1
|
Medeot AC, Boaglio AC, Salas G, Maidagan PM, Miszczuk GS, Barosso IR, Sánchez Pozzi EJ, Crocenzi FA, Roma MG. Tauroursodeoxycholate prevents estradiol 17β-d-glucuronide-induced cholestasis and endocytosis of canalicular transporters by switching off pro-cholestatic signaling pathways. Life Sci 2024; 352:122839. [PMID: 38876186 DOI: 10.1016/j.lfs.2024.122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
AIMS Estradiol 17β-d-glucuronide (E217G) induces cholestasis by triggering endocytosis and further intracellular retention of the canalicular transporters Bsep and Mrp2, in a cPKC- and PI3K-dependent manner, respectively. Pregnancy-induced cholestasis has been associated with E217G cholestatic effect, and is routinely treated with ursodeoxycholic acid (UDCA). Since protective mechanisms of UDCA in E217G-induced cholestasis are still unknown, we ascertained here whether its main metabolite, tauroursodeoxycholate (TUDC), can prevent endocytosis of canalicular transporters by counteracting cPKC and PI3K/Akt activation. MAIN METHODS Activation of cPKC and PI3K/Akt was evaluated in isolated rat hepatocytes by immunoblotting (assessment of membrane-bound and phosphorylated forms, respectively). Bsep/Mrp2 function was quantified in isolated rat hepatocyte couplets (IRHCs) by assessing the apical accumulation of their fluorescent substrates, CLF and GS-MF, respectively. We also studied, in isolated, perfused rat livers (IPRLs), the status of Bsep and Mrp2 transport function, assessed by the biliary excretion of TC and DNP-SG, respectively, and Bsep/Mrp2 localization by immunofluorescence. KEY FINDINGS E217G activated both cPKC- and PI3K/Akt-dependent signaling, and pretreatment with TUDC significantly attenuated these activations. In IRHCs, TUDC prevented the E217G-induced decrease in apical accumulation of CLF and GS-MF, and inhibitors of protein phosphatases failed to counteract this protection. In IPRLs, E217G induced an acute decrease in bile flow and in the biliary excretion of TC and DNP-SG, and this was prevented by TUDC. Immunofluorescence studies revealed that TUDC prevented E217G-induced Bsep/Mrp2 endocytosis. SIGNIFICANCE TUDC restores function and localization of Bsep/Mrp2 impaired by E217G, by preventing both cPKC and PI3K/Akt activation in a protein-phosphatase-independent manner.
Collapse
Affiliation(s)
- Anabela C Medeot
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Andrea C Boaglio
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Gimena Salas
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Paula M Maidagan
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Gisel S Miszczuk
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Ismael R Barosso
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Fernando A Crocenzi
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Marcelo G Roma
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina.
| |
Collapse
|
2
|
Morais MB, Machado MV. Benign inheritable disorders of bilirubin metabolism manifested by conjugated hyperbilirubinemia-A narrative review. United European Gastroenterol J 2022; 10:745-753. [PMID: 35860851 PMCID: PMC9486497 DOI: 10.1002/ueg2.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. Hyperbilirubinemia is an important clinical sign that needs to be investigated under a stepwise evaluation. Inherited non-hemolytic conjugated hyperbilirubinemic conditions include Dubin-Johnson syndrome (caused by mutations affecting ABCC2 gene) and Rotor syndrome (caused by the simultaneous presence of mutations in SLCO1B1 and SLCO1B3 genes). Although classically viewed as benign conditions requiring no treatment, they lately gained an increased interest since recent studies suggested that mutations in the responsible genes leading to hyperbilirubinemia, as well as minor genetic variants, may result in an increased susceptibility to drug toxicity. This article provides a comprehensive review on the pathophysiology of Dubin-Johnson and Rotor syndromes, presenting the current knowledge concerning the molecular details and basis of these conditions.
Collapse
Affiliation(s)
- Mariana B Morais
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Verdelho Machado
- Gastroenterology Department, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Gastroenterology Department, Hospital de Vila Franca de Xira, Lisbon, Portugal
| |
Collapse
|
3
|
Andermatten RB, Ciriaci N, Schuck VS, Di Siervi N, Razori MV, Miszczuk GS, Medeot AC, Davio CA, Crocenzi FA, Roma MG, Barosso IR, Sánchez Pozzi EJ. Sphingosine 1-phosphate receptor 2/adenylyl cyclase/protein kinase A pathway is involved in taurolithocholate-induced internalization of Abcc2 in rats. Arch Toxicol 2019; 93:2279-2294. [PMID: 31300867 DOI: 10.1007/s00204-019-02514-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/05/2023]
Abstract
Taurolithocholate (TLC) is a cholestatic bile salt that induces disinsertion of the canalicular transporter Abcc2 (Mrp2, multidrug resistance-associated protein 2). This internalization is mediated by different intracellular signaling proteins such as PI3K, PKCε and MARCK but the initial receptor of TLC remains unknown. A few G protein-coupled receptors interact with bile salts in hepatocytes. Among them, sphingosine-1 phosphate receptor 2 (S1PR2) represents a potential initial receptor for TLC. The aim of this study was to evaluate the role of this receptor and its downstream effectors in the impairment of Abcc2 function induced by TLC. In vitro, S1PR2 inhibition by JTE-013 or its knockdown by small interfering RNA partially prevented the decrease in Abcc2 activity induced by TLC. Moreover, adenylyl cyclase (AC)/PKA and PI3K/Akt inhibition partially prevented TLC effect on canalicular transporter function. TLC produced PKA and Akt activation, which were blocked by JTE-013 and AC inhibitors, connecting S1PR2/AC/PKA and PI3K/Akt in a same pathway. In isolated perfused rat liver, injection of TLC triggered endocytosis of Abcc2 that was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Abcc2 substrate dinitrophenyl-glutathione until the end of the perfusion period. S1PR2 or AC inhibition did not prevent the initial decay, but they accelerated the recovery of these parameters and the reinsertion of Abcc2 into the canalicular membrane. In conclusion, S1PR2 and the subsequent activation of AC, PKA, PI3K and Akt is partially responsible for the cholestatic effects of TLC through sustained internalization of Abcc2.
Collapse
Affiliation(s)
- Romina Belén Andermatten
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Nadia Ciriaci
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Virginia Soledad Schuck
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Nicolás Di Siervi
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Valeria Razori
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Gisel Sabrina Miszczuk
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Anabela Carolina Medeot
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Carlos Alberto Davio
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Fernando Ariel Crocenzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Marcelo Gabriel Roma
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Ismael Ricardo Barosso
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Enrique Juan Sánchez Pozzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
4
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
5
|
Park SW, Webster CRL, Anwer MS. Mechanism of inhibition of taurolithocholate-induced retrieval of plasma membrane MRP2 by cyclic AMP and tauroursodeoxycholate. Physiol Rep 2018; 5. [PMID: 29192063 PMCID: PMC5727282 DOI: 10.14814/phy2.13529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Taurolithocholate (TLC) produces cholestasis by inhibiting biliary solute secretion in part by retrieving MRP2 from the plasma membrane (PM). Tauroursodeoxycholate (TUDC) and cAMP reverse TLC‐induced cholestasis by inhibiting TLC‐induced retrieval of MRP2. However, cellular mechanisms for this reversal are incompletely understood. Recently, we reported that TLC decreases PM‐MRP2 by activating PKCε followed by phosphorylation of myristoylated alanine‐rich C kinase substrate (MARCKS). Thus, cAMP and TUDC may reverse TLC‐induced cholestasis by inhibiting the TLC/PKCε/MARCKS phosphorylation pathway. We tested this hypothesis by determining whether TUDC and/or cAMP inhibit TLC‐induced activation of PKCε and phosphorylation of MARCKS. Studies were conducted in HuH‐NTCP cell line and rat hepatocytes. Activation of PKCε was determined from the translocation of PKCε to PM using a biotinylation method. Phosphorylation of MARCKS was determined by immunoblotting with a phospho‐MARCKS antibody. TLC, but not cAMP and TUDC, activated PKCε and increased MARCKS phosphorylation in HuH‐NTCP as well in rat hepatocytes. Treatment with TUDC or cAMP inhibited TLC‐induced activation of PKCε and increases in MARCKS phosphorylation in both cell types. Based on these results, we conclude that the reversal of TLC‐induced cholestasis by cAMP and TUDC involves, at least in part, inhibition of TLC‐mediated activation of the PKCε/MARCKS phosphorylation pathway.
Collapse
Affiliation(s)
- Se Won Park
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, Massachusetts, USA
| | - Cynthia R L Webster
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, Massachusetts, USA
| | - Mohammed S Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, Massachusetts, USA
| |
Collapse
|
6
|
Tocchetti GN, Arias A, Arana MR, Rigalli JP, Domínguez CJ, Zecchinati F, Ruiz ML, Villanueva SSM, Mottino AD. Acute regulation of multidrug resistance-associated protein 2 localization and activity by cAMP and estradiol-17β-D-glucuronide in rat intestine and Caco-2 cells. Arch Toxicol 2017; 92:777-788. [PMID: 29052767 DOI: 10.1007/s00204-017-2092-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/05/2017] [Indexed: 01/27/2023]
Abstract
Multidrug resistance-associated protein 2 (MRP2) is an ATP-dependent transporter expressed at the brush border membrane of the enterocyte that confers protection against absorption of toxicants from foods or bile. Acute, short-term regulation of intestinal MRP2 activity involving changes in its apical membrane localization was poorly explored. We evaluated the effects of dibutyryl-cAMP (db-cAMP), a permeable analog of cAMP, and estradiol-17β-D-glucuronide (E217G), an endogenous derivative of estradiol, on MRP2 localization and activity using isolated rat intestinal sacs and Caco-2 cells, a model of human intestinal epithelium. Changes in MRP2 localization were studied by Western blotting of plasma membrane (PM) vs. intracellular membrane (IM) fractions in both experimental models, and additionally, by confocal microscopy in Caco-2 cells. After 30 min of exposure, db-cAMP-stimulated sorting of MRP2 from IM to PM both in rat jejunum and Caco-2 cells at 10 and 100 µM concentrations, respectively, with increased excretion of the model substrate 2,4-dinitrophenyl-S-glutathione. In contrast, E217G (400 µM) induced internalization of MRP2 together with impairment of transport activity. Confocal microscopy analysis performed in Caco-2 cells confirmed Western blot results. In the particular case of E217G, MRP2 exhibited an unusual pattern of staining compatible with endocytic vesiculation. Use of selective inhibitors demonstrated the participation of cAMP-dependent protein kinase and classic calcium-dependent protein kinase C in db-cAMP and E217G effects, respectively. We conclude that localization of MRP2 in intestine may be subjected to a dynamic equilibrium between plasma membrane and intracellular domains, thus allowing for rapid regulation of MRP2 function.
