1
|
Vandenberghe LTM, Heindryckx B, Smits K, Popovic M, Szymanska K, Bonte D, Peelman L, Deforce D, De Sutter P, Van Soom A, De Schauwer C. Intracellular localisation of platelet-activating factor during mammalian embryo development in vitro: a comparison of cattle, mouse and human. Reprod Fertil Dev 2018; 31:658-670. [PMID: 30458920 DOI: 10.1071/rd18146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/05/2018] [Indexed: 11/23/2022] Open
Abstract
Platelet-activating factor (PAF) is a well-known marker for embryo quality and viability. For the first time, we describe an intracellular localisation of PAF in oocytes and embryos of cattle, mice and humans. We showed that PAF is represented in the nucleus, a signal that was lost upon nuclear envelope breakdown. This process was confirmed by treating the embryos with nocodazole, a spindle-disrupting agent that, as such, arrests the embryo in mitosis, and by microinjecting a PAF-specific antibody in bovine MII oocytes. The latter resulted in the absence of nuclear PAF in the pronuclei of the zygote and reduced further developmental potential. Previous research indicates that PAF is released and taken up from the culture medium by preimplantation embryos invitro, in which bovine serum albumin (BSA) serves as a crucial carrier molecule. In the present study we demonstrated that nuclear PAF does not originate from an extracellular source because embryos cultured in polyvinylpyrrolidone or BSA showed similar levels of PAF in their nuclei. Instead, our experiments indicate that cytosolic phospholipase A2 (cPLA2) is likely to be involved in the intracellular production of PAF, because treatment with arachidonyl trifluoromethyl ketone (AACOCF3), a specific cPLA2 inhibitor, clearly lowered PAF levels in the nuclei of bovine embryos.
Collapse
Affiliation(s)
- L T M Vandenberghe
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - K Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - M Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - K Szymanska
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - D Bonte
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - C De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
2
|
Brailoiu E, Barlow CL, Ramirez SH, Abood ME, Brailoiu GC. Effects of Platelet-Activating Factor on Brain Microvascular Endothelial Cells. Neuroscience 2018. [PMID: 29522856 DOI: 10.1016/j.neuroscience.2018.02.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Platelet-activating factor (PAF) is a potent phospholipid mediator that exerts various pathophysiological effects by interacting with a G protein-coupled receptor. PAF has been reported to increase the permeability of the blood-brain barrier (BBB) via incompletely characterized mechanisms. We investigated the effect of PAF on rat brain microvascular endothelial cells (RBMVEC), a critical component of the BBB. PAF produced a dose-dependent increase in cytosolic Ca2+ concentration; the effect was prevented by the PAF receptor antagonist, WEB2086. The effect of PAF on cytosolic Ca2+ was abolished in Ca2+-free saline or in the presence of L-type voltage-gated Ca2+ channel inhibitor, nifedipine, indicating that Ca2+ influx is critical for PAF-induced increase in cytosolic Ca2+. PAF produced RBMVEC depolarization; the effect was inhibited by WEB2086. In cells loaded with [(4-amino-5-methylamino-2',7'-difluoro-fluorescein)diacetate] (DAF-FM), a nitric oxide (NO)-sensitive fluorescent dye, PAF increased the NO level; the effect was prevented by WEB2086, nifedipine or by l-NAME, an inhibitor of NO synthase. Immunocytochemistry studies indicate that PAF reduced the immunostaining of ZO-1, a tight junction-associated protein, increased F-actin fibers, and produced intercellular gaps. PAF produced a decrease in RBMVEC monolayer electrical resistance assessed with Electric Cell-Substrate Impedance Sensing (ECIS), indicative of a disruption of endothelial barrier function. In vivo studies indicate that PAF increased the BBB permeability, assessed with sodium fluorescein and Evans Blue methods, via PAF receptor-dependent mechanisms, consequent to Ca2+ influx and increased NO levels. Our studies reveal that PAF alters the BBB permeability by multiple mechanisms, which may be relevant for central nervous system (CNS) inflammatory disorders.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Christine L Barlow
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Servio H Ramirez
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States; Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States.
| |
Collapse
|
3
|
Palur Ramakrishnan AVK, Varghese TP, Vanapalli S, Nair NK, Mingate MD. Platelet activating factor: A potential biomarker in acute coronary syndrome? Cardiovasc Ther 2016; 35:64-70. [DOI: 10.1111/1755-5922.12233] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Treesa P. Varghese
- Department of Pharmacy Practice; JSS College of Pharmacy (Jagadguru Sri Shivarathreeswara University, Mysore); Udhagamandalam Tamil Nadu India
| | - Sreedevi Vanapalli
- Department of Pharmacy Practice; JSS College of Pharmacy (Jagadguru Sri Shivarathreeswara University, Mysore); Udhagamandalam Tamil Nadu India
| | - Narayanan K. Nair
- Department of Pharmacy Practice; JSS College of Pharmacy (Jagadguru Sri Shivarathreeswara University, Mysore); Udhagamandalam Tamil Nadu India
| | - Menge Denis Mingate
- Department of Pharmacy Practice; JSS College of Pharmacy (Jagadguru Sri Shivarathreeswara University, Mysore); Udhagamandalam Tamil Nadu India
| |
Collapse
|
4
|
Predescu S, Knezevic I, Bardita C, Neamu RF, Brovcovych V, Predescu D. Platelet activating factor-induced ceramide micro-domains drive endothelial NOS activation and contribute to barrier dysfunction. PLoS One 2013; 8:e75846. [PMID: 24086643 PMCID: PMC3785431 DOI: 10.1371/journal.pone.0075846] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/17/2013] [Indexed: 12/14/2022] Open
Abstract
The spatial and functional relationship between platelet activating factor-receptor (PAF-R) and nitric oxide synthase (eNOS) in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs) as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO) production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM) on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min) increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles.
