1
|
Ahmed Mohamed Z, Yang J, Wen J, Jia F, Banerjee S. SEPHS1 Gene: A new master key for neurodevelopmental disorders. Clin Chim Acta 2024; 562:119844. [PMID: 38960024 DOI: 10.1016/j.cca.2024.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The SEPHS1 (Selenophosphate Synthetase 1) gene encodes a critical enzyme for synthesizing selenophosphate, the active donor of selenium (Se) necessary for selenoprotein biosynthesis. Selenoproteins are vital for antioxidant defense, thyroid hormone metabolism, and cellular homeostasis. Mutations in SEPHS1 gene, are associated with neurodevelopmental disorders with developmental delay, poor growth, hypotonia, and dysmorphic features. Due to Se's critical role in brain development and function, SEPHS1 gene has taken center stage in neurodevelopmental research. This review explores the structure and function of the SEPHS1 gene, its role in neurodevelopment, and the implications of its dysregulation for neurodevelopmental disorders. Therapeutic strategies, including Se supplementation, gene therapy, and targeted therapies, are discussed as potential interventions to address SEPHS1 associated neurodevelopmental dysfunction. The study's findings reveal how SEPHS1 mutations disrupt neurodevelopment, emphasizing the gene's intolerance to loss of function. Future research should focus on functional characterization of SEPHS1 variants, broader genetic screenings, and therapeutic developments.
Collapse
Affiliation(s)
- Zakaria Ahmed Mohamed
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Bang J, Kang D, Jung J, Yoo TJ, Shim MS, Gladyshev VN, Tsuji PA, Hatfield DL, Kim JH, Lee BJ. SEPHS1: Its evolution, function and roles in development and diseases. Arch Biochem Biophys 2022; 730:109426. [PMID: 36202216 PMCID: PMC9648052 DOI: 10.1016/j.abb.2022.109426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022]
Abstract
Selenophosphate synthetase (SEPHS) was originally discovered in prokaryotes as an enzyme that catalyzes selenophosphate synthesis using inorganic selenium and ATP as substrates. However, in contrast to prokaryotes, two paralogs, SEPHS1 and SEPHS2, occur in many eukaryotes. Prokaryotic SEPHS, also known as SelD, contains either cysteine (Cys) or selenocysteine (Sec) in the catalytic domain. In eukaryotes, only SEPHS2 carries out selenophosphate synthesis and contains Sec at the active site. However, SEPHS1 contains amino acids other than Sec or Cys at the catalytic position. Phylogenetic analysis of SEPHSs reveals that the ancestral SEPHS contains both selenophosphate synthesis and another unknown activity, and that SEPHS1 lost the selenophosphate synthesis activity. The three-dimensional structure of SEPHS1 suggests that its homodimer is unable to form selenophosphate, but retains ATPase activity to produce ADP and inorganic phosphate. The most prominent function of SEPHS1 is that it is implicated in the regulation of cellular redox homeostasis. Deficiency of SEPHS1 leads to the disturbance in the expression of genes involved in redox homeostasis. Different types of reactive oxygen species (ROS) are accumulated in response to SEPHS deficiency depending on cell or tissue types. The accumulation of ROS causes pleiotropic effects such as growth retardation, apoptosis, DNA damage, and embryonic lethality. SEPHS1 deficiency in mouse embryos affects retinoic signaling and other related signaling pathways depending on the embryonal stage until the embryo dies at E11.5. Dysregulated SEPHS1 is associated with the pathogenesis of various diseases including cancer, Crohn's disease, and osteoarthritis.
Collapse
Affiliation(s)
- Jeyoung Bang
- Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Donghyun Kang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jisu Jung
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Tack-Jin Yoo
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Myoung Sup Shim
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Petra A Tsuji
- Department of Biological Sciences, Towson University, 8000 York Rd., Towson, MD, USA
| | - Dolph L Hatfield
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Hong Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| | - Byeong Jae Lee
- Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Manta B, Makarova NE, Mariotti M. The selenophosphate synthetase family: A review. Free Radic Biol Med 2022; 192:63-76. [PMID: 36122644 DOI: 10.1016/j.freeradbiomed.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Selenophosphate synthetases use selenium and ATP to synthesize selenophosphate. This is required for biological utilization of selenium, most notably for the synthesis of the non-canonical amino acid selenocysteine (Sec). Therefore, selenophosphate synthetases underlie all functions of selenoproteins, which include redox homeostasis, protein quality control, hormone regulation, metabolism, and many others. This protein family comprises two groups, SelD/SPS2 and SPS1. The SelD/SPS2 group represent true selenophosphate synthetases, enzymes central to selenium metabolism which are present in all Sec-utilizing organisms across the tree of life. Notably, many SelD/SPS2 proteins contain Sec as catalytic residue in their N-terminal flexible selenium-binding loop, while others replace it with cysteine (Cys). The SPS1 group comprises proteins originated through gene duplications of SelD/SPS2 in metazoa in which the Sec/Cys-dependent catalysis was disrupted. SPS1 proteins do not synthesize selenophosphate and are not required for Sec synthesis. They have essential regulatory functions related to redox homeostasis and pyridoxal phosphate, which affect signaling pathways for growth and differentiation. In this review, we summarize the knowledge about the selenophosphate synthetase family acquired through decades of research, encompassing their structure, mechanism, function, and evolution.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Uruguay, Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Uruguay
| | - Nadezhda E Makarova
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
4
|
Qiao L, Dho SH, Kim JY, Kim LK. SEPHS1 is dispensable for pluripotency maintenance but indispensable for cardiac differentiation in mouse embryonic stem cells. Biochem Biophys Res Commun 2022; 590:125-131. [PMID: 34974300 DOI: 10.1016/j.bbrc.2021.12.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass of developing blastocysts, which have self-renewal ability and have the potential to develop or reconstitute into all embryonic lineages. Selenophosphate synthetase 1 (SEPHS1) is an essential protein in mouse early embryo development. However, the role of SEPHS1 in mouse ESCs remains to be elucidated. In this study, we generated Sephs1 KO ESCs and found that deficiency of SEPSH1 has little effect on pluripotency maintenance and proliferation. Notably, SEPHS1 deficiency impaired differentiation into three germ layers and gastruloid aggregation in vitro. RNA-seq analysis showed SEPHS1 is involved in cardiogenesis, verified by no beating signal in Sephs1 KO embryoid body at d10 and low expression of cardiac-related and contraction markers. Taken together, our results suggest that SPEHS1 is dispensable in ESC self-renewal, but indispensable in subsequent germ layer differentiation especially for functional cardiac lineage.