Collapse
Affiliation(s)
- Guillermo Nicolás Tocchetti
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Agostina Arias
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Maite Rocío Arana
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Juan Pablo Rigalli
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | - Felipe Zecchinati
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - María Laura Ruiz
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | | | - Aldo Domingo Mottino
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
7
|
Mitogen-activated protein kinases are involved in hepatocanalicular dysfunction and cholestasis induced by oxidative stress. Arch Toxicol 2016; 91:2391-2403. [PMID: 27913845 DOI: 10.1007/s00204-016-1898-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022]
Abstract
In previous studies, we showed that the pro-oxidant model agent tert-butyl hydroperoxide (tBuOOH) induces alterations in hepatocanalicular secretory function by activating Ca2+-dependent protein kinase C isoforms (cPKC), via F-actin disorganization followed by endocytic internalization of canalicular transporters relevant to bile formation (Mrp2, Bsep). Since mitogen-activated protein kinases (MAPKs) may be downstream effectors of cPKC, we investigated here the involvement of the MAPKs of the ERK1/2, JNK1/2, and p38MAPK types in these deleterious effects. tBuOOH (100 µM, 15 min) increased the proportion of the active, phosphorylated forms of ERK1/2, JNK1/2, and p38MAPK, and panspecific PKC inhibition with bisindolylmaleimide-1 (100 nM) or selective cPKC inhibition with Gö6976 (1 μM) prevented the latter two events. In isolated rat hepatocyte couplets, tBuOOH (100 µM, 15 min) decreased the canalicular vacuolar accumulation of the fluorescent Bsep and Mrp2 substrates, cholylglycylamido fluorescein, and glutathione-methylfluorescein, respectively, and selective inhibitors of ERK1/2 (PD098059), JNK1/2 (SP600125), and p38MAPK (SB203580) partially prevented these alterations. In in situ perfused rat livers, these three MAPK inhibitors prevented tBuOOH (75 µM)-induced impairment of bile flow and the decrease in the biliary output of the Bsep and Mrp2 substrates, taurocholate, and dinitrophenyl-S-glutathione, respectively. The changes in Bsep/Mrp2 and F-actin localization induced by tBuOOH, as assessed by (immuno)fluorescence staining followed by analysis of confocal images, were prevented total or partially by the MAPK inhibitors. We concluded that MAPKs of the ERK1/2, JNK1/2, and p38MAPK types are all involved in cholestasis induced by oxidative stress, by promoting F-actin rearrangement and further endocytic internalization of canalicular transporters critical for bile formation.
Collapse
|
8
|
Li M, Soroka CJ, Harry K, Boyer JL. CFTR-associated ligand is a negative regulator of Mrp2 expression. Am J Physiol Cell Physiol 2016; 312:C40-C46. [PMID: 27834195 DOI: 10.1152/ajpcell.00100.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/03/2016] [Indexed: 01/15/2023]
Abstract
The multidrug resistance-associated protein 2 (Mrp2) is an ATP-binding cassette transporter that transports a wide variety of organic anions across the apical membrane of epithelial cells. The expression of Mrp2 on the plasma membrane is regulated by protein-protein interactions. Cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) interacts with transmembrane proteins via its PDZ domain and reduces their cell surface expression by increasing lysosomal degradation and intracellular retention. Our results showed that CAL is localized at the trans-Golgi network of rat hepatocytes. The expression of CAL is increased, and Mrp2 expression is decreased, in the liver of mice deficient in sodium/hydrogen exchanger regulatory factor-1. To determine whether CAL interacts with Mrp2 and is involved in the posttranscriptional regulation of Mrp2, we used glutathione S-transferase (GST) fusion proteins with or without the COOH-terminal PDZ binding motif of Mrp2 as the bait in GST pull-down assays. We demonstrated that Mrp2 binds to CAL via its COOH-terminal PDZ-binding motif in GST pull-down assays, an interaction verified by coimmunoprecipitation of these two proteins in cotransfected COS-7 cells. In COS-7 and LLC-PK1 cells transfected with Mrp2 alone, only a mature, high-molecular-mass band of Mrp2 was detected. However, when cells were cotransfected with Mrp2 and CAL, Mrp2 was expressed as both mature and immature forms. Biotinylation and streptavidin pull-down assays confirmed that CAL dramatically reduces the expression level of total and cell surface Mrp2 in Huh-7 cells. Our findings suggest that CAL interacts with Mrp2 and is a negative regulator of Mrp2 expression.
Collapse
Affiliation(s)
- Man Li
- The Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Carol J Soroka
- The Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kathy Harry
- The Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - James L Boyer
- The Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Schonhoff CM, Park SW, Webster CR, Anwer MS. p38 MAPK α and β isoforms differentially regulate plasma membrane localization of MRP2. Am J Physiol Gastrointest Liver Physiol 2016; 310:G999-G1005. [PMID: 27012769 PMCID: PMC4935486 DOI: 10.1152/ajpgi.00005.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/14/2016] [Indexed: 01/31/2023]
Abstract
In hepatocytes, cAMP both activates p38 mitogen-activated protein kinase (MAPK) and increases the amount of multidrug resistance-associated protein-2 (MRP2) in the plasma membrane (PM-MRP2). Paradoxically, taurolithocholate (TLC) activates p38 MAPK but decreases PM-MRP2 in hepatocytes. These opposing effects of cAMP and TLC could be mediated via different p38 MAPK isoforms (α and β) that are activated differentially by upstream kinases (MKK3, MKK4, and MKK6). Thus we tested the hypothesis that p38α MAPK and p38β MAPK mediate increases and decreases in PM-MRP2 by cAMP and TLC, respectively. Studies were conducted in hepatocytes isolated from C57BL/6 wild-type (WT) and MKK3-knockout (MKK3(-/-)) mice and in a hepatoma cell line (HuH7) that overexpresses sodium-taurocholate cotransporting polypeptide (NTCP) (HuH-NTCP). Cyclic AMP activated MKK3, p38 MAPK, and p38α MAPK and increased PM-MRP2 in WT hepatocytes, but failed to activate p38α MAPK or increase PM-MRP2 in MKK3(-/-) hepatocytes. In contrast to cAMP, TLC activated total p38 MAPK but decreased PM-MRP2, and did not activate MKK3 or p38α MAPK in WT hepatocytes. In MKK3(-/-) hepatocytes, TLC still decreased PM-MRP2 and activated p38 MAPK, indicating that these effects are not MKK3-dependent. Additionally, TLC activated MKK6 in MKK3(-/-) hepatocytes, and small interfering RNA knockdown of p38β MAPK abrogated TLC-mediated decreases in PM-MRP2 in HuH-NTCP cells. Taken together, these results suggest that p38α MAPK facilitates plasma membrane insertion of MRP2 by cAMP, whereas p38β MAPK mediates retrieval of PM-MRP2 by TLC.
Collapse
Affiliation(s)
- Christopher M. Schonhoff
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Se Won Park
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Cynthia R.L. Webster
- 2Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| |
Collapse
|
10
|
Yamazaki Y, Yasui K, Hashizume T, Suto A, Mori A, Murata Y, Yamaguchi M, Ikari A, Sugatani J. Involvement of a cyclic adenosine monophosphate-dependent signal in the diet-induced canalicular trafficking of adenosine triphosphate-binding cassette transporter g5/g8. Hepatology 2015; 62:1215-26. [PMID: 25999152 DOI: 10.1002/hep.27914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/20/2015] [Indexed: 01/03/2023]
Abstract
UNLABELLED The adenosine triphosphate-binding cassette (ABC) half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterol into bile. Studies have demonstrated the diet-induced gene expression of these transporters, but the regulation of their trafficking when the nutritional status changes in the liver remains to be elucidated. Here, we generated a novel in vivo kinetic analysis that can monitor the intracellular trafficking of Abcg5/Abcg8 in living mouse liver by in vivo transfection of the genes of fluorescent protein-tagged transporters and investigated how hypernutrition affects the canalicular trafficking of these transporters. The kinetic analysis showed that lithogenic diet consumption accelerated the translocation of newly synthesized fluorescent-tagged transporters to intracellular pools in an endosomal compartment and enhanced the recruitment of these pooled gene products into the bile canalicular membrane in mouse liver. Because some ABC transporters are reported to be recruited from intracellular pools to the bile canaliculi by cyclic adenosine monophosphate (cAMP) signaling, we next evaluated the involvement of this machinery in a diet-induced event. Administration of a protein kinase A inhibitor, N-(2-{[3-(4-bromophenyl)-2-propenyl]amino}ethyl)-5-isoquinolinesulfonamide, decreased the canalicular expression of native Abcg5/Abcg8 in lithogenic diet-fed mice, and injection of a cAMP analog, dibutyryl cAMP, transiently increased their levels in standard diet-fed mice, indicating the involvement of cAMP signaling. Indeed, canalicular trafficking of the fluorescent-tagged Abcg5/Abcg8 was enhanced by dibutyryl cAMP administration. CONCLUSION These observations suggest that diet-induced lipid loading into liver accelerates the trafficking of Abcg5/Abcg8 to the bile canalicular membrane through cAMP signaling machinery.