Collapse
Affiliation(s)
- Sanda Predescu
- Department of Pharmacology and Medicine, Division of Pulmonary and Critical Care, Rush University, Chicago, Illinois, United States of America
| | - Ivana Knezevic
- Department of Pharmacology and Medicine, Division of Pulmonary and Critical Care, Rush University, Chicago, Illinois, United States of America
| | - Cristina Bardita
- Department of Pharmacology and Medicine, Division of Pulmonary and Critical Care, Rush University, Chicago, Illinois, United States of America
| | - Radu Florin Neamu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Viktor Brovcovych
- Department of Pharmacology, University of Illinois, Chicago, Illinois, United States of America
| | - Dan Predescu
- Department of Pharmacology and Medicine, Division of Pulmonary and Critical Care, Rush University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
5
|
Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin-1s expression in mouse lung endothelium. Biochem Res Int 2012; 2012:672705. [PMID: 22506115 PMCID: PMC3299393 DOI: 10.1155/2012/672705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Intersectin-1s (ITSN-1s), a protein containing five SH3 (A-E) domains, regulates via the SH3A the function of dynamin-2 (dyn2) at the endocytic site. ITSN-1s expression was modulated in mouse lung endothelium by liposome delivery of either a plasmid cDNA encoding myc-SH3A or a specific siRNA targeting ITSN-1 gene. The lung vasculature of SH3A-transduced and ITSN-1s- deficient mice was perfused with gold albumin (Au-BSA) to analyze by electron microscopy the morphological intermediates and pathways involved in transendothelial transport or with dinitrophenylated (DNP)-BSA to quantify by ELISA its transport. Acute modulation of ITSN-1s expression decreased the number of caveolae, impaired their transport, and opened the interendothelial junctions, while upregulating compensatory nonconventional endocytic/transcytotic structures. Chronic inhibition of ITSN-1s further increased the occurrence of nonconventional intermediates and partially restored the junctional integrity. These findings indicate that ITSN-1s expression is required for caveolae function and efficient transendothelial transport. Moreover, our results demonstrate that ECs are highly adapted to perform their transport function while maintaining lung homeostasis.
Collapse
|
6
|
Penna C, Bassino E, Alloatti G. Platelet activating factor: the good and the bad in the ischemic/reperfused heart. Exp Biol Med (Maywood) 2011; 236:390-401. [PMID: 21378031 DOI: 10.1258/ebm.2011.010316] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The present review is focused on the dual role played by platelet-activating factor (PAF) in ischemia and reperfusion (I/R) injury of the heart. Although the involvement of PAF in the pathogenesis of myocardial reperfusion injury is well established, in the last few years it has emerged that very low concentrations of PAF exert cardioprotective effects, comparable to that afforded by ischemic preconditioning (IP). PAF is a potent phosphoglyceride involved in different pathophysiological conditions affecting the cardiovascular system, including the development of myocardial I/R injury. PAF is released from the I/R myocardium in concentrations (1-10 nmol/L) high enough to negatively modulate coronary circulation as well as electrical and contractile activities. PAF may act either directly, via generation of secondary mediators, or through the activation of inflammatory cells like platelets and polymorphonuclear neutrophils, which exacerbate postischemic myocardial injury. The effects of PAF are mediated through specific receptors (PAFRs) that belong to the superfamily of G protein-coupled receptors. Since cardiomyocytes not only produce PAF but also possess PAFRs, it is likely that PAF acts as an autocrine/paracrine mediator. Although the negative effects exerted by high concentrations of PAF are well established, several recent findings from our and other laboratories have demonstrated that very low concentrations (pmol/L) of PAF infused before ischemia induce cardioprotective effects similar to those afforded by IP, and that endogenous PAF production participates in the induction of IP itself. The IP-like action exerted by low concentrations of PAF is due to the activation/phosphorylation of kinases included in the reperfusion injury salvage kinase (RISK) pathway, such as protein kinase C, Akt/PkB and nitric oxide synthase. Together with the activation of mitochondrial K(ATP) channels, these events may allow prevention of mitochondrial permeability transition pores opening at reperfusion. Moreover, the nitric oxide-dependent S-nitrosylation of L-type Ca(2+) channels induced by PAF reduces intracellular Ca(2+) overload.
Collapse
Affiliation(s)
- Claudia Penna
- Dipartimento di Scienze Cliniche e Biologiche, ASO San Luigi, 10043 Orbassano (TO), Italy
| | | | | |
Collapse
|
7
|
Chen R, Brady E, McIntyre TM. Human TMEM30a promotes uptake of antitumor and bioactive choline phospholipids into mammalian cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:3215-25. [PMID: 21289302 DOI: 10.4049/jimmunol.1002710] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antitumor alkylphospholipids initiate apoptosis in transformed HL-60 and Jurkat cells while sparing their progenitors. 1-O-Alkyl-2-carboxymethyl-sn-glycero-3-phosphocholine (Edelfosine) like other short-chained phospholipids--inflammatory platelet-activating factor (PAF) and apoptotic oxidatively truncated phospholipids--are proposed to have intracellular sites of action, yet a conduit for these choline phospholipids into mammalian cells is undefined. Edelfosine is also accumulated by Saccharomyces cerevisiae in a process requiring the membrane protein Lem3p, and the human genome contains a Lem3p homolog TMEM30a. We show that import of choline phospholipids into S. cerevisiae ΔLem3 is partially reconstituted by human TMEM30a and by Lem3p-TMEM30a chimeras, showing the proteins are orthologous. TMEM30a-GFP chimeras expressed in mammalian cells localized in plasma membranes, as well as internal organelles, and ectopic TMEM30a expression promoted uptake of exogenous choline and ethanolamine phospholipids. Short hairpin RNA knockdown of TMEM30a reduced fluorescent choline phospholipid and [(3)H]PAF import. This knockdown also reduced mitochondrial depolarization from exogenous Edelfosine or the mitotoxic oxidatively truncated phospholipid azelaoyl phosphatidylcholine, and the knockdown reduced apoptosis in response to these two phospholipids. These results show that extracellular choline phospholipids with short sn-2 residues can have intracellular roles and sites of metabolism because they are transport substrates for a TMEM30a phospholipid import system. Variation in this mechanism could limit sensitivity to short chain choline phospholipids such as Edelfosine, PAF, and proapoptotic phospholipids.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cell Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