Collapse
Affiliation(s)
- Lu Qiao
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Hee Dho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, South Korea
| | - Ji Young Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, South Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, South Korea.
| |
Collapse
|
5
|
Tsuji PA, Santesmasses D, Lee BJ, Gladyshev VN, Hatfield DL. Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. Int J Mol Sci 2021; 23:ijms23010005. [PMID: 35008430 PMCID: PMC8744743 DOI: 10.3390/ijms23010005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/25/2022] Open
Abstract
Selenium is a fascinating element that has a long history, most of which documents it as a deleterious element to health. In more recent years, selenium has been found to be an essential element in the diet of humans, all other mammals, and many other life forms. It has many health benefits that include, for example, roles in preventing heart disease and certain forms of cancer, slowing AIDS progression in HIV patients, supporting male reproduction, inhibiting viral expression, and boosting the immune system, and it also plays essential roles in mammalian development. Elucidating the molecular biology of selenium over the past 40 years generated an entirely new field of science which encompassed the many novel features of selenium. These features were (1) how this element makes its way into protein as the 21st amino acid in the genetic code, selenocysteine (Sec); (2) the vast amount of machinery dedicated to synthesizing Sec uniquely on its tRNA; (3) the incorporation of Sec into protein; and (4) the roles of the resulting Sec-containing proteins (selenoproteins) in health and development. One of the research areas receiving the most attention regarding selenium in health has been its role in cancer prevention, but further research has also exposed the role of this element as a facilitator of various maladies, including cancer.
Collapse
Affiliation(s)
- Petra A. Tsuji
- Department of Biological Sciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
- Correspondence:
| | - Didac Santesmasses
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Byeong J. Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea;
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Dolph L. Hatfield
- Scientist Emeritus, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
6
|
Santesmasses D, Mariotti M, Gladyshev VN. Tolerance to Selenoprotein Loss Differs between Human and Mouse. Mol Biol Evol 2020; 37:341-354. [PMID: 31560400 PMCID: PMC6993852 DOI: 10.1093/molbev/msz218] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse has emerged as the most common model organism in biomedicine. Here, we analyzed the tolerance to the loss-of-function (LoF) of selenoprotein genes, estimated from mouse knockouts and the frequency of LoF variants in humans. We found not only a general correspondence in tolerance (e.g., GPX1, GPX2) and intolerance (TXNRD1, SELENOT) to gene LoF between humans and mice but also important differences. Notably, humans are intolerant to the loss of iodothyronine deiodinases, whereas their deletion in mice leads to mild phenotypes, and this is consistent with phenotype differences in selenocysteine machinery loss between these species. In contrast, loss of TXNRD2 and GPX4 is lethal in mice but may be tolerated in humans. We further identified the first human SELENOP variants coding for proteins varying in selenocysteine content. Finally, our analyses suggested that premature termination codons in selenoprotein genes trigger nonsense-mediated decay, but do this inefficiently when UGA codon is gained. Overall, our study highlights differences in the physiological importance of selenoproteins between human and mouse.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Pletcher RC, Hardman SL, Intagliata SF, Lawson RL, Page A, Tennessen JM. A Genetic Screen Using the Drosophila melanogaster TRiP RNAi Collection To Identify Metabolic Enzymes Required for Eye Development. G3 (BETHESDA, MD.) 2019; 9:2061-2070. [PMID: 31036678 PMCID: PMC6643872 DOI: 10.1534/g3.119.400193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
The metabolic enzymes that compose glycolysis, the citric acid cycle, and other pathways within central carbon metabolism have emerged as key regulators of animal development. These enzymes not only generate the energy and biosynthetic precursors required to support cell proliferation and differentiation, but also moonlight as regulators of transcription, translation, and signal transduction. Many of the genes associated with animal metabolism, however, have never been analyzed in a developmental context, thus highlighting how little is known about the intersection of metabolism and development. Here we address this deficiency by using the Drosophila TRiP RNAi collection to disrupt the expression of over 1,100 metabolism-associated genes within cells of the eye imaginal disc. Our screen not only confirmed previous observations that oxidative phosphorylation serves a critical role in the developing eye, but also implicated a host of other metabolic enzymes in the growth and differentiation of this organ. Notably, our analysis revealed a requirement for glutamine and glutamate metabolic processes in eye development, thereby revealing a role of these amino acids in promoting Drosophila tissue growth. Overall, our analysis highlights how the Drosophila eye can serve as a powerful tool for dissecting the relationship between development and metabolism.
