1
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 PMCID: PMC11617093 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
2
|
Jun Y. An In Vitro Assay of Trans-SNARE Complex Formation During Yeast Vacuole Fusion Using Epitope Tag-Free SNAREs. Methods Mol Biol 2019; 1860:277-288. [PMID: 30317512 DOI: 10.1007/978-1-4939-8760-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
SNARE complexes assembled between fusing membranes (in trans) are the core machinery driving lipid bilayer merger. Thus, an assay monitoring the formation of these trans-SNARE complexes is essential for SNARE-mediated membrane fusion studies. Homotypic yeast vacuole fusion is an important model system for such studies. Although several assays measuring trans-SNARE complex formation are available to study yeast vacuole fusion, most use SNAREs conjugated with epitope tags, which may affect the function of SNAREs or even the formation of trans-SNARE complexes. Here, I describe an assay for trans-SNARE complex formation during yeast vacuole fusion that does not require epitope-tagged SNAREs.
Collapse
Affiliation(s)
- Youngsoo Jun
- School of Life Sciences, Cell Logistics Research Center, and Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Wang J, Tian L, Zhang DD, Short DPG, Zhou L, Song SS, Liu Y, Wang D, Kong ZQ, Cui WY, Ma XF, Klosterman SJ, Subbarao KV, Chen JY, Dai XF. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:651-664. [PMID: 29419372 DOI: 10.1094/mpmi-12-17-0289-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle-fusion components that included 22 soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), four Sec1/Munc18 (SM) family proteins, and 10 Rab GTPases encoded in the genome of the vascular wilt pathogen Verticillium dahliae Vd991. Targeted deletion of two SNARE-encoding genes in V. dahliae, VdSec22 and VdSso1, significantly reduced virulence of both mutants on cotton, relative to the wild-type Vd991 strain. Comparative analyses of the secreted protein content (exoproteome) revealed that many enzymes involved in carbohydrate hydrolysis were regulated by VdSec22 or VdSso1. Consistent with a role of these enzymes in plant cell-wall degradation, pectin, cellulose, and xylan utilization were reduced in the VdSec22 or VdSso1 mutant strains along with a loss of exoproteome cytotoxic activity on cotton leaves. Comparisons with a pathogenicity-related exoproteome revealed that several known virulence factors were not regulated by VdSec22 or VdSso1, but some of the proteins regulated by VdSec22 or VdSso1 displayed different characteristics, including the lack of a typical signal peptide, suggesting that V. dahliae employs more than one secretory route to transport proteins to extracellular sites during infection.
Collapse
Affiliation(s)
- Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Tian
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang-Shuang Song
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Yan Liu
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei-Ye Cui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- 4 United States Department of Agriculture, Agricultural Research Service, Salinas, CA, U.S.A
| | - Krishna V Subbarao
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
4
|
Abstract
Macroautophagy is an intracellular pathway used for targeting of cellular components to the lysosome for their degradation and involves sequestration of cytoplasmic material into autophagosomes formed from a double membrane structure called the phagophore. The nucleation and elongation of the phagophore is tightly regulated by several autophagy-related (ATG) proteins, but also involves vesicular trafficking from different subcellular compartments to the forming autophagosome. Such trafficking must be tightly regulated by various intra- and extracellular signals to respond to different cellular stressors and metabolic states, as well as the nature of the cargo to become degraded. We are only starting to understand the interconnections between different membrane trafficking pathways and macroautophagy. This review will focus on the membrane trafficking machinery found to be involved in delivery of membrane, lipids, and proteins to the forming autophagosome and in the subsequent autophagosome fusion with endolysosomal membranes. The role of RAB proteins and their regulators, as well as coat proteins, vesicle tethers, and SNARE proteins in autophagosome biogenesis and maturation will be discussed.
Collapse
|
5
|
Kaur H, Sparvoli D, Osakada H, Iwamoto M, Haraguchi T, Turkewitz AP. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila. Mol Biol Cell 2017; 28:1551-1564. [PMID: 28381425 PMCID: PMC5449153 DOI: 10.1091/mbc.e17-01-0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Lysosome-related organelles (LROs) are secretory organelles formed by convergence between secretory and endosomal trafficking pathways. In Tetrahymena, secretory vesicles that resemble dense core granules are a new class of LROs whose synthesis depends on a conserved syntaxin required for heterotypic fusion and AP-3 for maturation. The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1-knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
6
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
7
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
8
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
9
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
10
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
11
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
12
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
13
|
Hosomi A, Higuchi Y, Yagi S, Takegawa K. Vsl1p cooperates with Fsv1p for vacuolar protein transport and homotypic fusion in Schizosaccharomyces pombe. MICROBIOLOGY-SGM 2014; 161:89-98. [PMID: 25378562 DOI: 10.1099/mic.0.080481-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of the SNARE protein family participate in the docking-fusion step of several intracellular vesicular transport events. Saccharomyces cerevisiae Vam7p was identified as a SNARE protein that acts in vacuolar protein transport and membrane fusion. However, in Schizosaccharomyces pombe, there have been no reports regarding the counterpart of Vam7p. Here, we found that, although the SPCC594.06c gene has low similarity to Vam7p, the product of SPCC594.06c has a PX domain and SNARE motif like Vam7p, and thus we designated the gene Sch. pombe vsl1(+) (Vam7-like protein 1). The vsl1Δ cells showed no obvious defect in vacuolar protein transport. However, cells of the vsl1Δ mutant with a deletion of fsv1(+), which encodes another SNARE protein, displayed extreme defects in vacuolar protein transport and vacuolar morphology. Vsl1p was localized to the vacuolar membrane and prevacuolar compartment, and its PX domain was essential for proper localization. Expression of the fusion protein GFP-Vsl1p was able to suppress ZnCl2 sensitivity and the vacuolar protein sorting defect in the fsv1Δ cells. Moreover, GFP-Vsl1p was mislocalized in a pep12Δ mutant and in cells overexpressing fsv1(+). Importantly, overexpression of Sac. cerevisiae VAM7 could suppress the sensitivity to ZnCl2 of vsl1Δ cells and the vacuolar morphology defect of vsl1Δfsv1Δ cells in Sch. pombe. Taken together, these data suggest that Vsl1p and Fsv1p are required for vacuolar protein transport and membrane fusion, and they function cooperatively with Pep12p in the same membrane-trafficking step.