8
|
Liu J, Chen R, Marathe GK, Febbraio M, Zou W, McIntyre TM. Circulating platelet-activating factor is primarily cleared by transport, not intravascular hydrolysis by lipoprotein-associated phospholipase A2/ PAF acetylhydrolase. Circ Res 2010; 108:469-77. [PMID: 21183738 DOI: 10.1161/circresaha.110.228742] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE The phospholipid platelet-activating factor (PAF) stimulates all cells of the innate immune system and numerous cardiovascular cells. A single enzyme (plasma PAF acetylhydrolase [PAF-AH] or lipoprotein-associated phospholipase [Lp-PL]A(2)) in plasma hydrolyzes PAF, but significant controversy exists whether its action is pro- or antiinflammatory and accordingly whether its inhibition will slow cardiovascular disease. OBJECTIVE We sought to define how PAF and related short-chain oxidized phospholipids turnover in vivo and the role of PAF acetylhydrolase/Lp-PLA(2) in this process. METHODS AND RESULTS [(3)H-acetyl]PAF was hydrolyzed by murine or human plasma (t(1/2), 3 and 7 minutes, respectively), but injected [(3)H-acetyl]PAF disappeared from murine circulation more quickly (t(1/2), <30 seconds). [(3)H]PAF clearance was unchanged in PAF receptor(-/-) animals, or over the first 2 half-lives in PAF-AH(-/-) animals. [(3)H]PAF turnover was reduced by coinjecting excess unlabeled PAF or an oxidatively truncated phospholipid, and [(3)H]PAF clearance was slowed in hyperlipidemic apolipoprotein (apo)E(-/-) mice with excess circulating oxidatively truncated phospholipids. [(3)H]PAF, fluorescent NBD-PAF, or fluorescent oxidatively truncated phospholipid were primarily accumulated by liver and lung, and were transported into endothelium as intact phospholipids through a common mechanism involving TMEM30a. CONCLUSIONS Circulating PAF and oxidized phospholipids are continually and rapidly cleared, and hence continually and rapidly produced. Saturable PAF receptor-independent transport, rather than just intravascular hydrolysis, controls circulating inflammatory and proapoptotic oxidized phospholipid mediators. Intravascular PAF has access to intracellular compartments. Inflammatory and proapoptotic phospholipids may accumulate in the circulation as transport is overwhelmed by substrates in hyperlipidemia.
Collapse
Affiliation(s)
- Jinbo Liu
- Department of Cell Biology, NE10, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
9
|
Renteria LS, Raj JU, Ibe BO. Prolonged hypoxia modulates platelet activating factor receptor-mediated responses by fetal ovine pulmonary vascular smooth muscle cells. Mol Genet Metab 2010; 101:400-8. [PMID: 20813571 PMCID: PMC2991540 DOI: 10.1016/j.ymgme.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/21/2022]
Abstract
Hypoxia augments PAF receptor (PAFr) binding and PAFr protein expression in venous SMC (SMC-PV). We compared effect of acute and prolonged hypoxia (pO(2)<40 torr) on PAFr-mediated responses in arterial SMC (SMC-PA) and SMC-PV. Cells were studied for 30 min (acute) or for 48 h (prolonged) hypoxia and compared to normoxic (pO(2) ~100 torr) conditions. PAF binding was quantified in fmol/10(6) cells (mean ± SEM). PAF binding in normoxia were SMC-PA, 5.2 ± 0.2 and in SMC-PV, 19.3 ± 1.1; values in acute hypoxia were SMC-PA, 7.7 ± 0.4 and in SMC-PV, 27.8 ± 1.7. Prolonged hypoxia produced 6-fold increase in binding in SMC-PA, but only 2-fold increase in SMC-PV, but binding in SMC-PV was still higher. Acute hypoxia augmented inositol phosphate release by 50% and 40% in SMC-PA and SMC-PV, respectively. During normoxia, PAFr mRNA expression by both cell types was similar, but expression in hypoxia by SMC-PA was greater. In SMC-PA, hypoxia and PAF augmented intracellular calcium flux. Re-exposure of cells to 30 min normoxia after 48 h hypoxia decreased binding by 45-60%, suggesting immediate down-regulation of hypoxia-induced PAFr-mediated effects. We speculate that re-oxygenation immediately reverses hypoxia effect probably due to oxygen tension-dependent reversibility of PAFr activation and suggest that exposure of the neonate to prolonged state of hypoxia will vilify oxygen exchange capacity of the neonatal lungs.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cells, Cultured
- Down-Regulation
- Female
- Fetus
- Hypoxia/genetics
- Hypoxia/metabolism
- Inositol Phosphates/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oxygen/metabolism
- Oxygen/pharmacology
- Platelet Activating Factor/pharmacology
- Platelet Membrane Glycoproteins/biosynthesis
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- Pregnancy
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- Pulmonary Veins/cytology
- Pulmonary Veins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sheep
Collapse
Affiliation(s)
- Lissette S. Renteria
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502
| | - J. Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL 60612
| | - Basil O. Ibe
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502
| |
Collapse
|
10
|
Melnikova V, Bar-Eli M. Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Rev 2008; 26:359-71. [PMID: 17721743 DOI: 10.1007/s10555-007-9092-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inflammatory tumor microenvironment fosters tumor growth, angiogenesis and metastatic progression. Platelet-activating factor (PAF) is an inflammatory biolipid produced from membrane glycerophospholipids. Through the activity of its G-protein coupled receptor, PAF triggers a variety of pathological reactions including tumor neo-angiogenesis. Several groups have demonstrated that inhibiting PAF-PAF receptor pathway at the level of a ligand or receptor results in an effective inhibition of experimental tumor growth and metastasis. In particular, our group has recently demonstrated that PAF receptor antagonists can effectively inhibit the metastatic potential of human melanoma cells in nude mice. Furthermore, we showed that PAF stimulated the phosphorylation of CREB and ATF-1 in metastatic melanoma cells, which resulted in overexpression of MMP-2 and MT1-MMP. Our data indicate that PAF acts as a promoter of melanoma metastasis in vivo. Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that these cells are better equipped to respond to PAF within the tumor microenvironment when compared to their non-metastatic counterparts.
