1
|
Liu J, Wang L, Zhang X, Wang S, Qin Q. Nervous necrosis virus induced vacuolization is a Rab5- and actin-dependent process. Virulence 2024; 15:2301244. [PMID: 38230744 PMCID: PMC10795790 DOI: 10.1080/21505594.2023.2301244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Cytoplasmic vacuolization is commonly induced by bacteria and viruses, reflecting the complex interactions between pathogens and the host. However, their characteristics and formation remain unclear. Nervous necrosis virus (NNV) infects more than 100 global fish species, causing enormous economic losses. Vacuolization is a hallmark of NNV infection in host cells, but remains a mystery. In this study, we developed a simple aptamer labelling technique to identify red-spotted grouper NNV (RGNNV) particles in fixed and live cells to explore RGNNV-induced vacuolization. We observed that RGNNV-induced vacuolization was positively associated with the infection time and virus uptake. During infection, most RGNNV particles, as well as viral genes, colocalized with vacuoles, but not giant vacuoles > 3 μm in diameter. Although the capsid protein (CP) is the only structural protein of RGNNV, its overexpression did not induce vacuolization, suggesting that vacuole formation probably requires virus entry and replication. Given that small Rab proteins and the cytoskeleton are key factors in regulating cellular vesicles, we further investigated their roles in RGNNV-induced vacuolization. Using live cell imaging, Rab5, a marker of early endosomes, was continuously located in vacuoles bearing RGNNV during giant vacuole formation. Rab5 is required for vacuole formation and interacts with CP according to siRNA interference and Co-IP analysis. Furthermore, actin formed distinct rings around small vacuoles, while vacuoles were located near microtubules. Actin, but not microtubules, plays an important role in vacuole formation using chemical inhibitors. These results provide valuable insights into the pathogenesis and control of RGNNV infections.
Collapse
Affiliation(s)
- Jiaxin Liu
- Biosafety Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Awazu T, Sakamoto K, Minagi Y, Ohnishi M, Bito T, Matsunaga Y, Iwasaki T, Kawano T. The small GTPase RAB-18 is involved in regulating development/diapause by recruiting the intestinal cholesterol transporter NCR-1 onto the apical side in Caenorhabditis elegans. Biochem Biophys Res Commun 2024; 734:150609. [PMID: 39232459 DOI: 10.1016/j.bbrc.2024.150609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
RAB family proteins, which are small GTPases, are integral to the process of eukaryotic membrane trafficking. In the nematode, Caenorhabditis elegans, 31 RAB proteins have been identified through genome sequencing. Using an RNAi screen specifically targeting C. elegans rab genes, we identified multiple genes that are involved in the regulation of larval development, in particular, the rab-18 gene. Our molecular genetic studies resulted in several findings. First, RAB-18 predominantly functions in the intestine to regulate larval development by modulating steroid hormone signaling. Second, the C. elegans cholesterol transporter NCR-1 is a target of RAB-18 in the intestine. Third, the membrane trafficking of NCR-1 to the apical side in intestinal cells is particularly influenced by RAB-18. Finally, RAB-18 and NCR-1 possibly co-localize on membrane vesicles. Our study is the first to demonstrate the relationship between a RAB protein and a cholesterol transporter, in which the RAB protein probably drives the transporter to the apical membrane in the intestine to regulate cholesterol uptake. This study provides insight into the molecular mechanisms underlying human disease stemming from a transport defect of cholesterol and its derivative.
Collapse
Affiliation(s)
- Toshikuni Awazu
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kanato Sakamoto
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Yuka Minagi
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Masumi Ohnishi
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Tomohiro Bito
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | | | - Takashi Iwasaki
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Tsuyoshi Kawano
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan.
| |
Collapse
|
3
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission, and receptor recycling require FCHSD2 recruitment by MICAL-L1. Mol Biol Cell 2024; 35:ar144. [PMID: 39382837 DOI: 10.1091/mbc.e24-07-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homologue of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Because MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
Affiliation(s)
- Devin Frisby
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ajay B Murakonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bazella Ashraf
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kanika Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093, CA
| | - Leonardo Almeida-Souza
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
4
|
Koike S, Tachikawa M, Tsutsumi M, Okada T, Nemoto T, Keino-Masu K, Masu M. Actin dynamics switches two distinct modes of endosomal fusion in yolk sac visceral endoderm cells. eLife 2024; 13:RP95999. [PMID: 39441732 PMCID: PMC11498936 DOI: 10.7554/elife.95999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Membranes undergo various patterns of deformation during vesicle fusion, but how this membrane deformation is regulated and contributes to fusion remains unknown. In this study, we developed a new method of observing the fusion of individual late endosomes and lysosomes by using mouse yolk sac visceral endoderm cells that have huge endocytic vesicles. We found that there were two distinct fusion modes that were differently regulated. In homotypic fusion, two late endosomes fused quickly, whereas in heterotypic fusion they fused to lysosomes slowly. Mathematical modeling showed that vesicle size is a critical determinant of these fusion types and that membrane fluctuation forces can overcome the vesicle size effects. We found that actin filaments were bound to late endosomes and forces derived from dynamic actin remodeling were necessary for quick fusion during homotypic fusion. Furthermore, cofilin played a role in endocytic fusion by regulating actin turnover. These data suggest that actin promotes vesicle fusion for efficient membrane trafficking in visceral endoderm cells.
Collapse
Affiliation(s)
- Seiichi Koike
- Graduate School of Comprehensive Human Sciences, University of TsukubaTsukubaJapan
- Department of Molecular Neurobiology, Institute of Medicine, University of TsukubaTsukubaJapan
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of ToyamaToyamaJapan
| | - Masashi Tachikawa
- Graduate School of Nanobioscience, Yokohama City UniversityYokohamaJapan
| | - Motosuke Tsutsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
- National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
| | - Takuya Okada
- Graduate School of Comprehensive Human Sciences, University of TsukubaTsukubaJapan
- Department of Molecular Neurobiology, Institute of Medicine, University of TsukubaTsukubaJapan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
- National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
| | - Kazuko Keino-Masu
- Graduate School of Comprehensive Human Sciences, University of TsukubaTsukubaJapan
- Department of Molecular Neurobiology, Institute of Medicine, University of TsukubaTsukubaJapan
| | - Masayuki Masu
- Graduate School of Comprehensive Human Sciences, University of TsukubaTsukubaJapan
- Department of Molecular Neurobiology, Institute of Medicine, University of TsukubaTsukubaJapan
| |
Collapse
|
5
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission and receptor recycling require FCHSD2 recruitment by MICAL-L1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601011. [PMID: 38979241 PMCID: PMC11230409 DOI: 10.1101/2024.06.27.601011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homolog of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Since MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
|
6
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
7
|
Qiao L, Dong C, Jia W, Ma B. NAA20 recruits Rin2 and promotes triple-negative breast cancer progression by regulating Rab5A-mediated activation of EGFR signaling. Cell Signal 2023; 112:110922. [PMID: 37827343 DOI: 10.1016/j.cellsig.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with poor prognosis and high mortality. To improve the prognosis and survival of TNBC patients, it is necessary to explore new targets and signaling pathways to develop novel therapies for TNBC treatment. N-α-acetyltransferase 20 (NAA20) is one of the catalytic subunits of N-terminal acetyltransferase (NatB). It has been reported that NAA20 played a critical role in cancer progression. In this study, we found that NAA20 expression was markedly higher in TNBC tissues than in paracancerous normal tissues using The Cancer Genome Atlas (TCGA) analysis. This result was further confirmed by qRT-PCR and immunohistochemistry (IHC). Knockdown of NAA20 significantly inhibited TNBC cell viability by CCK8 and colony formation assays and cell migration and invasion by Transwell assays. Additionally, NAA20 knockdown decreased the expression of EGFR in TNBC cells. Upon stimulation with EGF and knockdown of NAA20, EGFR internalization and degradation were observed by confocal microscopy. The western blot results showed that NAA20 knockdown down-regulated PI3K, AKT, and mTOR phosphorylation. Next, we further explored the underlying molecular mechanisms of NAA20 by co-immunoprecipitation (Co-IP). The results suggested that there was an interacting relationship between NAA20 and Rab5A. Over-expression of NAA20 could potentiate the expression of Rab5A. Furthermore, the knockdown of Rab5A inhibited EGFR expression and the phosphorylation of downstream signaling targets. NAA20 over-expression offset the knockdown effect of Rab5A and activated EGFR signaling. Finally, we constructed a xenograft mouse model transfected TNBC cells to investigate the role of NAA20 in vivo. NAA20 knockdown markedly suppressed tumor growth and decreased tumor volume and weight. In conclusion, our study demonstrated that NAA20, a novel target of TNBC, could promote TNBC progression by regulating Rab5A-mediated activation of EGFR signaling.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Wenlei Jia
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| |
Collapse
|
8
|
Dolman NJ, Kilgore JA. A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and Structures, Part I: BacMam Labeling and Reagents for Vesicular Structures. Curr Protoc 2023; 3:e751. [PMID: 37311031 DOI: 10.1002/cpz1.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescent labeling of vesicular structures in cultured cells, particularly for live cells, can be challenging for a number of reasons. The first challenge is to identify a reagent that will be specific enough where some structures have a number of potential reagents and others very few options. The emergence of BacMam constructs has provided more easy-to-use choices. Presented here is a discussion of BacMam constructs as well as a review of commercially available reagents for labeling vesicular structures in cells, including endosomes, peroxisomes, lysosomes, and autophagosomes, complete with a featured reagent, recommended protocol, troubleshooting guide, and example image for each structure. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Delivering targeted fluorescent proteins using pre-made, high-titer BacMam constructs Alternate Protocol 1: Non-pseudo-typed BacMam viruses in standard cell types and pseudo-typed BacMam viruses in hard-to-transduce cell types Basic Protocol 2: Labeling endosomes: pHrodo™-10k-dextran Basic Protocol 3: Labeling peroxisomes: BacMam 2.0 CellLight™ Peroxisome-GFP Alternate Protocol 2: Labeling peroxisomes using antibodies Basic Protocol 4: Labeling autophagosomes: Transduction of cells with Premo™ Autophagy Sensor GFP-LC3B Alternate Protocol 3: Labeling autophagosomes using antibodies Basic Protocol 5: Labeling lysosomes: LysoTracker Red DND-99.
