1
|
Lujan P, Garcia-Cabau C, Wakana Y, Vera Lillo J, Rodilla-Ramírez C, Sugiura H, Malhotra V, Salvatella X, Garcia-Parajo MF, Campelo F. Sorting of secretory proteins at the trans-Golgi network by human TGN46. eLife 2024; 12:RP91708. [PMID: 38466628 PMCID: PMC10928510 DOI: 10.7554/elife.91708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carmen Rodilla-Ramírez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hideaki Sugiura
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
2
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
3
|
Host Retromer Protein Sorting Nexin 2 Interacts with Human Respiratory Syncytial Virus Structural Proteins and is Required for Efficient Viral Production. mBio 2020; 11:mBio.01869-20. [PMID: 32994321 PMCID: PMC7527724 DOI: 10.1128/mbio.01869-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study contributes new knowledge to understand HRSV assembly by providing evidence that nonglycosylated structural proteins M and N interact with elements of the secretory pathway, shedding light on their intracellular traffic. To the best of our knowledge, the present contribution is important given the scarcity of studies about the traffic of HRSV nonglycosylated proteins, especially by pointing to the involvement of SNX2, a retromer component, in the HRSV assembly process. Human respiratory syncytial virus (HRSV) envelope glycoproteins traffic to assembly sites through the secretory pathway, while nonglycosylated proteins M and N are present in HRSV inclusion bodies but must reach the plasma membrane, where HRSV assembly happens. Little is known about how nonglycosylated HRSV proteins reach assembly sites. Here, we show that HRSV M and N proteins partially colocalize with the Golgi marker giantin, and the glycosylated F and nonglycosylated N proteins are closely located in the trans-Golgi, suggesting their interaction in that compartment. Brefeldin A compromised the trafficking of HRSV F and N proteins and inclusion body sizes, indicating that the Golgi is important for both glycosylated and nonglycosylated HRSV protein traffic. HRSV N and M proteins colocalized and interacted with sorting nexin 2 (SNX2), a retromer component that shapes endosomes in tubular structures. Glycosylated F and nonglycosylated N HRSV proteins are detected in SNX2-laden aggregates with intracellular filaments projecting from their outer surfaces, and VPS26, another retromer component, was also found in inclusion bodies and filament-shaped structures. Similar to SNX2, TGN46 also colocalized with HRSV M and N proteins in filamentous structures at the plasma membrane. Cell fractionation showed enrichment of SNX2 in fractions containing HRSV M and N proteins. Silencing of SNX1 and 2 was associated with reduction in viral proteins, HRSV inclusion body size, syncytium formation, and progeny production. The results indicate that HRSV structural proteins M and N are in the secretory pathway, and SNX2 plays an important role in the traffic of HRSV structural proteins toward assembly sites.
Collapse
|
4
|
Fearnley GW, Smith GA, Abdul-Zani I, Yuldasheva N, Mughal NA, Homer-Vanniasinkam S, Kearney MT, Zachary IC, Tomlinson DC, Harrison MA, Wheatcroft SB, Ponnambalam S. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open 2016; 5:571-83. [PMID: 27044325 PMCID: PMC4874356 DOI: 10.1242/bio.017434] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/08/2016] [Indexed: 01/02/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.