Collapse
Affiliation(s)
- Vladislava Melnikova
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, P.O. Box 173, Houston, TX 77030, USA
| | | |
Collapse
|
11
|
Bixby CE, Ibe BO, Abdallah MF, Zhou W, Hislop AA, Longo LD, Raj JU. Role of platelet-activating factor in pulmonary vascular remodeling associated with chronic high altitude hypoxia in ovine fetal lambs. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1475-82. [DOI: 10.1152/ajplung.00089.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Platelet-activating factor (PAF) is implicated in pathogenesis of chronic hypoxia-induced pulmonary hypertension in some animal models and in neonates. Effects of chronic hypoxia on PAF receptor (PAF-R) system in fetal pulmonary vasculature are unknown. We investigated the effect of chronic high altitude hypoxia (HAH) in fetal lambs [pregnant ewes were kept at 3,801 m (12,470 ft) altitude from ∼35 to 145 days gestation] on PAF-R-mediated effects in the pulmonary vasculature. Age-matched controls were kept at sea level. Intrapulmonary arteries were isolated, and smooth muscle cells (SMC-PA) were cultured from HAH and control fetuses. To determine presence of pulmonary vascular remodeling, lung tissue sections were subjected to morphometric analysis. Percentage medial wall thickness was significantly increased ( P < 0.05) in arteries at all levels in the HAH lambs. PAF-R protein expression studied by immunocytochemistry and Western blot analysis on lung tissue SMC-PA demonstrated greater PAF-R expression in HAH lambs. PAF-R binding (femtomoles per 106cells) in HAH SMC-PA was 90.3 ± 4.08 and 66% greater than 54.3 ± 4.9 in control SMC-PA. Pulmonary arteries from HAH fetuses synthesized >3-fold PAF than vessels from controls. Compared with controls SMC-PA of HAH lambs demonstrated 139% and 40% greater proliferation in 10% FBS alone and with 10 nM PAF, respectively. Our data demonstrate that exposure of ovine fetuses to HAH will result in significant upregulation of PAF synthesis, PAF-R expression, and PAF-R-mediated effects in pulmonary arteries. These findings suggest that increased PAF-R protein expression and increased PAF binding contribute to pulmonary vascular remodeling in these animals and may predispose them to persistent pulmonary hypertension after birth.
Collapse
|
12
|
Fillon S, Soulis K, Rajasekaran S, Benedict-Hamilton H, Radin JN, Orihuela CJ, El Kasmi KC, Murti G, Kaushal D, Gaber MW, Weber JR, Murray PJ, Tuomanen EI. Platelet-activating factor receptor and innate immunity: uptake of gram-positive bacterial cell wall into host cells and cell-specific pathophysiology. THE JOURNAL OF IMMUNOLOGY 2006; 177:6182-91. [PMID: 17056547 DOI: 10.4049/jimmunol.177.9.6182] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The current model of innate immune recognition of Gram-positive bacteria suggests that the bacterial cell wall interacts with host recognition proteins such as TLRs and Nod proteins. We describe an additional recognition system mediated by the platelet-activating factor receptor (PAFr) and directed to the pathogen-associated molecular pattern phosphorylcholine that results in the uptake of bacterial components into host cells. Intravascular choline-containing cell walls bound to endothelial cells and caused rapid lethality in wild-type, Tlr2(-/-), and Nod2(-/-) mice but not in Pafr(-/-) mice. The cell wall exited the vasculature into the heart and brain, accumulating within endothelial cells, cardiomyocytes, and neurons in a PAFr-dependent way. Physiological consequences of the cell wall/PAFr interaction were cell specific, being noninflammatory in endothelial cells and neurons but causing a rapid loss of cardiomyocyte contractility that contributed to death. Thus, PAFr shepherds phosphorylcholine-containing bacterial components such as the cell wall into host cells from where the response ranges from quiescence to severe pathophysiology.
Collapse
Affiliation(s)
- Sophie Fillon
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu T, Gobeil F, Vazquez-Tello A, Leduc M, Rihakova L, Bossolasco M, Bkaily G, Peri K, Varma DR, Orvoine R, Chemtob S. Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, and LPA1 receptors. Can J Physiol Pharmacol 2006; 84:377-91. [PMID: 16902584 DOI: 10.1139/y05-147] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostaglandins (PGs), platelet-activating factor (PAF), and lysophosphatidic acid (LPA) are ubiquitous lipid mediators that play important roles in inflammation, cardiovascular homeostasis, and immunity and are also known to modulate gene expression of specific pro-inflammatory genes. The mechanism of action of these lipids is thought to be primarily dependent on their specific plasma membrane receptors belonging to the superfamily of G-protein-coupled receptors (GPCR). Increasing evidence suggests the existence of a functional intracellular GPCR population. It has been proposed that immediate effects are mediated via cell surface receptors whereas long-term responses are dependent upon intracellular receptor effects. Indeed, receptors for PAF, LPA, and PGE(2) (specifically EP(1), EP(3), and EP(4)) localize at the cell nucleus of cerebral microvascular endothelial cells of newborn pigs, rat hepatocytes, and cells overexpressing each receptor. Stimulation of isolated nuclei with these lipids reveals biological functions including transcriptional regulation of major genes, namely c-fos, cylooxygenase-2, and endothelial as well as inducible nitric oxide synthase. In the present review, we shall focus on the nuclear localization and signaling of GPCRs recognizing PGE(2), PAF, and LPA phospholipids as ligands. Mechanisms on how nuclear PGE2, PAF, and LPA receptors activate gene transcription and nuclear localization pathways are presented. Intracrine signaling for lipid mediators uncover novel pathways to elicit their effects; accordingly, intracellular GPCRs constitute a distinctive mode of action for gene regulation.