Collapse
|
9
|
Burton JC, Okalova J, Grimsey NJ. Fluorescence resonance energy transfer (FRET) spatiotemporal mapping of atypical P38 reveals an endosomal and cytosolic spatial bias. Sci Rep 2023; 13:7477. [PMID: 37156828 PMCID: PMC10167256 DOI: 10.1038/s41598-023-33953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) p38 is a central regulator of intracellular signaling, driving physiological and pathological pathways. With over 150 downstream targets, it is predicted that spatial positioning and the availability of cofactors and substrates determines kinase signaling specificity. The subcellular localization of p38 is highly dynamic to facilitate the selective activation of spatially restricted substrates. However, the spatial dynamics of atypical p38 inflammatory signaling are understudied. We utilized subcellular targeted fluorescence resonance energy transfer (FRET) p38 activity biosensors to map the spatial profile of kinase activity. Through comparative analysis of plasma membrane, cytosolic, nuclear, and endosomal compartments, we confirm a characteristic profile of nuclear bias for mitogen-activated kinase kinase 3/6 (MKK3/6) dependent p38 activation. Conversely, atypical p38 activation via thrombin-mediated protease-activated receptor 1 (PAR1) activity led to enhanced p38 activity at the endosome and cytosol, limiting nuclear p38 activity, a profile conserved for prostaglandin E2 activation of p38. Conversely, perturbation of receptor endocytosis led to spatiotemporal switching of thrombin signaling, reducing endosomal and cytosolic p38 activity and increasing nuclear activity. The data presented reveal the spatiotemporal dynamics of p38 activity and provide critical insight into how atypical p38 signaling drives differential signaling responses through spatial sequestration of kinase activity.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Pharmacy South Rm 414, Athens, 30602, USA
| | - Jennifer Okalova
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Pharmacy South Rm 414, Athens, 30602, USA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Pharmacy South Rm 414, Athens, 30602, USA.
| |
Collapse
|
10
|
Barman B, Sung BH, Krystofiak E, Ping J, Ramirez M, Millis B, Allen R, Prasad N, Chetyrkin S, Calcutt MW, Vickers K, Patton JG, Liu Q, Weaver AM. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Dev Cell 2022; 57:974-994.e8. [PMID: 35421371 PMCID: PMC9075344 DOI: 10.1016/j.devcel.2022.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
RNA transfer via extracellular vesicles (EVs) influences cell phenotypes; however, lack of information regarding biogenesis of RNA-containing EVs has limited progress in the field. Here, we identify endoplasmic reticulum membrane contact sites (ER MCSs) as platforms for the generation of RNA-containing EVs. We identify a subpopulation of small EVs that is highly enriched in RNA and regulated by the ER MCS linker protein VAP-A. Functionally, VAP-A-regulated EVs are critical for miR-100 transfer between cells and in vivo tumor formation. Lipid analysis of VAP-A-knockdown EVs revealed reductions in the EV biogenesis lipid ceramide. Knockdown of the VAP-A-binding ceramide transfer protein CERT led to similar defects in EV RNA content. Imaging experiments revealed that VAP-A promotes luminal filling of multivesicular bodies (MVBs), CERT localizes to MVBs, and the ceramide-generating enzyme neutral sphingomyelinase 2 colocalizes with VAP-A-positive ER. We propose that ceramide transfer via VAP-A-CERT linkages drives the biogenesis of a select RNA-containing EV population.
Collapse
Affiliation(s)
- Bahnisikha Barman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bong Hwan Sung
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Evan Krystofiak
- Vanderbilt University Cell Imaging Shared Resource, Nashville, TN, USA
| | - Jie Ping
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol Ramirez
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bryan Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt Biophotonics Center, Vanderbilt School of Engineering, Nashville, TN, USA
| | - Ryan Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sergei Chetyrkin
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - M Wade Calcutt
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Kasey Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin Sci (Lond) 2020; 134:547-570. [PMID: 32167154 DOI: 10.1042/cs20191313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023]
Abstract
Adipose tissue is an active metabolic organ that contributes to processes such as energy storage and utilization and to the production of a number of metabolic agents, such as adipokines, which play a role in inflammation. In this review, we try to elucidate the connections between peripheral inflammation at obesity and Type 2 diabetes and the central inflammatory process. Multiple lines of evidence highlight the importance of peripheral inflammation and its link to neuroinflammation, which can lead to neurodegenerative diseases such as dementia, Alzheimer's disease (AD) and Parkinson's disease. In addition to the accumulation of misfolded amyloid beta (Aβ) peptide and the formation of the neurofibrillary tangles of hyperphosphorylated tau protein in the brain, activated microglia and reactive astrocytes are the main indicators of AD progression. They were found close to Aβ plaques in the brains of both AD patients and rodent models of Alzheimer's disease-like pathology. Cytokines are key players in pro- and anti-inflammatory processes and are also produced by microglia and astrocytes. The interplay of seemingly unrelated pathways between the periphery and the brain could, in fact, have a common denominator, with inflammation in general being a key factor affecting neuronal processes in the brain. An increased amount of white adipose tissue throughout the body seems to be an important player in pro-inflammatory processes. Nevertheless, other important factors should be studied to elucidate the pathological processes of and the relationship among obesity, Type 2 diabetes and neurodegenerative diseases.
Collapse
|
12
|
Tubbesing K, Ward J, Abini-Agbomson R, Malhotra A, Rudkouskaya A, Warren J, Lamar J, Martino N, Adam AP, Barroso M. Complex Rab4-Mediated Regulation of Endosomal Size and EGFR Activation. Mol Cancer Res 2020; 18:757-773. [PMID: 32019812 PMCID: PMC7526990 DOI: 10.1158/1541-7786.mcr-19-0052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/24/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Early sorting endosomes are responsible for the trafficking and function of transferrin receptor (TfR) and EGFR. These receptors play important roles in iron uptake and signaling and are critical for breast cancer development. However, the role of morphology, receptor composition, and signaling of early endosomes in breast cancer remains poorly understood. A novel population of enlarged early endosomes was identified in breast cancer cells and tumor xenografts but not in noncancerous MCF10A cells. Quantitative analysis of endosomal morphology, cargo sorting, EGFR activation, and Rab GTPase regulation was performed using super-resolution and confocal microscopy followed by 3D rendering. MDA-MB-231 breast cancer cells have fewer, but larger EEA1-positive early endosomes compared with MCF10A cells. Live-cell imaging indicated dysregulated cargo sorting, because EGF and Tf traffic together via enlarged endosomes in MDA-MB-231, but not in MCF10A. Large EEA1-positive MDA-MB-231 endosomes exhibited prolonged and increased EGF-induced activation of EGFR upon phosphorylation at tyrosine-1068 (EGFR-p1068). Rab4A overexpression in MCF10A cells produced EEA1-positive enlarged endosomes that displayed prolonged and amplified EGF-induced EGFR-p1068 activation. Knockdown of Rab4A lead to increased endosomal size in MCF10A, but not in MDA-MB-231 cells. Nevertheless, Rab4A knockdown resulted in enhanced EGF-induced activation of EGFR-p1068 in MDA-MB-231 as well as downstream signaling in MCF10A cells. Altogether, this extensive characterization of early endosomes in breast cancer cells has identified a Rab4-modulated enlarged early endosomal compartment as the site of prolonged and increased EGFR activation. IMPLICATIONS: Enlarged early endosomes play a Rab4-modulated role in regulation of EGFR activation in breast cancer cells.