Collapse
Affiliation(s)
- Yasuhiro Yamazaki
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Kenta Yasui
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Takahiro Hashizume
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Arisa Suto
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Ayaka Mori
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Yuzuki Murata
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Masahiko Yamaguchi
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Junko Sugatani
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
11
|
Qiu L, Finley J, Taimi M, Aleo MD, Strock C, Gilbert J, Qin S, Will Y. High-Content Imaging in Human and Rat Hepatocytes Using the Fluorescent Dyes CLF and CMFDA Is Not Specific Enough to Assess BSEP/Bsep and/or MRP2/Mrp2 Inhibition by Cholestatic Drugs. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luping Qiu
- Center for Therapeutic Innovation, Pfizer Global R&D, New York, New York
| | - James Finley
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | - Mohammed Taimi
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | - Michael D. Aleo
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | | | | | | | - Yvonne Will
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| |
Collapse
|
12
|
Sommerfeld A, Mayer PGK, Cantore M, Häussinger D. Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate. J Biol Chem 2015; 290:24237-54. [PMID: 26306036 DOI: 10.1074/jbc.m115.666883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 01/05/2023] Open
Abstract
In perfused rat liver, hepatocyte shrinkage induces a Fyn-dependent retrieval of the bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane (Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011) J. Biol. Chem. 286, 45014-45029) leading to cholestasis. However little is known about the effects of hyperosmolarity on short term regulation of the Na(+)-taurocholate cotransporting polypeptide (Ntcp), the major bile salt uptake system at the sinusoidal membrane of hepatocytes. The aim of this study was to analyze hyperosmotic Ntcp regulation and the underlying signaling events. Hyperosmolarity induced a significant retrieval of Ntcp from the basolateral membrane, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Hyperosmotic internalization of Ntcp was sensitive to SU6656 and PP-2, suggesting that Fyn mediates Ntcp retrieval from the basolateral membrane. Hyperosmotic internalization of Ntcp was also found in livers from wild-type mice but not in p47(phox) knock-out mice. Tauroursodeoxycholate (TUDC) and cAMP reversed hyperosmolarity-induced Fyn activation and triggered re-insertion of the hyperosmotically retrieved Ntcp into the membrane. This was associated with dephosphorylation of the Ntcp on serine residues. Insertion of Ntcp by TUDC was sensitive to the integrin inhibitory hexapeptide GRGDSP and inhibition of protein kinase A. TUDC also reversed the hyperosmolarity-induced retrieval of bile salt export pump from the canalicular membrane. These findings suggest a coordinated and oxidative stress- and Fyn-dependent retrieval of sinusoidal and canalicular bile salt transport systems from the corresponding membranes. Ntcp insertion was also identified as a novel target of β1-integrin-dependent TUDC action, which is frequently used in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Annika Sommerfeld
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick G K Mayer
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Miriam Cantore
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Barosso IR, Zucchetti AE, Miszczuk GS, Boaglio AC, Taborda DR, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. EGFR participates downstream of ERα in estradiol-17β-D-glucuronide-induced impairment of Abcc2 function in isolated rat hepatocyte couplets. Arch Toxicol 2015; 90:891-903. [PMID: 25813982 DOI: 10.1007/s00204-015-1507-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
Estradiol-17β-D-glucuronide (E17G) induces acute endocytic internalization of canalicular transporters, including multidrug resistance-associated protein 2 (Abcc2) in rat, generating cholestasis. Several proteins organized in at least two different signaling pathways are involved in E17G cholestasis: one pathway involves estrogen receptor alpha (ERα), Ca(2+)-dependent protein kinase C and p38-mitogen activated protein kinase, and the other pathway involves GPR30, PKA, phosphoinositide 3-kinase/AKT and extracellular signal-related kinase 1/2. EGF receptor (EGFR) can potentially participate in both pathways since it interacts with GPR30 and ERα. Hence, the aim of this study was to analyze the potential role of this receptor and its downstream effectors, members of the Src family kinases in E17G-induced cholestasis. In vitro, EGFR inhibition by Tyrphostin (Tyr), Cl-387785 or its knockdown with siRNA strongly prevented E17G-induced impairment of Abcc2 function and localization. Activation of EGFR was necessary but not sufficient to impair the canalicular transporter function, whereas the simultaneous activation of EGFR and GPR30 could impair Abcc2 transport. The protection of Tyr was not additive to that produced by the ERα inhibitor ICI neither with that produced by Src kinase inhibitors, suggesting that EGFR shared the signaling pathway of ERα and Src. Further analysis of ERα, EGFR and Src activations induced by E17G, demonstrated that ERα activation precedes that of EGFR and EGFR activation precedes that of Src. In conclusion, activation of EGFR is a key factor in the alteration of canalicular transporter function and localization induced by E17G and it occurs before that of Src and after that of ERα.
Collapse
Affiliation(s)
- Ismael R Barosso
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Andrés E Zucchetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Gisel S Miszczuk
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Andrea C Boaglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Diego R Taborda
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
14
|
Park SW, Schonhoff CM, Webster CRL, Anwer MS. Rab11, but not Rab4, facilitates cyclic AMP- and tauroursodeoxycholate-induced MRP2 translocation to the plasma membrane. Am J Physiol Gastrointest Liver Physiol 2014; 307:G863-70. [PMID: 25190474 PMCID: PMC4200318 DOI: 10.1152/ajpgi.00457.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rab proteins (Ras homologous for brain) play an important role in vesicle trafficking. Rab4 and Rab11 are involved in vesicular trafficking to the plasma membrane from early endosomes and recycling endosomes, respectively. Tauroursodeoxycholate (TUDC) and cAMP increase bile formation, in part, by increasing plasma membrane localization of multidrug resistance-associated protein 2 (MRP2). The goal of the present study was to determine the role of these Rab proteins in the trafficking of MRP2 by testing the hypothesis that Rab11 and/or Rab4 facilitate cAMP- and TUDC-induced MRP2 translocation to the plasma membrane. Studies were conducted in HuH-NTCP cells (HuH7 cells stably transfected with human NTCP), which constitutively express MRP2. HuH-NTCP cells were transfected with Rab11-WT and GDP-locked dominant inactive Rab11-GDP or with Rab4-GDP to study the role of Rab11 and Rab4. A biotinylation method and a GTP overlay assay were used to determine plasma membrane MRP2 and activation of Rab proteins (Rab11 and Rab4), respectively. Cyclic AMP and TUDC increased plasma membrane MRP2 and stimulated Rab11 activity. Plasma membrane translocation of MRP2 by cAMP and TUDC was increased and inhibited in cells transfected with Rab11-WT and Rab11-GDP, respectively. Cyclic AMP (previous study) and TUDC increased Rab4 activity. However, cAMP- and TUDC-induced increases in MRP2 were not inhibited by Rab4-GDP. Taken together, these results suggest that Rab11 is involved in cAMP- and TUDC-induced MRP2 translocation to the plasma membrane.
Collapse
Affiliation(s)
- Se Won Park
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Christopher M Schonhoff
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Cynthia R L Webster
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| |
Collapse
|
15
|
Németi B, Poór M, Gregus Z. A high-performance liquid chromatography-based assay of glutathione transferase omega 1 supported by glutathione or non-physiological reductants. Anal Biochem 2014; 469:12-8. [PMID: 25283130 DOI: 10.1016/j.ab.2014.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022]
Abstract
The unusual glutathione S-transferase GSTO1 reduces, rather than conjugates, endo- and xenobiotics, and its role in diverse cellular processes has been proposed. GSTO1 has been assayed spectrophotometrically by measuring the disappearance of its substrate, S-(4-nitrophenacyl)glutathione (4-NPG), in the presence of 2-mercaptoethanol that regenerates GSTO1 from its mixed disulfide. To assay GSTO1 in rat liver cytosol, we have developed a high-performance liquid chromatography (HPLC)-based procedure with two main advantages: (i) it measures the formation of the 4-NPG reduction product 4-nitroacetophenone, thereby offering improved sensitivity and accuracy, and (ii) it can use glutathione, the physiological reductant of GSTO1, which is impossible to do with the spectrophotometric procedure. Using the new assay, we show that (i) the GSTO1-catalyzed reduction of 4-NPG in rat liver cytosol also yields 1-(4-nitrophenyl)ethanol, whose formation from 4-nitroacetophenone requires NAD(P)H; (ii) the two assays measure comparable activities with 2-mercaptoethanol or tris(2-carboxyethyl)phosphine used as reductant; (iii) the cytosolic reduction of 4-NPG is inhibited by GSTO1 inhibitors (KT53, 5-chloromethylfluorescein diacetate, and zinc), although the inhibitory effect is strikingly influenced by the type of reductant in the assay and by the sequence of reductant and inhibitor addition. Characterization of GSTO1 inhibitors with the improved assay provides better understanding of interaction of these chemicals with the enzyme.
Collapse
Affiliation(s)
- Balázs Németi
- Department of Pharmacology and Pharmacotherapy, Toxicology Section, University of Pécs, Medical School, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology and Pharmacotherapy, Toxicology Section, University of Pécs, Medical School, H-7624 Pécs, Hungary
| | - Zoltán Gregus
- Department of Pharmacology and Pharmacotherapy, Toxicology Section, University of Pécs, Medical School, H-7624 Pécs, Hungary.
| |
Collapse
|
16
|
Yamamoto T, Takahashi H, Suzuki K, Hirano A, Kamei M, Goto T, Takahashi N, Kawada T. Theobromine enhances absorption of cacao polyphenol in rats. Biosci Biotechnol Biochem 2014; 78:2059-63. [PMID: 25079983 DOI: 10.1080/09168451.2014.942252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Several concentrations of theobromine (TB) and (-)-epicatechin (EC) were coadministered to rats, and plasma EC and its metabolites were determined using ultra-high-performance liquid chromatography-tandem mass spectrometry. It has been demonstrated that TB increases the absorption of EC in a dose-dependent manner. Cocoa powder had a similar effect, and the mechanism involved is not thought to depend on tight junctions.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- a Laboratory of Molecular Functions of Food, Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji , Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Miszczuk GS, Barosso IR, Zucchetti AE, Boaglio AC, Pellegrino JM, Sánchez Pozzi EJ, Roma MG, Crocenzi FA. Sandwich-cultured rat hepatocytes as an in vitro model to study canalicular transport alterations in cholestasis. Arch Toxicol 2014; 89:979-90. [PMID: 24912783 DOI: 10.1007/s00204-014-1283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/20/2014] [Indexed: 12/28/2022]
Abstract
At present, it has not been systematically evaluated whether the functional alterations induced by cholestatic compounds in canalicular transporters involved in bile formation can be reproduced in sandwich-cultured rat hepatocytes (SCRHs). Here, we focused on two clinically relevant cholestatic agents, such as estradiol 17β-D-glucuronide (E17G) and taurolithocholate (TLC), also testing the ability of dibutyryl cyclic AMP (DBcAMP) to prevent their effects. SCRHs were incubated with E17G (200 µM) or TLC (2.5 µM) for 30 min, with or without pre-incubation with DBcAMP (10 µM) for 15 min. Then, the increase in glutathione methyl fluorescein (GS-MF)-associated fluorescence inside the canaliculi was monitored by quantitative time-lapse imaging, and Mrp2 transport activity was calculated by measuring the slope of the time-course fluorescence curves during the initial linear phase, which was considered to be the Mrp2-mediated initial transport rate (ITR). E17G and TLC impaired canalicular bile formation, as evidenced by a decrease in both the bile canaliculus volume and the bile canaliculus width, estimated from 3D and 2D confocal images, respectively. These compounds decreased ITR and induced retrieval of Mrp2, a main pathomechanism involved in their cholestatic effects. Finally, DBcAMP prevented these effects, and its well-known choleretic effect was evident from the increase in the canalicular volume/width values; this choleretic effect is associated in part with its capability to increase Mrp2 activity, evidenced here by the increase in ITR of GS-MF. Our study supports the use of SCRHs as an in vitro model useful to quantify canalicular transport function under conditions of cholestasis and choleresis.
