HeLa cells was measured by fluorescence recovery after photobleaching (FRAP). The probe used for these studies was the phycobiliprotein R-phycoerythrin coupled to Fab fragments of a monoclonal antibody specific for human monomorphic MHC class I molecules. It was found that the recovery curves could be equally well fitted by either a random diffusion model with an immobile component or by an anomalous diffusion model. In the latter case, the anomalous diffusion exponent was consistent with that previously determined by single-particle tracking (SPT) experiments using the same probe (P. R. Smith, I. E. G. Morrison, K. M. Wilson, N. Fernandez, and R. J. Cherry. 1999. Biophys. J. 76:3331-3344). The FRAP experiments, however, yielded a considerably higher value of D(0), the diffusion coefficient for a time interval of 1 s. To determine whether the results were probe dependent, FRAP measurements were also performed with the same monoclonal antibody labeled with Oregon Green. These experiments gave similar results to those obtained with the phycoerythrin probe. FRAP experiments with the lipid probe 5-N-(octadecanoyl) aminofluoroscein (ODAF) bound to HeLa cells gave typical results for lipid diffusion. Overall, our observations and analysis are consistent with anomalous diffusion of MHC class I diffusion on HeLa cells, but quantitative differences between FRAP and SPT data remain to be explained.
Collapse
Affiliation(s)
- George Georgiou
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kues T, Peters R, Kubitscheck U. Visualization and tracking of single protein molecules in the cell nucleus. Biophys J 2001; 80:2954-67. [PMID: 11371468 PMCID: PMC1301479 DOI: 10.1016/s0006-3495(01)76261-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A recently developed laser fluorescence videomicroscopy method was used to determine for the first time the intranuclear trajectories of single protein molecules. Using the recombinant Escherichia coli beta-galactosidase protein P4K, labeled with an average of 4.6 ALEXA 488 chromophores per tetramer, single P4K molecules could be localized and tracked in the nuclei of permeabilized 3T3 cells at a spatial accuracy of approximately 30 nm and a time resolution of 18 ms. Our previous photobleaching measurements indicated that P4K had two fractions inside the nucleus, a larger mobile and a smaller immobile fraction. The present study supported this observation but revealed a much larger variety of mobility classes. Thus, a fraction of P4K molecules appeared to be truly immobile while another fraction was mobile but confined to very small areas. In addition, a large fraction of the P4K molecules appeared to be mobile and to move over extended distances by diffusion. However, a quantitative analysis showed that at least two subpopulations were present differing widely in diffusion coefficients. Importantly, both the diffusion coefficients and the fractions of these subpopulations were time-dependent. Our results suggest that proteins can move inside the nucleus over extended distances by diffusion. However, intranuclear protein diffusion is severely restricted, most likely by multiple association-dissociation events and/or impermeable obstacles.
Collapse
Affiliation(s)
- T Kues
- Institut für Medizinische Physik und Biophysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | |
Collapse
|
36
|
Abstract
We present experiments in which single proteins were imaged and tracked within mammalian cells. Single proteins of R-phycoerythrin (RPE) were imaged by epifluorescence microscopy in the nucleoplasm and cytoplasm at 71 frames/s. We acquired two-dimensional trajectories of proteins (corresponding to the projection of three-dimensional trajectories onto the plane of focus) for an average of 17 frames in the cytoplasm and 16 frames in the nucleus. Diffusion constants were determined from linear fits to the mean square displacement and from the mean displacement squared per frame. We find that the distribution of diffusion constants for RPE within cells is broader than the distributions obtained from RPE in a glycerol solution, from a Monte Carlo simulation, and from the theoretical distribution for simple diffusion. This suggests that on the time scales of our measurements, the motion of single RPE proteins in the cytoplasm and nucleoplasm cannot be modeled by simple diffusion with a unique diffusion constant. Our results demonstrate that it is possible to follow the motion of single proteins within cells and that the technique of single molecule tracking can be used to probe the dynamics of intracellular macromolecules.