Collapse
Affiliation(s)
- Kate Tubbesing
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Jamie Ward
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Raymond Abini-Agbomson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Aditi Malhotra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Janine Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - John Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
- Department of Ophthalmology, Albany Medical College, Albany, New York
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York.
| |
Collapse
|
13
|
Tanaka K, Ito Y, Kajiwara K, Nada S, Okada M. Ubiquitination of Src promotes its secretion via small extracellular vesicles. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30325-9. [PMID: 32085898 DOI: 10.1016/j.bbrc.2020.02.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 01/08/2023]
Abstract
Upregulation of the Src tyrosine kinase is implicated in the progression of cancer. The oncogenic potential of Src is suppressed via several negative regulation systems including degradation via the ubiquitin-proteasome pathway. Here, we show that ubiquitination of Src promotes its secretion via small extracellular vesicles (sEVs) to suppress its oncogenic potential. In MDCK cells expressing a modified Src that can be activated by hydroxytamoxifen, activated Src was transported to late endosomes/lysosomes and secreted via sEVs. The secretion of Src was suppressed by ablation of Cbl E3-ligase, suggesting the contribution of ubiquitination to this process. Activated Src was ubiquitinated at multiple sites, and Lys429 was identified as a critical site for sEV-mediated secretion. Mutation of Src at Lys429 (R429) caused resistance to ubiquitination and decreased its secretion via sEVs. The activated R429 mutant was also transported to late endosomes/lysosomes, whereas its incorporation into intraluminal vesicles was reduced. Activation of the R429 mutant induced a greater FAK activation than that of wild-type Src, thereby potentiating Src-induced invasive phenotypes, such as invadopodia formation and invasive activity. These findings demonstrate that ubiquitination of activated Src at Lys429 promotes its secretion via sEVs, suggesting a potential strategy to suppress the oncogenic function of upregulated Src.
Collapse
Affiliation(s)
- Kentaro Tanaka
- Department of Oncogene Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka University, Osaka, 565-0871, Japan
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka University, Osaka, 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka University, Osaka, 565-0871, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Botté A, Potier MC. Focusing on cellular biomarkers: The endo-lysosomal pathway in Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:209-243. [PMID: 32057308 DOI: 10.1016/bs.pbr.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is the most frequent chromosomal disorder. It is caused by the triplication of human chromosome 21, leading to increased dosage of a variety of genes including APP (Amyloid Precursor Protein). Mainly for this reason, individuals with DS are at high risk to develop Alzheimer's disease (AD). Extensive literature identified various morphological and molecular abnormalities in the endo-lysosomal pathway both in DS and AD. Most studies in this field investigated the causative role of APP (Amyloid Precursor Protein) in endo-lysosomal dysfunctions, thus linking phenotypes observed in DS and AD. In DS context, several lines of evidence and emerging hypotheses suggest that other molecular players and pathways may be implicated in these complex phenotypes. In this review, we outline the normal functioning of endosomal trafficking and summarize the research on endo-lysosomal dysfunction in DS in light of AD findings. We emphasize the role of genes of chromosome 21 implicated in endocytosis to explain endosomal abnormalities and set the limitations and perspectives of models used to explore endo-lysosomal dysfunction in DS and find new biomarkers. The review highlights the complexity of endo-lysosomal dysfunction in DS and suggests directions for future research in the field.
Collapse
Affiliation(s)
- Alexandra Botté
- Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
15
|
Chen XQ, Mobley WC. Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Front Neurosci 2019; 13:659. [PMID: 31293377 PMCID: PMC6598402 DOI: 10.3389/fnins.2019.00659] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary human and financial burdens. Studies of pathogenesis are essential for defining targets for discovering disease-modifying treatments. Past studies of AD neuropathology provided valuable, albeit limited, insights. Nevertheless, building on these findings, recent studies have provided an increasingly rich harvest of genetic, molecular and cellular data that are creating unprecedented opportunities to both understand and treat AD. Among the most significant are those documenting the presence within the AD brain of toxic oligomeric species of Aβ and tau. Existing data support the view that such species can propagate and spread within neural circuits. To place these findings in context we first review the genetics and neuropathology of AD, including AD in Down syndrome (AD-DS). We detail studies that support the existence of toxic oligomeric species while noting the significant unanswered questions concerning their precise structures, the means by which they spread and undergo amplification and how they induce neuronal dysfunction and degeneration. We conclude by offering a speculative synthesis for how oligomers of Aβ and tau initiate and drive pathogenesis. While 100 years after Alzheimer's first report there is much still to learn about pathogenesis and the discovery of disease-modifying treatments, the application of new concepts and sophisticated new tools are poised to deliver important advances for combatting AD.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
16
|
Khodayari N, Oshins R, Alli AA, Tuna KM, Holliday LS, Krotova K, Brantly M. Modulation of calreticulin expression reveals a novel exosome-mediated mechanism of Z variant α 1-antitrypsin disposal. J Biol Chem 2019; 294:6240-6252. [PMID: 30833329 DOI: 10.1074/jbc.ra118.006142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
α1-Antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at position 342 in the mature protein, resulting in the Z mutation of the AAT gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes, causing a toxic gain of function. ERdj3 is an ER luminal DnaJ homologue, which, along with calreticulin, directly interacts with misfolded ZAAT. We hypothesize that depletion of each of these chaperones will change the fate of ZAAT polymers. Our study demonstrates that calreticulin modulation reveals a novel ZAAT degradation mechanism mediated by exosomes. Using human PiZZ hepatocytes and K42, a mouse calreticulin-deficient fibroblast cell line, our results show ERdj3 and calreticulin directly interact with ZAAT in PiZZ hepatocytes. Silencing calreticulin induces calcium independent ZAAT-ERdj3 secretion through the exosome pathway. This co-secretion decreases ZAAT aggregates within the ER of hepatocytes. We demonstrate that calreticulin has an inhibitory effect on exosome-mediated ZAAT-ERdj3 secretion. This is a novel ZAAT degradation process that involves a DnaJ homologue chaperone bound to ZAAT. In this context, calreticulin modulation may eliminate the toxic gain of function associated with aggregation of ZAAT in lung and liver, thus providing a potential new therapeutic approach to the treatment of AATD-related liver disease.
Collapse
Affiliation(s)
- Nazli Khodayari
- From the Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Regina Oshins
- From the Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Abdel A Alli
- the Department of Physiology and Functional Genomics, College of Medicine, and
| | - Kubra M Tuna
- the Department of Physiology and Functional Genomics, College of Medicine, and
| | - L Shannon Holliday
- the Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida 32610 and
| | - Karina Krotova
- the Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Mark Brantly
- From the Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine,
| |
Collapse
|
17
|
Starr ML, Sparks RP, Arango AS, Hurst LR, Zhao Z, Lihan M, Jenkins JL, Tajkhorshid E, Fratti RA. Phosphatidic acid induces conformational changes in Sec18 protomers that prevent SNARE priming. J Biol Chem 2019; 294:3100-3116. [PMID: 30617180 PMCID: PMC6398130 DOI: 10.1074/jbc.ra118.006552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/31/2018] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cell homeostasis requires transfer of cellular components among organelles and relies on membrane fusion catalyzed by SNARE proteins. Inactive SNARE bundles are reactivated by hexameric N-ethylmaleimide-sensitive factor, vesicle-fusing ATPase (Sec18/NSF)-driven disassembly that enables a new round of membrane fusion. We previously found that phosphatidic acid (PA) binds Sec18 and thereby sequesters it from SNAREs and that PA dephosphorylation dissociates Sec18 from the membrane, allowing it to engage SNARE complexes. We now report that PA also induces conformational changes in Sec18 protomers and that hexameric Sec18 cannot bind PA membranes. Molecular dynamics (MD) analyses revealed that the D1 and D2 domains of Sec18 contain PA-binding sites and that the residues needed for PA binding are masked in hexameric Sec18. Importantly, these simulations also disclosed that a major conformational change occurs in the linker region between the D1 and D2 domains, which is distinct from the conformational changes that occur in hexameric Sec18 during SNARE priming. Together, these findings indicate that PA regulates Sec18 function by altering its architecture and stabilizing membrane-bound Sec18 protomers.
Collapse
Affiliation(s)
- Matthew L Starr
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert P Sparks
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andres S Arango
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Logan R Hurst
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zhiyu Zhao
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Muyun Lihan
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jermaine L Jenkins
- the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642
| | - Emad Tajkhorshid
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Rutilio A Fratti
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
18
|
Ritt M, Sivaramakrishnan S. Engaging myosin VI tunes motility, morphology and identity in endocytosis. Traffic 2018; 19:10.1111/tra.12583. [PMID: 29869361 PMCID: PMC6437008 DOI: 10.1111/tra.12583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
While unconventional myosins interact with different stages of the endocytic pathway, they are ascribed a transport function that is secondary to the protein complexes that control organelle identity. Endosomes are subject to a dynamic, continuous flux of proteins that control their characteristic properties, including their motility within the cell. Efforts to describe the changes in identity of this compartment have largely focused on the adaptors present on the compartment and not on the motile properties of the compartment itself. In this study, we use a combination of optogenetic and chemical-dimerization strategies to target exogenous myosin VI to early endosomes, and probe its influence on organelle motility, morphology and identity. Our analysis across timescales suggests a model wherein the artificial engagement of myosin VI motility on early endosomes restricts microtubule-based motion, followed by morphological changes characterized by the rapid condensation and disintegration of organelles, ultimately leading to the enhanced overlap of markers that demarcate endosomal compartments. Together, our findings show that synthetic engagement of myosin VI motility is sufficient to alter organelle homeostasis in the endocytic pathway.