Collapse
Affiliation(s)
- Gareth W Fearnley
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Gina A Smith
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Izma Abdul-Zani
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nadira Yuldasheva
- Leeds Institute of Cardiovascular Metabolism and Medicine, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, UK
| | - Nadeem A Mughal
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Mark T Kearney
- Leeds Institute of Cardiovascular Metabolism and Medicine, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, UK
| | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Darren C Tomlinson
- Biomedical Health Research Centre, Astbury Building, University of Leeds, Leeds LS2 9JT, UK
| | | | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular Metabolism and Medicine, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, UK
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Rydell GE, Renard HF, Garcia-Castillo MD, Dingli F, Loew D, Lamaze C, Römer W, Johannes L. Rab12 localizes to Shiga toxin-induced plasma membrane invaginations and controls toxin transport. Traffic 2014; 15:772-87. [PMID: 24703428 DOI: 10.1111/tra.12173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022]
Abstract
Several exogenous and endogenous cargo proteins are internalized independently of clathrin, including the bacterial Shiga toxin. The mechanisms underlying early steps of clathrin-independent uptake remain largely unknown. In this study, we have designed a protocol to obtain gradient fractions containing Shiga toxin internalization intermediates. Using stable isotope labeling with amino acids in cell culture (SILAC) and quantitative mass spectrometry, Rab12 was found in association with these very early uptake carriers. The localization of the GTPase on Shiga toxin-induced plasma membrane invaginations was shown by fluorescence microscopy in cells transfected with GFP-Rab12. Furthermore, using a quantitative biochemical assay, it was found that the amount of receptor-binding B-subunit of Shiga toxin reaching the trans-Golgi/TGN membranes was decreased in Rab12-depleted cells, and that cells were partially protected against intoxication by Shiga-like toxin 1 under these conditions. These findings demonstrate the functional importance of Rab12 for retrograde toxin trafficking. Among several other intracellular transport pathways, only the steady-state localizations of TGN46 and cation-independent mannose-6-phosphate receptor were affected. These data thus strongly suggest that Rab12 functions in the retrograde transport route.
Collapse
Affiliation(s)
- Gustaf E Rydell
- Institut Curie, Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, 75248, Paris Cedex 05, France; CNRS UMR3666, 75005, Paris, France; U1143 INSERM, 75005, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kural C, Tacheva-Grigorova SK, Boulant S, Cocucci E, Baust T, Duarte D, Kirchhausen T. Dynamics of intracellular clathrin/AP1- and clathrin/AP3-containing carriers. Cell Rep 2012; 2:1111-9. [PMID: 23103167 DOI: 10.1016/j.celrep.2012.09.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/05/2012] [Accepted: 09/19/2012] [Indexed: 12/13/2022] Open
Abstract
Clathrin/AP1- and clathrin/AP3-coated vesicular carriers originate from endosomes and the trans-Golgi network. Here, we report the real-time visualization of these structures in living cells reliably tracked by rapid, three-dimensional imaging with the use of a spinning-disk confocal microscope. We imaged relatively sparse, diffraction-limited, fluorescent objects containing chimeric fluorescent protein (clathrin light chain, σ adaptor subunits, or dynamin2) with a spatial precision of up to ~30 nm and a temporal resolution of ~1 s. The dynamic characteristics of the intracellular clathrin/AP1 and clathrin/AP3 carriers are similar to those of endocytic clathrin/AP2 pits and vesicles; the clathrin/AP1 coats are, on average, slightly shorter-lived than their AP2 and AP3 counterparts. We confirmed that although dynamin2 is recruited as a burst to clathrin/AP2 pits immediately before their budding from the plasma membrane, we found no evidence supporting a similar association of dynamin2 with clathrin/AP1 or clathrin/AP3 carriers at any stage during their lifetime. We found no effects of chemical inhibitors of dynamin function or the K44A dominant-negative mutant of dynamin on AP1 and AP3 dynamics. This observation suggests that an alternative budding mechanism, yet to be discovered, is responsible for the scission step of clathrin/AP1 and clathrin/AP3 carriers.