Collapse
Affiliation(s)
- Akira Hosomi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Satoshi Yagi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| |
Collapse
|
14
|
Chen Y, Zhou F, Zou S, Yu S, Li S, Li D, Song J, Li H, He Z, Hu B, Björn LO, Lipatova Z, Liang Y, Xie Z, Segev N. A Vps21 endocytic module regulates autophagy. Mol Biol Cell 2014; 25:3166-77. [PMID: 25143401 PMCID: PMC4196867 DOI: 10.1091/mbc.e14-04-0917] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vps21 plays a role in autophagy in addition to its role in endocytosis. Individual deletions of members of the endocytic Vps21 module, including a GEF and four effectors, result in autophagy defects and accumulation of autophagosomal clusters. Therefore the endocytic Vps21 module regulates autophagy. In autophagy, the double-membrane autophagosome delivers cellular components for their degradation in the lysosome. The conserved Ypt/Rab GTPases regulate all cellular trafficking pathways, including autophagy. These GTPases function in modules that include guanine-nucleotide exchange factor (GEF) activators and downstream effectors. Rab7 and its yeast homologue, Ypt7, in the context of such a module, regulate the fusion of both late endosomes and autophagosomes with the lysosome. In yeast, the Rab5-related Vps21 is known for its role in early- to late-endosome transport. Here we show an additional role for Vps21 in autophagy. First, vps21∆ mutant cells are defective in selective and nonselective autophagy. Second, fluorescence and electron microscopy analyses show that vps21∆ mutant cells accumulate clusters of autophagosomal structures outside the vacuole. Third, cells with mutations in other members of the endocytic Vps21 module, including the GEF Vps9 and factors that function downstream of Vps21, Vac1, CORVET, Pep12, and Vps45, are also defective in autophagy and accumulate clusters of autophagosomes. Finally, Vps21 localizes to PAS. We propose that the endocytic Vps21 module also regulates autophagy. These findings support the idea that the two pathways leading to the lysosome—endocytosis and autophagy—converge through the Vps21 and Ypt7 GTPase modules.
Collapse
Affiliation(s)
- Yong Chen
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Zhou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shenshen Zou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sidney Yu
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dan Li
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingzhen Song
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Li
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyi He
- Electron Microscope Demonstrating Co. Lab of Nanjing Agriculture University and Tianmei High-Tech Corporation, Nanjing 210095, China
| | - Bing Hu
- Electron Microscope Demonstrating Co. Lab of Nanjing Agriculture University and Tianmei High-Tech Corporation, Nanjing 210095, China
| | - Lars Olof Björn
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiping Xie
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
15
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014; 15:552. [PMID: 24993029 PMCID: PMC4099481 DOI: 10.1186/1471-2164-15-552] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/27/2014] [Indexed: 12/21/2022] Open
Abstract
Background Wine fermentation is a harsh ecological niche to which wine yeast are well adapted. The initial high osmotic pressure and acidity of grape juice is followed by nutrient depletion and increasing concentrations of ethanol as the fermentation progresses. Yeast’s adaptation to these and many other environmental stresses, enables successful completion of high-sugar fermentations. Earlier transcriptomic and growth studies have tentatively identified genes important for high-sugar fermentation. Whilst useful, such studies did not consider extended growth (>5 days) in a temporally dynamic multi-stressor environment such as that found in many industrial fermentation processes. Here, we identify genes whose deletion has minimal or no effect on growth, but results in failure to achieve timely completion of the fermentation of a chemically defined grape juice with 200 g L−1 total sugar. Results Micro- and laboratory-scale experimental fermentations were conducted to identify 72 clones from ~5,100 homozygous diploid single-gene yeast deletants, which exhibited protracted fermentation in a high-sugar medium. Another 21 clones (related by gene function, but initially eliminated from the screen because of possible growth defects) were also included. Clustering and numerical enrichment of genes annotated to specific Gene Ontology (GO) terms highlighted the vacuole’s role in ion homeostasis and pH regulation, through vacuole acidification. Conclusion We have identified 93 genes whose deletion resulted in the duration of fermentation being at least 20% longer than the wild type. An extreme phenotype, ‘stuck’ fermentation, was also observed when DOA4, NPT1, PLC1, PTK2, SIN3, SSQ1, TPS1, TPS2 or ZAP1 were deleted. These 93 Fermentation Essential Genes (FEG) are required to complete an extended high-sugar (wine-like) fermentation. Their importance is highlighted in our Fermentation Relevant Yeast Genes (FRYG) database, generated from literature and the fermentation-relevant phenotypic characteristics of null mutants described in the Saccharomyces Genome Database. The 93-gene set is collectively referred to as the ‘Fermentome’. The fact that 10 genes highlighted in this study have not previously been linked to fermentation-related stresses, supports our experimental rationale. These findings, together with investigations of the genetic diversity of industrial strains, are crucial for understanding the mechanisms behind yeast’s response and adaptation to stresses imposed during high-sugar fermentations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-552) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vladimir Jiranek
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
16
|
Shanks SG, Carpp LN, Struthers MS, McCann RK, Bryant NJ. The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae. PLoS One 2012; 7:e49628. [PMID: 23166732 PMCID: PMC3498219 DOI: 10.1371/journal.pone.0049628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/11/2012] [Indexed: 12/29/2022] Open
Abstract
Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic.
Collapse
Affiliation(s)
- Scott G. Shanks
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lindsay N. Carpp
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marion S. Struthers
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebecca K. McCann
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nia J. Bryant
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Uemura T, Morita MT, Ebine K, Okatani Y, Yano D, Saito C, Ueda T, Nakano A. Vacuolar/pre-vacuolar compartment Qa-SNAREs VAM3/SYP22 and PEP12/SYP21 have interchangeable functions in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:864-73. [PMID: 21105932 DOI: 10.1111/j.1365-313x.2010.04372.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) mediate specific membrane fusion between transport vesicles or organelles and target membranes. VAM3/SYP22 and PEP12/SYP21 are Qa-SNAREs that act in the vacuolar transport pathway of Arabidopsis thaliana, and are localized predominantly on the vacuolar membrane and the pre-vacuolar compartment (PVC), respectively. Previous studies have shown that loss-of-function mutants of VAM3/SYP22 or PEP12/SYP21 showed male gametophytic lethality, suggesting that VAM3/SYP22 and PEP12/SYP21 possess different, non-redundant functions. We have re-evaluated the effects of mutations in these genes using T-DNA insertion mutants in the Columbia accession. We found that a mutation in VAM3/SYP22 (vam3-1) caused pleiotropic abnormalities, including semi-dwarfism and wavy leaves. In contrast, a loss-of-function mutant of PEP12/SYP21 (pep12) showed no apparent abnormal phenotype. We also found that the double vam3-1 pep12 mutant had severely reduced fertilization competence, although male and female gametophytes (vam3-1(-) pep12(-) ) maintained the ability to fertilize. Moreover, promoter swapping analysis revealed that expression of a GFP-PEP12/SYP21 fusion under the control of the VAM3/SYP22 promoter suppressed all phenotypes of the vam3-1 mutant. These results indicate that the functions of VAM3/SYP22 and PEP12/SYP21 were redundant and interchangeable.
Collapse
Affiliation(s)
- Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cell size regulation during telomere-directed senescence in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2010; 74:195-8. [PMID: 20057141 DOI: 10.1271/bbb.90627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DNA replication without telomerase leads to telomere shortening and induces replicative senescence. We found that in a telomerase-deficient budding yeast mutant, the volume of each telomere-shortened cell increased as its growth capacity decreased, and that this process was associated with changes in vacuolar morphology. Senescence-induced cell expansion required Mec1, a DNA damage-responsive kinase, but not vacuolar SNARE Vam3.