Collapse
Affiliation(s)
- Michael Ritt
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
19
|
Ray A, Katoch P, Jain N, Mehta PP. Dileucine-like motifs in the C-terminal tail of connexin32 control its endocytosis and assembly into gap junctions. J Cell Sci 2018; 131:jcs207340. [PMID: 29361528 PMCID: PMC5897717 DOI: 10.1242/jcs.207340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Defects in assembly of gap junction-forming proteins, called connexins (Cxs), are observed in a variety of cancers. Connexin32 (Cx32; also known as GJB1) is expressed by the polarized cells in epithelia. We discovered two dileucine-based motifs, which govern the intracellular sorting and endocytosis of transmembrane proteins, in the C-terminal tail of Cx32 and explored their role in regulating its endocytosis and gap junction-forming abilities in pancreatic and prostate cancer cells. One motif, designated as LI, was located near the juxtamembrane domain, whereas the other, designated as LL, was located distally. We also discovered a non-canonical motif, designated as LR, in the C-terminal tail. Our results showed that rendering these motifs non-functional had no effect on the intracellular sorting of Cx32. However, rendering the LL or LR motif nonfunctional enhanced the formation of gap junctions by inhibiting Cx32 endocytosis by the clathrin-mediated pathway. Rendering the LI motif nonfunctional inhibited gap junction formation by augmenting the endocytosis of Cx32 via the LL and LR motifs. Our studies have defined distinct roles of these motifs in regulating the endocytosis of Cx32 and its gap junction-forming ability.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Keeling E, Lotery AJ, Tumbarello DA, Ratnayaka JA. Impaired Cargo Clearance in the Retinal Pigment Epithelium (RPE) Underlies Irreversible Blinding Diseases. Cells 2018; 7:E16. [PMID: 29473871 PMCID: PMC5850104 DOI: 10.3390/cells7020016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic degeneration of the Retinal Pigment Epithelium (RPE) is a precursor to pathological changes in the outer retina. The RPE monolayer, which lies beneath the neuroretina, daily internalises and digests large volumes of spent photoreceptor outer segments. Impaired cargo handling and processing in the endocytic/phagosome and autophagy pathways lead to the accumulation of lipofuscin and pyridinium bis-retinoid A2E aggregates and chemically modified compounds such as malondialdehyde and 4-hydroxynonenal within RPE. These contribute to increased proteolytic and oxidative stress, resulting in irreversible damage to post-mitotic RPE cells and development of blinding conditions such as age-related macular degeneration, Stargardt disease and choroideremia. Here, we review how impaired cargo handling in the RPE results in their dysfunction, discuss new findings from our laboratory and consider how newly discovered roles for lysosomes and the autophagy pathway could provide insights into retinopathies. Studies of these dynamic, molecular events have also been spurred on by recent advances in optics and imaging technology. Mechanisms underpinning lysosomal impairment in other degenerative conditions including storage disorders, α-synuclein pathologies and Alzheimer's disease are also discussed. Collectively, these findings help transcend conventional understanding of these intracellular compartments as simple waste disposal bags to bring about a paradigm shift in the way lysosomes are perceived.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | - David A Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Science Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
21
|
Macrophage Polarization Alters Postphagocytosis Survivability of the Commensal Streptococcus gordonii. Infect Immun 2018; 86:IAI.00858-17. [PMID: 29229734 DOI: 10.1128/iai.00858-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Oral streptococci are generally considered commensal organisms; however, they are becoming recognized as important associate pathogens during the development of periodontal disease as well as being associated with several systemic diseases, including as a causative agent of infective endocarditis. An important virulence determinant of these bacteria is an ability to evade destruction by phagocytic cells, yet how this subversion occurs is mostly unknown. Using Streptococcus gordonii as a model commensal oral streptococcus that is also associated with disease, we find that resistance to reactive oxygen species (ROS) with an active ability to damage phagosomes allows the bacterium to avoid destruction within macrophages. This ability to survive relies not only on the ROS resistance capabilities of the bacterium but also on ROS production by macrophages, with both being required for maximal survival of internalized bacteria. Importantly, we also show that this dependence on ROS production by macrophages for resistance has functional significance: S. gordonii intracellular survival increases when macrophages are polarized toward an activated (M1) profile, which is known to result in prolonged phagosomal ROS production compared to that of alternatively (M2) polarized macrophages. We additionally find evidence of the bacterium being capable of both delaying the maturation of and damaging phagosomes. Taken together, these results provide essential insights regarding the mechanisms through which normally commensal oral bacteria can contribute to both local and systemic inflammatory disease.
Collapse
|
22
|
Makaraci P, Kim K. trans-Golgi network-bound cargo traffic. Eur J Cell Biol 2018; 97:137-149. [PMID: 29398202 DOI: 10.1016/j.ejcb.2018.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Cargo following the retrograde trafficking are sorted at endosomes to be targeted the trans-Golgi network (TGN), a central receiving organelle. Though molecular requirements and their interaction networks have been somewhat established, the complete understanding of the intricate nature of their action mechanisms in every step of the retrograde traffic pathway remains unachieved. This review focuses on elucidating known functions of key regulators, including scission factors at the endosome and tethering/fusion mediators at the receiving dock, TGN, as well as a diverse range of cargo.
Collapse
Affiliation(s)
- Pelin Makaraci
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA.
| |
Collapse
|
23
|
Chen XQ, Sawa M, Mobley WC. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med 2018; 114:52-61. [PMID: 29031834 PMCID: PMC5748266 DOI: 10.1016/j.freeradbiomed.2017.10.341] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
Neurotrophic factors, including the members of the neurotrophin family, play important roles in the development and maintenance of the nervous system. Trophic factor signals must be transmitted over long distances from axons and dendrites to the cell bodies of neurons. A mode of signaling well suited to the challenge of robust long distance signaling is the signaling endosome. We review the biology of signaling endosomes and the "signaling endosome hypothesis". Evidence for disruption of signaling endosome function in disorders of the nervous system is also reviewed. Changes in endosome structure in Alzheimer disease (AD) and Down syndrome (DS) are present early in these disorders. Data for the APP products responsible are reviewed and the consequent changes in signaling from endosomes discussed. We conclude by pointing to the need for additional studies to explore the biology of signaling endosomes in normal neurons and to elucidate their role in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- University of California, San Diego, La Jolla, CA 92093, United States.
| | - Mariko Sawa
- University of California, San Diego, La Jolla, CA 92093, United States
| | - William C Mobley
- University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
24
|
Moruno Manchon JF, Uzor NE, Finkbeiner S, Tsvetkov AS. SPHK1/sphingosine kinase 1-mediated autophagy differs between neurons and SH-SY5Y neuroblastoma cells. Autophagy 2018; 12:1418-24. [PMID: 27467777 DOI: 10.1080/15548627.2016.1183082] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although implicated in neurodegeneration, autophagy has been characterized mostly in yeast and mammalian non-neuronal cells. In a recent study, we sought to determine if SPHK1 (sphingosine kinase 1), implicated previously in macroautophagy/autophagy in cancer cells, regulates autophagy in neurons. SPHK1 synthesizes sphingosine-1-phosphate (S1P), a bioactive lipid involved in cell survival. In our study, we discovered that, when neuronal autophagy is pharmacologically stimulated, SPHK1 relocalizes to the endocytic and autophagic organelles. Interestingly, in non-neuronal cells stimulated with growth factors, SPHK1 translocates to the plasma membrane, where it phosphorylates sphingosine to produce S1P. Whether SPHK1 also binds to the endocytic and autophagic organelles in non-neuronal cells upon induction of autophagy has not been demonstrated. Here, we determined if the effect in neurons is operant in the SH-SY5Y neuroblastoma cell line. In both non-differentiated and differentiated SH-SY5Y cells, a short incubation of cells in amino acid-free medium stimulated the formation of SPHK1-positive puncta, as in neurons. We also found that, unlike neurons in which these puncta represent endosomes, autophagosomes, and amphisomes, in SH-SY5Y cells SPHK1 is bound only to the endosomes. In addition, a dominant negative form of SPHK1 was very toxic to SH-SY5Y cells, but cultured primary cortical neurons tolerated it significantly better. These results suggest that autophagy in neurons is regulated by mechanisms that differ, at least in part, from those in SH-SY5Y cells.
Collapse
Affiliation(s)
- Jose Felix Moruno Manchon
- a Department of Neurobiology and Anatomy , the University of Texas McGovern Medical School , Houston , TX , USA
| | - Ndidi-Ese Uzor
- a Department of Neurobiology and Anatomy , the University of Texas McGovern Medical School , Houston , TX , USA.,b University of Texas Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Steven Finkbeiner
- c Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research , San Francisco , CA , USA.,d Departments of Neurology and Physiology , University of California , San Francisco , CA , USA
| | - Andrey S Tsvetkov
- a Department of Neurobiology and Anatomy , the University of Texas McGovern Medical School , Houston , TX , USA.,b University of Texas Graduate School of Biomedical Sciences , Houston , TX , USA
| |
Collapse
|
25
|
Nimpf S, Malkemper EP, Lauwers M, Ushakova L, Nordmann G, Wenninger-Weinzierl A, Burkard TR, Jacob S, Heuser T, Resch GP, Keays DA. Subcellular analysis of pigeon hair cells implicates vesicular trafficking in cuticulosome formation and maintenance. eLife 2017; 6:e29959. [PMID: 29140244 PMCID: PMC5699870 DOI: 10.7554/elife.29959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/11/2017] [Indexed: 11/13/2022] Open
Abstract
Hair cells are specialized sensors located in the inner ear that enable the transduction of sound, motion, and gravity into neuronal impulses. In birds some hair cells contain an iron-rich organelle, the cuticulosome, that has been implicated in the magnetic sense. Here, we exploit histological, transcriptomic, and tomographic methods to investigate the development of cuticulosomes, as well as the molecular and subcellular architecture of cuticulosome positive hair cells. We show that this organelle forms rapidly after hatching in a process that involves vesicle fusion and nucleation of ferritin nanoparticles. We further report that transcripts involved in endocytosis, extracellular exosomes, and metal ion binding are differentially expressed in cuticulosome positive hair cells. These data suggest that the cuticulosome and the associated molecular machinery regulate the concentration of iron within the labyrinth of the inner ear, which might indirectly tune a magnetic sensor that relies on electromagnetic induction.
