1
|
Liao YC, Pang S, Li WP, Shtengel G, Choi H, Schaefer K, Xu CS, Lippincott-Schwartz J. COPII with ALG2 and ESCRTs control lysosome-dependent microautophagy of ER exit sites. Dev Cell 2024; 59:1410-1424.e4. [PMID: 38593803 DOI: 10.1016/j.devcel.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Endoplasmic reticulum exit sites (ERESs) are tubular outgrowths of endoplasmic reticulum that serve as the earliest station for protein sorting and export into the secretory pathway. How these structures respond to different cellular conditions remains unclear. Here, we report that ERESs undergo lysosome-dependent microautophagy when Ca2+ is released by lysosomes in response to nutrient stressors such as mTOR inhibition or amino acid starvation in mammalian cells. Targeting and uptake of ERESs into lysosomes were observed by super-resolution live-cell imaging and focus ion beam scanning electron microscopy (FIB-SEM). The mechanism was ESCRT dependent and required ubiquitinated SEC31, ALG2, and ALIX, with a knockout of ALG2 or function-blocking mutations of ALIX preventing engulfment of ERESs by lysosomes. In vitro, reconstitution of the pathway was possible using lysosomal lipid-mimicking giant unilamellar vesicles and purified recombinant components. Together, these findings demonstrate a pathway of lysosome-dependent ERES microautophagy mediated by COPII, ALG2, and ESCRTS induced by nutrient stress.
Collapse
Affiliation(s)
| | - Song Pang
- HHMI Janelia Research Campus, Ashburn, VA, USA; Yale School of Medicine, New Haven, CT, USA
| | - Wei-Ping Li
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | - Heejun Choi
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | - C Shan Xu
- HHMI Janelia Research Campus, Ashburn, VA, USA; Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
2
|
Ahmed MZ, Alqahtani AS. Cell surface expression of Ribophorin I, an endoplasmic reticulum protein, over different cell types. Int J Biol Macromol 2024; 264:130278. [PMID: 38373565 DOI: 10.1016/j.ijbiomac.2024.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Ribophorin-1 serves as one of the subunits of the oligosaccharyltransferase (OST) complex located in the endoplasmic reticulum (ER). Until now, RPN-1 was considered an ER protein. However, our findings reveal that a minor fraction of RPN-1 escapes from the lumen of the ER and is ectopically expressed on the surface of different cell lines. The precise mechanism of protein translocation is unknown. The expression of RPN-1 was demonstrated through the isolation of membrane proteins using surface biotinylation and sucrose density gradient techniques. The confirmation of RPN-1 was obtained through surface staining using a specific antibody, revealing its expression on various cell lines. Additionally, we examined the expression of RPN-1 in different populations of PBMCs and observed a differential regulation of RPN-1 within PBMC subpopulations. Notably, there was a significant expression of RPN-1 on monocytes and B cells, but there was little to no population of T cells expressing RPN-1. We confirmed the expression of RPN-1 on THP-1, U937, and Jurkat cells. We also confirmed their surface expression through si-RNA knockdown. Our study shows RPN-1 expression on various cell surfaces, suggesting varied regulation among cell types. In the future, we may uncover its roles in immune function, signaling, and differentiation/proliferation.
Collapse
Affiliation(s)
- Mohammad Z Ahmed
- King Saud University College of Pharmacy, Department of Pharmacognosy, Riyadh 11451, Saudi Arabia.