Collapse
Affiliation(s)
- Gisel S Miszczuk
- Instituto de Fisiología Experimental (IFISE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario (UNR), Suipacha 570, S2002LRL, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zucchetti AE, Barosso IR, Boaglio AC, Basiglio CL, Miszczuk G, Larocca MC, Ruiz ML, Davio CA, Roma MG, Crocenzi FA, Pozzi EJS. G-protein-coupled receptor 30/adenylyl cyclase/protein kinase A pathway is involved in estradiol 17ß-D-glucuronide-induced cholestasis. Hepatology 2014; 59:1016-29. [PMID: 24115158 DOI: 10.1002/hep.26752] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 09/16/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED Estradiol-17ß-D-glucuronide (E17G) activates different signaling pathways (e.g., Ca(2+) -dependent protein kinase C, phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinases [MAPKs] p38 and extracellular signal-related kinase 1/2, and estrogen receptor alpha) that lead to acute cholestasis in rat liver with retrieval of the canalicular transporters, bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). E17G shares with nonconjugated estradiol the capacity to activate these pathways. G-protein-coupled receptor 30 (GPR30) is a receptor implicated in nongenomic effects of estradiol, and the aim of this study was to analyze the potential role of this receptor and its downstream effectors in E17G-induced cholestasis. In vitro, GPR30 inhibition by G15 or its knockdown with small interfering RNA strongly prevented E17G-induced impairment of canalicular transporter function and localization. E17G increased cyclic adenosine monophosphate (cAMP) levels, and this increase was blocked by G15, linking GPR30 to adenylyl cyclase (AC). Moreover, AC inhibition totally prevented E17G insult. E17G also increased protein kinase A (PKA) activity, which was blocked by G15 and AC inhibitors, connecting the links of the pathway, GPR30-AC-PKA. PKA inhibition prevented E17G-induced cholestasis, whereas exchange protein activated directly by cyclic nucleotide/MAPK kinase, another cAMP downstream effector, was not implicated in cAMP cholestatic action. In the perfused rat liver model, inhibition of the GPR30-AC-PKA pathway totally prevented E17G-induced alteration in Abcb11 and Abcc2 function and localization. CONCLUSION Activation of GPR30-AC-PKA is a key factor in the alteration of canalicular transporter function and localization induced by E17G. Interaction of E17G with GPR30 may be the first event in the cascade of signaling activation.
Collapse
Affiliation(s)
- Andrés E Zucchetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET-U.N.R.), Rosario, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Physiological concentrations of unconjugated bilirubin prevent oxidative stress-induced hepatocanalicular dysfunction and cholestasis. Arch Toxicol 2013; 88:501-14. [DOI: 10.1007/s00204-013-1143-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
|
20
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
21
|
Zucchetti AE, Barosso IR, Boaglio AC, Luquita MG, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. Hormonal modulation of hepatic cAMP prevents estradiol 17β-D-glucuronide-induced cholestasis in perfused rat liver. Dig Dis Sci 2013; 58:1602-14. [PMID: 23371010 DOI: 10.1007/s10620-013-2558-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/01/2013] [Indexed: 12/09/2022]
Abstract
BACKGROUND Estradiol-17β-D-glucuronide (E17G) induces cholestasis in vivo, endocytic internalization of the canalicular transporters multidrug resistance-associated protein 2 (Abcc2) and bile salt export pump (Abcb11) being a key pathomechanism. Cyclic AMP (cAMP) prevents cholestasis by targeting these transporters back to the canalicular membrane. In hepatocyte couplets, glucagon and salbutamol, both of which increase cAMP, prevented E17G action by stimulating the trafficking of these transporters by different mechanisms, namely: glucagon activates a protein kinase A-dependent pathway, whereas salbutamol activates an exchange-protein activated by cAMP (Epac)-mediated, microtubule-dependent pathway. METHODS The present study evaluated whether glucagon and salbutamol prevent E17G-induced cholestasis in a more physiological model, i.e., the perfused rat liver (PRL). Additionally, the preventive effect of in vivo alanine administration, which induces pancreatic glucagon secretion, was evaluated. RESULTS In PRLs, glucagon and salbutamol prevented E17G-induced decrease in both bile flow and the secretory activity of Abcc2 and Abcb11. Salbutamol prevention fully depended on microtubule integrity. On the other hand, glucagon prevention was microtubule-independent only at early time periods after E17G administration, but it was ultimately affected by the microtubule disrupter colchicine. Cholestasis was associated with endocytic internalization of Abcb11 and Abcc2, the intracellular carriers being partially colocalized with the endosomal marker Rab11a. This effect was completely prevented by salbutamol, whereas some transporter-containing vesicles remained colocalized with Rab11a after glucagon treatment. In vivo, alanine administration increased hepatic cAMP and accelerated the recovery of bile flow and Abcb11/Abcc2 transport function after E17G administration. The initial recovery afforded by alanine was microtubule-independent, but microtubule integrity was required to sustain this protective effect. CONCLUSION We conclude that modulation of cAMP levels either by direct administration of cAMP modulators or by physiological manipulations leadings to hormone-mediated increase of cAMP levels (alanine administration), prevents estrogen-induced cholestasis in models with preserved liver architecture, through mechanisms similar to those arisen from in vitro studies.
Collapse
Affiliation(s)
- Andrés E Zucchetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET, U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
22
|
Barosso IR, Zucchetti AE, Boaglio AC, Larocca MC, Taborda DR, Luquita MG, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. Sequential activation of classic PKC and estrogen receptor α is involved in estradiol 17ß-D-glucuronide-induced cholestasis. PLoS One 2012; 7:e50711. [PMID: 23209816 PMCID: PMC3507741 DOI: 10.1371/journal.pone.0050711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022] Open
Abstract
Estradiol 17ß-d-glucuronide (E17G) induces acute cholestasis in rat with endocytic internalization of the canalicular transporters bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). Classical protein kinase C (cPKC) and PI3K pathways play complementary roles in E17G cholestasis. Since non-conjugated estradiol is capable of activating these pathways via estrogen receptor alpha (ERα), we assessed the participation of this receptor in the cholestatic manifestations of estradiol glucuronidated-metabolite E17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In both models, E17G activated ERα. In PRL, E17G maximally decreased bile flow, and the excretions of dinitrophenyl-glutathione, and taurocholate (Abcc2 and Abcb11 substrates, respectively) by 60% approximately; preadministration of ICI 182,780 (ICI, ERα inhibitor) almost totally prevented these decreases. In IRHC, E17G decreased the canalicular vacuolar accumulation of cholyl-glycylamido-fluorescein (Abcb11 substrate) with an IC50 of 91±1 µM. ICI increased the IC50 to 184±1 µM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Abcc2 substrate, glutathione-methylfluorescein. ICI also completely prevented E17G-induced delocalization of Abcb11 and Abcc2 from the canalicular membrane, both in PRL and IRHC. The role of ERα in canalicular transporter internalization induced by E17G was confirmed in ERα-knocked-down hepatocytes cultured in collagen sandwich. In IRHC, the protection of ICI was additive to that produced by PI3K inhibitor wortmannin but not with that produced by cPKC inhibitor Gö6976, suggesting that ERα shared the signaling pathway of cPKC but not that of PI3K. Further analysis of ERα and cPKC activations induced by E17G, demonstrated that ICI did not affect cPKC activation whereas Gö6976 prevented that of ERα, indicating that cPKC activation precedes that of ERα. Conclusion: ERα is involved in the biliary secretory failure induced by E17G and its activation follows that of cPKC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enrique J. Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
- * E-mail:
| |
Collapse
|
23
|
Boaglio AC, Zucchetti AE, Toledo FD, Barosso IR, Sánchez Pozzi EJ, Crocenzi FA, Roma MG. ERK1/2 and p38 MAPKs are complementarily involved in estradiol 17ß-D-glucuronide-induced cholestasis: crosstalk with cPKC and PI3K. PLoS One 2012; 7:e49255. [PMID: 23166621 PMCID: PMC3498151 DOI: 10.1371/journal.pone.0049255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
Objective The endogenous, cholestatic metabolite estradiol 17ß-d-glucuronide (E217G) induces endocytic internalization of the canalicular transporters relevant to bile formation, Bsep and Mrp2. We evaluated here whether MAPKs are involved in this effect. Design ERK1/2, JNK1/2, and p38 MAPK activation was assessed by the increase in their phosphorylation status. Hepatocanalicular function was evaluated in isolated rat hepatocyte couplets (IRHCs) by quantifying the apical secretion of fluorescent Bsep and Mrp2 substrates, and in isolated, perfused rat livers (IPRLs), using taurocholate and 2,4-dinitrophenyl-S-glutathione, respectively. Protein kinase participation in E217G-induced secretory failure was assessed by co-administering selective inhibitors. Internalization of Bsep/Mrp2 was assessed by confocal microscopy and image analysis. Results E217G activated all kinds of MAPKs. The PI3K inhibitor wortmannin prevented ERK1/2 activation, whereas the cPKC inhibitor Gö6976 prevented p38 activation, suggesting that ERK1/2 and p38 are downstream of PI3K and cPKC, respectively. The p38 inhibitor SB203580 and the ERK1/2 inhibitor PD98059, but not the JNK1/2 inhibitor SP600125, partially prevented E217G-induced changes in transporter activity and localization in IRHCs. p38 and ERK1/2 co-inhibition resulted in additive protection, suggesting complementary involvement of these MAPKs. In IPRLs, E217G induced endocytosis of canalicular transporters and a rapid and sustained decrease in bile flow and biliary excretion of Bsep/Mrp2 substrates. p38 inhibition prevented this initial decay, and the internalization of Bsep/Mrp2. Contrarily, ERK1/2 inhibition accelerated the recovery of biliary secretion and the canalicular reinsertion of Bsep/Mrp2. Conclusions cPKC/p38 MAPK and PI3K/ERK1/2 signalling pathways participate complementarily in E217G-induced cholestasis, through internalization and sustained intracellular retention of canalicular transporters, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando A. Crocenzi
- Institute of Experimental Physiology, National Scientific and Technical Research Council/National University of Rosario, Rosario, Argentina
- * E-mail: (FAC); (MGR)
| | - Marcelo G. Roma
- Institute of Experimental Physiology, National Scientific and Technical Research Council/National University of Rosario, Rosario, Argentina
- * E-mail: (FAC); (MGR)
| |
Collapse
|
24
|
Park SW, Schonhoff CM, Webster CRL, Anwer MS. Protein kinase Cδ differentially regulates cAMP-dependent translocation of NTCP and MRP2 to the plasma membrane. Am J Physiol Gastrointest Liver Physiol 2012; 303:G657-65. [PMID: 22744337 PMCID: PMC3468552 DOI: 10.1152/ajpgi.00529.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclic AMP stimulates translocation of Na(+)/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation.