Collapse
|
19
|
Engineering expression of the heavy metal transporter MerC in Saccharomyces cerevisiae for increased cadmium accumulation. Appl Microbiol Biotechnol 2009; 86:753-9. [DOI: 10.1007/s00253-009-2402-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/03/2009] [Accepted: 12/05/2009] [Indexed: 11/30/2022]
|
20
|
Hu X, Song F, Zheng Z. Molecular cloning and expression analysis of riceOsTVLP1, encoding a protein with similarity to TGF-β receptor interacting proteins and vacuolar assembly Vam6p/Vps39p proteins. ACTA ACUST UNITED AC 2009; 17:152-8. [PMID: 17076258 DOI: 10.1080/10425170600700212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We describe the cloning and identification of a rice cDNA, OsTVLP1, encoding a protein with similarity to TGF-beta receptor interacting proteins and vacuolar assembly Vam6p/Vps39p proteins. OsTVLP1 has an open reading frame of 2955 bp, which encodes a 984 amino acid protein, containing a citron homology (CNH) domain at its N-terminal and a clathrin heavy-chain repeat homology (CLH) domain at its C-terminal. The expression of OsTVLP1 was induced by treatments with benzothiadiazole (BTH), a chemical activator of plant disease resistance responses, and by infection of the blast fungus, Magnaporthe grisea. Importantly, the expression of OsTVLP1 was activated specifically in disease resistance response induced by BTH and in an incompatible interaction between rice and the blast fungus. Our observations suggest that OsTVLP1 may play a role in rice disease resistance response against pathogen infection.
Collapse
Affiliation(s)
- Xuebo Hu
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310029, People's Republic of China
| | | | | |
Collapse
|
21
|
Griffith J, Reggiori F. Ultrastructural analysis of nanogold-labeled endocytic compartments of yeast Saccharomyces cerevisiae using a cryosectioning procedure. J Histochem Cytochem 2009; 57:801-9. [PMID: 19435716 DOI: 10.1369/jhc.2009.952952] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Yeast Saccharomyces cerevisiae has been a valuable model organism for the study of the endosomal system of eukaryotic cells. Morphological analyses, however, have been limited because of the lack of specific protein markers and of procedures that lead to a satisfactory ultrastructural resolution. We have recently developed an immunoelectron microscopy (IEM) protocol adapted from the Tokuyasu method to prepare cryosections from mildly fixed yeast. This novel approach allows excellent cell preservation and a unique resolution of the yeast morphology. Here, we present a protocol that combines this procedure with the specific labeling of the various endosomal compartments with positively charged Nanogold. In particular, we show that this new protocol generates excellent results when applied for the examination of early and late endosomes, and of mutants with an endosomal trafficking defect. Importantly, this method is compatible with immunogold labeling of protein markers, and it is consequently appropriate for localization studies of both resident and cargo proteins. This new IEM protocol will be a valuable tool for the large community of scientists using yeast as a model system to investigate the membrane transport and the biogenesis of the endosomal system.
Collapse
Affiliation(s)
- Janice Griffith
- Department of Cell Biology, Institute of Biomembranes, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
22
|
Kuratsu M, Taura A, Shoji JY, Kikuchi S, Arioka M, Kitamoto K. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 2007; 44:1310-23. [PMID: 17590362 DOI: 10.1016/j.fgb.2007.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
In spite of their great importance for both applied and basic biology, studies on vesicular trafficking in filamentous fungi have been so far very limited. Here, we identified 21 genes, which might be a total set, encoding putative SNARE proteins that are key factors for vesicular trafficking, taking advantage of available whole genome sequence in the filamentous fungus Aspergillus oryzae. The subsequent systematic analysis to determine the localization of putative SNAREs using EGFP-fused chimeras revealed that most putative SNAREs show similar subcellular distribution to their counterparts in the budding yeast. However, there existed some characteristic features of SNAREs in A. oryzae, such as SNARE localization at/near the septum and the presence of apparently non-redundant plasma membrane Qa-SNAREs. Overall, this analysis allowed us to provide an overview of vesicular trafficking and organelle distribution in A. oryzae.
Collapse
Affiliation(s)
- Masahiro Kuratsu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Shoji JY, Arioka M, Kitamoto K. Dissecting cellular components of the secretory pathway in filamentous fungi: insights into their application for protein production. Biotechnol Lett 2007; 30:7-14. [PMID: 17846708 DOI: 10.1007/s10529-007-9516-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 07/26/2007] [Accepted: 08/13/2007] [Indexed: 11/29/2022]
Abstract
Studies on protein production using filamentous fungi have mostly focused on improvement of the protein yields by genetic modifications such as overexpression. Recent genome sequencing in several filamentous fungal species now enables more systematic approaches based on reverse genetics and molecular biology of the secretion pathway. In this review, we summarize recent molecular-based advances in our understanding of vesicular trafficking in filamentous fungi, and discuss insights into their high secretion ability and application for protein production.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
24
|
Tatsumi A, Shoji JY, Kikuma T, Arioka M, Kitamoto K. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 2007; 362:474-9. [PMID: 17719006 DOI: 10.1016/j.bbrc.2007.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/03/2007] [Indexed: 11/30/2022]
Abstract
Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function.
Collapse
Affiliation(s)
- Akinori Tatsumi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
25
|
Foresti O, daSilva LLP, Denecke J. Overexpression of the Arabidopsis syntaxin PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic vacuole in vivo. THE PLANT CELL 2006; 18:2275-93. [PMID: 16935987 PMCID: PMC1560924 DOI: 10.1105/tpc.105.040279] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Golgi-mediated transport to the lytic vacuole involves passage through the prevacuolar compartment (PVC), but little is known about how vacuolar proteins exit the PVC. We show that this last step is inhibited by overexpression of Arabidopsis thaliana syntaxin PEP12/SYP21, causing an accumulation of soluble and membrane cargo and the plant vacuolar sorting receptor BP80 in the PVC. Anterograde transport proceeds normally from the endoplasmic reticulum to the Golgi and the PVC, although export from the PVC appears to be compromised, affecting both anterograde membrane flow to the vacuole and the recycling route of BP80 to the Golgi. However, Golgi-mediated transport of soluble and membrane cargo toward the plasma membrane is not affected, but a soluble BP80 ligand is partially mis-sorted to the culture medium. We also observe clustering of individual PVC bodies that move together and possibly fuse with each other, forming enlarged compartments. We conclude that PEP12/SYP21 overexpression specifically inhibits export from the PVC without affecting the Golgi complex or compromising the secretory branch of the endomembrane system. The results provide a functional in vivo assay that confirms PEP12/SYP21 involvement in vacuolar sorting and indicates that excess of this syntaxin in the PVC can be detrimental for further transport from this organelle.