Collapse
Affiliation(s)
- Simon Nimpf
- Research Institute of Molecular PathologyVienna BiocenterViennaAustria
| | | | - Mattias Lauwers
- Research Institute of Molecular PathologyVienna BiocenterViennaAustria
| | - Lyubov Ushakova
- Research Institute of Molecular PathologyVienna BiocenterViennaAustria
| | - Gregory Nordmann
- Research Institute of Molecular PathologyVienna BiocenterViennaAustria
| | | | - Thomas R Burkard
- Research Institute of Molecular PathologyVienna BiocenterViennaAustria
| | - Sonja Jacob
- Electron Microscopy FacilityVienna BioCenter Core Facilities GmbHViennaAustria
| | - Thomas Heuser
- Electron Microscopy FacilityVienna BioCenter Core Facilities GmbHViennaAustria
| | | | - David A Keays
- Research Institute of Molecular PathologyVienna BiocenterViennaAustria
| |
Collapse
|
26
|
Naufer A, Hipolito VEB, Ganesan S, Prashar A, Zaremberg V, Botelho RJ, Terebiznik MR. pH of endophagosomes controls association of their membranes with Vps34 and PtdIns(3)P levels. J Cell Biol 2017; 217:329-346. [PMID: 29089378 PMCID: PMC5748975 DOI: 10.1083/jcb.201702179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/03/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Specific changes in phospholipid content are a hallmark of the membranes of maturing endosomes and phagosomes, but is it unclear how this is controlled. Naufer et al. now show that acidification of the lumen of endosomes and phagosomes triggers dissociation of the Vps34 lipid kinase from these organelles, which terminates PtdIns(3)P synthesis and signaling. Phagocytosis of filamentous bacteria occurs through tubular phagocytic cups (tPCs) and takes many minutes to engulf these filaments into phagosomes. Contravening the canonical phagocytic pathway, tPCs mature by fusing with endosomes. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the elongating tPCs. Surprisingly, the regulatory early endosomal lipid phosphatidylinositol-3-phosphate (PtdIns(3)P) persists on tPCs as long as their luminal pH remains neutral. Interestingly, by manipulating cellular pH, we determined that PtdIns(3)P behaves similarly in canonical phagosomes as well as endosomes. We found that this is the product of a pH-based mechanism that induces the dissociation of the Vps34 class III phosphatidylinositol-3-kinase from these organelles as they acidify. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for the turnover of this lipid by PIKfyve. Given that PtdIns(3)P-dependent signaling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes.
Collapse
Affiliation(s)
- Amriya Naufer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| | - Victoria E B Hipolito
- Molecular Science Graduate Program, Ryerson University, Toronto, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | - Akriti Prashar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Roberto J Botelho
- Molecular Science Graduate Program, Ryerson University, Toronto, Canada .,Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada .,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
27
|
Shorter SA, Pettit MW, Dyer PDR, Coakley Youngs E, Gorringe-Pattrick MAM, El-Daher S, Richardson S. Green fluorescent protein (GFP): is seeing believing and is that enough? J Drug Target 2017; 25:809-817. [PMID: 28743200 DOI: 10.1080/1061186x.2017.1358725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracellular compartmentalisation is a significant barrier to the successful nucleocytosolic delivery of biologics. The endocytic system has been shown to be responsible for compartmentalisation, providing an entry point, and trigger(s) for the activation of drug delivery systems. Consequently, many of the technologies used to understand endocytosis have found utility within the field of drug delivery. The use of fluorescent proteins as markers denoting compartmentalisation within the endocytic system has become commonplace. Several of the limitations associated with the use of green fluorescent protein (GFP) within the context of drug delivery have been explored here by asking a series of related questions: (1) Are molecules that regulate fusion to a specific compartment (i.e. Rab- or SNARE-GFP fusions) a good choice of marker for that compartment? (2) How reliable was GFP-marker overexpression when used to define a given endocytic compartment? (3) Can glutathione-s-transferase (GST) fused in frame with GFP (GST-GFP) act as a fluid phase endocytic probe? (4) Was GFP fluorescence a robust indicator of (GFP) protein integrity? This study concluded that there are many appropriate and useful applications for GFP; however, thought and an understanding of the biological and physicochemical character of these markers are required for the generation of meaningful data.
Collapse
Affiliation(s)
- Susan A Shorter
- a IDS Laboratory, Department of Life and Sports Science, Faculty of Engineering and Science , University of Greenwich , Chatham , Kent , UK
| | - Marie W Pettit
- a IDS Laboratory, Department of Life and Sports Science, Faculty of Engineering and Science , University of Greenwich , Chatham , Kent , UK
| | - Paul D R Dyer
- a IDS Laboratory, Department of Life and Sports Science, Faculty of Engineering and Science , University of Greenwich , Chatham , Kent , UK
| | - Emma Coakley Youngs
- a IDS Laboratory, Department of Life and Sports Science, Faculty of Engineering and Science , University of Greenwich , Chatham , Kent , UK
| | - Monique A M Gorringe-Pattrick
- a IDS Laboratory, Department of Life and Sports Science, Faculty of Engineering and Science , University of Greenwich , Chatham , Kent , UK
| | - Samer El-Daher
- a IDS Laboratory, Department of Life and Sports Science, Faculty of Engineering and Science , University of Greenwich , Chatham , Kent , UK
| | - Simon Richardson
- a IDS Laboratory, Department of Life and Sports Science, Faculty of Engineering and Science , University of Greenwich , Chatham , Kent , UK
| |
Collapse
|
28
|
CMTM3 decreases EGFR expression and EGF-mediated tumorigenicity by promoting Rab5 activity in gastric cancer. Cancer Lett 2017; 386:77-86. [DOI: 10.1016/j.canlet.2016.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
|
29
|
HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling. Sci Rep 2016; 6:37021. [PMID: 27841315 PMCID: PMC5107982 DOI: 10.1038/srep37021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses.
Collapse
|
30
|
CMTM7 knockdown increases tumorigenicity of human non-small cell lung cancer cells and EGFR-AKT signaling by reducing Rab5 activation. Oncotarget 2016; 6:41092-107. [PMID: 26528697 PMCID: PMC4747392 DOI: 10.18632/oncotarget.5732] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/19/2015] [Indexed: 12/20/2022] Open
Abstract
The dysregulation of epidermal growth factor receptor (EGFR) signaling has been well documented to contribute to the progression of non-small cell lung cancer (NSCLC), the leading cause of cancer death in the world. EGF-stimulated EGFR activation induces receptor internalization and degradation, which plays an important role in EGFR signaling. This process is frequently deregulated in cancer cells, leading to enhanced EGFR levels and signaling. Our previous study on CMTM7 is only limited to a brief description of the relationship of overexpressed CMTM7 with EGFR-AKT signaling. The biological functions of endogenous CMTM7 and its molecular mechanism remained unclear. In this study, we show that the stable knockdown of CMTM7 augments the malignant potential of NSCLC cells and enhances EGFR-AKT signaling by decreasing EGFR internalization and degradation. Mechanistically, CMTM7 knockdown reduces the activation of Rab5, a protein known to be required for early endosome fusion. In NSCLC, the loss of CMTM7 would therefore serve to sustain aberrant EGFR-mediated oncogenic signaling. Together, our findings highlight the role of CMTM7 in the regulation of EGFR signaling in tumor cells, revealing CMTM7 as a novel molecule related to Rab5 activation.
Collapse
|
31
|
Majzoub RN, Ewert KK, Safinya CR. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150129. [PMID: 27298431 PMCID: PMC4920278 DOI: 10.1098/rsta.2015.0129] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 05/29/2023]
Abstract
Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL-nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL-DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL-siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL-DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL-DNA and CL-siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivo. This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Cyrus R Safinya
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
32
|
Miner GE, Starr ML, Hurst LR, Sparks RP, Padolina M, Fratti RA. The Central Polybasic Region of the Soluble SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Vam7 Affects Binding to Phosphatidylinositol 3-Phosphate by the PX (Phox Homology) Domain. J Biol Chem 2016; 291:17651-63. [PMID: 27365394 DOI: 10.1074/jbc.m116.725366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
The yeast vacuole requires four SNAREs to trigger membrane fusion including the soluble Qc-SNARE Vam7. The N-terminal PX domain of Vam7 binds to the lipid phosphatidylinositol 3-phosphate (PI3P) and the tethering complex HOPS (homotypic fusion and vacuole protein sorting complex), whereas the C-terminal SNARE motif forms SNARE complexes. Vam7 also contains an uncharacterized middle domain that is predicted to be a coiled-coil domain with multiple helices. One helix contains a polybasic region (PBR) composed of Arg-164, Arg-168, Lys-172, Lys-175, Arg-179, and Lys-186. Polybasic regions are often associated with nonspecific binding to acidic phospholipids including phosphoinositides. Although the PX (phox homology) domain alone binds PI3P, we theorized that the Vam7 PBR could bind to additional acidic phospholipids enriched at fusion sites. Mutating each of the basic residues in the PBR to an alanine (Vam7-6A) led to attenuated vacuole fusion. The defective fusion of Vam7-6A was due in part to inefficient association with its cognate SNAREs and HOPS, yet the overall vacuole association of Vam7-6A was similar to wild type. Experiments testing the binding of Vam7 to specific signaling lipids showed that mutating the PBR to alanines augmented binding to PI3P. The increased binding to PI3P by Vam7-6A likely contributed to the observed wild type levels of vacuole association, whereas protein-protein interactions were diminished. PI3P binding was inhibited when the PX domain mutant Y42A was introduced into Vam7-6A to make Vam7-7A. Thus the Vam7 PBR affects PI3P binding by the PX domain and in turn affects binding to SNAREs and HOPS to support efficient fusion.