Collapse
Affiliation(s)
| | | | - Cynthia R. L. Webster
- 2Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | | |
Collapse
|
25
|
Mattaloni SM, Kolobova E, Favre C, Marinelli RA, Goldenring JR, Larocca MC. AKAP350 Is involved in the development of apical "canalicular" structures in hepatic cells HepG2. J Cell Physiol 2011; 227:160-71. [PMID: 21374596 DOI: 10.1002/jcp.22713] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepatocytes are epithelial cells whose apical poles constitute the bile canaliculi. The establishment and maintenance of canalicular poles is a finely regulated process that dictates the efficiency of primary bile secretion. Protein kinase A (PKA) modulates this process at different levels. AKAP350 is an A-kinase anchoring protein that scaffolds protein complexes involved in modulating the dynamic structures of the Golgi apparatus and microtubule cytoskeleton, facilitating microtubule nucleation at this organelle. In this study, we evaluated whether AKAP350 is involved in the development of bile canaliculi-like structures in hepatocyte derived HepG2 cells. We found that AKAP350 recruits PKA to the centrosomes and Golgi apparatus in HepG2 cells. De-localization of AKAP350 from these organelles led to reduced apical cell polarization. A decrease in AKAP350 expression inhibited the formation of canalicular structures and impaired F-actin organization at canalicular poles. Furthermore, loss of AKAP350 expression led to diminished polarized expression of the p-glycoprotein (MDR1/ABCB1) at the apical "canalicular" membrane. AKAP350 knock down effects on canalicular structures formation and actin organization could be mimicked by inhibition of Golgi microtubule nucleation by depletion of CLIP associated proteins (CLASPs). Our data reveal that AKAP350 participates in mechanisms which determine the development of canalicular structures as well as accurate canalicular expression of distinct proteins and actin organization, and provide evidence on the involvement of Golgi microtubule nucleation in hepatocyte apical polarization.
Collapse
Affiliation(s)
- Stella M Mattaloni
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
26
|
Sekine S, Ito K, Saeki J, Horie T. Interaction of Mrp2 with radixin causes reversible canalicular Mrp2 localization induced by intracellular redox status. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1427-34. [DOI: 10.1016/j.bbadis.2011.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 12/28/2022]
|
27
|
Zucchetti AE, Barosso IR, Boaglio A, Pellegrino JM, Ochoa EJ, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. Prevention of estradiol 17beta-D-glucuronide-induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes. Mol Biol Cell 2011; 22:3902-15. [PMID: 21865596 PMCID: PMC3192868 DOI: 10.1091/mbc.e11-01-0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In estradiol 17β-d-glucuronide (E17G)-induced cholestasis, the canalicular hepatocellular transporters bile salt export pump (Abcb11) and multidrug-resistance associated protein 2 (Abcc2) undergo endocytic internalization. cAMP stimulates the trafficking of transporter-containing vesicles to the apical membrane and is able to prevent internalization of these transporters in estrogen-induced cholestasis. Hepatocyte levels of cAMP are regulated by hormones such as glucagon and adrenaline (via the β2 receptor). We analyzed the effects of glucagon and salbutamol (a β2 adrenergic agonist) on function and localization of Abcb11 and Abcc2 in isolated rat hepatocyte couplets exposed to E17G and compared the mechanistic bases of their effects. Glucagon and salbutamol partially prevented the impairment in Abcb11 and Abcc2 transport capacity. E17G also induced endocytic internalization of Abcb11 and Abcc2, which partially colocalized with the endosomal marker Rab11a. This effect was completely prevented by salbutamol, whereas some transporter-containing vesicles remained internalized and mainly colocalizing with Rab11a in the perinuclear region after incubation with glucagon. Glucagon prevention was dependent on cAMP-dependent protein kinase (PKA) and independent of exchange proteins activated directly by cAMP (Epac) and microtubules. In contrast, salbutamol prevention was PKA independent and Epac/MEK and microtubule dependent. Anticholestatic effects of glucagon and salbutamol were additive in nature. Our results show that increases in cAMP could activate different anticholestatic signaling pathways, depending on the hormonal mediator involved.
Collapse
Affiliation(s)
- Andrés E Zucchetti
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002LRL Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Emi Y, Nomura S, Yokota H, Sakaguchi M. ATP-binding cassette transporter isoform C2 localizes to the apical plasma membrane via interactions with scaffolding protein. J Biochem 2010; 149:177-89. [PMID: 21059598 DOI: 10.1093/jb/mvq131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ATP-binding cassette transporter isoform C2 (ABCC2) localizes to the apical plasma membrane in polarized cells. Apical localization of ABCC2 in hepatocytes plays an important role in biliary excretion of endobiotics and xenobiotics, but the mechanism by which ABCC2 localizes to the apical membrane has not been conclusively elucidated. Here, we investigate the role of scaffolding proteins on ABCC2 localization with a focus on the function of PDZK1 (post-synaptic density 95/disk large/zonula occludens-1 domain containing 1) in regulating ABCC2 localization. The C-terminal 77 residues of ABCC2 were used to probe interacting proteins from HepG2 cells. Protein mass fingerprinting identified PDZK1 as a major interacting protein. PDZK1 associated with the plasma membrane, most likely at the apical vacuoles of HepG2 cells. Affinity pull-down assays confirmed that the C-terminal NSTKF of ABCC2 bound to the fourth PDZ domain of PDZK1. Removal of this PDZ-binding motif significantly reduced the normal apical localization of ABCC2. In HepG2 cells, overexpression of this fourth domain overcame endogenous PDZK1 and reduced the ABCC2 localization at the apical membrane with a reciprocal increase of intracellular accumulation of mislocalized ABCC2. These results suggest a possible role for an interaction between ABCC2 and PDZK1 in apical localization of ABCC2 in hepatocytes.
Collapse
Affiliation(s)
- Yoshikazu Emi
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo, Japan.
| | | | | | | |
Collapse
|
29
|
Boaglio AC, Zucchetti AE, Sánchez Pozzi EJ, Pellegrino JM, Ochoa JE, Mottino AD, Vore M, Crocenzi FA, Roma MG. Phosphoinositide 3-kinase/protein kinase B signaling pathway is involved in estradiol 17β-D-glucuronide-induced cholestasis: complementarity with classical protein kinase C. Hepatology 2010; 52:1465-76. [PMID: 20815017 DOI: 10.1002/hep.23846] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Estradiol 17β-D-glucuronide (E(2)17G) is an endogenous, cholestatic metabolite that induces endocytic internalization of the canalicular transporters relevant to bile secretion: bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). We assessed whether phosphoinositide 3-kinase (PI3K) is involved in E(2)17G-induced cholestasis. E(2)17G activated PI3K according to an assessment of the phosphorylation of the final PI3K effector, protein kinase B (Akt). When the PI3K inhibitor wortmannin (WM) was preadministered to isolated rat hepatocyte couplets (IRHCs), it partially prevented the reduction induced by E(2)17G in the proportion of IRHCs secreting fluorescent Bsep and Mrp2 substrates (cholyl lysyl fluorescein and glutathione methylfluorescein, respectively). 2-Morpholin-4-yl-8-phenylchromen-4-one, another PI3K inhibitor, and an Akt inhibitor (Calbiochem 124005) showed similar protective effects. IRHC immunostaining and confocal microscopy analysis revealed that endocytic internalization of Bsep and Mrp2 induced by E(2)17G was extensively prevented by WM; this effect was fully blocked by the microtubule-disrupting agent colchicine. The protection of WM was additive to that afforded by the classical protein kinase C (cPKC) inhibitor 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile (Gö6976); this suggested differential and complementary involvement of the PI3K and cPKC signaling pathways in E(2)17G-induced cholestasis. In isolated perfused rat liver, an intraportal injection of E(2)17G triggered endocytosis of Bsep and Mrp2, and this was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Bsep and Mrp2 substrates [(3)H]taurocholate and glutathione until the end of the perfusion period. Unlike Gö6976, WM did not prevent the initial decay, but it greatly accelerated the recovery to normality of these parameters and the reinsertion of Bsep and Mrp2 into the canalicular membrane in a microtubule-dependent manner. CONCLUSION The PI3K/Akt signaling pathway is involved in the biliary secretory failure induced by E(2)17G through sustained internalization of canalicular transporters endocytosed via cPKC.
Collapse
Affiliation(s)
- Andrea C Boaglio
- Institute of Experimental Physiology, National Scientific and Technical Research Council/University of Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Swift B, Pfeifer ND, Brouwer KLR. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 2010; 42:446-71. [PMID: 20109035 PMCID: PMC3097390 DOI: 10.3109/03602530903491881] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sandwich-cultured hepatocytes (SCH) are a powerful in vitro tool that can be utilized to study hepatobiliary drug transport, species differences in drug transport, transport protein regulation, drug-drug interactions, and hepatotoxicity. This review provides an up-to-date summary of the SCH model, including a brief history of, and introduction to, the use of SCH, as well as methodology to evaluate hepatobiliary drug disposition. A summary of the literature that has utilized this model to examine the interplay between drug-metabolizing enzymes and transport proteins, drug-drug interactions at the transport level, and hepatotoxicity as a result of altered hepatic transport also is provided.
Collapse
Affiliation(s)
- Brandon Swift
- University of North Carolina at Chapel Hill, 27599-7569, USA
| | | | | |
Collapse
|
31
|
Cruz LN, Guerra MT, Kruglov E, Mennone A, Garcia CRS, Chen J, Nathanson MH. Regulation of multidrug resistance-associated protein 2 by calcium signaling in mouse liver. Hepatology 2010; 52:327-37. [PMID: 20578149 PMCID: PMC3025771 DOI: 10.1002/hep.23625] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Multidrug resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. CONCLUSION InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane.