Collapse
Affiliation(s)
- Comert Kural
- Department of Cell Biology, Harvard Medical School, Boston and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Shi G, Azoulay M, Dingli F, Lamaze C, Loew D, Florent JC, Johannes L. SNAP-tag based proteomics approach for the study of the retrograde route. Traffic 2012; 13:914-25. [PMID: 22443104 DOI: 10.1111/j.1600-0854.2012.01357.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 01/09/2023]
Abstract
Proteomics is a powerful technique for protein identification at large scales. A number of proteomics approaches have been developed to study the steady state composition of intracellular compartments. Here, we report a novel vectorial proteomics strategy to identify plasma membrane proteins that undergo retrograde transport to the trans-Golgi network (TGN). This strategy is based on the covalent modification of the plasma membrane proteome with a membrane impermeable benzylguanine derivative. Benzylguanine-tagged plasma membrane proteins that are subsequently targeted to the retrograde route are covalently captured by a TGN-localized SNAP-tagged fusion protein, which allows for their identification. The approach was validated step-by-step using a well explored retrograde cargo protein, the B-subunit of Shiga toxin. It was then extended to the proteomics format. Among other hits we found one of the historically first identified cargo proteins that undergo retrograde transport, which further validated our approach. Most of the other hits were kinases, receptors or transporters. In conclusion, we have pioneered a vectorial proteomics approach that complements traditional methods for the study of retrograde protein trafficking. This approach is of generic nature and could in principle be extended to other endocytic pathways.
Collapse
Affiliation(s)
- Getao Shi
- Traffic, Signaling, and Delivery Laboratory, Institut Curie-Centre de Recherche, 26 Rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Chia PZC, Gasnereau I, Lieu ZZ, Gleeson PA. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J Cell Sci 2011; 124:2401-13. [PMID: 21693586 DOI: 10.1242/jcs.083782] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin-TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
9
|
Goswami C, Rademacher N, Smalla KH, Kalscheuer V, Ropers HH, Gundelfinger ED, Hucho T. TRPV1 acts as a synaptic protein and regulates vesicle recycling. J Cell Sci 2010; 123:2045-57. [PMID: 20483957 DOI: 10.1242/jcs.065144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrophysiological studies demonstrate that transient receptor potential vanilloid subtype 1 (TRPV1) is involved in neuronal transmission. Although it is expressed in the peripheral as well as the central nervous system, the questions remain whether TRPV1 is present in synaptic structures and whether it is involved in synaptic processes. In the present study we gathered evidence that TRPV1 can be detected in spines of cortical neurons, that it colocalizes with both pre- and postsynaptic proteins, and that it regulates spine morphology. Moreover, TRPV1 is also present in biochemically prepared synaptosomes endogenously. In F11 cells, a cell line derived from dorsal-root-ganglion neurons, TRPV1 is enriched in the tips of elongated filopodia and also at sites of cell-cell contact. In addition, we also detected TRPV1 in synaptic transport vesicles, and in transport packets within filopodia and neurites. Using FM4-64 dye, we demonstrate that recycling and/or fusion of these vesicles can be rapidly modulated by TRPV1 activation, leading to rapid reorganization of filopodial structure. These data suggest that TRPV1 is involved in processes such as neuronal network formation, synapse modulation and release of synaptic transmitters.
Collapse
Affiliation(s)
- Chandan Goswami
- Signal Transduction in Pain and Mental Retardation, Department for Molecular Human Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Esk C, Chen CY, Johannes L, Brodsky FM. The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. ACTA ACUST UNITED AC 2010; 188:131-44. [PMID: 20065094 PMCID: PMC2812854 DOI: 10.1083/jcb.200908057] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clathrin heavy chain 22 (CHC22) is an isoform of the well-characterized CHC17 clathrin heavy chain, a coat component of vesicles that mediate endocytosis and organelle biogenesis. CHC22 has a distinct role from CHC17 in trafficking glucose transporter 4 (GLUT4) in skeletal muscle and fat, though its transfection into HEK293 cells suggests functional redundancy. Here, we show that CHC22 is eightfold less abundant than CHC17 in muscle, other cell types have variably lower amounts of CHC22, and endogenous CHC22 and CHC17 function independently in nonmuscle and muscle cells. CHC22 was required for retrograde trafficking of certain cargo molecules from endosomes to the trans-Golgi network (TGN), defining a novel endosomal-sorting step distinguishable from that mediated by CHC17 and retromer. In muscle cells, depletion of syntaxin 10 as well as CHC22 affected GLUT4 targeting, establishing retrograde endosome-TGN transport as critical for GLUT4 trafficking. Like CHC22, syntaxin 10 is not expressed in mice but is present in humans and other vertebrates, implicating two species-restricted endosomal traffic proteins in GLUT4 transport.