Collapse
Affiliation(s)
- M Goulian
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
37
|
Zhou X, Li J. Macrophage-enriched myristoylated alanine-rich C kinase substrate and its phosphorylation is required for the phorbol ester-stimulated diffusion of beta 2 integrin molecules. J Biol Chem 2000; 275:20217-22. [PMID: 10779523 DOI: 10.1074/jbc.m909129199] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An early event of beta(2) integrin activation is the increased diffusion rate of this molecule on the cell surface, thereby providing integrin molecules with a better chance to meet the ligands. The activation of protein kinase C (PKC) stimulates integrin diffusion by releasing the cytoskeletal constraint on integrin molecules. We report here that macrophage-enriched myristoylated alanine-rich C kinase substrate (MacMARCKS), a membrane-associated PKC substrate involved in integrin activation, is required for this PKC-stimulated diffusion of integrin molecules. Using the single-particle tracking technique, we observed that the activation of PKC stimulated an 11-fold increase in the diffusion rate of beta(2) integrins in wild type J774 macrophage cells but not in those expressing mutant MacMARCKS. Further evidence is provided from a MacMARCKS-deficient cell line in which phorbol esters failed to stimulate the diffusion of integrin. Transfection of wild type MacMARCKS into these cells restored the rapid diffusion rate of the beta(2) integrins. The phosphorylation of MacMARCKS is important because transfection of a nonphosphorylatable MacMARCKS mutant or the addition of staurosporine eliminates the rapid diffusion rate of integrin. Furthermore, adding cytochalasin D bypasses the MacMARCKS deficiency and stimulates beta(2) integrin diffusion, suggesting that MacMARCKS's involvement in integrin activation is prior or at the site of cytoskeleton. Therefore, we conclude that MacMARCKS is required for releasing the cytoskeletal constraint on integrin molecules during PKC-mediated integrin activation.
Collapse
Affiliation(s)
- X Zhou
- Department of Oral Biology, College of Dentistry and the Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | |
Collapse
|
38
|
Ichikawa T, Yamada M, Homma D, Cherry RJ, Morrison IE, Kawato S. Digital fluorescence imaging of trafficking of endosomes containing low-density lipoprotein in brain astroglial cells. Biochem Biophys Res Commun 2000; 269:25-30. [PMID: 10694471 DOI: 10.1006/bbrc.2000.2261] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used digital fluorescence microscopy to examine transport of LDL-containing endosomes in rat brain astroglial cells to show that individual middle endosomes undergo rapid transitions between forward/backward movements and immobile states over short distances. The population of rapidly moving endosomes (>0.04 microm/sec) was 35. 9%, and the remaining endosomes were slowly moving or temporarily immobile (<0.04 microm/sec). The averaged motion was, however, a very slow perinuclear motion with a velocity of 3.25 microm/h. This small velocity is mainly due to frequent changing of directions in movements, requiring 6 h for a significant concentration around the circumference of the cell nuclei. The application of both anti-dynein antibodies and vanadate in permeabilized cells resulted in peripherally concentrated distribution of endosomes, probably due to inhibition of perinuclear motion by dynein-like motor proteins. These results imply that both dynein-like and kinesin-like proteins bind to the same endosome resulting in both perinuclear and peripherally directed movements.
Collapse
Affiliation(s)
- T Ichikawa
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba 3-8-1, Meguro, Tokyo, 153, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Kricka LJ, Stanley PE. Assays using digital fluorescence: 1985-1998. LUMINESCENCE 1999; 14:271-9. [PMID: 10512992 DOI: 10.1002/(sici)1522-7243(199909/10)14:5<271::aid-bio549>3.0.co;2-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Luminescence continues to provide comprehensive literature surveys which will be published in most issues. These are a continuation of the literature surveys begun in 1986 in the Journal of Bioluminescence and Chemiluminescence which, up until 1998, encompassed more than 6000 references cited by year or specialized topic. With this newly named journal these searches are expanding to reflect the journal's wider scope. In future we will cover all fundamental and applied aspects of biological and chemical luminescence and include not only bioluminescence and chemiluminescence but also fluorescence, time resolved fluorescence, electrochemiluminescence, phosphorescence, sonoluminescence, lyoluminescence and triboluminescence. The compilers would be pleased to receive any comments from the readership. Contact by e-mail: L.J. Kricka: larry_kricka@path1a.med.upenn.edu or P.E. Stanley: Stanley@LUMIWEB.COM Copyright 1999 John Wiley & Sons, Ltd.