| | - Ali S Alqahtani
- King Saud University College of Pharmacy, Department of Pharmacognosy, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Abboud D, Abboud C, Inoue A, Twizere JC, Hanson J. Basal interaction of the orphan receptor GPR101 with arrestins leads to constitutive internalization. Biochem Pharmacol 2024; 220:116013. [PMID: 38151077 DOI: 10.1016/j.bcp.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
GPR101 is an orphan G protein-coupled receptor that promotes growth hormone secretion in the pituitary. The microduplication of the GPR101 gene has been linked with the X-linked acrogigantism, or X-LAG, syndrome. This disease is characterized by excessive growth hormone secretion and abnormal rapid growth beginning early in life. Mechanistically, GPR101 induces growth hormone secretion through constitutive activation of multiple heterotrimeric G proteins. However, the full scope of GPR101 signaling remains largely elusive. Herein, we investigated the association of GPR101 to multiple transducers and uncovered an important basal interaction with Arrestin 2 (β-arrestin 1) and Arrestin 3 (β-arrestin 2). By using a GPR101 mutant lacking the C-terminus and cell lines with an Arrestin 2/3 null background, we show that the arrestin association leads to constitutive clathrin- and dynamin-mediated GPR101 internalization. To further highlight GPR101 intracellular fate, we assessed the colocalization of GPR101 with Rab protein markers. Internalized GPR101 was mainly colocalized with the early endosome markers, Rab5 and EEA-1, and to a lesser degree with the late endosome marker Rab7. However, GPR101 was not colocalized with the recycling endosome marker Rab11. These findings show that the basal arrestin recruitment by GPR101 C-terminal tail drives the receptor constitutive clathrin-mediated internalization. Intracellularly, GPR101 concentrates in the endosomal compartment and is degraded through the lysosomal pathway. In conclusion, we uncovered a constitutive intracellular trafficking of GPR101 that potentially represents an important layer of regulation of its signaling and function.
Collapse
Affiliation(s)
- Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Liege, Belgium.
| |
Collapse
|
4
|
Toader C, Eva L, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Ciurea AV. Unraveling the Multifaceted Role of the Golgi Apparatus: Insights into Neuronal Plasticity, Development, Neurogenesis, Alzheimer's Disease, and SARS-CoV-2 Interactions. Brain Sci 2023; 13:1363. [PMID: 37891732 PMCID: PMC10605100 DOI: 10.3390/brainsci13101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
This article critically evaluates the multifunctional role of the Golgi apparatus within neurological paradigms. We succinctly highlight its influence on neuronal plasticity, development, and the vital trafficking and sorting mechanisms for proteins and lipids. The discourse further navigates to its regulatory prominence in neurogenesis and its implications in Alzheimer's Disease pathogenesis. The emerging nexus between the Golgi apparatus and SARS-CoV-2 underscores its potential in viral replication processes. This consolidation accentuates the Golgi apparatus's centrality in neurobiology and its intersections with both neurodegenerative and viral pathologies. In essence, understanding the Golgi's multifaceted functions harbors profound implications for future therapeutic innovations in neurological and viral afflictions.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Faculty of Medicine, “Dunarea de Jos” University of Galati, 800201 Galați, Romania
- Emergency Clinical Hospital “Prof. dr. N. Oblu”, 700309 Iasi, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
5
|
Scott ZC, Koning K, Vanderwerp M, Cohen L, Westrate LM, Koslover EF. Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics. Biophys J 2023; 122:3191-3205. [PMID: 37401053 PMCID: PMC10432226 DOI: 10.1016/j.bpj.2023.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo imaging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of "hot spots" where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we demonstrate how structure guides diffusive protein transport and reactions in the ER.
Collapse
Affiliation(s)
| | - Katherine Koning
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Molly Vanderwerp
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | | | - Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California.
| |
Collapse
|
6
|
Wong-Dilworth L, Rodilla-Ramirez C, Fox E, Restel SD, Stockhammer A, Adarska P, Bottanelli F. STED imaging of endogenously tagged ARF GTPases reveals their distinct nanoscale localizations. J Cell Biol 2023; 222:e202205107. [PMID: 37102998 PMCID: PMC10140647 DOI: 10.1083/jcb.202205107] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/10/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
ADP-ribosylation factor (ARF) GTPases are major regulators of cellular membrane homeostasis. High sequence similarity and multiple, possibly redundant functions of the five human ARFs make investigating their function a challenging task. To shed light on the roles of the different Golgi-localized ARF members in membrane trafficking, we generated CRISPR-Cas9 knockins (KIs) of type I (ARF1 and ARF3) and type II ARFs (ARF4 and ARF5) and mapped their nanoscale localization with stimulated emission depletion (STED) super-resolution microscopy. We find ARF1, ARF4, and ARF5 on segregated nanodomains on the cis-Golgi and ER-Golgi intermediate compartments (ERGIC), revealing distinct roles in COPI recruitment on early secretory membranes. Interestingly, ARF4 and ARF5 define Golgi-tethered ERGIC elements decorated by COPI and devoid of ARF1. Differential localization of ARF1 and ARF4 on peripheral ERGICs suggests the presence of functionally different classes of intermediate compartments that could regulate bi-directional transport between the ER and the Golgi. Furthermore, ARF1 and ARF3 localize to segregated nanodomains on the trans-Golgi network (TGN) and are found on TGN-derived post-Golgi tubules, strengthening the idea of distinct roles in post-Golgi sorting. This work provides the first map of the nanoscale organization of human ARF GTPases on cellular membranes and sets the stage to dissect their numerous cellular roles.