Collapse
Affiliation(s)
- Ombretta Foresti
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
26
|
Shoji JY, Arioka M, Kitamoto K. Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae. EUKARYOTIC CELL 2006; 5:411-21. [PMID: 16467481 PMCID: PMC1405889 DOI: 10.1128/ec.5.2.411-421.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/18/2005] [Indexed: 11/20/2022]
Abstract
Vacuoles in filamentous fungi are highly pleomorphic and some of them, e.g., tubular vacuoles, are implicated in intra- and intercellular transport. In this report, we isolated Aovam3, the homologue of the Saccharomyces cerevisiae VAM3 gene that encodes the vacuolar syntaxin, from Aspergillus oryzae. In yeast complementation analyses, the expression of Aovam3 restored the phenotypes of both Deltavam3 and Deltapep12 mutants, suggesting that AoVam3p is likely the vacuolar and/or endosomal syntaxin in A. oryzae. FM4-64 [N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenyl-hexatrienyl)pyridinium dibromide] and CMAC (7-amino-4-chloromethylcoumarin) staining confirmed that the fusion protein of enhanced green fluorescent protein (EGFP) with AoVam3p (EGFP-AoVam3p) localized on the membrane of the pleomorphic vacuolar networks, including large spherical vacuoles, tubular vacuoles, and putative late endosomes/prevacuolar compartments. EGFP-AoVam3p-expressing strains allowed us to observe the dynamics of vacuoles with high resolutions, and moreover, led to the discovery of several new aspects of fungal vacuoles, which have not been discovered so far with conventional staining methods, during different developmental stages. In old hyphae, EGFP fluorescence was present in the entire lumen of large vacuoles, which occupied most of the cell, indicating that degradation of cytosolic materials had occurred in such hyphae via an autophagic process. In hyphae that were not in contact with nutrients, such as aerial hyphae and hyphae that grew on a glass surface, vacuoles were composed of small punctate structures and tubular elements that often formed reticulum-like networks. These observations imply the presence of so-far-unrecognized roles of vacuoles in the development of filamentous fungi.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
27
|
Ueda H, Nishiyama C, Shimada T, Koumoto Y, Hayashi Y, Kondo M, Takahashi T, Ohtomo I, Nishimura M, Hara-Nishimura I. AtVAM3 is required for normal specification of idioblasts, myrosin cells. PLANT & CELL PHYSIOLOGY 2006; 47:164-75. [PMID: 16306062 DOI: 10.1093/pcp/pci232] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Myrosin cells in Capparales plants are idioblasts that accumulate thioglucoside glucohydrolase (TGG, also called myrosinase), which hydrolyzes glucosinolates to produce toxic compounds for repelling pests. Here, we show that AtVAM3 is involved in development of myrosin cells. It has been shown that yeast VAM3 is a Q(a)-SNARE that is involved in vesicle transport of vacuolar proteins and vacuolar assembly. We found that two Arabidopsis atvam3 alleles, atvam3-3 and atvam3-4/ssm, accumulate large amounts of TGG1 and TGG2 that are enzymatically active. An immunogold analysis revealed that TGGs were specifically localized in the vacuole of myrosin cells in atvam3 mutants. This result indicates that TGGs are normally transported to vacuoles in these mutants and that AtVAM3 is not essential for vacuolar transport of the proteins. We developed a staining method with Coomassie brilliant blue that detects myrosin cells in whole leaves by their high TGG content. This method showed that atvam3 leaves have a larger number of myrosin cells than do wild-type leaves. Myrosin cells were scattered along leaf veins in wild-type leaves, while they were abnormally distributed in atvam3 leaves. The mutants developed a network of myrosin cells throughout the leaves: myrosin cells were not only distributed continuously along leaf veins, but were also observed independent of leaf veins. The excess of myrosin cells in atvam3 mutants might be responsible for the abnormal abundance of TGGs and the reduction of elongation of inflorescence stems and leaves in these mutants. Our results suggest that AtVAM3 has a plant-specific function in development of myrosin cells.
Collapse
Affiliation(s)
- Haruko Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stevens P, Monastyrska I, Leão-Helder AN, van der Klei IJ, Veenhuis M, Kiel JAKW. Vam7p is required for macropexophagy. FEMS Yeast Res 2005; 5:985-97. [PMID: 16269391 DOI: 10.1016/j.femsyr.2005.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022] Open
Abstract
We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradation in the methylotrophic yeast Hansenula polymorpha. A Hp-vam7 mutant was strongly affected in peroxisome degradation by selective macropexophagy as well as non-selective microautophagy. Deletion of Hp-Vam3p function had only a minor effect on peroxisome degradation processes. Both proteins were located at the vacuolar membrane, with Hp-Vam7p also having a partially cytosolic location. Previously, in baker's yeast Vam3p and Vam7p have been demonstrated to be components of a t-SNARE complex essential for vacuole biogenesis. We speculate that the function of this complex in macropexophagy includes a role in membrane fusion processes between the outer membrane layer of sequestered peroxisomes and the vacuolar membrane. Our data suggest that Hp-Vam3p may be functionally redundant in peroxisome degradation. Remarkably, deletion of Hp-VAM7 also significantly affected peroxisome biogenesis and resulted in organelles with multiple, membrane-enclosed compartments. These morphological defects became first visible in cells that were in the mid-exponential growth phase of cultivation on methanol, and were correlated with accumulation of electron-dense extensions that were connected to mitochondria.
Collapse
Affiliation(s)
- Patricia Stevens
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, P.O. Box 14, 9751 AA Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
LaGrassa TJ, Ungermann C. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. ACTA ACUST UNITED AC 2005; 168:401-14. [PMID: 15684030 PMCID: PMC2171739 DOI: 10.1083/jcb.200407141] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The regulation of cellular membrane flux is poorly understood. Yeast respond to hypertonic stress by fragmentation of the normally large, low copy vacuole. We used this phenomenon as the basis for an in vivo screen to identify regulators of vacuole membrane dynamics. We report here that maintenance of the fragmented phenotype requires the vacuolar casein kinase I Yck3: when Yck3 is absent, salt-stressed vacuoles undergo fission, but reassemble in a SNARE-dependent manner, suggesting that vacuole fusion is disregulated. Accordingly, when Yck3 is deleted, in vitro vacuole fusion is increased, and Yck3 overexpression blocks fusion. Morphological and functional studies show that Yck3 modulates the Rab/homotypic fusion and vacuole protein sorting complex (HOPS)-dependent tethering stage of vacuole fusion. Intriguingly, Yck3 mediates phosphorylation of the HOPS subunit Vps41, a bi-functional protein involved in both budding and fusion during vacuole biogenesis. Because Yck3 also promotes efficient vacuole inheritance, we propose that tethering complex phosphorylation is a part of a general, switch-like mechanism for driving changes in organelle architecture.