Collapse
Affiliation(s)
- Tang Zhu
- Department of Pediatrics, Research Center of Hôpital Sainte-Justine, Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gonzalez JB, Orth M, Schaefer M, Tauber R. Endocytosis and intracellular trafficking of fatty acid esters of phenylaminopropanediol, the putative etiologic agents of the toxic oil syndrome (TOS). Toxicol Lett 2006; 163:206-12. [PMID: 16343824 DOI: 10.1016/j.toxlet.2005.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 10/26/2005] [Accepted: 10/28/2005] [Indexed: 11/25/2022]
Abstract
The toxic oil syndrome (TOS) caused by ingestion of rapeseed oil adulterated with aniline is characterized by symptoms of an allergic and/or autoimmune illness associated with vessel wall lesions similar to those of atherosclerosis. Fatty acid esters of 3-(N-phenylamino)-1,2-propanediol (PAP) have been incriminated as the etiologic agents of TOS. However, the pathogenesis of TOS is yet unknown. Here, we addressed whether PAP fatty acid esters are incorporated into lipoproteins, which after transport to vascular endothelial cells are taken up to initiate TOS vasculopathy. After loading (14)C-dioleyl-ester of PAP into LDL labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindolcarbocyanine (DiI) we assessed receptor mediated endocytosis and intracellular localization of these lipopoproteins in vascular endothelial cells. Our data suggest that these lipoprotein-derivatives are internalized into endothelial cells by LDL receptor mediated endocytosis. Confocal microscopy revealed that DiI-LDL loaded with dioleyl-ester of PAP and incubated for 60 min with endothelial cells colocalizes with the lysosomotropic compound LysoTracker Green, indicating that internalized PAP-loaded LDL are targetted to the endolysosomal compartment for further processing. Subcellular fractionation of endothelial-like ECV-304 cells after incubation with LDL loaded with the (14)C-dioleyl-ester of PAP for 6h showed that the radioactive label accumulated in fractions containing endosomes, the Golgi apparatus and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jose B Gonzalez
- Institut für Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | |
Collapse
|
15
|
Marrache AM, Gobeil F, Zhu T, Chemtob S. Intracellular signaling of lipid mediators via cognate nuclear G protein-coupled receptors. ACTA ACUST UNITED AC 2005; 12:63-72. [PMID: 16036317 DOI: 10.1080/10623320590933815] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Platelet-activating factor (PAF) and lysophosphatidic acid (LPA) are ubiquitous lipid mediators that play important roles in inflammation, cardiovascular homeostasis, and immunity and are also known to modulate gene expression of specific proinflammatory genes. The mechanism of action of these phospholipids is thought to be primarily dependent on their specific plasma membrane receptors belonging to the superfamily of G protein-coupled receptors (GPCRs). However, increasing evidence suggests the existence of a functional intracellular GPCR population. It has been suggested that immediate effects are mediated by cell surface receptors, whereas long-term responses are mediated by intracellular receptors. PAF and LPA(1) receptors localize at the cell nucleus of cerebral microvascular endothelial cells of newborn pig, rat hepatocytes, and cells overexpressing each receptor, and stimulation of isolated nuclei reveal biological functions, including transcriptional regulation of major genes, namely cylooxygenase-2 and inducible nitric oxide synthase. This mini review focuses on the nuclear localization and signaling of GPCRs, recognizing PAF and LPA phospholipids as ligands. Theories on how nuclear PAF and LPA1 receptors activate gene transcription and nuclear localization pathways are discussed. Intracrine signaling for lipid mediators uncover novel pathways to elicit their effects; moreover, intracellular GPCRs constitute a distinctive mode of action for gene regulation.
Collapse
|
16
|
Bazan NG. Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 2003; 44:2221-33. [PMID: 13130128 DOI: 10.1194/jlr.r300013-jlr200] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuronal cellular and intracellular membranes are rich in specialized phospholipids that are reservoirs of lipid messengers released by specific phospholipases and stimulated by neurotransmitters, neurotrophic factors, cytokines, membrane depolarization, ion channel activation, etc. Secretory phospholipases A2 may be both intercellular messengers and generators of lipid messengers. The highly networked nervous system includes cells (e.g., astrocytes, oligodendrocytes, microglial cells, endothelial microvascular cells) that extensively interact with neurons; several lipid messengers participate in these interactions. This review highlights modulation of postsynaptic membrane excitability and long-term synaptic plasticity by cyclooxygenase-2-generated prostaglandin E2, arachidonoyldiacylcylglycerol, and arachidonic acid-containing endocannabinoids. The peroxidation of docosahexaenoic acid (DHA), a critical component of excitable membranes in brain and retina, is promoted by oxidative stress. DHA is also the precursor of enzyme-derived, neuroprotective docosanoids. The phospholipid platelet-activating factor is a retrograde messenger of long-term potentiation, a modulator of glutamate release, and an upregulator of memory formation. Lipid messengers modulate signaling cascades and contribute to cellular differentiation, function, protection, and repair in the nervous system. Lipidomic neurobiology will advance our knowledge of the brain, spinal cord, retina, and peripheral nerve function and diseases that affect them, and new discoveries on networks of signaling in health and disease will likely lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Louisiana State University Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
17
|
Deo DD, Bazan NG, Hunt JD. Activation of platelet-activating factor receptor-coupled G alpha q leads to stimulation of Src and focal adhesion kinase via two separate pathways in human umbilical vein endothelial cells. J Biol Chem 2003; 279:3497-508. [PMID: 14617636 DOI: 10.1074/jbc.m304497200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelet-activating factor (PAF), a phospholipid second messenger, has diverse physiological functions, including responses in differentiated endothelial cells to external stimuli. We used human umbilical vein endothelial cells (HUVECs) as a model system. We show that PAF activated pertussis toxin-insensitive G alpha(q) protein upon binding to its seven transmembrane receptor. Elevated cAMP levels were observed via activation of adenylate cyclase, which activated protein kinase A (PKA) and was attenuated by a PAF receptor antagonist, blocking downstream activity. Phosphorylation of Src by PAF required G alpha(q) protein and adenylate cyclase activation; there was an absolute requirement of PKA for PAF-induced Src phosphorylation. Immediate (1 min) PAF-induced STAT-3 phosphorylation required the activation of G alpha(q) protein, adenylate cyclase, and PKA, and was independent of these intermediates at delayed (30 min) and prolonged (60 min) PAF exposure. PAF activated PLC beta 3 through its G alpha(q) protein-coupled receptor, whereas activation of phospholipase C gamma 1 (PLC gamma 1) by PAF was independent of G proteins but required the involvement of Src at prolonged PAF exposure (60 min). We demonstrate for the first time in vascular endothelial cells: (i) the involvement of signaling intermediates in the PAF-PAF receptor system in the induction of TIMP2 and MT1-MMP expression, resulting in the coordinated proteolytic activation of MMP2, and (ii) a receptor-mediated signal transduction cascade for the tyrosine phosphorylation of FAK by PAF. PAF exposure induced binding of p130(Cas), Src, SHC, and paxillin to FAK. Clearly, PAF-mediated signaling in differentiated endothelial cells is critical to endothelial cell functions, including cell migration and proteolytic activation of MMP2.