Collapse
Affiliation(s)
| | | | - Eleanor Fox
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Petia Adarska
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
7
|
Stevenson NL. The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function. Biol Open 2023; 12:287059. [PMID: 36802341 PMCID: PMC9986613 DOI: 10.1242/bio.059719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The growth and development of healthy tissues is dependent on the construction of a highly specialised extracellular matrix (ECM) to provide support for cell growth and migration and to determine the biomechanical properties of the tissue. These scaffolds are composed of extensively glycosylated proteins which are secreted and assembled into well-ordered structures that can hydrate, mineralise, and store growth factors as required. The proteolytic processing and glycosylation of ECM components is vital to their function. These modifications are under the control of the Golgi apparatus, an intracellular factory hosting spatially organised, protein-modifying enzymes. Regulation also requires a cellular antenna, the cilium, which integrates extracellular growth signals and mechanical cues to inform ECM production. Consequently, mutations in either Golgi or ciliary genes frequently lead to connective tissue disorders. The individual importance of each of these organelles to ECM function is well-studied. However, emerging evidence points towards a more tightly linked system of interdependence between the Golgi, cilium and ECM. This review examines how the interplay between all three compartments underpins healthy tissue. As an example, it will look at several members of the golgin family of Golgi-resident proteins whose loss is detrimental to connective tissue function. This perspective will be important for many future studies looking to dissect the cause and effect of mutations impacting tissue integrity.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
8
|
Wang S, Chen YZ, Fu S, Zhao Y. In silico approaches uncovering the systematic function of N-phosphorylated proteins in human cells. Comput Biol Med 2022; 151:106280. [PMID: 36375414 DOI: 10.1016/j.compbiomed.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Phosphorylation plays a key role in the regulation of protein function. In addition to the extensively studied O-phosphorylation of serine, threonine, and tyrosine, emerging evidence suggests that the non-canonical phosphorylation of histidine, lysine, and arginine termed N-phosphorylation, exists widely in eukaryotes. At present, the study of N-phosphorylation is still in its infancy, and its regulatory role and specific biological functions in mammalian cells are still unknown. Here, we report the in silico analysis of the systematic biological significance of N-phosphorylated proteins in human cells. The protein structural and functional domain enrichment analysis revealed that N-phosphorylated proteins are rich in RNA recognition motif, nucleotide-binding and alpha-beta plait domains. The most commonly enriched biological pathway is the metabolism of RNA. Besides, arginine phosphorylated (pArg) proteins are highly related to DNA repair, while histidine phosphorylated (pHis) proteins may play a role in the regulation of the cell cycle, and lysine phosphorylated (pLys) proteins are linked to cellular stress response, intracellular signal transduction, and intracellular transport, which are of great significance for maintaining cell homeostasis. Protein-protein interaction (PPI) network analysis revealed important hub proteins (i.e., SRSF1, HNRNPA1, HNRNPC, SRSF7, HNRNPH1, SRSF2, SRSF11, HNRNPD, SRRM2 and YBX1) which are closely related to neoplasms, nervous system diseases, and virus infection and have potential as therapeutic targets. Those proteins with clinical significance are worthy of attention, and the rational considerations of N-phosphorylation in occurrence and progression of diseases might be beneficial for further translational applications.