Collapse
Affiliation(s)
- Rose C Pletcher
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sara L Hardman
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sydney F Intagliata
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Rachael L Lawson
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Aumunique Page
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Jason M Tennessen
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| |
Collapse
|
8
|
Na J, Jung J, Bang J, Lu Q, Carlson BA, Guo X, Gladyshev VN, Kim J, Hatfield DL, Lee BJ. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic Biol Med 2018; 127:190-197. [PMID: 29715549 DOI: 10.1016/j.freeradbiomed.2018.04.577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
Selenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the inhibition of cell growth/proliferation, the accumulation of hydrogen peroxide in mammals and an unidentified reactive oxygen species (ROS) in Drosophila, and the activation of a defense system. Hydrogen peroxide accumulation in SEPHS1-deficient cells is mainly caused by the down-regulation of genes involved in ROS scavenging, and leads to the inhibition of cell proliferation and survival. However, the mechanisms underlying SEPHS1 regulation of redox homeostasis are still not understood.
Collapse
Affiliation(s)
- Jiwoon Na
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisu Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeyoung Bang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiao Lu
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jinhong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dolph L Hatfield
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byeong Jae Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Li JL, Li W, Sun XT, Xia J, Li XN, Lin J, Zhang C, Sun XC, Xu SW. Selenophosphate synthetase 1 (SPS1) is required for the development and selenium homeostasis of central nervous system in chicken (Gallus gallus). Oncotarget 2017; 8:35919-35932. [PMID: 28415800 PMCID: PMC5482627 DOI: 10.18632/oncotarget.16283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
Selenophosphate synthetase (SPS) is essential for selenoprotein biosynthesis. In two SPS paralogues, SPS1 was only cloned from a cDNA library prepared from avian organ. However, the biological function of SPS1 in chicken central nervous system (CNS) remains largely unclear. To investigate the role of avian SPS1 in the development and selenium (Se) homeostasis of CNS, fertile eggs, chicken embryos, embryo neurons and chicks were employed in this study. The response of SPS1 transcription to the development and Se levels of CNS tissues was analyzed using qRT-PCR. SPS1 gene exists extensively in the development of chicken CNS. The wide expression of avian SPS1 can be controlled by the Se content levels, which suggests that SPS1 is important in the regulation of Se homeostasis. The fundamental mechanism of these effects is that Se alters the half-life and stability of SPS1 mRNA. Therefore, SPS1 exerts an irreplaceable biological function in chicken CNS and Se homeostasis is closely related to the expression of SPS1. These results suggested that SPS1 was required for the development and Se homeostasis of CNS in chicken.
Collapse
Affiliation(s)
- Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Xue-Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jun Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Xiao-Chen Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
10
|
Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals. Biochem J 2016; 473:2141-54. [PMID: 27208177 DOI: 10.1042/bcj20160393] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
Selenophosphate synthetase (SPS) was initially detected in bacteria and was shown to synthesize selenophosphate, the active selenium donor. However, mammals have two SPS paralogues, which are designated SPS1 and SPS2. Although it is known that SPS2 catalyses the synthesis of selenophosphate, the function of SPS1 remains largely unclear. To examine the role of SPS1 in mammals, we generated a Sps1-knockout mouse and found that systemic SPS1 deficiency led to embryos that were clearly underdeveloped by embryonic day (E)8.5 and virtually resorbed by E14.5. The knockout of Sps1 in the liver preserved viability, but significantly affected the expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione transferase Omega 1 (GSTO1). To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma (EC) cell line, which affected the glutathione system proteins and accordingly led to the accumulation of hydrogen peroxide in the cell. Furthermore, we found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 played a role in supporting and/or sustaining cancer. In addition, the overexpression of mouse or human GLRX1 led to a reversal of observed increases in reactive oxygen species (ROS) in the F9 SPS1/GLRX1-deficient cells and resulted in levels that were similar to those in F9 SPS1-sufficient cells. The results suggested that SPS1 is an essential mammalian enzyme with roles in regulating redox homoeostasis and controlling cell growth.
Collapse
|
11
|
Fuessl M, Reinders J, Oefner PJ, Heinze J, Schrempf A. Selenophosphate synthetase in the male accessory glands of an insect without selenoproteins. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:46-51. [PMID: 25308180 DOI: 10.1016/j.jinsphys.2014.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
Selenoproteins (containing the 21st proteinogenic amino acid selenocysteine) play important roles throughout all domains of life. Surprisingly, a number of taxa have small selenoproteomes, and Hymenopteran insects appear to have fully lost selenoproteins. Nevertheless, their genomes contain genes for several proteins of the selenocysteine insertion machinery, including selenophosphate synthetase 1 (SELD/SPS1). At present, it is unknown whether this enzyme has a selenoprotein-independent function, and whether the gene is actually translated into a protein in Hymenoptera. Here, we report that SELD/SPS1 is present as a protein in the accessory glands of males of the ant Cardiocondyla obscurior. It appears to be more abundant in the glands of winged disperser males than in those of wingless, local fighter males. Mating increases the lifespan and fecundity of queens in C. obscurior, and mating with winged males has a stronger effect on queen fitness than mating with a wingless male. SELD/SPS 1 has been suggested to play an important role in oxidative stress defense, and might therefore be involved in the life-prolonging effect of mating.