Collapse
Affiliation(s)
- Tracy J LaGrassa
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
30
|
Rodal AA, Kozubowski L, Goode BL, Drubin DG, Hartwig JH. Actin and septin ultrastructures at the budding yeast cell cortex. Mol Biol Cell 2004; 16:372-84. [PMID: 15525671 PMCID: PMC539180 DOI: 10.1091/mbc.e04-08-0734] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast has been a powerful model organism for studies of the roles of actin in endocytosis and septins in cell division and in signaling. However, the depth of mechanistic understanding that can be obtained from such studies has been severely hindered by a lack of ultrastructural information about how actin and septins are organized at the cell cortex. To address this problem, we developed rapid-freeze and deep-etch techniques to image the yeast cell cortex in spheroplasted cells at high resolution. The cortical actin cytoskeleton assembles into conical or mound-like structures composed of short, cross-linked filaments. The Arp2/3 complex localizes near the apex of these structures, suggesting that actin patch assembly may be initiated from the apex. Mutants in cortical actin patch components with defined defects in endocytosis disrupted different stages of cortical actin patch assembly. Based on these results, we propose a model for actin function during endocytosis. In addition to actin structures, we found that septin-containing filaments assemble into two kinds of higher order structures at the cell cortex: rings and ordered gauzes. These images provide the first high-resolution views of septin organization in cells.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| | | | | | | | | |
Collapse
|
31
|
Dacks JB, Doolittle WF. Molecular and phylogenetic characterization of syntaxin genes from parasitic protozoa. Mol Biochem Parasitol 2004; 136:123-36. [PMID: 15478792 DOI: 10.1016/j.molbiopara.2004.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vesicular transport is an integral process in eukaryotic cells and the syntaxins, a member of the SNARE protein superfamily, are a critical piece of the vesicular transport machinery. We have obtained syntaxin homologues from diverse protozoan parasites (including Entamoeba, Giardia, Trichomonas and Trypanosoma), determined the paralogue affinity of the homologues by molecular phylogenetics and compared functionally critical amino acid sites identified in other syntaxins. Surprisingly, three sequences deviate at the signature glutamine residue position, conserved in all previously identified syntaxin homologues. It is known that, despite conserved structure and function of both the syntaxins and the proteins of the regulatory SM superfamily, the various syntaxin paralogues bind their respective SM partners at different regions of the syntaxin molecule. These sites of interactions have been identified down to the individual residues. The pattern of conservation at these residues, in our evolutionarily diverse sampling of syntaxin paralogues, is therefore used to gain further insight into the interaction of these proteins. Phylogenetic analysis confirms and extends previous conclusions that the syntaxin families are present in diverse eukaryotes and that the syntaxin sub-families diverged early in eukaryotic evolution. This result is expanded with the inclusion of new homologues for previously sampled taxa, newly sampled taxa, and newly sampled syntaxin sub-families. Because of their integral role in membrane trafficking, the syntaxin genes represent a valuable potential molecular marker for the experimental study of the endomembrane system of disease-causing protists.
Collapse
Affiliation(s)
- Joel B Dacks
- Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5.
| | | |
Collapse
|
32
|
Futai M, Sun-Wada GH, Wada Y. Proton pumping ATPases and diverse inside-acidic compartments. YAKUGAKU ZASSHI 2004; 124:243-60. [PMID: 15118237 DOI: 10.1248/yakushi.124.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton-translocating ATPases are essential cellular energy converters that transduce the chemical energy of ATP hydrolysis into transmembrane proton electrochemical potential differences. The structures, catalytic mechanism, and cellular functions of three major classes of ATPases including the F-type, V-type, and P-type ATPase are discussed in this review. Physiological roles of the acidic organelles and compartments contained are also discussed.
Collapse
Affiliation(s)
- Masamitsu Futai
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
33
|
Paumet F, Rahimian V, Rothman JE. The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc Natl Acad Sci U S A 2004; 101:3376-80. [PMID: 14981247 PMCID: PMC373469 DOI: 10.1073/pnas.0400271101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins constitute the core of the fusion machinery, and isolated SNAREs fuse membranes with exquisite specificity by cognate pairing. Most SNAREs have a membrane-spanning region, an N-terminal domain, and a membrane proximal SNARE motif domain. Although the SNARE motif is critical for SNARE complex formation, is it the sole determinant of the specificity of SNARE-dependent fusion? To test this, we make use of a SNARE complex functioning in the late endosomal compartment in yeast. Studying this complex and the previously identified early endosomal SNARE complex, we find that the specificity of fusion resides in the SNARE motifs.
Collapse
Affiliation(s)
- Fabienne Paumet
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
34
|
Sun-Wada GH, Murata Y, Namba M, Yamamoto A, Wada Y, Futai M. Mouse proton pump ATPase C subunit isoforms (C2-a and C2-b) specifically expressed in kidney and lung. J Biol Chem 2003; 278:44843-51. [PMID: 12947086 DOI: 10.1074/jbc.m307197200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar-type H+-ATPases (V-ATPases) are multimeric proton pumps involved in a wide variety of physiological processes. We have identified two alternative splicing variants of C2 subunit isoforms: C2-a, a lung-specific isoform containing a 46-amino acid insertion, and C2-b, a kidney-specific isoform without the insert. Immunohistochemistry with isoform-specific antibodies revealed that V-ATPase with C2-a is localized specifically in lamellar bodies of type II alveolar cells, whereas the C2-b isoform is found in the plasma membranes of renal alpha and beta intercalated cells. Immunoprecipitation combined with immunohistological analysis revealed that C2-b together with other kidney-specific isoforms was selectively assembled to form a unique proton pump in intercalated cells. Furthermore, a chimeric yeast V-ATPase with mouse the C2-a or C2-b isoform showed a lower Km(ATP) and lower proton transport activity than that with C1 or Vma5p (yeast C subunit). These results suggest that V-ATPases with the C2-a and C2-b isoform are involved in luminal acidification of lamellar bodies and regulation of the renal acid-base balance, respectively.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Takegawa K, Hosomi A, Iwaki T, Fujita Y, Morita T, Tanaka N. Identification of a SNARE protein required for vacuolar protein transport in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2003; 311:77-82. [PMID: 14575697 DOI: 10.1016/j.bbrc.2003.09.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracellular vesicle trafficking is mediated by a set of SNARE proteins in eukaryotic cells. Several SNARE proteins are required for vacuolar protein transport and vacuolar biogenesis in Saccharomyces cerevisiae. A search of the Schizosaccharomyces pombe genome database revealed a total of 17 SNARE-related genes. Although no homologs of Vam3p, Nyv1p, and Vam7p have been found in S. pombe, we identified one SNARE-like protein that is homologous to S. cerevisiae Pep12p. However, the disruptants transport vacuolar hydrolase CPY (SpCPY) to the vacuole normally, suggesting that the Pep12 homolog is not required for vacuolar protein transport in S. pombe cells. To identify the SNARE protein(s) involved in Golgi-to-vacuole protein transport, we have deleted four SNARE homolog genes in S. pombe. SpCPY was significantly missorted to the cell surface on deletion of one of the SNARE proteins, Fsv1p (SPAC6F12.03c), with no apparent S. cerevisiae ortholog. In addition, sporulation, endocytosis, and in vivo vacuolar fusion appear to be normal in fsv1Delta cells. These results showed that Fsv1p is mainly involved in vesicle-mediated protein transport between the Golgi and vacuole in S. pombe cells.
Collapse
Affiliation(s)
- Kaoru Takegawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M. A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci U S A 2003; 100:8589-94. [PMID: 12815100 PMCID: PMC166273 DOI: 10.1073/pnas.1430749100] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Accepted: 05/13/2003] [Indexed: 11/18/2022] Open
Abstract
Plants can sense the direction of gravity and change the growth orientation of their organs. The molecular mechanisms of gravity sensing and signal transduction during gravitropism are not well known. We have isolated several shoot gravitropism (sgr) mutants of Arabidopsis. The sgr3-1 mutant exhibits a reduced gravitropic response in the inflorescence stems. In the inflorescence stems of Arabidopsis, gravity is sensed in endodermal cells that contain sedimentable amyloplasts. In sgr3-1, some amyloplasts in the endodermis failed to sediment in the direction of gravity. SGR3 encodes a syntaxin, AtVAM3, which had previously been cloned as a homologue of yeast Vam3p. AtVAM3 is localized to the prevacuolar compartment and vacuole and is suggested to function in vesicle transport to the vacuole. We have also cloned another soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE), ZIG/AtVTI11, a mutation that causes abnormal gravitropism. This mutant displayed an abnormal distribution of amyloplasts in the endodermal cells similar to that in sgr3-1. Endodermis-specific expression of SGR3 and ZIG by using the SCR promoter could complement the abnormal shoot gravitropism of each mutant. Protein-protein interaction between AtVAM3 and AtVTI11 in the endodermal cells was detected immunologically. The sgr3-1 mutation appeared to reduce the affinity of AtVAM3 for AtVTI11 or SYP5. These results suggest that vesicle transport to the prevacuolar compartment/vacuole in the endodermal cells, mediated by a specific SNARE complex containing AtVAM3 and AtVTI11, plays an important role in shoot gravitropism.