Collapse
Affiliation(s)
- Christopher Esk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
11
|
Cobbold C, Coventry J, Ponnambalam S, Monaco AP. Actin and microtubule regulation ofTrans-Golgi network architecture, and copper-dependent protein transport to the cell surface. Mol Membr Biol 2009; 21:59-66. [PMID: 14668139 DOI: 10.1080/096870310001607350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Menkes disease ATPase (MNK) is a copper transporter that localizes to the mammalian trans-Golgi network (TGN) and shows substantial co-localization wih a ubiquitous TGN resident protein and marker, TGN46. We tested our hypothesis that these two TGN residents and integral membrane proteins are localized to biochemically distinct TGN sub-compartments using constitutively active mutant proteins and drugs that disrupt membrane traffic, lumenal pH and the cellular cytoskeleton. The pH-disrupting agent, monensin, causes MNK to be more diffusely distributed with partial separation of staining patterns for these two TGN residents. Expression of a constitutively active Rho-kinase (ROCK-KIN), which causes formation of juxta-nuclear astral actin arrays, also effects separation of MNK and TGN46 staining patterns. Treatment of ROCK-KIN expressing cells with latrunculin B, an actin-depolymerizing agent, causes complete overlap of MNK and TGN46 staining patterns with concomitant disappearance of polymerized actin. When microtubules are depolymerized in ROCK-KIN expressing cells by nocodazole, both MNK and TGN46 are found in puncate structures throughout the cell. However, a substantial proportion of MNK is still found in a juxta-nuclear location in contrast to TGN46. Actin distribution in these cells reveals that juxta-nuclear MNK is distinct to the astral actin clusters in ROCK-KIN expressing cells where the microtubules were depolymerized. The TGN to cell-surface transport of MNK requires both actin and microtubules networks, whilst the constitutive trafficking of proteins is independent of actin. Taken together, our findings indicate that at least two TGN sub-domains are regulated by separate cytoskeletal dynamics involving actin and tubulin.
Collapse
Affiliation(s)
- Christian Cobbold
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, 0X3 7BN Oxford, UK
| | | | | | | |
Collapse
|
12
|
Utskarpen A, Slagsvold HH, Iversen TG, Wälchli S, Sandvig K. Transport of Ricin from Endosomes to the Golgi Apparatus is Regulated by Rab6A and Rab6A′. Traffic 2006; 7:663-72. [PMID: 16683916 DOI: 10.1111/j.1600-0854.2006.00418.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ricin is transported from early endosomes and/or the recycling compartment to the trans-Golgi network (TGN) and subsequently to the endoplasmic recticulum (ER) before it enters the cytosol and intoxicates cells. We have investigated the role of the Rab6 isoforms in retrograde transport of ricin using both oligo- and vector-based RNAi assays. Ricin transport to the TGN was inhibited by the depletion of Rab6A when the Rab6A messenger RNA (mRNA) levels were reduced by more than 40% and less than 75%. However, when Rab6A mRNA was reduced by more than 75% and Rab6A' mRNA was simultaneously up-regulated, the inhibition of ricin sulfation was abolished, indicating that the up-regulation of Rab6A' may compensate for the loss of Rab6A function. In addition, we found that a near complete depletion of Rab6A' gave approximately 40% reduction in ricin sulfation. The up-regulation of Rab6A mRNA levels did not seem to compensate for the loss of Rab6A' function. The depletion of both Rab6A and Rab6A' gave a stronger inhibition of ricin sulfation than what was observed knocking down the two isoforms separately. In conclusion, both Rab6A and Rab6A' seem to be involved in the transport of ricin from endosomes to the Golgi apparatus.