Collapse
Affiliation(s)
- Marion Fuessl
- Biologie I, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, University of Regensburg, Josef-Engert-Str. 9, D-93051 Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Josef-Engert-Str. 9, D-93051 Regensburg, Germany
| | - Jürgen Heinze
- Biologie I, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Alexandra Schrempf
- Biologie I, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.
| |
Collapse
|
12
|
Turanov AA, Xu XM, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr 2011; 2:122-8. [PMID: 22332041 PMCID: PMC3065758 DOI: 10.3945/an.110.000265] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biosynthetic pathway for selenocysteine (Sec), the 21st amino acid in the genetic code whose codeword is UGA, was recently determined in eukaryotes and archaea. Sec tRNA, designated tRNA([Ser]Sec), is initially aminoacylated with serine by seryl-tRNA synthetase and the resulting seryl moiety is converted to phosphoserine by O-phosphoseryl-tRNA kinase to form O-phosphoseryl-tRNA([Ser]Sec). Sec synthase (SecS) then uses O-phosphoseryl-tRNA([Ser]Sec) and the active donor of selenium, selenophosphate, to form Sec-tRNA([Ser]Sec). Selenophosphate is synthesized from selenide and ATP by selenophosphate synthetase 2 (SPS2). Sec was the last protein amino acid in eukaryotes whose biosynthesis had not been established and the only known amino acid in eukaryotes whose biosynthesis occurs on its tRNA. Interestingly, sulfide can replace selenide to form thiophosphate in the SPS2-catalyzed reaction that can then react with O-phosphoseryl-tRNA([Ser]Sec) in the presence of SecS to form cysteine-(Cys-)tRNA([Ser]Sec). This novel pathway of Cys biosynthesis results in Cys being decoded by UGA and replacing Sec in normally selenium-containing proteins (selenoproteins). The selenoprotein, thioredoxin reductase 1 (TR1), was isolated from cells in culture and from mouse liver for analysis of Cys/Sec replacement by MS. The level of Cys/Sec replacement in TR1 was proportional to the level of selenium in the diet of the mice. Elucidation of the biosynthesis of Sec and Sec/Cys replacement provides novel ways of regulating selenoprotein functions and ultimately better understanding of the biological roles of dietary selenium.
Collapse
Affiliation(s)
- Anton A. Turanov
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115
| | - Xue-Ming Xu
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Bradley A. Carlson
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Min-Hyuk Yoo
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115,To whom correspondence should be addressed. E-mail: ;
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,To whom correspondence should be addressed. E-mail: ;
| |
Collapse
|
13
|
Kim JY, Lee KH, Shim MS, Shin H, Xu XM, Carlson BA, Hatfield DL, Lee BJ. Human selenophosphate synthetase 1 has five splice variants with unique interactions, subcellular localizations and expression patterns. Biochem Biophys Res Commun 2010; 397:53-8. [PMID: 20471958 DOI: 10.1016/j.bbrc.2010.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/08/2010] [Indexed: 10/19/2022]
Abstract
Selenophosphate synthetase 1 (SPS1) is an essential cellular gene in higher eukaryotes. Five alternative splice variants of human SPS1 (major type, DeltaE2, DeltaE8, +E9, +E9a) were identified wherein +E9 and +E9a make the same protein. The major type was localized in both the nuclear and plasma membranes, and the others in the cytoplasm. All variants form homodimers, and in addition, the major type forms a heterodimer with DeltaE2, and DeltaE8 with +E9. The level of expression of each splice variant was different in various cell lines. The expression of each alternative splice variant was regulated during the cell cycle. The levels of the major type and DeltaE8 were gradually increased until G2/M phase and then gradually decreased. DeltaE2 expression peaked at mid-S phase and then gradually decreased. However, +E9/+E9a expression decreased gradually after cell cycle arrest. The possible involvement of SPS1 splice variants in cell cycle regulation is discussed.
Collapse
Affiliation(s)
- Jin Young Kim
- Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The co-translational incorporation of selenocysteine (Sec) requires that UGA be recognized as a sense rather than a nonsense codon. This is accomplished by the concerted action of a Sec insertion sequence (SECIS) element, SECIS binding protein 2, and a ternary complex of the Sec specific elongation factor, Sec-tRNA(Sec), and GTP. The mechanism by which they alter the canonical protein synthesis reaction has been elusive. Here we present an overview of the mechanistic perspective on Sec incorporation, highlighting recent advances in the field.
Collapse
Affiliation(s)
- Jesse Donovan
- Department of Microbiology, Molecular Genetics, and Immunology, Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
15
|
Chapple CE, Guigó R. Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes. PLoS One 2008; 3:e2968. [PMID: 18698431 PMCID: PMC2500217 DOI: 10.1371/journal.pone.0002968] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. Methodology/Principal Findings In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. Conclusions/Significance Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.