Collapse
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Songsen Fu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China; Key Lab of Bioorganic Phosphorus Chemistry&Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
van Leeuwen W, Nguyen DTM, Grond R, Veenendaal T, Rabouille C, Farías GG. Stress-induced phase separation of ERES components into Sec bodies precedes ER exit inhibition in mammalian cells. J Cell Sci 2022; 135:jcs260294. [PMID: 36325988 PMCID: PMC10112967 DOI: 10.1242/jcs.260294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Phase separation of components of ER exit sites (ERES) into membraneless compartments, the Sec bodies, occurs in Drosophila cells upon exposure to specific cellular stressors, namely, salt stress and amino acid starvation, and their formation is linked to the early secretory pathway inhibition. Here, we show Sec bodies also form in secretory mammalian cells upon the same stress. These reversible and membraneless structures are positive for ERES components, including both Sec16A and Sec16B isoforms and COPII subunits. We find that Sec16A, but not Sec16B, is a driver for Sec body formation, and that the coalescence of ERES components into Sec bodies occurs by fusion. Finally, we show that the stress-induced coalescence of ERES components into Sec bodies precedes ER exit inhibition, leading to their progressive depletion from ERES that become non-functional. Stress relief causes an immediate dissolution of Sec bodies and the concomitant restoration of ER exit. We propose that the dynamic conversion between ERES and Sec body assembly, driven by Sec16A, regulates protein exit from the ER during stress and upon stress relief in mammalian cells, thus providing a conserved pro-survival mechanism in response to stress.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
| | - Dan T. M. Nguyen
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Rianne Grond
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
| | - Tineke Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, Groningen 9713 AV, The Netherlands
| | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
10
|
McGinness AJ, Schoberer J, Pain C, Brandizzi F, Kriechbaumer V. On the nature of the plant ER exit sites. FRONTIERS IN PLANT SCIENCE 2022; 13:1010569. [PMID: 36275575 PMCID: PMC9585722 DOI: 10.3389/fpls.2022.1010569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In plants, the endoplasmic reticulum (ER) and Golgi bodies are not only in close proximity, but are also physically linked. This unique organization raises questions about the nature of the transport vectors carrying cargo between the two organelles. Same as in metazoan and yeast cells, it was suggested that cargo is transported from the ER to Golgi cisternae via COPII-coated vesicles produced at ribosome-free ER exit sites (ERES). Recent developments in mammalian cell research suggest, though, that COPII helps to select secretory cargo, but does not coat the carriers leaving the ER. Furthermore, it was shown that mammalian ERES expand into a tubular network containing secretory cargo, but no COPII components. Because of the close association of the ER and Golgi bodies in plant cells, it was previously proposed that ERES and the Golgi comprise a secretory unit that travels over or with a motile ER membrane. In this study, we aimed to explore the nature of ERES in plant cells and took advantage of high-resolution confocal microscopy and imaged ERES labelled with canonical markers (Sar1a, Sec16, Sec24). We found that ERES are dynamically connected to Golgi bodies and most likely represent pre-cis-Golgi cisternae. Furthermore, we showed fine tubular connections from the ER to Golgi compartments (ERGo tubules) as well as fine protrusions from ERES/Golgi cisternae connecting with the ER. We suggest that these tubules observed between the ER and Golgi as well as between the ER and ERES are involved in stabilizing the physical connection between ER and ERES/Golgi cisternae, but may also be involved in cargo transport from the ER to Golgi bodies.