Collapse
|
40
|
Huby RD, Dearman RJ, Kimber I. Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J Biol Chem 1999; 274:22591-6. [PMID: 10428838 DOI: 10.1074/jbc.274.32.22591] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-linking MHC class II molecules human leukocyte antigen (HLA-DR) on the surface of THP-1 cells was found to induce their entry into the glycolipid-enriched membrane fraction of the plasma membrane. At the cellular level, this resulted in the synergistic co-aggregation of class II with cholera toxin, a marker of membrane rafts. The accompanying induction of intracellular protein tyrosine phosphorylation could be inhibited by treating cells with methyl-beta-cyclodextrin, a drug that chelates membrane cholesterol and thereby disperses membrane rafts. Signaling could also be inhibited by treating cells with the Src-family kinase inhibitor PP1. Together, these results show that the induced association of class II molecules with membrane rafts can contribute to their aggregation on the cell surface and mediate an association with intracellular protein-tyrosine kinases.
Collapse
Affiliation(s)
- R D Huby
- Zeneca Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, SK10 4TJ, United Kingdom.
| | | | | |
Collapse
|
41
|
Smith PR, Morrison IE, Wilson KM, Fernández N, Cherry RJ. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J 1999; 76:3331-44. [PMID: 10354459 PMCID: PMC1300303 DOI: 10.1016/s0006-3495(99)77486-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Single-particle tracking (SPT) was used to determine the mobility characteristics of MHC (major histocompatibility complex) class I molecules at the surface of HeLa cells at 22 degrees C and on different time scales. MHC class I was labeled using the Fab fragment of a monoclonal antibody (W6/32), covalently bound to either R-phycoerythrin or fluorescent microspheres, and the particles were tracked using high-sensitivity fluorescence imaging. Analysis of the data for a fixed time interval suggests a reasonable fit to a random diffusion model. The best fit values of the diffusion coefficient D decreased markedly, however, with increasing time interval, demonstrating the existence of anomalous diffusion. Further analysis of the data shows that the diffusion is anomalous over the complete time range investigated, 4-300 s. Fitting the results obtained with the R-phycoerythrin probe to D = D0talpha-1, where Do is a constant and t is the time, gave D0 = (6.7 +/- 4.5) x 10(-11) cm2 s-1 and alpha = 0.49 +/- 0.16. Experiments with fluorescent microspheres were less reproducible and gave slower anomalous diffusion. The R-phycoerythrin probe is considered more reliable for fluorescent SPT because it is small (11 x 8 nm) and monovalent. The type of motion exhibited by the class I molecules will greatly affect their ability to migrate in the plane of the membrane. Anomalous diffusion, in particular, greatly reduces the distance a class I molecule can travel on the time scale of minutes. The present data are discussed in relation to the possible role of diffusion and clustering in T-cell activation.
Collapse
Affiliation(s)
- P R Smith
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, England
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Abstract
Two dimensional motion of membrane receptors provides a mechanism for interaction among receptors in the plane of the membrane. In some cases the lateral diffusion leads to formation of clusters which may also be mobile. We have used image cross-correlation (ICCS) spectroscopy technique to measure the translational motion of transferrin receptors in the membrane of 3T3 fibroblasts and HEp2 carcinoma cells. The technique is based on the measurement and analysis of fluctuations in the intensity observed in fluorescence confocal microscope images measured as a function of time. The fluorescence fluctuations arise from stochastic concentration fluctuations about the equilibrium concentration caused by movement of receptors. The amplitude of the fluctuations depend on the number of fluorescent molecules in the observation volume and the dynamics provide the rate of movement. The diffusion observed by this analysis is orders of magnitude slower than that measured by conventional photobleaching techniques. The slower motion corresponds to the diffusion of receptor clusters which provide the more dominant fluctuations.
Collapse
Affiliation(s)
- M Srivastava
- Department of Chemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
44
|
Tomishige M, Sako Y, Kusumi A. Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 1998; 142:989-1000. [PMID: 9722611 PMCID: PMC2132872 DOI: 10.1083/jcb.142.4.989] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1998] [Revised: 07/10/1998] [Indexed: 02/08/2023] Open
Abstract
Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a band 3 molecule is temporarily corralled in a mesh of 110 nm in diameter, and hops to an adjacent mesh an average of every 350 ms. The rest (one-third) of band 3 exhibited oscillatory motion similar to that of spectrin, suggesting that these band 3 molecules are bound to spectrin. When the membrane skeletal network was dragged and deformed/translated using optical tweezers, band 3 molecules that were undergoing hop diffusion were displaced toward the same direction as the skeleton. Mild trypsin treatment of ghosts, which cleaves off the cytoplasmic portion of band 3 without affecting spectrin, actin, and protein 4.1, increased the intercompartmental hop rate of band 3 by a factor of 6, whereas it did not change the corral size and the microscopic diffusion rate within a corral. These results indicate that the cytoplasmic portion of band 3 collides with the membrane skeleton, which causes temporal confinement of band 3 inside a mesh of the membrane skeleton.