Collapse
Affiliation(s)
- Charles E. Chapple
- Center for Genomic Regulation, Universitat Pompeu Fabra and Institut Municipal d'Investigació Mèdica, Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Center for Genomic Regulation, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
16
|
Kopytova DV, Krasnov AN, Kopantceva MR, Nabirochkina EN, Nikolenko JV, Maksimenko O, Kurshakova MM, Lebedeva LA, Yerokhin MM, Simonova OB, Korochkin LI, Tora L, Georgiev PG, Georgieva SG. Two isoforms of Drosophila TRF2 are involved in embryonic development, premeiotic chromatin condensation, and proper differentiation of germ cells of both sexes. Mol Cell Biol 2006; 26:7492-505. [PMID: 17015475 PMCID: PMC1636870 DOI: 10.1128/mcb.00349-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila TATA box-binding protein (TBP)-related factor 2 (TRF2 or TLF) was shown to control a subset of genes different from that controlled by TBP. Here, we have investigated the structure and functions of the trf2 gene. We demonstrate that it encodes two protein isoforms: the previously described 75-kDa TRF2 and a newly identified 175-kDa version in which the same sequence is preceded by a long N-terminal domain with coiled-coil motifs. Chromatography of Drosophila embryo extracts revealed that the long TRF2 is part of a multiprotein complex also containing ISWI. Both TRF2 forms are detected at the same sites on polytene chromosomes and have the same expression patterns, suggesting that they fulfill similar functions. A study of the manifestations of the trf2 mutation suggests an essential role of TRF2 during embryonic Drosophila development. The trf2 gene is strongly expressed in germ line cells of adult flies. High levels of TRF2 are found in nuclei of primary spermatocytes and trophocytes with intense transcription. In ovaries, TRF2 is present both in actively transcribing nurse cells and in the transcriptionally inactive oocyte nuclei. Moreover, TRF2 is essential for premeiotic chromatin condensation and proper differentiation of germ cells of both sexes.
Collapse
Affiliation(s)
- Daria V Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov St. 34/5, Moscow 119334, Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chung HJ, Yoon SI, Shin SH, Koh YA, Lee SJ, Lee YS, Bae S. p53-mediated enhancement of radiosensitivity by selenophosphate synthetase 1 overexpression. J Cell Physiol 2006; 209:131-41. [PMID: 16786570 DOI: 10.1002/jcp.20714] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selenium has been associated with cancer prevention. Despite vast knowledge of selenium effect on various health conditions, functional characterization of selenium metabolic enzymes on cellular physiology has been limited. Therefore, to gain insight into the mechanisms underlying cancer prevention by selenium, we investigated sps1, one of the two human selenophosphate synthetase genes for its role in cancer cell's response to ionizing radiation. Although stable expression of Sps1 protein per se had little effect on cell proliferation, concurrent irradiation decreased viability of the sps1 cell line. The increased sensitivity of the cell lines to ionizing radiation was correlated with increased p53 activity as well as with simultaneous up- and downregulation of Bax and Bcl2, respectively. Knockdown of sps1 and p53 by small interfering RNA method revealed that the level of p53 was proportional to that of Sps1 and that the increased radiosensitivity was dependent upon p53. Sps1 cell lines displayed decreased level of reactive oxygen species (ROS) with concomitant increase of certain redox enzymes. Furthermore, p53 activity was regulated by cellular redox via Ref1 in sps1 cell lines. Collectively, our results demonstrated that sps1 was able to affect cell viability upon ionizing radiation via modulation of p53 activity. They further suggest that Sps1 and its reaction product selenophosphate might be involved in cancer prevention in a p53-dependent manner and could be applied to development of a novel cancer therapy.
Collapse
Affiliation(s)
- Hyun Ju Chung
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Recent identification of new selenocysteine-containing proteins has revealed relationships between the two trace elements selenium (Se) and iodine and the hormone network. Several selenoproteins participate in the protection of thyrocytes from damage by H(2)O(2) produced for thyroid hormone biosynthesis. Iodothyronine deiodinases are selenoproteins contributing to systemic or local thyroid hormone homeostasis. The Se content in endocrine tissues (thyroid, adrenals, pituitary, testes, ovary) is higher than in many other organs. Nutritional Se depletion results in retention, whereas Se repletion is followed by a rapid accumulation of Se in endocrine tissues, reproductive organs, and the brain. Selenoproteins such as thioredoxin reductases constitute the link between the Se metabolism and the regulation of transcription by redox sensitive ligand-modulated nuclear hormone receptors. Hormones and growth factors regulate the expression of selenoproteins and, conversely, Se supply modulates hormone actions. Selenoproteins are involved in bone metabolism as well as functions of the endocrine pancreas and adrenal glands. Furthermore, spermatogenesis depends on adequate Se supply, whereas Se excess may impair ovarian function. Comparative analysis of the genomes of several life forms reveals that higher mammals contain a limited number of identical genes encoding newly detected selenocysteine-containing proteins.
Collapse
Affiliation(s)
- J Köhrle
- Institut für Experimentelle Endokrinologie, Charité, Humboldt Universität zu Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany.
| | | | | | | |
Collapse
|
19
|
Young TW, Mei FC, Yang G, Thompson-Lanza JA, Liu J, Cheng X. Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res 2004; 64:4577-84. [PMID: 15231669 DOI: 10.1158/0008-5472.can-04-0222] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular transformation is a complex process involving genetic alterations associated with multiple signaling pathways. Development of a transformation model using defined genetic elements has provided an opportunity to elucidate the role of oncogenes and tumor suppressor genes in the initiation and development of ovarian cancer. To study the cellular and molecular mechanisms of Ras-mediated oncogenic transformation of ovarian epithelial cells, we used a proteomic approach involving two-dimensional electrophoresis and mass spectrometry to profile two ovarian epithelial cell lines, one immortalized with SV40 T/t antigens and the human catalytic subunit of telomerase and the other transformed with an additional oncogenic ras(V12) allele. Of approximately 2200 observed protein spots, we have identified >30 protein targets that showed significant changes between the immortalized and transformed cell lines using peptide mass fingerprinting. Among these identified targets, one most notable group of proteins altered significantly consists of enzymes involved in cellular redox balance. Detailed analysis of these protein targets suggests that activation of Ras-signaling pathways increases the threshold of reactive oxidative species (ROS) tolerance by up-regulating the overall antioxidant capacity of cells, especially in mitochondria. This enhanced antioxidant capacity protects the transformed cells from high levels of ROS associated with the uncontrolled growth potential of tumor cells. It is conceivable that an enhanced antioxidation capability may constitute a common mechanism for tumor cells to evade apoptosis induced by oxidative stresses at high ROS levels.