Collapse
Affiliation(s)
- Gregory E Miner
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Matthew L Starr
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Logan R Hurst
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert P Sparks
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Mark Padolina
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rutilio A Fratti
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
33
|
Morse D, Webster W, Kalanon M, Langsley G, McFadden GI. Plasmodium falciparum Rab1A Localizes to Rhoptries in Schizonts. PLoS One 2016; 11:e0158174. [PMID: 27348424 PMCID: PMC4922565 DOI: 10.1371/journal.pone.0158174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/11/2016] [Indexed: 12/17/2022] Open
Abstract
Over-expression of a GFP-PfRab1A fusion protein in Plasmodium falciparum schizonts produces a punctate pattern of fluorescence typical of rhoptries, secretory organelles involved in host cell invasion. The GFP-positive bodies were purified by a combination of differential and density gradient centrifugation and their protein content determined by MS/MS sequencing. Consistent with the GFP rhoptry-like pattern of transgenic parasites, four of the 19 proteins identified have been previously described to be rhoptry-associated and another four are ER or ER-associated proteins. Confirmation that GFP-PfRab1A decorates rhoptries was obtained by its co-localization with Rap1 and Ron4 in late phase schizonts. We conclude that PfRab1A potentially regulates vesicular traffic from the endoplasmic reticulum to the rhoptries in Apicomplexa parasites.
Collapse
Affiliation(s)
- David Morse
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- * E-mail:
| | - Wesley Webster
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ming Kalanon
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, 75014, Paris, France
| | | |
Collapse
|
34
|
Oeste CL, Martínez-López M, Pérez-Sala D. Taking a lipidation-dependent path toward endolysosomes. Commun Integr Biol 2016; 8:e1078041. [PMID: 27066167 PMCID: PMC4802854 DOI: 10.1080/19420889.2015.1078041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/29/2022] Open
Abstract
We recently reported that the isoprenylation and palmitoylation motif present at the C-terminus of human RhoB protein promotes intraluminal vesicle delivery of proteins in cells from organisms as phylogenetically apart as fungi and humans. Here we build on these observations by showing that chimeras of fluorescent proteins bearing this sequence, namely, CINCCKVL, which become isoprenylated and palmitoylated in cells, may be used to mark endolysosomes while preserving their morphology. Indeed, these chimeric proteins are devoid of the effects derived from overexpression of fluorescent constructs of full-length, active proteins widely used as endolysosomal markers, such as Lamp1 or Rab7, which cause lysosomal enlargement, or RhoB, which induces actin stress fibers. Moreover, the fact that lipidation-dependent endolysosomal localization of CINCCKVL chimeras can be ascertained in a wide variety of cells indicates that they follow a path toward endolysosomes that is conserved in diverse species. Therefore, CINCCKVL chimeras serve as robust tools to mark these late endocytic compartments
Collapse
Affiliation(s)
- Clara L Oeste
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| | - Marta Martínez-López
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| |
Collapse
|
35
|
Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, Milkie DE, Beach JR, Hammer JA, Pasham M, Kirchhausen T, Baird MA, Davidson MW, Xu P, Betzig E. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 2016; 349:aab3500. [PMID: 26315442 DOI: 10.1126/science.aab3500] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and α-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.
Collapse
Affiliation(s)
- Dong Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lin Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Xi Zhang
- Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingshu Zhang
- Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Brian Moses
- Coleman Technologies, 5131 West Chester Pike, Newtown Square, PA 19073, USA
| | - Daniel E Milkie
- Coleman Technologies, 5131 West Chester Pike, Newtown Square, PA 19073, USA
| | - Jordan R Beach
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mithun Pasham
- Department of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tomas Kirchhausen
- Department of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michelle A Baird
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | - Pingyong Xu
- Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
36
|
Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, Valmier J, Copeland NG, Jenkins NA, Richard S, Marmigère F. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. eLife 2016; 5. [PMID: 26857994 PMCID: PMC4760953 DOI: 10.7554/elife.11627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5+ endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. DOI:http://dx.doi.org/10.7554/eLife.11627.001 Nerve cells called sympathetic neurons can control the activity of almost all of our organs without any conscious thought on our part. For example, these nerve cells are responsible for accelerating the heart rate during exercise. In a developing embryo, there are initially more of these neurons than are needed, and only those that develop correctly and form a connection with a target cell will survive. This is because the target cells provide the growing neurons with vital molecules called neurotrophins, which are trafficked back along the nerve fiber and into the main body of the nerve cell to ensure its survival. However, it is largely unknown which proteins or genes are also involved in this developmental process. Now, Bouilloux, Thireau et al. show that if a gene called Meis1 is inactivated in mice, the sympathetic neurons start to develop and grow nerve fibers, but then fail to establish connections with their target cells and finally die. The Meis1 gene encodes a transcription factor, which is a protein that regulates gene activity. Therefore, Bouilloux, Thireau et al. looked for the genes that are regulated by this transcription factor in sympathetic neurons. This search uncovered several genes that are involved in the packaging and trafficking of molecules within cells. Other experiments then revealed that the trafficking of molecules back along the nerve fiber was altered in mutant neurons in which the Meis1 gene had been inactivated. Furthermore, Meis1 mutant mice had problems with their heart rate, especially during exercise, and an increased risk of dying from a sudden cardiac arrest. These findings reveal a transcription factor that helps to establish a connection between a neuron and its target, and that activates a pattern of gene expression that works alongside the neurotrophin-based signals. Since all neurons undergo similar processes during development, future work could ask if comparable patterns of gene expression exist in other types of neurons, and if problems with such processes contribute to some neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.11627.002
Collapse
Affiliation(s)
- Fabrice Bouilloux
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Jérôme Thireau
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Charlotte Farah
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Sarah Karam
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Yves Dauvilliers
- Sleep Unit, Department of Neurology, Gui-de-Chauliac hospital, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Neal G Copeland
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Nancy A Jenkins
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Sylvain Richard
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Frédéric Marmigère
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| |
Collapse
|
37
|
Pei G, Schnettger L, Bronietzki M, Repnik U, Griffiths G, Gutierrez MG. Interferon-γ-inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages. Mol Biol Cell 2015; 26:3061-70. [PMID: 26157167 PMCID: PMC4551319 DOI: 10.1091/mbc.e14-11-1547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
IFN-γ is able to modulate endosome dynamics in myelocytic cells, but the molecular mechanisms behind this process remain to be elucidated. Rab20 is identified as part of the molecular machinery that links immune activation and control of endocytic function in macrophages. Little is known about the molecular players that regulate changes in the endocytic pathway during immune activation. Here we investigate the role of Rab20 in the endocytic pathway during activation of macrophages. Rab20 is associated with endocytic structures, but the function of this Rab GTPase in the endocytic pathway remains poorly characterized. We find that in macrophages, Rab20 expression and endosomal association significantly increase after interferon-γ (IFN-γ) treatment. Moreover, IFN-γ and Rab20 expression induce a dramatic enlargement of endosomes. These enlarged endosomes are the result of homotypic fusion promoted by Rab20 expression. The expression of Rab20 or the dominant-negative mutant Rab20T19N does not affect transferrin or dextran 70 kDa uptake. However, knockdown of Rab20 accelerates epidermal growth factor (EGF) trafficking to LAMP-2–positive compartments and EGF receptor degradation. Thus this work defines a function for Rab20 in the endocytic pathway during immune activation of macrophages.