Collapse
Affiliation(s)
- Audrun Utskarpen
- Department of Biochemistry, Institute for Cancer Research, Faculty Division The Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
13
|
Ellis MA, Miedel MT, Guerriero CJ, Weisz OA. ADP-ribosylation factor 1-independent protein sorting and export from the trans-Golgi network. J Biol Chem 2004; 279:52735-43. [PMID: 15459187 DOI: 10.1074/jbc.m410533200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polarized epithelial cells efficiently sort newly synthesized apical and basolateral proteins into distinct transport carriers that emerge from the trans-Golgi network (TGN), and this sorting is recapitulated in nonpolarized cells. While the targeting signals of basolaterally destined proteins are generally cytoplasmically disposed, apical sorting signals are not typically accessible to the cytosol, and the transport machinery required for segregation and export of apical cargo remains largely unknown. Here we investigated the molecular requirements for TGN export of the apical marker influenza hemagglutinin (HA) in HeLa cells using an in vitro reconstitution assay. HA was released from the TGN in intact membrane-bound compartments, and export was dependent on addition of an ATP-regenerating system and exogenous cytosol. HA release was inhibited by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) as well as under conditions known to negatively regulate apical transport in vivo, including expression of the acid-activated proton channel influenza M2. Interestingly, release of HA was unaffected by depletion of ADP-ribosylation factor 1, a small GTPase that has been implicated in the recruitment of all known adaptors and coat proteins to the Golgi complex. Furthermore, regulation of HA release by GTPgammaS or M2 expression was unaffected by cytosolic depletion of ADP-ribosylation factor 1, suggesting that HA sorting remains functionally intact in the absence of the small GTPase. These data suggest that TGN sorting and export of influenza HA does not require classical adaptors involved in the formation of other classes of exocytic carriers and thus appears to proceed via a novel mechanism.
Collapse
Affiliation(s)
- Mark A Ellis
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
14
|
Lee SS, Banting G. Characterisation of the lumenal domain of TGN38 and effects of elevated expression of TGN38 on glycoprotein secretion. Eur J Cell Biol 2002; 81:609-21. [PMID: 12494998 DOI: 10.1078/0171-9335-00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TGN-localised, type I integral membrane protein TGN38 has previously been suggested to play a role as a cargo transporter within mammalian cells. We have undertaken a series of experiments designed to address this hypothesis, and, in so doing, have partially characterised the glycosylation status of the lumenal domain of TGN38. We find that elevated expression of different regions of the lumenal domain of TGN38 has no reproducible effect on secretion from stably transfected NRK cells expressing the different lumenal domain constructs; neither does it affect the gross morphology of organelles of the secretory and endocytic pathways. However, we observed that, whilst elevated expression of full-length TGN38 in stably transfected NRK cells does not have any significant effect on the morphology of organelles of the secretory and endocytic pathways, it does lead to a change in the pattern of protein secretion from these cells. In particular, elevated expression of full-length TGN38 led to increased secretion of a 48-kDa glycoprotein identified as plasminogen activator inhibitor-1.
Collapse
Affiliation(s)
- San San Lee
- Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | |
Collapse
|
15
|
Rous BA, Reaves BJ, Ihrke G, Briggs JAG, Gray SR, Stephens DJ, Banting G, Luzio JP. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol Biol Cell 2002; 13:1071-82. [PMID: 11907283 PMCID: PMC99620 DOI: 10.1091/mbc.01-08-0409] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2001] [Revised: 12/05/2001] [Accepted: 12/05/2001] [Indexed: 01/01/2023] Open
Abstract
CD63 is a lysosomal membrane protein that belongs to the tetraspanin family. Its carboxyterminal cytoplasmic tail sequence contains the lysosomal targeting motif GYEVM. Strong, tyrosine-dependent interaction of the wild-type carboxyterminal tail of CD63 with the AP-3 adaptor subunit mu 3 was observed using a yeast two-hybrid system. The strength of interaction of mutated tail sequences with mu 3 correlated with the degree of lysosomal localization of similarly mutated human CD63 molecules in stably transfected normal rat kidney cells. Mutated CD63 containing the cytosolic tail sequence GYEVI, which interacted strongly with mu 3 but not at all with mu 2 in the yeast two-hybrid system, localized to lysosomes in transfected normal rat kidney and NIH-3T3 cells. In contrast, it localized to the cell surface in transfected cells of pearl and mocha mice, which have genetic defects in genes encoding subunits of AP-3, but to lysosomes in functionally rescued mocha cells expressing the delta subunit of AP-3. Thus, AP-3 is absolutely required for the delivery of this mutated CD63 to lysosomes. Using this AP-3-dependent mutant of CD63, we have shown that AP-3 functions in membrane traffic from the trans-Golgi network to lysosomes via an intracellular route that appears to bypass early endosomes.