Collapse
Affiliation(s)
- Travis W Young
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, School of Medicine, The University of Texas Medical Branch, Galveston, USA
| | | | | | | | | | | |
Collapse
|
20
|
Morey M, Corominas M, Serras F. DIAP1 suppresses ROS-induced apoptosis caused by impairment of the selD/sps1 homolog in Drosophila. J Cell Sci 2004; 116:4597-604. [PMID: 14576353 DOI: 10.1242/jcs.00783] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular antioxidant defense systems neutralize the cytotoxic by-products referred to as reactive oxygen species (ROS). Among them, selenoproteins have important antioxidant and detoxification functions. The interference in selenoprotein biosynthesis results in accumulation of ROS and consequently in a toxic intracellular environment. The resulting ROS imbalance can trigger apoptosis to eliminate the deleterious cells. In Drosophila, a null mutation in the selD gene (homologous to the human selenophosphate synthetase type 1) causes an impairment of selenoprotein biosynthesis, a ROS burst and lethality. We propose this mutation (known as selDptuf) as a tool to understand the link between ROS accumulation and cell death. To this aim we have analyzed the mechanism by which selDptuf mutant cells become apoptotic in Drosophila imaginal discs. The apoptotic effect of selDptuf does not require the activity of the Ras/MAPK-dependent proapoptotic gene hid, but results in stabilization of the tumor suppressor protein Dmp53 and transcription of the Drosophila pro-apoptotic gene reaper (rpr). We also provide genetic evidence that the initiator caspase DRONC is activated and that the effector caspase DRICE is processed to commit selDptuf mutant cells to death. Moreover, the ectopic expression of the inhibitor of apoptosis DIAP1 rescues the cellular viability of selDptuf mutant cells. These observations indicate that selDptuf ROS-induced apoptosis in Drosophila is mainly driven by the caspase-dependent Dmp53/Rpr pathway.
Collapse
Affiliation(s)
- Marta Morey
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
21
|
Loop T, Leemans R, Stiefel U, Hermida L, Egger B, Xie F, Primig M, Certa U, Fischbach KF, Reichert H, Hirth F. Transcriptional signature of an adult brain tumor in Drosophila. BMC Genomics 2004; 5:24. [PMID: 15090076 PMCID: PMC419699 DOI: 10.1186/1471-2164-5-24] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 04/16/2004] [Indexed: 11/18/2022] Open
Abstract
Background Mutations and gene expression alterations in brain tumors have been extensively investigated, however the causes of brain tumorigenesis are largely unknown. Animal models are necessary to correlate altered transcriptional activity and tumor phenotype and to better understand how these alterations cause malignant growth. In order to gain insights into the in vivo transcriptional activity associated with a brain tumor, we carried out genome-wide microarray expression analyses of an adult brain tumor in Drosophila caused by homozygous mutation in the tumor suppressor gene brain tumor (brat). Results Two independent genome-wide gene expression studies using two different oligonucleotide microarray platforms were used to compare the transcriptome of adult wildtype flies with mutants displaying the adult bratk06028 mutant brain tumor. Cross-validation and stringent statistical criteria identified a core transcriptional signature of bratk06028 neoplastic tissue. We find significant expression level changes for 321 annotated genes associated with the adult neoplastic bratk06028 tissue indicating elevated and aberrant metabolic and cell cycle activity, upregulation of the basal transcriptional machinery, as well as elevated and aberrant activity of ribosome synthesis and translation control. One fifth of these genes show homology to known mammalian genes involved in cancer formation. Conclusion Our results identify for the first time the genome-wide transcriptional alterations associated with an adult brain tumor in Drosophila and reveal insights into the possible mechanisms of tumor formation caused by homozygous mutation of the translational repressor brat.
Collapse
Affiliation(s)
- Thomas Loop
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Ronny Leemans
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Urs Stiefel
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Leandro Hermida
- Biocenter, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Boris Egger
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Fukang Xie
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Michael Primig
- Biocenter, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Ulrich Certa
- Roche Genetics Pharmaceuticals Division, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | | | - Heinrich Reichert
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Frank Hirth
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| |
Collapse
|
22
|
Missirlis F, Rahlfs S, Dimopoulos N, Bauer H, Becker K, Hilliker A, Phillips JP, Jäckle H. A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. Biol Chem 2003; 384:463-72. [PMID: 12715897 DOI: 10.1515/bc.2003.052] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cellular defense systems against reactive oxygen species (ROS) include thioredoxin reductase (TrxR) and glutathione reductase (GR). They generate sulfhydryl-reducing systems which are coupled to antioxidant enzymes, the thioredoxin and glutathione peroxidases (TPx and GPx). The fruit fly Drosophila lacks a functional GR, suggesting that the thioredoxin system is the major source for recycling glutathione. Whole genome in silico analysis identified two non-selenium containing putative GPx genes. We examined the biochemical characteristics of one of these gene products and found that it lacks GPx activity and functions as a TPx. Transgene-dependent overexpression of the newly identified Glutathione peroxidase homolog with thioredoxin peroxidase activity (Gtpx-1) gene increases resistance to experimentally induced oxidative stress, but does not compensate for the loss of catalase, an enzyme which, like GTPx-1, functions to eliminate hydrogen peroxide. The results suggest that GTPx-1 is part of the Drosophila Trx antioxidant defense system but acts in a genetically distinct pathway or in a different cellular compartment than catalase.