Collapse
Affiliation(s)
- Dayanand D Deo
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
18
|
Bernatchez PN, Tremblay F, Rollin S, Neagoe PE, Sirois MG. Sphingosine 1-phosphate effect on endothelial cell PAF synthesis: Role in cellular migration. J Cell Biochem 2003; 90:719-31. [PMID: 14587028 DOI: 10.1002/jcb.10686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF) are two inflammatory mediators capable of promoting endothelial cell (EC) migration and angiogenesis. As VEGF inflammatory effect is mediated by the synthesis of endothelial platelet-activating factor (PAF) which is also contributing to VEGF chemotactic activity, we wanted to assess if S1P can trigger PAF synthesis in EC and if S1P-induced migration is PAF-dependent. Treatment of bovine aortic EC (BAEC) with S1P (10(-10)-10(-6) M) increased dose- and time-dependently the synthesis of PAF by up to 3.3-fold above the basal level, with a maximal amount of PAF detected at 20 min post-stimulation. This biological response was attenuated by inhibiting p38 mitogen-activated protein kinase (MAPK), cytosolic or secreted phospholipase A(2) (cPLA(2), sPLA(2)) activity, suggesting that p38 MAPK activation by S1P promotes the conversion of membrane phospholipids into PAF through the combined activation of cPLA(2) and sPLA(2). Interestingly, pretreatment of BAEC with extracellular PAF receptor antagonists (BN52021, 10(-5) M and CV3988, 10(-6) M) reduced by up to 42% the cellular migration induced by S1P (10(-6) M). These data demonstrate the capacity of S1P to induce PAF synthesis, which contributes in part to S1P chemotactic activity.
Collapse
Affiliation(s)
- Pascal N Bernatchez
- Montreal Heart Institute and Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Marrache AM, Gobeil F, Bernier SG, Stankova J, Rola-Pleszczynski M, Choufani S, Bkaily G, Bourdeau A, Sirois MG, Vazquez-Tello A, Fan L, Joyal JS, Filep JG, Varma DR, Ribeiro-Da-Silva A, Chemtob S. Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6474-81. [PMID: 12444157 DOI: 10.4049/jimmunol.169.11.6474] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been postulated that intracellular binding sites for platelet-activating factor (PAF) contribute to proinflammatory responses to PAF. Isolated nuclei from porcine cerebral microvascular endothelial cells (PCECs) produced PAF-molecular species in response to H(2)O(2). Using FACS analysis, we demonstrated the expression of PAF receptors on cell and nuclear surfaces of PCECs. Confocal microscopy studies performed on PCECs, Chinese hamster ovary cells stably overexpressing PAF receptors, and isolated nuclei from PCECs also showed a robust nuclear distribution of PAF receptors. Presence of PAF receptors at the cell nucleus was further revealed in brain endothelial cells by radioligand binding experiments, immunoblotting, and in situ in brain by immunoelectron microscopy. Stimulation of nuclei with methylcarbamate-PAF evoked a decrease in cAMP production and a pertussis toxin-sensitive rise in nuclear calcium, unlike observations in plasma membrane, which exhibited a pertussis toxin-insensitive elevation in inositol phosphates. Moreover, on isolated nuclei methylcarbamate-PAF evoked the expression of proinflammatory genes inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) and was associated with augmented extracellular signal-regulated kinase 1/2 phosphorylation and NF-kappaB binding to the DNA consensus sequence. COX-2 expression was prevented by mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 and NF-kappaB inhibitors. This study describes for the first time the nucleus as a putative organelle capable of generating PAF and expresses its receptor, which upon stimulation induces the expression of the proinflammatory gene COX-2.