Collapse
Affiliation(s)
- Laura N. Cruz
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT,Department of Parasitology, University of Saão Paulo, Saão Paulo, Brazil
| | - Mateus T. Guerra
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT,Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Emma Kruglov
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Albert Mennone
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | | | - Ju Chen
- Department of Medicine, University of California, San Diego, CA
| | - Michael H. Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
32
|
Li C, Schuetz JD, Naren AP. Tobacco carcinogen NNK transporter MRP2 regulates CFTR function in lung epithelia: implications for lung cancer. Cancer Lett 2010; 292:246-53. [PMID: 20089353 PMCID: PMC2868381 DOI: 10.1016/j.canlet.2009.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 10/19/2022]
Abstract
Lung cancer is the leading cause of cancer death in the United States. About 85% of all lung cancers are linked to tobacco smoke, in which more than 50 lung carcinogens have been identified and one of the most abundant is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The human lung epithelium constitutes the first line of defense against tobacco-specific carcinogens, in which apically-localized receptors, transporters, and ion channels in the airway may play a critical role in this native defense against tobacco smoke. Here we showed that multidrug resistance protein-2 (MRP2) and cystic fibrosis transmembrane conductance regulator (CFTR), two ATP-binding cassette (ABC) transporters, are localized to the apical surfaces of plasma membrane in polarized lung epithelial cells. We observed that there is a functional coupling between CFTR and MRP2 that may be mediated by PDZ proteins. We also observed the existence of a macromolecular complex containing CFTR, MRP2, and PDZ proteins, which might form the basis for the regulatory cooperation between these two ABC transporters. Our results have important implications for cigarette smoke-associated lung diseases (such as smoke-related emphysema, chronic obstructive pulmonary disease, and lung cancer).
Collapse
Affiliation(s)
- Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, 5312 Scott Hall, Detroit, MI 48201, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | - Anjaparavanda P. Naren
- Department of Physiology, University of Tennessee Health Science Center, 420 Nash, 894 Union Avenue, Memphis, Tennessee 38163, USA
| |
Collapse
|
33
|
Schonhoff CM, Webster CRL, Anwer MS. Cyclic AMP stimulates Mrp2 translocation by activating p38{alpha} MAPK in hepatic cells. Am J Physiol Gastrointest Liver Physiol 2010; 298:G667-74. [PMID: 20203059 PMCID: PMC2867428 DOI: 10.1152/ajpgi.00506.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclic AMP (cAMP) induces translocation of multidrug resistant protein 2 (Mrp2) to the canalicular membrane and activates p38 MAPK in rat hepatocytes. In this study, we tested the hypothesis that cAMP-induced Mrp2 translocation may be mediated via p38 MAPK. Studies were conducted in rat hepatocytes and in a human hepatoma cell line, HuH-7. In rat hepatocytes, cAMP increased Mrp2 translocation and p38 MAPK activity. These effects of cAMP were inhibited by SB203580, an inhibitor of p38 MAPK. Wortmannin, a specific inhibitor of phosphoinositide-3-kinase (PI3K), did not inhibit cAMP induced activation of p38 MAPK, indicating PI3K-independent activation of p38 MAPK by cAMP. To further define the role of p38 MAPK, molecular approaches were used to up- or downregulate p38 MAPK activity in HuH-7 cells using constitutively active (CA) and dominant-negative (DN) MAPK kinase 3 and 6 (MKK3/6). MKK3/6 are upstream kinases responsible for the activation of p38 MAPK. Cells transfected with CAMKK6 showed increased p38 MAPK activity and MRP2 translocation compared with empty vector. cAMP-induced activation of p38 MAPK was inhibited in cells transfected with DNMKK3/6 and DNMKK3, but not with DNMKK6. DNMKK3/6 and DNMKK3 also inhibited cAMP-induced MRP2 translocation. cAMP selectively activated p38alpha MAPK in HuH-7 cells. Knockdown of p38alpha MAPK by short heterodimer RNA resulted in decreased level of p38 MAPK and failure of cAMP to stimulate MRP2 translocation. Taken together, these results suggest that cAMP-induced MRP2 translocation in hepatic cells is mediated via PI3K-independent and MKK3-mediated activation of p38alpha MAPK.
Collapse
Affiliation(s)
| | - Cynthia R. L. Webster
- 2Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | | |
Collapse
|
34
|
Chow ECY, Sun H, Khan AA, Groothuis GMM, Pang KS. Effects of 1alpha,25-dihydroxyvitamin D3 on transporters and enzymes of the rat intestine and kidney in vivo. Biopharm Drug Dispos 2010; 31:91-108. [PMID: 20013813 DOI: 10.1002/bdd.694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the natural ligand of the vitamin D receptor (VDR), was found to regulate bile acid related transporters and enzymes directly and indirectly in the rat intestine and liver in vivo. The kidney is another VDR-rich target organ in which VDR regulation on xenobiotic transporters and enzymes is ill-defined. Hence, changes in protein and mRNA expression of nuclear receptors, transporters and enzymes of the rat intestine and kidney in response to 1,25(OH)2D3 treatment (0 to 2.56 nmol/kg/day intraperitoneally in corn oil for 4 days) were studied. In the intestine, protein and not mRNA levels of Mrp2, Mrp3, Mrp4 and PepT1 in the duodenum and proximal jejunum were induced, whereas Oat1 and Oat3 mRNA were decreased in the ileum after 1,25(OH)2D3 treatment. In the kidney, VDR, Cyp24, Asbt and Mdr1a mRNA and protein expression increased significantly (2- to 20-fold) in 1,25(OH)2D3-treated rats, and a 28-fold increase of Cyp3a9 mRNA but not of total Cy3a protein nor Cyp3a1 and Cyp3a2 mRNA was observed, implicating that VDR played a significant, renal-specific role in Cyp3a9 induction. Additionally, renal mRNA levels of PepT1, Oat1, Oat3, Ostalpha, and Mrp4, and protein levels of PepT1 and Oat1 were decreased in a dose-dependent manner, and the approximately 50% concomitant reduction in FXR, SHP, HNF-1alpha and HNF-4alpha mRNA expression suggests the possibility of cross-talk among the nuclear receptors. It is concluded that the effects of 1,25(OH)2D3 changes are tissue-specific, differing between the intestine and kidney which are VDR-rich organs.
Collapse
Affiliation(s)
- Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
35
|
Li M, Wang W, Soroka CJ, Mennone A, Harry K, Weinman EJ, Boyer JL. NHERF-1 binds to Mrp2 and regulates hepatic Mrp2 expression and function. J Biol Chem 2010; 285:19299-307. [PMID: 20404332 DOI: 10.1074/jbc.m109.096081] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2, Abcc2) is an ATP-binding cassette transporter localized at the canalicular membrane of hepatocytes that plays an important role in bile formation and detoxification. Prior in vitro studies suggest that Mrp2 can bind to Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1), a PDZ protein that cross-links membrane proteins to actin filaments. However the role of NHERF-1 in the expression and functional regulation of Mrp2 remains largely unknown. Here we examine the interaction of Mrp2 and NHERF-1 and its physiological significance in HEK293 cells and NHERF-1 knock-out mice. Mrp2 co-precipitated with NHERF-1 in co-transfected HEK293 cells, an interaction that required the PDZ-binding motif of Mrp2. In NHERF-1(-/-) mouse liver, Mrp2 mRNA was unchanged but Mrp2 protein was reduced in whole cell lysates and membrane-enriched fractions to approximately 50% (p < 1 x 10(-6)) and approximately 70% (p < 0.05), respectively, compared with wild-type mice, suggesting that the down-regulation of Mrp2 expression was caused by post-transcriptional events. Mrp2 remained localized at the apical/canalicular membrane of NHERF-1(-/-) mouse hepatocytes, although its immunofluorescent labeling was noticeably weaker. Bile flow in NHERF-1(-/-) mice was reduced to approximately 70% (p < 0.001) in association with a 50% reduction in glutathione excretion (p < 0.05) and a 60% reduction in glutathione-methylfluorescein (GS-MF) excretion in isolated mouse hepatocyte (p < 0.01). Bile acid and bilirubin excretion remained unchanged compared with wild-type mice. These findings strongly suggest that NHERF-1 binds to Mrp2, and plays a critical role in the canalicular expression of Mrp2 and its function as a determinant of glutathione-dependent, bile acid-independent bile flow.
Collapse
Affiliation(s)
- Man Li
- Liver Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Wojtal KA, Diskar M, Herberg FW, Hoekstra D, van Ijzendoorn SCD. Regulatory subunit I-controlled protein kinase A activity is required for apical bile canalicular lumen development in hepatocytes. J Biol Chem 2009; 284:20773-80. [PMID: 19465483 DOI: 10.1074/jbc.m109.013599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Signaling via cAMP plays an important role in apical cell surface dynamics in epithelial cells. In hepatocytes, elevated levels of cAMP as well as extracellular oncostatin M stimulate apical lumen development in a manner that depends on protein kinase A (PKA) activity. However, neither the identity of PKA isoforms involved nor the mechanisms of the cross-talk between oncostatin M and cAMP/PKA signaling pathways have been elucidated. Here we demonstrate that oncostatin M and PKA signaling converge at the level of the PKA holoenzyme downstream of oncostatin M-stimulated MAPK activation. Experiments were performed with chemically modified cAMP analogues that preferentially target regulatory subunit (R) I or RII holoenzymes, respectively, in hepatocytes. The data suggest that the dissociation of RI- but not RII-containing holoenzymes, as well as catalytic activity of PKA, is required for apical lumen development in response to elevated levels of cAMP and oncostatin M. However, oncostatin M signaling does not stimulate PKA holoenzyme dissociation in living cells. Based on pharmacological and cell biological studies, it is concluded that RI-controlled PKA activity is essential for cAMP- and oncostatin M-stimulated development of apical bile canalicular lumens.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Department of Cell Biology, Section of Membrane Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9713AV, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Larocca MC, Soria LR, Espelt MV, Lehmann GL, Marinelli RA. Knockdown of hepatocyte aquaporin-8 by RNA interference induces defective bile canalicular water transport. Am J Physiol Gastrointest Liver Physiol 2009; 296:G93-100. [PMID: 18948439 DOI: 10.1152/ajpgi.90410.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aquaporin-8 (AQP8) water channels, which are expressed in rat hepatocyte bile canalicular membranes, are involved in water transport during bile formation. Nevertheless, there is no conclusive evidence that AQP8 mediates water secretion into the bile canaliculus. In this study, we directly evaluated whether AQP8 gene silencing by RNA interference inhibits canalicular water secretion in the human hepatocyte-derived cell line, HepG2. By RT-PCR and immunoblotting we found that HepG2 cells express AQP8 and by confocal immunofluorescence microscopy that it is localized intracellularly and on the canalicular membrane, as described in rat hepatocytes. We also verified the expression of AQP8 in normal human liver. Forty-eight hours after transfection of HepG2 cells with RNA duplexes targeting two different regions of human AQP8 molecule, the levels of AQP8 protein specifically decreased by 60-70%. We found that AQP8 knockdown cells showed a significant decline in the canalicular volume of approximately 70% (P < 0.01), suggesting an impairment in the basal (nonstimulated) canalicular water movement. We also found that the decreased AQP8 expression inhibited the canalicular water transport in response either to an inward osmotic gradient (-65%, P < 0.05) or to the bile secretory agonist dibutyryl cAMP (-80%, P < 0.05). Our data suggest that AQP8 plays a major role in water transport across canalicular membrane of HepG2 cells and support the notion that defective expression of AQP8 causes bile secretory dysfunction in human hepatocytes.