Collapse
Affiliation(s)
- Fanis Missirlis
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Morey M, Serras F, Corominas M. Halving the selenophosphate synthetase gene dose confers hypersensitivity to oxidative stress in Drosophila melanogaster. FEBS Lett 2003; 534:111-4. [PMID: 12527370 DOI: 10.1016/s0014-5793(02)03790-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several lines of evidence indicate that selenoproteins mainly act as cellular antioxidants. Here, we test this idea comparing the sensitivity to oxidative stress (paraquat and hydrogen peroxide) between wild type and heterozygous flies for the selenophosphate synthetase selD(ptuf) mutation. Whereas under normal laboratory conditions no difference in life span is observed, a significant decrease is seen in heterozygous flies treated with oxidant agents. In contrast, overexpression of the selD gene in motoneurons did not extend longevity. Our results strongly suggest that selD haploinsufficiency makes heterozygous flies more sensitive to oxidative stress and add further evidence to the role of selenoproteins as cellular antioxidants.
Collapse
Affiliation(s)
- Marta Morey
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
24
|
Sly BJ, Hazel JC, Popodi EM, Raff RA. Patterns of gene expression in the developing adult sea urchin central nervous system reveal multiple domains and deep-seated neural pentamery. Evol Dev 2002; 4:189-204. [PMID: 12054292 DOI: 10.1046/j.1525-142x.2002.02002.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adult sea urchin central nervous system (CNS) is composed of five radial nerve cords connected to a circular nerve ring. Although much is known about the molecular mechanisms underlying the development and function of the nervous systems of many invertebrate and vertebrate species, virtually nothing is known about these processes in echinoderms. We have isolated a set of clones from a size-selected cDNA library prepared from the nervous system of the sea urchin Heliocidaris erythrogramma for use as probes. A total of 117 expressed sequence clones were used to search the GenBank database. Identified messages include genes that encode signaling proteins, cytoskeletal elements, cell surface proteins and receptors, cell proliferation and differentiation factors, transport and channel proteins, and a RNA DEAD box helicase. Expression was analyzed by RNA gel blot hybridization to document expression through development. Many of the genes have apparently neural limited expression and function, but some have been co-opted into new roles, notably associated with exocytotic events at fertilization. Localization of gene expression by whole-mount in situ hybridization shows that the morphologically simple sea urchin radial CNS exhibits complex organization into localized transcriptional domains. The transcription patterns reflect the morphological pentamery of the echinoderm CNS and provide no indication of an underlying functional bilateral symmetry in the CNS.
Collapse
Affiliation(s)
- Belinda J Sly
- Indiana Molecular Biology Institute and Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | |
Collapse
|
25
|
Jeong DW, Kim TS, Chung YW, Lee BJ, Kim IY. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett 2002; 517:225-8. [PMID: 12062442 DOI: 10.1016/s0014-5793(02)02628-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The function of selenoprotein W (Se-W) was investigated by cloning the corresponding cDNA from mouse brain and expressing it in CHO cells and H1299 human lung cancer cells. Overexpression of Se-W markedly reduced the sensitivity of both cell lines to H2O2 cytotoxicity. The intracellular peroxide concentration of the transfected cells was lower than that of the parental cells in the absence or presence of extracellular H2O2. The resistance to oxidative stress conferred by Se-W was dependent on glutathione. Expression of Se-W mutants in which selenocysteine-13 or cysteine-37 was replaced by serine did not confer resistance to H2O2, implicating these residues in the antioxidant activity of Se-W in vivo.
Collapse
Affiliation(s)
- Dae won Jeong
- Laboratory of Cellular and Molecular Biochemistry, Graduate School of Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
26
|
Morey M, Serras F, Baguñà J, Hafen E, Corominas M. Modulation of the Ras/MAPK signalling pathway by the redox function of selenoproteins in Drosophila melanogaster. Dev Biol 2001; 238:145-56. [PMID: 11784000 DOI: 10.1006/dbio.2001.0389] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.
Collapse
Affiliation(s)
- M Morey
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
| | | | | | | | | |
Collapse
|
27
|
Castellano S, Morozova N, Morey M, Berry MJ, Serras F, Corominas M, Guigó R. In silico identification of novel selenoproteins in the Drosophila melanogaster genome. EMBO Rep 2001; 2:697-702. [PMID: 11493597 PMCID: PMC1083988 DOI: 10.1093/embo-reports/kve151] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In selenoproteins, incorporation of the amino acid selenocysteine is specified by the UGA codon, usually a stop signal. The alternative decoding of UGA is conferred by an mRNA structure, the SECIS element, located in the 3'-untranslated region of the selenoprotein mRNA. Because of the non-standard use of the UGA codon, current computational gene prediction methods are unable to identify selenoproteins in the sequence of the eukaryotic genomes. Here we describe a method to predict selenoproteins in genomic sequences, which relies on the prediction of SECIS elements in coordination with the prediction of genes in which the strong codon bias characteristic of protein coding regions extends beyond a TGA codon interrupting the open reading frame. We applied the method to the Drosophila melanogaster genome, and predicted four potential selenoprotein genes. One of them belongs to a known family of selenoproteins, and we have tested experimentally two other predictions with positive results. Finally, we have characterized the expression pattern of these two novel selenoprotein genes.