Collapse
Affiliation(s)
- A Marilise Marrache
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Deo DD, Axelrad TW, Robert EG, Marcheselli V, Bazan NG, Hunt JD. Phosphorylation of STAT-3 in response to basic fibroblast growth factor occurs through a mechanism involving platelet-activating factor, JAK-2, and Src in human umbilical vein endothelial cells. Evidence for a dual kinase mechanism. J Biol Chem 2002; 277:21237-45. [PMID: 11940567 DOI: 10.1074/jbc.m110955200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with multiple pathological and physiological effects. We have shown that basic fibroblast growth factor (bFGF) supplementation induces rapid proliferation of human umbilical vein endothelial cells (HUVEC), which is reduced upon removal of bFGF or by bFGF immunoneutralization. The PAF receptor antagonist LAU-8080 inhibited bFGF-stimulated HUVEC proliferation, indicating the involvement of PAF in the bFGF-mediated signaling of HUVEC. Although FGF receptor phosphorylation was not affected by LAU-8080, the bFGF-mediated prolonged phosphorylation, and activation of Erk-1 and -2 were attenuated. Phosphorylation of STAT-3 was observed in the presence of PAF or bFGF, which was attenuated by PAFR antagonists. PAF-induced STAT-3 phosphorylation observed in HUVEC pretreated with either Src inhibitor PP1 or JAK-2 inhibitor AG-490 indicated (i) immediate (1 min) phosphorylation of STAT-3 is dependent on Src, (ii) JAK-2-dependent STAT-3 phosphorylation occurs after the delayed (30 min) PAF exposure, and (iii) prolonged (60 min) STAT-3 phosphorylation may be either through Src and/or JAK-2. Attenuation of the STAT-3 phosphorylation by the PAFR antagonists indicated signaling through the PAF receptor. Taken together, these findings suggest the production of PAF is important for bFGF-mediated signaling and that a dual kinase mechanism is involved in the PAF-mediated signal transduction cascade.
Collapse
Affiliation(s)
- Dayanand D Deo
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
21
|
Brochériou I, Stengel D, Mattsson-Hultén L, Stankova J, Rola-Pleszczynski M, Koskas F, Wiklund O, Le Charpentier Y, Ninio E. Expression of platelet-activating factor receptor in human carotid atherosclerotic plaques: relevance to progression of atherosclerosis. Circulation 2000; 102:2569-75. [PMID: 11085958 DOI: 10.1161/01.cir.102.21.2569] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human monocyte-derived macrophages synthesize numerous proinflammatory and prothrombotic substances, including lipid mediators, such as platelet-activating factor (PAF), which may play a major role in the onset and perpetuation of atherosclerotic lesions. In addition, both monocytes and macrophages express PAF receptors (PAF-R). The expression of PAF-R is transcriptionally downregulated by oxidized LDL in in vitro primary cultures of monocyte/macrophages. In this study, we evaluated the expression of PAF-R in human carotid plaque tissue, in foam cells isolated from human carotid plaques, and in primary cultures of umbilical smooth muscle cells (SMCs). METHODS AND RESULTS We show that PAF-R was expressed at low levels in foam cells compared with monocyte/macrophages in plaques, as assessed by immunohistochemical staining and in situ hybridization. In addition, low levels of mRNA were also detected by RT-PCR in isolated human carotid foam cells. A prominent finding of our study was the demonstration that contractile SMCs were positive for PAF-R, and its mRNA was extracted from primary cultures of umbilical SMCs. CONCLUSIONS As macrophages loose their inflammatory phenotype on transformation into foam cells, they may equally loose their capacity of defense against aggression. We postulate that the diminished expression of PAF-R may be deleterious in the context of plaque formation and progression. The observation that arterial SMCs of contractile phenotype express PAF-R opens new avenues concerning the migration of these cells from media to intima and atherosclerotic plaque formation.
Collapse
Affiliation(s)
- I Brochériou
- INSERM U321, Lipoproteins and Atherogenesis, Laboratoire Central d'Anatomie Pathologique, Groupe Hospitalier Piti|-Salp|tri¿re, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bussolati B, Biancone L, Cassoni P, Russo S, Rola-Pleszczynski M, Montrucchio G, Camussi G. PAF produced by human breast cancer cells promotes migration and proliferation of tumor cells and neo-angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1713-25. [PMID: 11073830 PMCID: PMC1885724 DOI: 10.1016/s0002-9440(10)64808-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Platelet-activating factor (PAF), a phospholipid mediator of inflammation, is present in breast cancer tissue and correlates with microvessel density. In the present study, we investigated the biological significance of PAF synthesized within breast cancer. In vitro, we observed the production of PAF by two estrogen-dependent (MCF7 and T-47D) and an estrogen-independent (MDA-MB231) breast cancer cell lines after stimulation with vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor, tumor necrosis factor, thrombin but not with estrogen, progesterone, and oxytocin. The sensitivity to agonist stimulation and the amount of PAF synthesized as cell-associated or released varied in different cell lines, being higher in MDA-MB231 cells, which are known to be highly invasive. We further demonstrate, by reverse transcriptase-polymerase chain reaction and cytofluorimetry, that all of the breast cancer cells express the PAF receptor and respond to PAF stimulation in terms of proliferation. Moreover, in MDA-MB231 cells PAF elicited cell motility. In vivo, two structurally different PAF receptor antagonists WEB 2170 and CV 3988 significantly reduced the formation of new vessels in a tumor induced by subcutaneous implantation of MDA-MB231 cells into SCID mice. In conclusion, these results suggest that PAF, produced and released by breast cancer cells, can contribute to tumor development by enhancing cell motility and proliferation and by stimulating the angiogenic response.
Collapse
Affiliation(s)
- B Bussolati
- Department of Internal Medicine, University of Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev 2000; 80:1669-99. [PMID: 11015622 DOI: 10.1152/physrev.2000.80.4.1669] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet-activating factor (PAF) is a phospholipid mediator that belongs to a family of biologically active, structurally related alkyl phosphoglycerides. PAF acts via a specific receptor that is coupled with a G protein, which activates a phosphatidylinositol-specific phospholipase C. In this review we focus on the aspects that are more relevant for the cell biology of the cardiovascular system. The in vitro studies provided evidence for a role of PAF both as intercellular and intracellular messenger involved in cell-to-cell communication. In the cardiovascular system, PAF may have a role in embryogenesis because it stimulates endothelial cell migration and angiogenesis and may affect cardiac function because it exhibits mechanical and electrophysiological actions on cardiomyocytes. Moreover, PAF may contribute to modulation of blood pressure mainly by affecting the renal vascular circulation. In pathological conditions, PAF has been involved in the hypotension and cardiac dysfunctions occurring in various cardiovascular stress situations such as cardiac anaphylaxis and hemorrhagic, traumatic, and septic shock syndromes. In addition, experimental studies indicate that PAF has a critical role in the development of myocardial ischemia-reperfusion injury. Indeed, PAF cooperates in the recruitment of leukocytes in inflamed tissue by promoting adhesion to the endothelium and extravascular transmigration of leukocytes. The finding that human heart can produce PAF, expresses PAF receptor, and is sensitive to the negative inotropic action of PAF suggests that this mediator may have a role also in human cardiovascular pathophysiology.