Collapse
Affiliation(s)
- Daisuke Yano
- Graduate School of Biological Sciences, Nara
Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101,
Japan; and Faculty of Integrated Human
Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masakazu Sato
- Graduate School of Biological Sciences, Nara
Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101,
Japan; and Faculty of Integrated Human
Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chieko Saito
- Graduate School of Biological Sciences, Nara
Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101,
Japan; and Faculty of Integrated Human
Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masa H. Sato
- Graduate School of Biological Sciences, Nara
Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101,
Japan; and Faculty of Integrated Human
Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Miyo Terao Morita
- Graduate School of Biological Sciences, Nara
Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101,
Japan; and Faculty of Integrated Human
Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara
Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101,
Japan; and Faculty of Integrated Human
Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
37
|
Abstract
Membrane fusion is a fundamental biochemical reaction and the final step in all vesicular trafficking events. It is crucial for the transfer of proteins and lipids between different compartments and for exo- and endocytic traffic of signaling molecules and receptors. It leads to the reconstruction of organelles such as the Golgi or the nuclear envelope, which decay into fragments during mitosis. Hence, controlled membrane fusion reactions are indispensible for the compartmental organization of eukaryotic cells; for their communication with the environment via hormones, neurotransmitters, growth factors, and receptors; and for the integration of cells into multicellular organisms. Intracellular pathogenic bacteria, such as Mycobacteria or Salmonellae, have developed means to control fusion reactions in their host cells. They persist in phagosomes whose fusion with lysosomes they actively suppress-a means to ensure survival inside host cells. The past decade has witnessed rapid progress in the elucidation of parts of the molecular machinery involved in these membrane fusion reactions. Whereas some elements of the fusion apparatus are remarkably similar in several compartments, there is an equally striking divergence of others. The purpose of this review is to highlight common features of different fusion reactions and the concepts that emerged from them but also to stress the differences and challenge parts of the current hypotheses. This review covers only the endoplasmic fusion reactions mentioned above, i.e., reactions initiated by contacts of membranes with their cytoplasmic faces. Ectoplasmic fusion events, which depend on an initial contact of the fusion partners via the membrane surfaces exposed to the surrounding medium are not discussed, nor are topics such as the entry of enveloped viruses, formation of syncytia, gamete fusion, or vesicle scission (a fusion reaction that leads to the fission of, e.g., transport vesicles).
Collapse
Affiliation(s)
- Andreas Mayer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Spemannstr. 37-39, 72076 Tübingen, Germany.
| |
Collapse
|
38
|
Takegawa K, Iwaki T, Fujita Y, Morita T, Hosomi A, Tanaka N. Vesicle-mediated Protein Transport Pathways to the Vacuole in Schizosaccharomyces pombe. Cell Struct Funct 2003; 28:399-417. [PMID: 14745133 DOI: 10.1247/csf.28.399] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vacuole of Saccharomyces cerevisiae plays essential roles not only for osmoregulation and ion homeostasis but also down-regulation (degradation) of cell surface proteins and protein and organellar turnover. Genetic selections and genome-wide screens in S. cerevisiae have resulted in the identification of a large number of genes required for delivery of proteins to the vacuole. Although the complete genome sequence of the fission yeast Schizosaccharomyces pombe has been reported, there have been few reports on the proteins required for vacuolar protein transport and vacuolar biogenesis in S. pombe. Recent progress in the S. pombe genome project of has revealed that most of the genes required for vacuolar biogenesis and protein transport are conserved between S. pombe and S. cerevisiae. This suggests that the basic machinery of vesicle-mediated protein delivery to the vacuole is conserved between the two yeasts. Identification and characterization of the fission yeast counterparts of the budding yeast Vps and Vps-related proteins have facilitated our understanding of protein transport pathways to the vacuole in S. pombe. This review focuses on the recent advances in vesicle-mediated protein transport to the vacuole in S. pombe.
Collapse
Affiliation(s)
- Kaoru Takegawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Huizing M, Boissy RE, Gahl WA. Hermansky-Pudlak syndrome: vesicle formation from yeast to man. PIGMENT CELL RESEARCH 2002; 15:405-19. [PMID: 12453182 DOI: 10.1034/j.1600-0749.2002.02074.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The disorders known as Hermansky-Pudlak syndrome (HPS) are a group of genetic diseases resulting from abnormal formation of intracellular vesicles. In HPS, dysfunction of melanosomes results in oculocutaneous albinism, and absence of platelet dense bodies causes a bleeding diathesis. In addition, some HPS patients suffer granulomatous colitis or fatal pulmonary fibrosis, perhaps due to mistrafficking of a subset of lysosomes. The impaired function of specific organelles indicates that the causative genes encode proteins operative in the formation of certain vesicles. Four such genes, HPS1, ADTB3A, HPS3, and HPS4, are associated with the four known subtypes of HPS, i.e. HPS-1, HPS-2, HPS-3, and HPS-4. ADTB3A codes for the beta 3 A subunit of adaptor complex-3, known to assist in vesicle formation from the trans-Golgi network or late endosome. However, the functions of the HPS1, HPS3, and HPS4 gene products remain unknown. These three genes arose with the evolution of mammals and have no homologs in yeast, reflecting their specialized function. In contrast, all four known HPS-causing genes have homologs in mice, a species with 14 different models of HPS, i.e. hypopigmentation and a platelet storage pool deficiency. Pursuit of the mechanism of mammalian vesicle formation and trafficking, impaired in HPS, relies upon investigation of these mouse models as well as studies of protein complexes involved in yeast vacuole formation.