Collapse
Affiliation(s)
- Gang Pei
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Laura Schnettger
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Marc Bronietzki
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | | |
Collapse
|
38
|
A Kinase Anchoring Protein 9 Is a Novel Myosin VI Binding Partner That Links Myosin VI with the PKA Pathway in Myogenic Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:816019. [PMID: 25961040 PMCID: PMC4415471 DOI: 10.1155/2015/816019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022]
Abstract
Myosin VI (MVI) is a unique motor protein moving towards the minus end of actin filaments unlike other known myosins. Its important role has recently been postulated for striated muscle and myogenic cells. Since MVI functions through interactions of C-terminal globular tail (GT) domain with tissue specific partners, we performed a search for MVI partners in myoblasts and myotubes using affinity chromatography with GST-tagged MVI-GT domain as a bait. A kinase anchoring protein 9 (AKAP9), a regulator of PKA activity, was identified by means of mass spectrometry as a possible MVI interacting partner both in undifferentiated and differentiating myoblasts and in myotubes. Coimmunoprecipitation and proximity ligation assay confirmed that both proteins could interact. MVI and AKAP9 colocalized at Rab5 containing early endosomes. Similarly to MVI, the amount of AKAP9 decreased during myoblast differentiation. However, in MVI-depleted cells, both cAMP and PKA levels were increased and a change in the MVI motor-dependent AKAP9 distribution was observed. Moreover, we found that PKA phosphorylated MVI-GT domain, thus implying functional relevance of MVI-AKAP9 interaction. We postulate that this novel interaction linking MVI with the PKA pathway could be important for targeting AKAP9-PKA complex within cells and/or providing PKA to phosphorylate MVI tail domain.
Collapse
|
39
|
Majzoub RN, Chan CL, Ewert KK, Silva BFB, Liang KS, Safinya CR. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1308-18. [PMID: 25753113 DOI: 10.1016/j.bbamem.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 11/19/2022]
Abstract
Endosomal entrapment is known to be a major bottleneck to successful cytoplasmic delivery of nucleic acids (NAs) using cationic liposome-NA nanoparticles (NPs). Quantitative measurements of distributions of NPs within early endosomes (EEs) have proven difficult due to the sub-resolution size and short lifetime of wildtype EEs. In this study we used Rab5-GFP, a member of the large family of GTPases which cycles between the plasma membrane and early endosomes, to fluorescently label early endosomes. Using fluorescence microscopy and quantitative image analysis of cells expressing Rab5-GFP, we found that at early time points (t<1h), only a fraction (≈35%) of RGD-tagged NPs (which target cell surface integrins) colocalize with wildtype EEs, independent of the NP's membrane charge density. In comparison, a GTP-hydrolysis deficient mutant, Rab5-Q79L, which extends the size and lifetime of EEs yielding giant early endosomes (GEEs), enabled us to resolve and localize individual NPs found within the GEE lumen. Remarkably, nearly all intracellular NPs are found to be trapped within GEEs implying little or no escape at early time points. The observed small degree of colocalization of NPs and wildtype Rab5 is consistent with recycling of Rab5-GDP to the plasma membrane and not indicative of NP escape from EEs. Taken together, our results show that endosomal escape of PEGylated nanoparticles occurs downstream of EEs i.e., from late endosomes/lysosomes. Our studies also suggest that Rab5-Q79L could be used in a robust imaging assay which allows for direct visualization of NP interactions with the luminal membrane of early endosomes.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Chia-Ling Chan
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Institute of Physics, Academica Sinica, Taipei 11529, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Kai K Ewert
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Bruno F B Silva
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Division of Physical Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Keng S Liang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Cyrus R Safinya
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
40
|
Lu Y, Dong S, Hao B, Li C, Zhu K, Guo W, Wang Q, Cheung KH, Wong CWM, Wu WT, Markus H, Yue J. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy 2014; 10:1895-905. [PMID: 25483964 PMCID: PMC4502727 DOI: 10.4161/auto.32200] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g., cancer and neurodegenerative diseases. A large number of small molecules that modulate autophagy have been widely used to dissect this process and some of them, e.g., chloroquine (CQ), might be ultimately applied to treat a variety of autophagy-associated human diseases. Here we found that vacuolin-1 potently and reversibly inhibited the fusion between autophagosomes and lysosomes in mammalian cells, thereby inducing the accumulation of autophagosomes. Interestingly, vacuolin-1 was less toxic but at least 10-fold more potent in inhibiting autophagy compared with CQ. Vacuolin-1 treatment also blocked the fusion between endosomes and lysosomes, resulting in a defect in general endosomal-lysosomal degradation. Treatment of cells with vacuolin-1 alkalinized lysosomal pH and decreased lysosomal Ca2+ content. Besides marginally inhibiting vacuolar ATPase activity, vacuolin-1 treatment markedly activated RAB5A GTPase activity. Expression of a dominant negative mutant of RAB5A or RAB5A knockdown significantly inhibited vacuolin-1-induced autophagosome-lysosome fusion blockage, whereas expression of a constitutive active form of RAB5A suppressed autophagosome-lysosome fusion. These data suggest that vacuolin-1 activates RAB5A to block autophagosome-lysosome fusion. Vacuolin-1 and its analogs present a novel class of drug that can potently and reversibly modulate autophagy.
Collapse
Key Words
- ATG, autophagy-related
- BAF, bafilomycin A1
- CQ, chloroquine
- CTSB, cathepsin B
- CTSL, cathepsin L
- EGFR, epidermal growth factor receptor
- GFP, green fluorescent protein
- GPN, glycyl-l-phenylalanine 2-naphthylamide
- LAMP1, lysosomal-associated membrane protein 1
- Leup, leupeptin
- MAP1LC3, microtubule-associated protein 1 light chain 3
- MTOR, mechanistic target of rapamycin
- RAB5A
- RFP, red fluorescent protein
- autophagosomes
- endosomes
- lysosomes
- pH
- tfLC3, tandem fluorescence-tagged LC3
- vacuolin-1
Collapse
Affiliation(s)
- Yingying Lu
- a Department of Biomedical Sciences ; City University of Hong Kong ; Hong Kong , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Azouz NP, Zur N, Efergan A, Ohbayashi N, Fukuda M, Amihai D, Hammel I, Rothenberg ME, Sagi-Eisenberg R. Rab5 Is a Novel Regulator of Mast Cell Secretory Granules: Impact on Size, Cargo, and Exocytosis. THE JOURNAL OF IMMUNOLOGY 2014; 192:4043-53. [DOI: 10.4049/jimmunol.1302196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Dolman NJ, Kilgore JA, Davidson MW. A review of reagents for fluorescence microscopy of cellular compartments and structures, part I: BacMam labeling and reagents for vesicular structures. ACTA ACUST UNITED AC 2014; Chapter 12:12.30.1-12.30.27. [PMID: 23835803 DOI: 10.1002/0471142956.cy1230s65] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescent labeling of vesicular structures in cultured cells, particularly for live cells, can be challenging for a number of reasons. The first challenge is to identify a reagent that will be specific enough where some structures have a number of potential reagents and others very few options. The emergence of BacMam constructs has allowed more easy-to-use choices. Presented here is a discussion of BacMam constructs as well as a review of commercially-available reagents for labeling vesicular structures in cells, including endosomes, peroxisomes, lysosomes, and autophagosomes, complete with a featured reagent for each structure, recommended protocol, troubleshooting guide, and example image.
Collapse
Affiliation(s)
- Nick J Dolman
- Molecular Probes Labeling and Detection, Life Technologies, Eugene, OR, USA
| | | | | |
Collapse
|
43
|
Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Nishiyama T, Sakayama H, Hammerl P, Tenhaken R, Ueda T, Foissner I. Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5553-68. [PMID: 24127512 PMCID: PMC3871812 DOI: 10.1093/jxb/ert322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RAB5 GTPases are important regulators of endosomal membrane traffic in yeast, plants, and animals. A specific subgroup of this family, the ARA6 group, has been described in land plants including bryophytes, lycophytes, and flowering plants. Here, we report on the isolation of an ARA6 homologue in a green alga. CaARA6 (CaRABF1) from Chara australis, a member of the Characeae that is a close relative of land plants, encodes a polypeptide of 237 aa with a calculated molecular mass of 25.4 kDa, which is highly similar to ARA6 members from Arabidopsis thaliana and other land plants and has GTPase activity. When expressed in Nicotiana benthamiana leaf epidermal cells, fluorescently tagged CaARA6 labelled organelles with diameters between 0.2 and 1.2 µm, which co-localized with fluorescently tagged AtARA6 known to be present on multivesicular endosomes. Mutations in the membrane-anchoring and GTP-binding sites altered the localization of CaARA6 comparable to that of A. thaliana ARA6 (RABF1). In characean internodal cells, confocal immunofluorescence and immunogold electron microscopy with antibodies against AtARA6 and CaARA6 revealed ARA6 epitopes not only at multivesicular endosomes but also at the plasma membrane, including convoluted domains (charasomes), and at the trans-Golgi network. Our findings demonstrate that ARA6-like proteins have a more ancient origin than previously thought. They indicate further that ARA6-like proteins could have different functions in spite of the high similarity between characean algae and flowering plants.