Collapse
Affiliation(s)
- M Tomishige
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
45
|
Abstract
It has long been known from fluorescence recovery after photobleaching experiments that the mobility of most cell surface receptors is much smaller than expected for free diffusion of proteins in a fluid lipid bilayer. Single-particle tracking experiments are currently revealing the complexity of the constraints to free diffusion. Evidence has been obtained for several different processes: domain-limited diffusion, temporary confinement and anomalous diffusion. The type of motion exhibited by a given receptor will profoundly influence the rate of any functional process which requires movement in the plane of the membrane. In particular, anomalous diffusion greatly reduces the distance travelled by a receptor on a time scale of minutes.
Collapse
Affiliation(s)
- R J Cherry
- Department of Biological Sciences, University of Essex, Central Campus, Colchester, UK.
| | | | | | | |
Collapse
|
46
|
Cherry RJ, Wilson KM, Triantafilou K, O'Toole P, Morrison IE, Smith PR, Fernández N. Detection of dimers of dimers of human leukocyte antigen (HLA)-DR on the surface of living cells by single-particle fluorescence imaging. J Cell Biol 1998; 140:71-9. [PMID: 9425155 PMCID: PMC2132594 DOI: 10.1083/jcb.140.1.71] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The technique of single-particle fluorescence imaging was used to investigate the oligomeric state of MHC class II molecules on the surface of living cells. Cells transfected with human leukocyte antigen (HLA)-DR A and B genes were labeled at saturation with a univalent probe consisting of Fab coupled to R-phycoerythrin. Analysis of the intensities of fluorescent spots on the cell surface revealed the presence of single and double particles consistent with the simultaneous presence of HLA-DR heterodimers and dimers of dimers. The proportion of double particles was lower at 37 degrees C than at 22 degrees C, suggesting that the heterodimers and dimers of dimers exist in a temperature-dependent equilibrium. These results are discussed in the context of a possible role for HLA-DR dimers of dimers in T cell receptor-MHC interactions. The technique is validated by demonstrating that fluorescence imaging can distinguish between dimers and tetramers of human erythrocyte spectrin deposited from solution onto a solid substrate. The methodology will have broad applicability to investigation of the oligomeric state of immunological and other membrane-bound receptors in living cells.
Collapse
Affiliation(s)
- R J Cherry
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
47
|
Pawelec G, Rehbein A, Haehnel K, Merl A, Adibzadeh M. Human T-cell clones in long-term culture as a model of immunosenescence. Immunol Rev 1997; 160:31-42. [PMID: 9476663 DOI: 10.1111/j.1600-065x.1997.tb01025.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have consistently observed that like other normal somatic tissue cells, human T lymphocytes manifest a finite proliferative capacity in culture in vitro. When measured in population doublings (PD), this averages about 35 PD for T-cell clones (TCC) derived from mature peripheral T cells of young adults and about 20 PD more for TCC derived from T-cell precursors in their bone marrow. We believe that alterations in surface marker phenotypes and corresponding functional changes observed in these human TCC as they progress through their finite lifespans in vitro can provide valuable information on processes of T-cell immunosenescence in vivo. They may also provide a model system for studying ways of modulating the ageing process to delay or prevent immunosenescence in the elderly and the chronically infected or possibly to accelerate immunosenescence in organ transplantation.
Collapse
Affiliation(s)
- G Pawelec
- Department of Internal Medicine II, University of Tübingen Medical School, Germany.
| | | | | | | | | |
Collapse
|
48
|
Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:373-99. [PMID: 9241424 DOI: 10.1146/annurev.biophys.26.1.373] [Citation(s) in RCA: 1234] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.
Collapse
Affiliation(s)
- M J Saxton
- Institute of Theoretical Dynamics, University of California, Davis 95616, USA.
| | | |
Collapse
|