Collapse
Affiliation(s)
- Alastair J. McGinness
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Charlotte Pain
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
11
|
Malis Y, Hirschberg K, Kaether C. Hanging the coat on a collar: Same function but different localization and mechanism for COPII. Bioessays 2022; 44:e2200064. [DOI: 10.1002/bies.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yehonathan Malis
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Christoph Kaether
- Leibniz Institute for Age Research – Fritz Lipmann Institute Jena Germany
| |
Collapse
|
12
|
Jung J, Khan MM, Landry J, Halavatyi A, Machado P, Reiss M, Pepperkok R. Regulation of the COPII secretory machinery via focal adhesions and extracellular matrix signaling. J Cell Biol 2022; 221:213351. [PMID: 35829701 PMCID: PMC9284426 DOI: 10.1083/jcb.202110081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/10/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
Proteins that enter the secretory pathway are transported from their place of synthesis in the endoplasmic reticulum to the Golgi complex by COPII-coated carriers. The networks of proteins that regulate these components in response to extracellular cues have remained largely elusive. Using high-throughput microscopy, we comprehensively screened 378 cytoskeleton-associated and related proteins for their functional interaction with the coat protein complex II (COPII) components SEC23A and SEC23B. Among these, we identified a group of proteins associated with focal adhesions (FERMT2, MACF1, MAPK8IP2, NGEF, PIK3CA, and ROCK1) that led to the downregulation of SEC23A when depleted by siRNA. Changes in focal adhesions induced by plating cells on ECM also led to the downregulation of SEC23A and decreases in VSVG transport from ER to Golgi. Both the expression of SEC23A and the transport defect could be rescued by treatment with a focal adhesion kinase inhibitor. Altogether, our results identify a network of cytoskeleton-associated proteins connecting focal adhesions and ECM-related signaling with the gene expression of the COPII secretory machinery and trafficking.
Collapse
Affiliation(s)
- Juan Jung
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Muzamil Majid Khan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Jonathan Landry
- Core Facilities Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Core Facilities Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Core Facilities Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Miriam Reiss
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Core Facilities Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
13
|
Tie HC, Mahajan D, Lu L. Visualizing intra-Golgi localization and transport by side-averaging Golgi ministacks. J Biophys Biochem Cytol 2022; 221:213180. [PMID: 35467701 DOI: 10.1083/jcb.202109114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/03/2021] [Accepted: 04/05/2022] [Indexed: 01/09/2023] Open
Abstract
The mammalian Golgi comprises tightly adjacent and flattened membrane sacs called cisternae. We still do not understand the molecular organization of the Golgi and intra-Golgi transport of cargos. One of the most significant challenges to studying the Golgi is resolving Golgi proteins at the cisternal level under light microscopy. We have developed a side-averaging approach to visualize the cisternal organization and intra-Golgi transport in nocodazole-induced Golgi ministacks. Side-view images of ministacks acquired from Airyscan microscopy are transformed and aligned before intensity normalization and averaging. From side-average images of >30 Golgi proteins, we uncovered the organization of the pre-Golgi, cis, medial, trans, and trans-Golgi network membrane with an unprecedented spatial resolution. We observed the progressive transition of a synchronized cargo wave from the cis to the trans-side of the Golgi. Our data support our previous finding, in which constitutive cargos exit at the trans-Golgi while the secretory targeting to the trans-Golgi network is signal dependent.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Fourriere L, Cho EHJ, Gleeson PA. Segregation of the membrane cargoes, BACE1 and amyloid precursor protein (APP) throughout the Golgi apparatus. Traffic 2022; 23:158-173. [PMID: 35076977 PMCID: PMC9303681 DOI: 10.1111/tra.12831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
The intracellular trafficking of β‐site amyloid precursor protein (APP) cleaving enzyme (BACE1) and APP regulates amyloid‐β production. Our previous work demonstrated that newly synthesized BACE1 and APP are segregated into distinct trafficking pathways from the trans‐Golgi network (TGN), and that alterations in their trafficking lead to an increase in Aβ production in non‐neuronal and neuronal cells. However, it is not known whether BACE1 and APP are transported through the Golgi stacks together and sorted at the TGN or segregated prior to arrival at the TGN. To address this question, we have used high‐resolution Airyscan technology followed by Huygens deconvolution to quantify the overlap of BACE1 and APP in Golgi subcompartments in HeLa cells and primary neurons. Here, we show that APP and BACE1 are segregated, on exit from the endoplasmic reticulum and in the cis‐Golgi and throughout the Golgi stack. In contrast, the transferrin receptor, which exits the TGN in AP‐1 mediated transport carriers as for BACE1, colocalizes with BACE1, but not APP, throughout the Golgi stack. The segregation of APP and BACE1 is independent of the Golgi ribbon structure and the cytoplasmic domain of the cargo. Overall, our findings reveal the segregation of different membrane cargoes early in the secretory pathway, a finding relevant to the regulation of APP processing events.