Collapse
Affiliation(s)
- Marion C. Hoepflinger
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Anja Geretschlaeger
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Aniela Sommer
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Margit Hoeftberger
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Peter Hammerl
- Central Animal Facility, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Raimund Tenhaken
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ilse Foissner
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
44
|
Follett J, Norwood SJ, Hamilton NA, Mohan M, Kovtun O, Tay S, Zhe Y, Wood SA, Mellick GD, Silburn PA, Collins BM, Bugarcic A, Teasdale RD. The Vps35 D620N Mutation Linked to Parkinson's Disease Disrupts the Cargo Sorting Function of Retromer. Traffic 2013; 15:230-44. [DOI: 10.1111/tra.12136] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Jordan Follett
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Nicholas A. Hamilton
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Megha Mohan
- Eskitis Institute for Drug Discovery; Griffith University; Nathan Queensland, Australia
| | - Oleksiy Kovtun
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Stephanie Tay
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Yang Zhe
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Stephen A. Wood
- Eskitis Institute for Drug Discovery; Griffith University; Nathan Queensland, Australia
| | - George D. Mellick
- Eskitis Institute for Drug Discovery; Griffith University; Nathan Queensland, Australia
| | - Peter A. Silburn
- Eskitis Institute for Drug Discovery; Griffith University; Nathan Queensland, Australia
- The University of Queensland Centre for Clinical Research; Herston Queensland, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Andrea Bugarcic
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| |
Collapse
|
45
|
Garg A, Wu LP. Drosophila Rab14 mediates phagocytosis in the immune response to Staphylococcus aureus. Cell Microbiol 2013; 16:296-310. [PMID: 24119134 DOI: 10.1111/cmi.12220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 01/20/2023]
Abstract
Drosophila haemocytes are essential for the animal to resist Staphylococcus aureus infections. Phagocytosis is a central component of the haemocyte-mediated immune response. It involves regulated interaction between the phagocytic and the endocytic compartments. RabGTPases are pivotal for the membrane trafficking and fusion events, and thus are often targets of intracellular pathogens that subvert phagocytosis. An in vivo screen identified Rab2 and Rab14 as candidates for proteins regulating phagosome maturation. Since Rab14 is often targeted by intracellular pathogens, an understanding of its function during phagocytosis and the overall immune response can give insight into the pathogenesis of intracellular microbes. We generated a Drosophila Rab14 mutant and characterized the resulting immune defects in animals and specifically in haemocytes in response to an S. aureus infection. Haemocyte based immunofluorescence studies indicate that Rab14 is recruited to the phagosome and like Rab7, a well-characterized regulator of the phagocytic pathway, is essential for progression of phagosome maturation. Rab14 mutant haemocytes show impaired recruitment of Rab7 and of a lysosomal marker onto S. aureus phagosomes. The defect in phagocytosis is associated with higher bacterial load and increased susceptibility to S. aureus in the animal.
Collapse
Affiliation(s)
- Aprajita Garg
- Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | | |
Collapse
|
46
|
Harris JL, Richards RS, Chow CWK, Lee S, Kim M, Buck M, Teng L, Clarke R, Gardiner RA, Lavin MF. BMCC1 is an AP-2 associated endosomal protein in prostate cancer cells. PLoS One 2013; 8:e73880. [PMID: 24040105 PMCID: PMC3765211 DOI: 10.1371/journal.pone.0073880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 12/04/2022] Open
Abstract
The prostate cancer antigen gene 3 (PCA3) is embedded in an intron of a second gene BMCC1 (Bcl2-/adenovirus E1B nineteen kDa-interacting protein 2 (BNIP-2) and Cdc42GAP homology BCH motif-containing molecule at the carboxyl terminal region 1) which is also upregulated in prostate cancer. BMCC1 was initially annotated as two genes (C9orf65/PRUNE and BNIPXL) on either side of PCA3 but our data suggest that it represents a single gene coding for a high molecular weight protein. Here we demonstrate for the first time the expression of a >300 kDa BMCC1 protein (BMCC1-1) in prostate cancer and melanoma cell lines. This protein was found exclusively in the microsomal fraction and localised to cytoplasmic vesicles. We also observed expression of BMCC1 protein in prostate cancer sections using immunohistology. GST pull down, immunoprecipitation and mass spectrometry protein interaction studies identified multiple members of the Adaptor Related Complex 2 (AP-2) as BMCC1 interactors. Consistent with a role for BMCC1 as an AP-2 interacting endosomal protein, BMCC1 co-localised with β-adaptin at the perinuclear region of the cell. BMCC1 also showed partial co-localisation with the early endosome small GTP-ase Rab-5 as well as strong co-localisation with internalised pulse-chase labelled transferrin (Tf), providing evidence that BMCC1 is localised to functional endocytic vesicles. BMCC1 knockdown did not affect Tf uptake and AP-2 knockdown did not disperse BMCC1 vesicular distribution, excluding an essential role for BMCC1 in canonical AP-2 mediated endocytic uptake. Instead, we posit a novel role for BMCC1 in post-endocytic trafficking. This study provides fundamental characterisation of the BMCC1 complex in prostate cancer cells and for the first time implicates it in vesicle trafficking.
Collapse
Affiliation(s)
- Janelle L. Harris
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- * E-mail: (MFL); (JLH)
| | - Renée S. Richards
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Clement W. K. Chow
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Soon Lee
- School of Medicine, University of Western Sydney, Liverpool, Sydney, Australia
| | - Misook Kim
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Marion Buck
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Linda Teng
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Raymond Clarke
- School of Medicine, University of Western Sydney, Liverpool, Sydney, Australia
| | - Robert A. Gardiner
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
- * E-mail: (MFL); (JLH)
| |
Collapse
|
47
|
Pocanschi CL, Ehsani S, Mehrabian M, Wille H, Reginold W, Trimble WS, Wang H, Yee A, Arrowsmith CH, Bozóky Z, Kay LE, Forman-Kay JD, Rini JM, Schmitt-Ulms G. The ZIP5 ectodomain co-localizes with PrP and may acquire a PrP-like fold that assembles into a dimer. PLoS One 2013; 8:e72446. [PMID: 24039764 PMCID: PMC3765157 DOI: 10.1371/journal.pone.0072446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/18/2013] [Indexed: 01/11/2023] Open
Abstract
The cellular prion protein (PrP(C)) was recently observed to co-purify with members of the LIV-1 subfamily of ZIP zinc transporters (LZTs), precipitating the surprising discovery that the prion gene family descended from an ancestral LZT gene. Here, we compared the subcellular distribution and biophysical characteristics of LZTs and their PrP-like ectodomains. When expressed in neuroblastoma cells, the ZIP5 member of the LZT subfamily was observed to be largely directed to the same subcellular locations as PrP(C) and both proteins were seen to be endocytosed through vesicles decorated with the Rab5 marker protein. When recombinantly expressed, the PrP-like domain of ZIP5 could be obtained with yields and levels of purity sufficient for structural analyses but it tended to aggregate, thereby precluding attempts to study its structure. These obstacles were overcome by moving to a mammalian cell expression system. The subsequent biophysical characterization of a homogeneous preparation of the ZIP5 PrP-like ectodomain shows that this protein acquires a dimeric, largely globular fold with an α-helical content similar to that of mammalian PrP(C). The use of a mammalian cell expression system also allowed for the expression and purification of stable preparations of Takifugu rubripes PrP-1, thereby overcoming a key hindrance to high-resolution work on a fish PrP(C).
Collapse
Affiliation(s)
- Cosmin L. Pocanschi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Sepehr Ehsani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Holger Wille
- Department of Biochemistry and Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - William Reginold
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - William S. Trimble
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Adelinda Yee
- Structural Genomics Consortium, Toronto, Ontario, Canada
| | | | - Zoltán Bozóky
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lewis E. Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M. Rini
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa. PLoS One 2013; 8:e59304. [PMID: 23555015 PMCID: PMC3598704 DOI: 10.1371/journal.pone.0059304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/14/2013] [Indexed: 01/11/2023] Open
Abstract
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.
Collapse
|
49
|
Campoy EM, Mansilla ME, Colombo MI. Endocytic SNAREs are involved in optimal Coxiella burnetii vacuole development. Cell Microbiol 2013; 15:922-41. [PMID: 23217169 DOI: 10.1111/cmi.12087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 11/29/2022]
Abstract
Coxiella burnetii is a Gram-negative intracellular bacterium. As previously described, both the endocytic and the autophagic pathways contribute to the maturation of Coxiella replicative vacuoles (CRVs). The large CRVs share the properties of both phagolysosomal and autophagolysosomal compartments. Vamp3, Vamp7 and Vamp8 are v-SNAREs involved in the endocytic pathway which participate mainly in the fusion between endosomes and lysosomes. In the present study we observed that Vamp7 interacts with C. burnetii at different infection times (1 h-48 h p.i.). We have determined that a truncated mutant of Vamp7 (Vamp7 NT) and a siRNA against this SNARE protein affects the optimal development of CRVs, suggesting that Vamp7 mediates fusion events that are required for the biogenesis of CRVs. Indeed, we have observed that overexpression of Vamp7 NT inhibited the heterotypic fusion with lysosomes and the homotypic fusion between individual Coxiella phagosomes and CRVs. Moreover, we have detected in the vacuole membrane, at different infection times, the Vamp7 partners (Vti1a and Vti1b). Interestingly, treatment with chloramphenicol reduced the colocalization between C. burnetii and Vamp7, Vti1a or Vti1b, indicating that the recruitment of these SNAREs proteins is a bacteria-driven process that favours the CRV biogenesis, likely by facilitating the interaction with the endolysosomal compartment.
Collapse
Affiliation(s)
- Emanuel Martín Campoy
- Laboratorio de Biología Celular y Molecular- Instituto de Histología y Embriología IHEM, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | | | | |
Collapse
|
50
|
A Novel Type III Endosome Transmembrane Protein, TEMP. Cells 2012; 1:1029-44. [PMID: 24710541 PMCID: PMC3901140 DOI: 10.3390/cells1041029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 12/18/2022] Open
Abstract
As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP’s plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport.
Collapse
|