Collapse
Affiliation(s)
- Brian A Rous
- University of Cambridge, Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Cambridge, CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Marjomäki V, Pietiäinen V, Matilainen H, Upla P, Ivaska J, Nissinen L, Reunanen H, Huttunen P, Hyypiä T, Heino J. Internalization of echovirus 1 in caveolae. J Virol 2002; 76:1856-65. [PMID: 11799180 PMCID: PMC135881 DOI: 10.1128/jvi.76.4.1856-1865.2002] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Echovirus 1 (EV1) is a human pathogen which belongs to the Picornaviridae family of RNA viruses. We have analyzed the early events of infection after EV1 binding to its receptor alpha 2 beta 1 integrin and elucidated the route by which EV1 gains access to the host cell. EV1 binding onto the cell surface and subsequent entry resulted in conformational changes of the viral capsid as demonstrated by sucrose gradient sedimentation analysis. After 15 min to 2 h postinfection (p.i.) EV1 capsid proteins were seen in vesicular structures that were negative for markers of the clathrin-dependent endocytic pathway. In contrast, immunofluorescence confocal microscopy showed that EV1, alpha 2 beta 1 integrin, and caveolin-1 were internalized together in vesicular structures to the perinuclear area. Electron microscopy showed the presence of EV1 particles inside caveolae. Furthermore, infective EV1 could be isolated with anti-caveolin-1 beads 15 min p.i., confirming a close association with caveolin-1. Finally, the expression of dominant negative caveolin in cells markedly inhibited EV1 infection, indicating the importance of caveolae for the viral replication cycle of EV1.
Collapse
Affiliation(s)
- Varpu Marjomäki
- Department of Biological and Environmental Science, University of Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The AP-1 adaptor complex has been cast as the major player in clathrin coat formation for vesicular transport from the trans-Golgi to the endocytic pathway. But new results on 'GGA' proteins have raised doubts about this paradigm and suggest both a new sorting mechanism and an unexpected complexity in the roles of clathrin.
Collapse
Affiliation(s)
- M W Black
- MRC-Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
| | | |
Collapse
|
18
|
Abstract
Human parechovirus 1 (HPEV-1) is a prototype member of parechoviruses, a recently established picornavirus genus. Although there is preliminary evidence that HPEV-1 recognizes alpha(V) integrins as cellular receptors, our understanding of early events during HPEV-1 infection is still very limited. The aim of this study was to clarify the entry mechanisms of HPEV-1, including the attachment of the virus onto the host cell surface and subsequent internalization. In blocking experiments with monoclonal antibodies against different receptor candidates, antibodies against alpha(V) and beta(3) integrin subunits, in particular in combination, appeared to be the most efficient ones in preventing the HPEV-1 infection. To find out whether HPEV-1 uses clathrin-coated vesicles or other routes for the entry into the host cell, we carried out double-labeling experiments of virus-infected cells with anti-HPEV-1 antibodies and antibodies against known markers of the clathrin and the caveolin routes. At the early phase of infection (5 min postinfection [p.i.]) HPEV-1 colocalized with EEA1 (early endosomes), and later, after 30 min p.i., it colocalized with mannose-6-phosphate receptor (late endosomes), whereas no colocalization with caveolin-1 was observed. The data indicate that HPEV-1 utilizes the clathrin-dependent endocytic pathway for entry into the host cells. Interestingly, endocytosed HPEV-1 capsid proteins were observed in the endoplasmic reticulum and cis-Golgi network 30 to 60 min p.i. Depolymerization of microtubules with nocodazole inhibited translocation of the virus to the late endosomes but did not block HPEV-1 replication, suggesting that the RNA genome may be released early during the entry process.