Collapse
Affiliation(s)
- Lou Fourriere
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Ellie Hyun-Jung Cho
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Victoria, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
15
|
A tango for coats and membranes: New insights into ER-to-Golgi traffic. Cell Rep 2022; 38:110258. [DOI: 10.1016/j.celrep.2021.110258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
|
16
|
Branched Actin Maintains Acetylated Microtubule Network in the Early Secretory Pathway. Cells 2021; 11:cells11010015. [PMID: 35011578 PMCID: PMC8750537 DOI: 10.3390/cells11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
In the early secretory pathway, the delivery of anterograde cargoes from the endoplasmic reticulum (ER) exit sites (ERES) to the Golgi apparatus is a multi-step transport process occurring via the ER-Golgi intermediate compartment (IC, also called ERGIC). While the role microtubules in ER-to-Golgi transport has been well established, how the actin cytoskeleton contributes to this process remains poorly understood. Here, we report that Arp2/3 inhibition affects the network of acetylated microtubules around the Golgi and induces the accumulation of unusually long RAB1/GM130-positive carriers around the centrosome. These long carriers are less prone to reach the Golgi apparatus, and arrival of anterograde cargoes to the Golgi is decreased upon Arp2/3 inhibition. Our data suggest that Arp2/3-dependent actin polymerization maintains a stable network of acetylated microtubules, which ensures efficient cargo trafficking at the late stage of ER to Golgi transport.
Collapse
|
17
|
Lee JE, Kim N, Jung M, Mun JY, Yoo JY. SHISA5/SCOTIN restrains spontaneous autophagy induction by blocking contact between the ERES and phagophores. Autophagy 2021; 18:1613-1628. [PMID: 34720018 PMCID: PMC9298459 DOI: 10.1080/15548627.2021.1994297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The phagophore expands into autophagosomes in close proximity to endoplasmic reticulum (ER) exit sites (ERESs). Here, we propose that a single-pass ER transmembrane protein, SHISA5/SCOTIN, acts as an autophagy suppressor under basal condition by blocking the contact between the phagophore and ERES. HeLa cells lacking SHISA5 displayed higher levels of macroautophagy/autophagy. The enhanced autophagy in SHISA5 KO cells requires class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1) activity and functional assembly of ERES, but not ULK1 activity. A proximity ligation assay (PLA) of SEC16A (Sec16 homolog A, endoplasmic reticulum export factor)-WIPI2 (WD repeat domain, phosphoinositide interacting 2) and SEC31A (Sec31 homolog A, COPII coat complex component)-MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) demonstrated that contact between the ERES and phagophore increased in SHISA5 KO cells, and the cytosolic domain of SHISA5 was sufficient to rescue this phenotype. Close proximity between ERES and phagophore in SHISA5 KO cells was also visualized by performing an ultrastructure correlative image analysis of SEC31A associated with LC3-positive membranes. Furthermore, we observed that SHISA5 was located near ERES under basal conditions, but displaced away from ERES under autophagy-inducing conditions. These data suggest that SHISA5 functions to block spontaneous contact between ERES and phagophore, and the blockage effect of SHISA5 should be relieved for the proper induction of autophagy.
Collapse
Affiliation(s)
- Jee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ji-Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
18
|
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021; 10:cells10092341. [PMID: 34571990 PMCID: PMC8472773 DOI: 10.3390/cells10092341] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics.
Collapse
|
19
|
Shomron O, Nevo-Yassaf I, Aviad T, Yaffe Y, Zahavi EE, Dukhovny A, Perlson E, Brodsky I, Yeheskel A, Pasmanik-Chor M, Mironov A, Beznoussenko GV, Mironov AA, Sklan EH, Patterson GH, Yonemura Y, Sannai M, Kaether C, Hirschberg K. COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. J Cell Biol 2021; 220:211990. [PMID: 33852719 PMCID: PMC8054201 DOI: 10.1083/jcb.201907224] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
COPII and COPI mediate the formation of membrane vesicles translocating in opposite directions within the secretory pathway. Live-cell and electron microscopy revealed a novel mode of function for COPII during cargo export from the ER. COPII is recruited to membranes defining the boundary between the ER and ER exit sites, facilitating selective cargo concentration. Using direct observation of living cells, we monitored cargo selection processes, accumulation, and fission of COPII-free ERES membranes. CRISPR/Cas12a tagging, the RUSH system, and pharmaceutical and genetic perturbations of ER-Golgi transport demonstrated that the COPII coat remains bound to the ER–ERES boundary during protein export. Manipulation of the cargo-binding domain in COPII Sec24B prohibits cargo accumulation in ERES. These findings suggest a role for COPII in selecting and concentrating exported cargo rather than coating Golgi-bound carriers. These findings transform our understanding of coat proteins’ role in ER-to-Golgi transport.