Collapse
Affiliation(s)
- Marjan Huizing
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-1851, USA.
| | | | | |
Collapse
|
40
|
Sun-Wada GH, Imai-Senga Y, Yamamoto A, Murata Y, Hirata T, Wada Y, Futai M. A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J Biol Chem 2002; 277:18098-105. [PMID: 11872743 DOI: 10.1074/jbc.m111567200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar-type H(+)-ATPases (V-ATPases) are a family of multimeric proton pumps involved in a wide variety of physiological processes. We have identified two novel mouse genes, Atp6e1 and Atp6e2, encoding testis-specific (E1) and ubiquitous (E2) V-ATPase subunit E isoforms, respectively. The E1 transcript appears about 3 weeks after birth, corresponding to the start of meiosis, and is expressed specifically in round spermatids in seminiferous tubules. Immunohistochemistry with isoform-specific antibodies revealed that the V-ATPase with E1 and a2 isoforms is located specifically in developing acrosomes of spermatids and acrosomes in mature sperm. In contrast, the E2 isoform was expressed in all tissues examined and present in the perinuclear compartments of spermatocytes. The E1 isoform exhibits 70% identity with the E2, and both isoforms functionally complemented a null mutation of the yeast counterpart VMA4, indicating that they are bona fide V-ATPase subunits. The chimeric enzymes showed slightly lower K(m)(ATP) than yeast V-ATPase. Consistent with the temperature-sensitive growth of Deltavma4-expressing E1 isoform, vacuolar membrane vesicles exhibited temperature-sensitive coupling between ATP hydrolysis and proton transport. These results suggest that E1 isoform is essential for energy coupling involved in acidification of acrosome.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corp., Osaka 567-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Peng R, Gallwitz D. Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 2002; 157:645-55. [PMID: 11994317 PMCID: PMC2173853 DOI: 10.1083/jcb.200202006] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fusion of transport vesicles with their target organelles involves specific membrane proteins, SNAREs, which form tight complexes bridging the membranes to be fused. Evidence from yeast and mammals indicates that Sec1 family proteins act as regulators of membrane fusion by binding to the target membrane SNAREs. In experiments with purified proteins, we now made the observation that the ER to Golgi core SNARE fusion complex could be assembled on syntaxin Sed5p tightly bound to the Sec1-related Sly1p. Sly1p also bound to preassembled SNARE complexes in vitro and was found to be part of a vesicular/target membrane SNARE complex immunoprecipitated from yeast cell lysates. This is in marked contrast to the exocytic SNARE assembly in neuronal cells where high affinity binding of N-Sec1/Munc-18 to syntaxin 1A precluded core SNARE fusion complex formation. We also found that the kinetics of SNARE complex formation in vitro with either Sly1p-bound or free Sed5p was not significantly different. Importantly, several presumably nonphysiological SNARE complexes easily generated with Sed5p did not form when the syntaxin was first bound to Sly1p. This indicates for the first time that a Sec1 family member contributes to the specificity of SNARE complex assembly.
Collapse
Affiliation(s)
- Renwang Peng
- Department of Molecular Genetics, Max Planck Institute for Biophysical Chemistry, D-37070 Göttingen, Germany
| | | |
Collapse
|
42
|
Koning AJ, Larson LL, Cadera EJ, Parrish ML, Wright RL. Mutations that affect vacuole biogenesis inhibit proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae. Genetics 2002; 160:1335-52. [PMID: 11973291 PMCID: PMC1462048 DOI: 10.1093/genetics/160.4.1335] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In yeast, increased levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase isozyme, Hmg1p, induce assembly of nuclear-associated ER membranes called karmellae. To identify additional genes involved in karmellae assembly, we screened temperature-sensitive mutants for karmellae assembly defects. Two independently isolated, temperature-sensitive strains that were also defective for karmellae biogenesis carried mutations in VPS16, a gene involved in vacuolar protein sorting. Karmellae biogenesis was defective in all 13 other vacuole biogenesis mutants tested, although the severity of the karmellae assembly defect varied depending on the particular mutation. The hypersensitivity of 14 vacuole biogenesis mutants to tunicamycin was well correlated with pronounced defects in karmellae assembly, suggesting that the karmellae assembly defect reflected alteration of ER structure or function. Consistent with this hypothesis, seven of eight mutations causing defects in secretion also affected karmellae assembly. However, the vacuole biogenesis mutants were able to proliferate their ER in response to Hmg2p, indicating that the mutants did not have a global defect in the process of ER biogenesis.
Collapse
Affiliation(s)
- Ann J Koning
- Department of Zoology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | | | | | |
Collapse
|
43
|
Paumet F, Brügger B, Parlati F, McNew JA, Söllner TH, Rothman JE. A t-SNARE of the endocytic pathway must be activated for fusion. J Cell Biol 2001; 155:961-8. [PMID: 11739407 PMCID: PMC2150898 DOI: 10.1083/jcb.200104092] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The t-SNARE in a late Golgi compartment (Tlg2p) syntaxin is required for endocytosis and localization of cycling proteins to the late Golgi compartment in yeast. We show here that Tlg2p assembles with two light chains, Tlg1p and Vti1p, to form a functional t-SNARE that mediates fusion, specifically with the v-SNAREs Snc1p and Snc2p. In vitro, this t-SNARE is inert, locked in a nonfunctional state, unless it is activated for fusion. Activation can be mediated by a peptide derived from the v-SNARE, which likely bypasses additional regulatory proteins in the cell. Locking t-SNAREs creates the potential for spatial and temporal regulation of fusion by signaling processes that unleash their fusion capacity.
Collapse
Affiliation(s)
- F Paumet
- Cellular Biochemistry and Biophysics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
44
|
Dilcher M, Köhler B, von Mollard GF. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J Biol Chem 2001; 276:34537-44. [PMID: 11445562 DOI: 10.1074/jbc.m101551200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNARE proteins are required for fusion of transport vesicles with target membranes. Previously, we found that the yeast Q-SNARE Vti1p is involved in transport to the cis-Golgi, to the prevacuole/late endosome, and to the vacuole. Here we identified a previously uncharacterized gene, VTS1, and the R-SNARE YKT6 both as multicopy and as low copy suppressors of the growth and vacuolar transport defect in vti1-2 cells. Ykt6p was known to function in retrograde traffic to the cis-Golgi and homotypic vacuolar fusion. We found that VTI1 and YKT6 also interacted in traffic to the prevacuole and vacuole, indicating that these SNARE complexes contain Ykt6p, Vti1p, plus Pep12p and Ykt6p, Vti1p, Vam3p, plus Vam7p, respectively. As Ykt6p was required for several transport steps, R-SNAREs cannot be the sole determinants of specificity. To study the role of the 0 layer in the SNARE motif, we introduced the mutations vti1-Q158R and ykt6-R165Q. SNARE complexes to which Ykt6p contributed a fourth glutamine residue in the 0 layer were nonfunctional, suggesting an essential function for arginine in the 0 layer of these complexes. vti1-Q158R cells had severe defects in several transport steps, indicating that the second arginine in the 0 layer interfered with function.
Collapse
Affiliation(s)
- M Dilcher
- Zentrum Biochemie und Molekulare Zellbiologie, Abteilung Biochemie II, Universität Göttingen, 37073 Göttingen, Germany
| | | | | |
Collapse
|
45
|
Wang Y, Dulubova I, Rizo J, Südhof TC. Functional analysis of conserved structural elements in yeast syntaxin Vam3p. J Biol Chem 2001; 276:28598-605. [PMID: 11349128 DOI: 10.1074/jbc.m101644200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vam3p, a syntaxin-like SNARE protein involved in yeast vacuole fusion, is composed of a three-helical N-terminal domain, a canonical SNARE motif, and a C-terminal transmembrane region (TMR). Surprisingly, we find that the N-terminal domain of Vam3p is not essential for fusion, although analogous domains in other syntaxins are indispensible for fusion and/or protein-protein interactions. In contrast to the N-terminal domain, mutations in the SNARE motif of Vam3p or replacement of the SNARE motif of Vam3p with the SNARE motif from other syntaxins inhibited fusion. Furthermore, the precise distance between the SNARE motif and the TMR was critical for fusion. Insertion of only three residues after the SNARE motif significantly impaired fusion and insertion of 12 residues abolished fusion. As judged by co-immunoprecipitation experiments, the SNARE motif mutations and the insertions did not alter the association of Vam3p with Vam7p, Vti1p, Nyv1p, and Ykt6p, other vacuolar SNARE proteins implicated in fusion. In contrast, the SNARE motif substitutions interfered with the stable formation of Vam3p complexes with Nyv1p and Vti1p, although Vam3p complexes with Vam7p and Ykt6p were still present. Our data suggest that in contrast to previously characterized syntaxins, Vam3p contains only two domains essential for fusion, the SNARE motif and the TMR, and these domains have to be closely coupled to function in fusion.