Collapse
Affiliation(s)
- S Castellano
- Grup de Recerca en Informàtica Biomèdica, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Martin-Romero FJ, Kryukov GV, Lobanov AV, Carlson BA, Lee BJ, Gladyshev VN, Hatfield DL. Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality. J Biol Chem 2001; 276:29798-804. [PMID: 11389138 DOI: 10.1074/jbc.m100422200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine is a rare amino acid in protein that is encoded by UGA with the requirement of a downstream mRNA stem-loop structure, the selenocysteine insertion sequence element. To detect selenoproteins in Drosophila, the entire genome was analyzed with a novel program that searches for selenocysteine insertion sequence elements, followed by selenoprotein gene signature analyses. This computational screen and subsequent metabolic labeling with (75)Se and characterization of selenoprotein mRNA expression resulted in identification of three selenoproteins: selenophosphate synthetase 2 and novel G-rich and BthD selenoproteins that had no homology to known proteins. To assess a biological role for these proteins, a simple chemically defined medium that supports growth of adult Drosophila and requires selenium supplementation for optimal survival was devised. Flies survived on this medium supplemented with 10(-8) to 10(-6) m selenium or on the commonly used yeast-based complete medium at about twice the rate as those on a medium without selenium or with >10(-6) m selenium. This effect correlated with changes in selenoprotein mRNA expression. The number of eggs laid by Drosophila was reduced approximately in half in the chemically defined medium compared with the same medium supplemented with selenium. The data provide evidence that dietary selenium deficiency shortens, while supplementation of the diet with selenium normalizes the Drosophila life span by a process that may involve the newly identified selenoproteins.
Collapse
Affiliation(s)
- F J Martin-Romero
- Section on the Molecular Biology of Selenium, Basic Research Laboratory, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Serras F, Morey M, Alsina B, Baguñà J, Corominas M. The Drosophila selenophosphate synthetase (selD) gene is required for development and cell proliferation. Biofactors 2001; 14:143-9. [PMID: 11568451 DOI: 10.1002/biof.5520140119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To study the function of selenoproteins in development and growth we have used a lethal mutation (selD(ptuf)) of the Drosophila homologous selenophosphate synthetase (selD) gene. This enzyme is involved in the selenoprotein biosynthesis. The selD(ptuf) loss-of-function mutation causes aberrant cell proliferation and differentiation patterns in the brain and imaginal discs, as deduced from genetic mosaics, patterns of gene expression and analysis of cell cycle markers. In addition to that, selenium metabolism is also necessary for the ras/MAPKinase signal tansduction pathway. Therefore, the use of Drosophila imaginal discs and brain and in particular the selD(ptuf) mutation, provide an excellent model to investigate the role of selenoproteins in the regulation of cell proliferation, growth and differentiation.
Collapse
Affiliation(s)
- F Serras
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
30
|
Hirosawa-Takamori M, Jäckle H, Vorbrüggen G. The class 2 selenophosphate synthetase gene of Drosophila contains a functional mammalian-type SECIS. EMBO Rep 2000; 1:441-6. [PMID: 11258485 PMCID: PMC1083760 DOI: 10.1093/embo-reports/kvd087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthesis of monoselenophosphate, the selenium donor required for the synthesis of selenocysteine (Sec) is catalyzed by the enzyme selenophosphate synthetase (SPS), first described in Escherichia coli. SPS homologs were identified in archaea, mammals and Drosophila. In the latter, however, an amino acid replacement is present within the catalytic domain and lacks selenide-dependent SPS activity. We describe the identification of a novel Drosophila homolog, Dsps2. The open reading frame of Dsps2 mRNA is interrupted by an UGA stop codon. The 3'UTR contains a mammalian-like Sec insertion sequence which causes translational readthrough in both transfected Drosophila cells and transgenic embryos. Thus, like vertebrates, Drosophila contains two SPS enzymes one with and one without Sec in its catalytic domain. Our data indicate further that the selenoprotein biosynthesis machinery is conserved between mammals and fly, promoting the use of Drosophila as a genetic tool to identify components and mechanistic features of the synthesis pathway.
Collapse
MESH Headings
- 3' Untranslated Regions
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Blotting, Western
- Catalytic Domain
- Cells, Cultured
- Cloning, Molecular
- Codon, Terminator
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Drosophila/enzymology
- Drosophila/genetics
- Drosophila Proteins
- Electrophoresis, Polyacrylamide Gel
- Embryo, Nonmammalian/metabolism
- Expressed Sequence Tags
- Humans
- In Situ Hybridization
- Models, Genetic
- Molecular Sequence Data
- Open Reading Frames
- Phosphotransferases/chemistry
- Phosphotransferases/genetics
- Protein Biosynthesis
- Proteins
- RNA, Messenger/metabolism
- Selenoproteins
- Sequence Analysis, DNA
- Transfection
Collapse
Affiliation(s)
- M Hirosawa-Takamori
- Max-Planck-Institut für biophysikalische Chemie, Abt Molekulare Entwicklungsbiologie, Göttingen, Germany
| | | | | |
Collapse
|