Collapse
Affiliation(s)
- Olga Shomron
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Inbar Nevo-Yassaf
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Tamar Aviad
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yakey Yaffe
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eitan Erez Zahavi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Dukhovny
- Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ilya Brodsky
- Lomonosov Moscow State University, Andrey N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russia
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Mironov
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Galina V Beznoussenko
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Alexander A Mironov
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Ella H Sklan
- Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - George H Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Rockville, MD
| | - Yoji Yonemura
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Mara Sannai
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, Iyer N, Aaron J, Khuon S, Bogovic J, Qiu W, Hess HF, Lippincott-Schwartz J. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 2021; 184:2412-2429.e16. [PMID: 33852913 DOI: 10.1016/j.cell.2021.03.035] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/23/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.
Collapse
Affiliation(s)
- Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Chi-Lun Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wei Qiu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
21
|
Abstract
The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; ,
| | - V Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
22
|
Ogasawara Y, Cheng J, Tatematsu T, Uchida M, Murase O, Yoshikawa S, Ohsaki Y, Fujimoto T. Long-term autophagy is sustained by activation of CCTβ3 on lipid droplets. Nat Commun 2020; 11:4480. [PMID: 32900992 PMCID: PMC7479109 DOI: 10.1038/s41467-020-18153-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy initiates by formation of isolation membranes, but the source of phospholipids for the membrane biogenesis remains elusive. Here, we show that autophagic membranes incorporate newly synthesized phosphatidylcholine, and that CTP:phosphocholine cytidylyltransferase β3 (CCTβ3), an isoform of the rate-limiting enzyme in the Kennedy pathway, plays an essential role. In starved mouse embryo fibroblasts, CCTβ3 is initially recruited to autophagic membranes, but upon prolonged starvation, it concentrates on lipid droplets that are generated from autophagic degradation products. Omegasomes and isolation membranes emanate from around those lipid droplets. Autophagy in prolonged starvation is suppressed by knockdown of CCTβ3 and is enhanced by its overexpression. This CCTβ3-dependent mechanism is also present in U2OS, an osteosarcoma cell line, and autophagy and cell survival in starvation are decreased by CCTβ3 depletion. The results demonstrate that phosphatidylcholine synthesis through CCTβ3 activation on lipid droplets is crucial for sustaining autophagy and long-term cell survival.