Collapse
Affiliation(s)
- P Joki-Korpela
- Haartman Institute, Department of Virology, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
19
|
Cao H, Thompson HM, Krueger EW, McNiven MA. Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J Cell Sci 2000; 113 ( Pt 11):1993-2002. [PMID: 10806110 DOI: 10.1242/jcs.113.11.1993] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large GTPase dynamin is a mechanoenzyme that participates in the scission of nascent vesicles from the plasma membrane. Recently, dynamin has been demonstrated to associate with the Golgi apparatus in mammalian cells by morphological and biochemical methods. Additional studies using a well characterized, cell-free assay have supported these findings by demonstrating a requirement for dynamin function in the formation of clathrin-coated, and non-clathrin-coated vesicles from the trans-Golgi network (TGN). In this study, we tested if dynamin participates in Golgi function in living cells through the expression of a dominant negative dynamin construct (K44A). Cells co-transfected to express this mutant dynamin and a GFP-tagged Golgi resident protein (TGN38) exhibit Golgi structures that are either compacted, vesiculated, or tubulated. Electron microscopy of these mutant cells revealed large numbers of Golgi stacks comprised of highly tubulated cisternae and an extraordinary number of coated vesicle buds. Cells expressing mutant dynamin and GFP-tagged VSVG demonstrated a marked retention (8- to 11-fold) of the nascent viral G-protein in the Golgi compared to control cells. These observations in living cells are consistent with previous morphological and in vitro studies demonstrating a role for dynamin in the formation of secretory vesicles from the TGN.
Collapse
Affiliation(s)
- H Cao
- Department of Biochemistry and Molecular Biology & Center for Basic Research in Digestive Diseases, Mayo Clinic and Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
20
|
Altschuler Y, Barbas SM, Terlecky LJ, Tang K, Hardy S, Mostov KE, Schmid SL. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J Cell Biol 1998; 143:1871-81. [PMID: 9864361 PMCID: PMC2175237 DOI: 10.1083/jcb.143.7.1871] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1998] [Revised: 10/16/1998] [Indexed: 11/22/2022] Open
Abstract
A role for dynamin in clathrin-mediated endocytosis is now well established. However, mammals express three closely related, tissue-specific dynamin isoforms, each with multiple splice variants. Thus, an important question is whether these isoforms and splice variants function in vesicle formation from distinct intracellular organelles. There are conflicting data as to a role for dynamin-2 in vesicle budding from the TGN. To resolve this issue, we compared the effects of overexpression of dominant-negative mutants of dynamin-1 (the neuronal isoform) and dynamin-2 (the ubiquitously expressed isoform) on endocytic and biosynthetic membrane trafficking in HeLa cells and polarized MDCK cells. Both dyn1(K44A) and dyn2(K44A) were potent inhibitors of receptor-mediated endocytosis; however neither mutant directly affected other membrane trafficking events, including transport mediated by four distinct classes of vesicles budding from the TGN. Dyn2(K44A) more potently inhibited receptor-mediated endocytosis than dyn1(K44A) in HeLa cells and at the basolateral surface of MDCK cells. In contrast, dyn1(K44A) more potently inhibited endocytosis at the apical surface of MDCK cells. The two dynamin isoforms have redundant functions in endocytic vesicle formation, but can be targeted to and function differentially at subdomains of the plasma membrane.
Collapse
Affiliation(s)
- Y Altschuler
- Department of Anatomy, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|