Collapse
Affiliation(s)
- M Cecilia Larocca
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
38
|
Crocenzi FA, Sánchez Pozzi EJ, Ruiz ML, Zucchetti AE, Roma MG, Mottino AD, Vore M. Ca(2+)-dependent protein kinase C isoforms are critical to estradiol 17beta-D-glucuronide-induced cholestasis in the rat. Hepatology 2008; 48:1885-95. [PMID: 18972403 PMCID: PMC3004396 DOI: 10.1002/hep.22532] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The endogenous estradiol metabolite estradiol 17beta-D-glucuronide (E(2)17G) induces an acute cholestasis in rat liver coincident with retrieval of the canalicular transporters bile salt export pump (Bsep, Abcc11) and multidrug resistance-associated protein 2 (Mrp2, Abcc2) and their associated loss of function. We assessed the participation of Ca(2+)-dependent protein kinase C isoforms (cPKC) in the cholestatic manifestations of E(2)17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHCs). In PRL, E(2)17G (2 mumol/liver; intraportal, single injection) maximally decreased bile flow, total glutathione, and [(3)H] taurocholate excretion by 61%, 62%, and 79%, respectively; incorporation of the specific cPKC inhibitor Gö6976 (500 nM) in the perfusate almost totally prevented these decreases. In dose-response studies using IRHC, E(2)17G (3.75-800 muM) decreased the canalicular vacuolar accumulation of the Bsep substrate cholyl-lysylfluorescein with an IC50 of 54.9 +/- 7.9 muM. Gö6976 (1 muM) increased the IC50 to 178.4 +/- 23.1 muM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Mrp2 substrate, glutathione methylfluorescein. Prevention of these changes by Gö6976 coincided with complete protection against E(2)17G-induced retrieval of Bsep and Mrp2 from the canalicular membrane, as detected both in the PRL and IRHC. E(2)17G also increased paracellular permeability in IRHC, which was only partially prevented by Gö6976. The cPKC isoform PKCalpha, but not the Ca(2+)-independent PKC isoform, PKCepsilon, translocated to the plasma membrane after E(2)17G administration in primary cultured rat hepatocytes; Gö6976 completely prevented this translocation, thus indicating specific activation of cPKC. This is consistent with increased autophosphorylation of cPKC by E(2)17G, as detected via western blotting. CONCLUSION Our findings support a central role for cPKC isoforms in E(2)17G-induced cholestasis, by inducing both transporter retrieval from the canalicular membrane and opening of the paracellular route.
Collapse
Affiliation(s)
- Fernando A. Crocenzi
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina, Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| | - Enrique J. Sánchez Pozzi
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Andrés E. Zucchetti
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Marcelo G. Roma
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Aldo D. Mottino
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina, Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| | - Mary Vore
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| |
Collapse
|
39
|
Roma MG, Crocenzi FA, Mottino AD. Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol 2008; 14:6786-801. [PMID: 19058304 PMCID: PMC2773873 DOI: 10.3748/wjg.14.6786] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vesicle-based trafficking of hepatocellular transporters involves delivery of the newly-synthesized carriers from the rough endoplasmic reticulum to either the plasma membrane domain or to an endosomal, submembrane compartment, followed by exocytic targeting to the plasma membrane. Once delivered to the plasma membrane, the transporters usually undergo recycling between the plasma membrane and the endosomal compartment, which usually serves as a reservoir of pre-existing transporters available on demand. The balance between exocytic targeting and endocytic internalization from/to this recycling compartment is therefore a chief determinant of the overall capability of the liver epithelium to secrete bile and to detoxify endo and xenobiotics. Hence, it is a highly regulated process. Impaired regulation of this balance may lead to abnormal localization of these transporters, which results in bile secretory failure due to endocytic internalization of key transporters involved in bile formation. This occurs in several experimental models of hepatocellular cholestasis, and in most human cholestatic liver diseases. This review describes the molecular bases involved in the biology of the dynamic localization of hepatocellular transporters and its regulation, with a focus on the involvement of signaling pathways in this process. Their alterations in different experimental models of cholestasis and in human cholestatic liver disease are reviewed. In addition, the causes explaining the pathological condition (e.g. disorganization of actin or actin-transporter linkers) and the mediators involved (e.g. activation of cholestatic signaling transduction pathways) are also discussed. Finally, several experimental therapeutic approaches based upon the administration of compounds known to stimulate exocytic insertion of canalicular transporters (e.g. cAMP, tauroursodeoxycholate) are described.
Collapse
|
40
|
Sekine S, Ito K, Horie T. Canalicular Mrp2 localization is reversibly regulated by the intracellular redox status. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1035-41. [PMID: 18787061 DOI: 10.1152/ajpgi.90404.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oxidative stress is known to be a common feature of cholestatic syndrome. We have described the internalization of multidrug resistance-associated protein 2 (Mrp2), a biliary transporter involved in bile salt-independent bile flow, under acute oxidative stress, and a series of signaling pathways finally leading to the activation of novel protein kinase C were involved in this mechanism; however, it has been unclear whether the internalized Mrp2 localization was relocalized to the canalicular membrane when the intracellular redox status was recovered from oxidative stress. In this study, we demonstrated that decreased canalicular expression of Mrp2 induced by tertiary-butyl hydroperoxide (t-BHP) was recovered to the canalicular membrane by the replenishment of GSH by GSH-ethyl ester, a cell-permeable form of GSH. Moreover, pretreatment of isolated rat hepatocytes with colchicine and PKA inhibitor did not affect the t-BHP-induced Mrp2 internalization process but did prevent the Mrp2 recycling process induced by GSH replenishment. Moreover, intracellular cAMP concentration similarly changed with the change of intracellular GSH content. Taken together, our data clearly indicate that the redox-sensitive balance of PKA/PKC activation regulates the reversible Mrp2 localization in two different pathways, the microtubule-independent internalization pathway and -dependent recycling pathway of Mrp2.
Collapse
Affiliation(s)
- Shuichi Sekine
- Graduate School of Pharmaceutical Sciences, Chiba Univ., Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | | | | |
Collapse
|
41
|
van de Water FM, Masereeuw R, Russel FGM. Function and Regulation of Multidrug Resistance Proteins (MRPs) in the Renal Elimination of Organic Anions. Drug Metab Rev 2008; 37:443-71. [PMID: 16257830 DOI: 10.1080/03602530500205275] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The reabsorptive and excretory capacity of the kidney has an important influence on the systemic concentration of drugs. Multidrug resistance proteins (MRP/ABCC) expressed in the kidney play a critical role in the tubular efflux of a wide variety of drugs and toxicants, and, in particular, of their negatively charged phase II metabolites. Nine structurally and functionally related MRP family members have been identified (MRP1-9), which differ from each other by their localization, expression levels, and substrate specificity. During altered physiological circumstances, adaptations in these transporters are required to avoid systemic toxicity as well as renal tubular damage. Key players in these events are hormones, protein kinases, nuclear receptors, and disease conditions, which all may affect transporter protein expression levels. This review discusses current knowledge on the renal characteristics of MRP1-9, with specific focus on their regulation.
Collapse
Affiliation(s)
- Femke M van de Water
- Department of Pharmacology and Toxicology 233, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
42
|
Förster F, Volz A, Fricker G. Compound profiling for ABCC2 (MRP2) using a fluorescent microplate assay system. Eur J Pharm Biopharm 2008; 69:396-403. [DOI: 10.1016/j.ejpb.2007.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/04/2007] [Accepted: 10/03/2007] [Indexed: 01/29/2023]
|
43
|
Marin JJG, Macias RIR, Briz O, Perez MJ, Blazquez AG, Arrese M, Serrano MA. Molecular bases of the fetal liver-placenta-maternal liver excretory pathway for cholephilic compounds. Liver Int 2008; 28:435-54. [PMID: 18339071 DOI: 10.1111/j.1478-3231.2008.01680.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Potentially toxic endogenous compounds, such as bile acids (BAs) and biliary pigments, as well as many xenobiotics, such as drugs and food components, are biotransformed and eliminated by the hepatobiliary system with the collaboration of the kidney. However, the situation is very different during pregnancy because the fetal liver produces biliary compounds despite the fact that this organ, owing to its immaturity, is not able to eliminate them into bile. Moreover, the excretory ability of the fetal kidneys is also very limited. Thus, during the intra-uterine life, the major route to eliminate fetal BAs and biliary pigments is their transfer to the mother across the placenta. The maternal liver and, to a lesser extent, the maternal kidney, are then in charge of their biotransformation and elimination into faeces and urine respectively. This review describes current knowledge of the machinery responsible for the detoxification and excretion of cholephilic compounds through the pathway formed by the fetal liver-placenta-maternal liver trio.