Collapse
Affiliation(s)
- Y Wang
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA
| | | | | | | |
Collapse
|
46
|
Takita Y, Engstrom L, Ungermann C, Cunningham KW. Inhibition of the Ca(2+)-ATPase Pmc1p by the v-SNARE protein Nyv1p. J Biol Chem 2001; 276:6200-6. [PMID: 11080502 DOI: 10.1074/jbc.m009191200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pmc1p, the Ca(2+)-ATPase of budding yeast related to plasma membrane Ca(2+)-ATPases of animals, is transcriptionally up-regulated in response to signaling by the calmodulin-calcineurin-Tcn1p/Crz1p signaling pathway. Little is known about post-translational regulation of Pmc1p. In a genetic screen for potential negative regulators of Pmc1p, a vacuolar v-SNARE protein, Nyv1p, was recovered. Cells overproducing Nyv1p show decreased Ca(2+) tolerance and decreased accumulation of Ca(2+) in the vacuole, similar to pmc1 null mutants. Overexpression of Nyv1p had no such effects on pmc1 mutants, suggesting that Nyv1p may inhibit Pmc1p function. Overexpression of Nyv1p did not decrease Pmc1p levels but decreased the specific ATP-dependent Ca(2+) transport activity of Pmc1p in purified vacuoles by at least 2-fold. The effect of Nyv1p on Pmc1p function is likely to be direct because native immunoprecipitation experiments showed that Pmc1p coprecipitated with Nyv1p. Complexes between Nyv1p and its t-SNARE partner Vam3p were also isolated, but these complexes lacked Pmc1p. We conclude that Nyv1p can interact physically with Pmc1p and inhibit its Ca(2+) transport activity in the vacuole membrane. This is the first example of a Ca(2+)-ATPase regulation by a v-SNARE protein involved in membrane fusion reactions.
Collapse
Affiliation(s)
- Y Takita
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Homotypic (self) fusion of yeast vacuoles, which is essential for the low copy number of this organelle, uses catalytic elements similar to those used in heterotypic vesicular trafficking reactions between different organelles throughout nature. The study of vacuole inheritance has benefited from the ease of vacuole isolation, the availability of the yeast genome sequence and numerous mutants, and from a rapid, quantitative in vitro assay of fusion. The soluble proteins and small molecules that support fusion are being defined, conserved membrane proteins that catalyze the reaction have been identified, and the vacuole membrane has been solubilized and reconstituted into fusion-competent proteoliposomes, allowing the eventual purification of all needed factors. Studies of homotypic vacuole fusion have suggested a modified paradigm of membrane fusion in which integral membrane proteins termed "SNAREs" can form stable complexes in cis (when on the same membrane) as well as in trans (when anchored to opposing membranes). Chaperones (NSF/Sec18p, LMA1, and -SNAP/Sec17p) disassemble cis-SNARE complexes to prepare for the docking of organelles rather than to drive fusion. The specificity of organelle docking resides in a cascade of trans-interactions (involving Rab-like GTPases), "tethering factors," and trans-SNARE pairing. Fusion itself, the mixing of the membrane bilayers and the organelle contents, is triggered by calcium signaling.
Collapse
Affiliation(s)
- W Wickner
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, New Hampshire 03755-3844, USA
| | | |
Collapse
|
48
|
Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 2001; 69:303-42. [PMID: 10966461 DOI: 10.1146/annurev.biochem.69.1.303] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sequestration and delivery of cytoplasmic material to the yeast vacuole and mammalian lysosome require the dynamic mobilization of cellular membranes and specialized protein machinery. Under nutrient deprivation conditions, double-membrane vesicles form around bulk cytoplasmic cargo destined for degradation and recycling in the vacuole/lysosome. A similar process functions to remove excess organelles under vegetative conditions in which they are no longer needed. Biochemical, morphological, and molecular genetic studies in yeasts and mammalian cells have begun to elucidate the molecular details of this autophagy process. In addition, the overlap of macroautophagy with the process of pexophagy and with the biosynthetic cytoplasm-to-vacuole targeting pathway, which delivers the resident vacuolar hydrolase aminopeptidase I, indicates that these three pathways are related mechanistically. Identification and characterization of the autophagic/cytoplasm-to-vacuole protein-targeting components have revealed the essential roles for various functional classes of proteins, including a novel protein conjugation system and the machinery for vesicle formation and fusion.
Collapse
Affiliation(s)
- J Kim
- Section of Microbiology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
49
|
Abstract
Macroautophagy is a dynamic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to the lysosome or vacuole where the sequestered cargo is degraded and recycled. This process takes place in all eukaryotic cells. It is highly regulated through the action of various kinases, phosphatases, and guanosine triphosphatases (GTPases). The core protein machinery that is necessary to drive formation and consumption of intermediates in the macroautophagy pathway includes a ubiquitin-like protein conjugation system and a protein complex that directs membrane docking and fusion at the lysosome or vacuole. Macroautophagy plays an important role in developmental processes, human disease, and cellular response to nutrient deprivation.
Collapse
Affiliation(s)
- D J Klionsky
- Department of Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA.
| | | |
Collapse
|
50
|
Grote E, Vlacich G, Pypaert M, Novick PJ. A snc1 endocytosis mutant: phenotypic analysis and suppression by overproduction of dihydrosphingosine phosphate lyase. Mol Biol Cell 2000; 11:4051-65. [PMID: 11102507 PMCID: PMC15056 DOI: 10.1091/mbc.11.12.4051] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The v-SNARE proteins Snc1p and Snc2p are required for fusion of secretory vesicles with the plasma membrane in yeast. Mutation of a methionine-based sorting signal in the cytoplasmic domain of either Sncp inhibits Sncp endocytosis and prevents recycling of Sncp to the Golgi after exocytosis. snc1-M43A mutant yeast have reduced growth and secretion rates and accumulate post-Golgi secretory vesicles and fragmented vacuoles. However, cells continue to grow and secrete for several hours after de novo Snc2-M42A synthesis is repressed. DPL1, the structural gene for dihydrosphingosine phosphate lyase, was selected as a high copy number snc1-M43A suppressor. Because DPL1 also partially suppresses the growth and secretion phenotypes of a snc deletion, we propose that enhanced degradation of dihydrosphingosine-1-phosphate allows an alternative protein to replace Sncp as the secretory vesicle v-SNARE.
Collapse
Affiliation(s)
- E Grote
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA
| | | | | | | |
Collapse
|