Collapse
Affiliation(s)
- G Montrucchio
- Laboratorio di Immunopatologia Renale, Dipartimento di Medicina Interna, Dipartimento di Biologia Animale e dell'Uomo e Istituto Nazionale di Fisica della Materia, Università di Torino, Torino, Italy
| | | | | |
Collapse
|
24
|
Montrucchio G, Lupia E, Battaglia E, Del Sorbo L, Boccellino M, Biancone L, Emanuelli G, Camussi G. Platelet-activating factor enhances vascular endothelial growth factor-induced endothelial cell motility and neoangiogenesis in a murine matrigel model. Arterioscler Thromb Vasc Biol 2000; 20:80-8. [PMID: 10634803 DOI: 10.1161/01.atv.20.1.80] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that platelet-activating factor (PAF) enhances the angiogenic activity of certain polypeptide mediators such as tumor necrosis factor and hepatocyte growth factor by promoting endothelial cell motility. The purpose of the present study was to evaluate whether the synthesis of PAF induced by vascular endothelial growth factor (VEGF) might affect endothelial cell motility, microvascular permeability, and angiogenesis. The neoangiogenesis and synthesis of PAF induced by VEGF were studied in vivo in a murine Matrigel model. Dermal permeability was studied in mice by injection of (125)I-albumin. The synthesis of PAF, cell motility, and the increased (125)I-albumin transfer across endothelial monolayers were studied in vitro by using cultures of human umbilical cord vein-derived endothelial cells (HUVECs). The results obtained demonstrate that the neoangiogenesis induced by VEGF in vivo was associated with a local synthesis of PAF and was inhibited by WEB2170 and CV3988, 2 chemically unrelated, specific PAF-receptor antagonists. In contrast, WEB2170 did not inhibit VEGF-enhanced dermal permeability, suggesting that the latter was independent of the synthesis of PAF. In vitro, it was found that VEGF induced the synthesis of PAF by HUVECs in a dose- and time-dependent manner. The cell motility induced by VEGF was inhibited by PAF-receptor antagonists. In contrast, VEGF-induced proliferation of HUVECs and albumin transfer through HUVEC monolayer were unaffected by PAF-receptor antagonists. These results suggest that the synthesis of PAF induced by VEGF enhances endothelial cell migration and contributes to the angiogenic effect of VEGF in the in vivo Matrigel model.
Collapse
Affiliation(s)
- G Montrucchio
- Dipartimento di Fisiopatologia Clinica, Università di Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Platelet-activating factor acetylhydrolases (PAF-AHs, EC 3.1.1.47) constitute a unique subfamily of phospholipases A(2), specific for short acyl chains in the sn-2 position of the phospholipid. Their primary substrate is the platelet-activating factor, PAF, from which they cleave an acetyl moiety with concomitant release of lysoPAF. However, some acetylhydrolase will also hydrolyze other polar phospholipids with up to 6-carbons long acyl chains in the sn-2 position. PAF-acetylhydrolases are diverse enzymes, and the well-characterized isoforms are serine-dependent hydrolases, which do not require Ca(2+) for activity. Given the existence of two pools of PAF, intra- and extracellular, the acetylhydrolases can be divided into two subclasses: those found in the cytosol and enzymes secreted to blood plasma or other body fluids. Recent crystallographic studies shed new light on the complex structure-function relationships in PAF-AHs.
Collapse
Affiliation(s)
- Z S Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, P.O. Box 10011, Charlottesville, VA 22906-0011, USA.
| | | |
Collapse
|
26
|
Merendino N, Dwinell MB, Varki N, Eckmann L, Kagnoff MF. Human intestinal epithelial cells express receptors for platelet-activating factor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G810-8. [PMID: 10516147 DOI: 10.1152/ajpgi.1999.277.4.g810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The intestinal epithelium produces and responds to cytokines and lipid mediators that play a key role in the induction and regulation of mucosal inflammation. The lipid mediator platelet-activating factor (PAF) can be produced and degraded by the human intestinal epithelium and is known to mediate a range of proinflammatory and other biological effects in the intestinal mucosa. In the studies herein, we assessed whether or not human intestinal epithelial cells express cell surface or intracellular PAF receptors (PAF-R), whether expression of these receptors can be regulated, and whether human intestinal epithelial cells respond to PAF. Several human colon epithelial cell lines (HT-29, Caco-2, T84, HCT-8, HCA-7, I407, and LS-174T) were shown by RT-PCR to constitutively express mRNA for PAF-R. In addition, PAF-R expression was demonstrated by immunoblot analysis and PAF-R was shown to be constitutively expressed on the cell surface of several of these cell lines, as assessed by flow cytometry. PAF-R expression by human colon epithelial cells was upregulated by stimulation with retinoic acid but not by stimulation with PAF, proinflammatory agonists (tumor necrosis factor-alpha, interleukin-1, interferon-gamma), or transforming growth factor-alpha. PAF-R on intestinal epithelial cells were functional, as PAF stimulation of the cells increased tyrosine phosphorylation of several cellular proteins, including proteins of 75 and 125 kDa, and this response was blocked by a PAF-R antagonist. Consistent with the findings using cell lines, PAF-R were also constitutively expressed by normal human colon and small intestinal epithelium in vivo, as shown by immunohistology. The constitutive and regulated expression of functional PAF-R by human intestinal epithelium suggests PAF produced by the intestinal epithelial cells or cells underlying the epithelium has autocrine or paracrine effects on intestinal epithelial cells.
Collapse
Affiliation(s)
- N Merendino
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0623, USA
| | | | | | | | | |
Collapse
|