Collapse
Affiliation(s)
- Jose J G Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), CIBERehd, University of Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
44
|
Schonhoff CM, Gillin H, Webster CRL, Anwer MS. Protein kinase Cdelta mediates cyclic adenosine monophosphate-stimulated translocation of sodium taurocholate cotransporting polypeptide and multidrug resistant associated protein 2 in rat hepatocytes. Hepatology 2008; 47:1309-16. [PMID: 18273864 DOI: 10.1002/hep.22162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Cyclic adenosine monophosphate (cAMP) stimulates translocation of Na(+)-taurocholate (TC) cotransporting polypeptide (Ntcp) and multidrug resistant associated protein 2 (Mrp2) to the plasma membrane. Because cAMP activates phosphoinositide-3-kinase (PI3K) and protein kinase C (PKC) activation is PI3K-dependent, the aim of the current study was to determine whether cAMP activates conventional and novel PKCs in hepatocytes and whether such activation plays a role in cAMP-stimulated Ntcp and Mrp2 translocation. The effect of cAMP on PKCs, TC uptake, and Ntcp and Mrp2 translocation was studied in isolated rat hepatocytes using a cell-permeable cAMP analog, CPT-cAMP. The activity of PKCs was assessed from membrane translocation of individual PKCs, and phospho-specific antibodies were used to determine PKCdelta phosphorylation. TC uptake was determined from time-dependent uptake of (14)C-TC, and a cell surface biotinylation method was used to determine Ntcp and Mrp2 translocation. CPT-cAMP stimulated nPKCdelta but not cPKCalpha or nPKCepsilon, and induced PI3K-dependent phosphorylation of nPKCdelta at Thr(505). Rottlerin, an inhibitor of nPKCdelta, inhibited cAMP-induced nPKCdelta translocation, TC uptake, and Ntcp and Mrp2 translocation. Bistratene A, an activator of nPKCdelta, stimulated nPKCdelta translocation, TC uptake, and Ntcp and Mrp2 translocation. The effects of cAMP and bistratene A on TC uptake and Ntcp and Mrp2 translocation were not additive. CONCLUSION These results suggest that cAMP stimulates Ntcp and Mrp2 translocation, at least in part, by activating nPKCdelta via PI3K-dependent phosphorylation at Thr(505).
Collapse
Affiliation(s)
- Christopher M Schonhoff
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Ursodeoxycholic acid (UDCA) is used in the treatment of cholestatic liver diseases, gallstone dissolution, and for patients with hepatitis C virus infection to ameliorate elevated alanine aminotransferase levels. The efficacy of UDCA treatment has been debated and the mechanisms of action in humans have still not defined. Suggested mechanisms include the improvement of bile acid transport and/or detoxification, cytoprotection, and anti-apoptotic effects. In this review, we summarize the proposed molecular mechanisms for the action of UDCA, especially in hepatocytes, and also discuss the putative future clinical usage of this unique drug.
Collapse
Affiliation(s)
- Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University, Kasumigaura Hospital, Ibaraki, Japan
| | | |
Collapse
|
46
|
Bow DAJ, Perry JL, Miller DS, Pritchard JB, Brouwer KLR. Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in freshly isolated rat hepatocytes. Drug Metab Dispos 2007; 36:198-202. [PMID: 17954525 DOI: 10.1124/dmd.107.018200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Freshly isolated hepatocytes are widely accepted as the "gold standard" for providing reliable data on drug uptake across the sinusoidal (basolateral) membrane. However, the suitability of freshly isolated hepatocytes in suspension to assess efflux by canalicular (apical) proteins or predict biliary excretion in the intact organ is unclear. After collagenase digestion, hepatocytes rapidly lose polarity, but localization of canalicular transport proteins in the first few hours after isolation has not been well characterized. In this study, immunostaining and confocal microscopy have provided, for the first time, a detailed examination of canalicular transport protein localization in freshly isolated rat hepatocytes fixed within 1 h of isolation and in cells cultured for 1 h. Organic anion transporting polypeptide 1a1 (Oatp1a1) was expressed in all hepatocytes and distributed evenly across the basolateral membrane; there was no evidence for colocalization of Oatp1a1 with P-glycoprotein (P-gp) or multidrug resistance-associated protein 2 (Mrp2). In contrast, P-gp and Mrp2 expression was lower than Oatp1a1 and confined to junctions between adjacent cells, intracellular compartments, and "legacy" network structures at or near the cell surface. P-gp and Mrp2 staining was more predominant in regions adjacent to former canalicular spaces, identified by zonula occludens-1 staining. Functional analysis of rat hepatocytes cultured for 1 h demonstrated that the fluorescent anion and Mrp2 substrate, 5-(and-6)-carboxy-2',7'-dichlorofluorescein (CDF), accumulated in cellular compartments; compartmental accumulation of CDF was sensitive to (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-[[3-dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571, Mrp inhibitor) and was not observed in hepatocytes isolated from Mrp2-deficient rats. Drug efflux from freshly isolated hepatocytes as an estimate of apical efflux/biliary excretion would give an inaccurate assessment of true apical elimination and, as such, should not be used to make in vivo extrapolations.
Collapse
Affiliation(s)
- Daniel A J Bow
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina, CB #7360 Kerr Hall, Chapel Hill, NC 27599-7360, USA
| | | | | | | | | |
Collapse
|
47
|
Jedlitschky G, Hoffmann U, Kroemer HK. Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2007; 2:351-66. [PMID: 16863439 DOI: 10.1517/17425255.2.3.351] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The multi-drug resistance protein 2 (MRP2; ABCC2) is an ATP-binding cassette transporter playing an important role in detoxification and chemoprotection by transporting a wide range of compounds, especially conjugates of lipophilic substances with glutathione, glucuronate and sulfate, which are collectively known as phase II products of biotransformation. In addition, MRP2 can also transport uncharged compounds in cotransport with glutathione, and thus can modulate the pharmacokinetics of many drugs. The other way around, its expression and activity are also altered by certain drugs and disease states. Unlike other members of the MRP/ABCC family, MRP2 is specifically expressed on the apical membrane domain of polarised cells as hepatocytes, renal proximal tubular cells, enterocytes and syncytiotrophoblasts of the placenta. Several naturally occurring mutations leading to the absence of functional MRP2 protein from the apical membrane have been described causing the human Dubin-Johnson syndrome associated with conjugated hyperbilirubinaemia. Experimental mutation studies have revealed critical amino acids for substrate binding in the MRP2 molecule. This review is, therefore, focused on the structure and function of MRP2, the substrates transported and the clinical relevance of MRP2.
Collapse
Affiliation(s)
- Gabriele Jedlitschky
- Research Center of Pharmacology and Experimental Therapeutics, Department of Pharmacology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Loeffler-Str. 23d, 17487 Greifswald, Germany.
| | | | | |
Collapse
|
48
|
Kawai S, Arai T, Yokoyama Y, Nagino M, Nimura Y. Free oxygen radicals reduce bile flow in rats via an intracellular cyclic AMP-dependent mechanism. J Gastroenterol Hepatol 2007; 22:429-35. [PMID: 17295778 DOI: 10.1111/j.1440-1746.2006.04486.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Oxidative stress reduces hepatic bile formation. Cyclic adenosine monophosphate (cAMP) is important in bile production; however, the role of basal amounts of intracellular cAMP in bile formation is not known. The aim of this study was to determine whether oxygen radicals reduce bile flow by mechanisms involving intrahepatocyte cAMP levels. METHODS The effect of an oxygen radical (tert-butyl hydroperoxide; t-BHP) on hepatic bile flow was determined in Wistar rats in vivo and in isolated perfused liver. Intracellular cAMP was measured in isolated hepatocytes with and without t-BHP in culture medium, while adenylate cyclase activity was measured in purified plasma membranes. To examine whether intracellular cAMP restoration could reverse t-BHP-induced bile flow reduction, dibutyryl cAMP (DBcAMP), a cell-membrane permeating cAMP, was used to treat isolated liver perfused with t-BHP. RESULTS Bile flow was significantly reduced 10 min following t-BHP administration in vivo and in isolated perfused liver (control vs 0.1 mg/mL t-BHP in perfusate, 29.3 vs 23.1 microg/kg per min, P < 0.05). Intracellular cAMP in isolated hepatocytes was reduced by adding t-BHP to the medium; this change was inhibited by DBcAMP. Adenylate cyclase activity in purified liver membrane fractions also was reduced by t-BHP. Administration of DBcAMP reversed bile flow reduction by t-BHP in isolated perfused liver. CONCLUSIONS Bile flow reduction by oxygen radicals was at least partly explained by inactivation of adenylate cyclase causing decreases in intrahepatocytic cAMP. Exogenous DBcAMP administration restored intracellular cAMP preventing bile flow reduction after exposure to oxygen radicals.
Collapse
Affiliation(s)
- Satoru Kawai
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
49
|
Tradtrantip L, Boyer JL, Suksamrarn A, Piyachaturawat P. Differential effects of hydroxyacetophenone analogues on the transcytotic vesicular pathway in rat liver. Eur J Pharmacol 2006; 547:152-9. [PMID: 16945364 DOI: 10.1016/j.ejphar.2006.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 06/08/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Insertion of transporter proteins into the apical canalicular membrane via vesicular transport is one of several choleretic mechanisms. Based on different choleretic activities of hydroxyacetophenone analogues including 4-mono; 2,6-di and 2,4,6-trihydroxy-acetophenone (MHA, DHA and THA), the present study aims to determine if these compounds stimulated vesicular transport in hepatocytes. Hydroxyacetophenone was continuously infused into the duodenum of the bile fistula rat. Bile flow rate was allowed to stabilize and then followed by an intraportal injection of horseradish peroxidase, a marker of the transcytotic vesicle pathway. MHA which stimulates bile acid independent flow, showed a dose-dependent increase in both the early (paracellular) and late (transcellular) peak of horseradish peroxidase excretion in bile. THA, which stimulates both bile acid dependent flow and bile acid independent flow, did not alter the pattern of horseradish peroxidase excretion into bile. However, DHA, which is more hydrophobic and increases only bile acid dependent flow, decreased the late peak. The stimulating effects of MHA on bile flow and horseradish peroxidase excretion were markedly inhibited by colchicine, suggesting that its choleretic action involves stimulation of exocytosis, as well as increase in paracellular permeability. In contrast, the lack of a stimulatory effect of THA and DHA on biliary horseradish peroxidase excretion suggested that their choleretic action is not associated with vesicular exocytosis. These results demonstrate a variable effect of hydroxyacetophenones on the transcytotic vesicular pathway reflecting different choleretic mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | | | | | | |
Collapse
|
50
|
Wakabayashi Y, Kipp H, Arias IM. Transporters on Demand: Intracellular Reservoirs and Cycling of Bile Canalicular ABC Transporters. J Biol Chem 2006; 281:27669-73. [PMID: 16737964 DOI: 10.1074/jbc.r600013200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiyuki Wakabayashi
- Unit on Cellular Polarity, Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|