Collapse
Affiliation(s)
- Yuta Ogasawara
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Misaki Uchida
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Omi Murase
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Shogo Yoshikawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Yuki Ohsaki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Toyoshi Fujimoto
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| |
Collapse
|
23
|
Westrate LM, Hoyer MJ, Nash MJ, Voeltz GK. Vesicular and uncoated Rab1-dependent cargo carriers facilitate ER to Golgi transport. J Cell Sci 2020; 133:jcs239814. [PMID: 32616562 PMCID: PMC7390636 DOI: 10.1242/jcs.239814] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 06/19/2020] [Indexed: 01/24/2023] Open
Abstract
Secretory cargo is recognized, concentrated and trafficked from endoplasmic reticulum (ER) exit sites (ERES) to the Golgi. Cargo export from the ER begins when a series of highly conserved COPII coat proteins accumulate at the ER and regulate the formation of cargo-loaded COPII vesicles. In animal cells, capturing live de novo cargo trafficking past this point is challenging; it has been difficult to discriminate whether cargo is trafficked to the Golgi in a COPII-coated vesicle. Here, we describe a recently developed live-cell cargo export system that can be synchronously released from ERES to illustrate de novo trafficking in animal cells. We found that components of the COPII coat remain associated with the ERES while cargo is extruded into COPII-uncoated, non-ER associated, Rab1 (herein referring to Rab1a or Rab1b)-dependent carriers. Our data suggest that, in animal cells, COPII coat components remain stably associated with the ER at exit sites to generate a specialized compartment, but once cargo is sorted and organized, Rab1 labels these export carriers and facilitates efficient forward trafficking.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Melissa J Hoyer
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Michael J Nash
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Gia K Voeltz
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| |
Collapse
|
24
|
Zheng ZG, Zhu ST, Cheng HM, Zhang X, Cheng G, Thu PM, Wang SP, Li HJ, Ding M, Qiang L, Chen XW, Zhong Q, Li P, Xu X. Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway. Autophagy 2020; 17:1592-1613. [PMID: 32432943 DOI: 10.1080/15548627.2020.1757955] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SCAP (SREBF chaperone) regulates SREBFs (sterol regulatory element binding transcription factors) processing and stability, and, thus, becomes an emerging drug target to treat dyslipidemia and fatty liver disease. However, the current known SCAP inhibitors, such as oxysterols, induce endoplasmic reticulum (ER) stress and NR1H3/LXRα (nuclear receptor subfamily 1 group H member 3)-SREBF1/SREBP-1 c-mediated hepatic steatosis, which severely limited the clinical application of this inhibitor. In this study, we identified a small molecule, lycorine, which binds to SCAP, which suppressed the SREBF pathway without inducing ER stress or activating NR1H3. Mechanistically, lycorine promotes SCAP lysosomal degradation in a macroautophagy/autophagy-independent pathway, a mechanism completely distinct from current SCAP inhibitors. Furthermore, we determined that SQSTM1 captured SCAP after its exit from the ER. The interaction of SCAP and SQSTM1 requires the WD40 domain of SCAP and the TB domain of SQSTM1. Interestingly, lycorine triggers the lysosome translocation of SCAP independent of autophagy. We termed this novel protein degradation pathway as the SQSTM1-mediated autophagy-independent lysosomal degradation (SMAILD) pathway. In vivo, lycorine ameliorates high-fat diet-induced hyperlipidemia, hepatic steatosis, and insulin resistance in mice. Our study demonstrated that the inhibition of SCAP through the SMAILD pathway could be employed as a useful therapeutic strategy for treating metabolic diseases.Abbreviation: 25-OHD: 25-hydroxyvitamin D; 3-MA: 3-methyladenine; ABCG5: ATP binding cassette subfamily G member 5; ABCG8: ATP binding cassette subfamily G member 8; ACACA: acetyl-CoA carboxylase alpha; AEBSF: 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride; AHI: anhydroicaritin; AKT/protein kinase B: AKT serine/threonine kinase; APOE: apolipoprotein E; ATF6: activating transcription factor 6; ATG: autophagy-related; BAT: brown adipose tissue; CD274/PD-L1: CD274 molecule; CETSA: cellular thermal shift assay; CMA: chaperone-mediated autophagy; COPII: cytoplasmic coat protein complex-II; CQ: chloroquine; DDIT3/CHOP: DNA damage inducible transcript 3; DNL: de novo lipogenesis; EE: energy expenditure; EGFR: epithelial growth factor receptor; eMI: endosomal microautophagy; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FADS2: fatty acid desaturase 2; FASN: fatty acid synthase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GPT/ALT: glutamic-pyruvate transaminase; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; HMGCS1: 3-hydroxy-3-methylglutaryl-CoA synthase 1; HSP90B1/GRP94: heat shock protein 90 beta family member 1; HSPA5/GRP78: heat hock protein family A (Hsp70) member 5; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; INSIG1: insulin induced gene 1; LAMP2A: lysosomal associated membrane protein 2A; LDLR: low density lipoprotein receptor; LyTACs: lysosome targeting chimeras; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MBTPS1: membrane bound transcription factor peptidase, site 1; MEF: mouse embryonic fibroblast; MST: microscale thermophoresis; MTOR: mechanistic target of rapamycin kinase; MVK: mevalonate kinase; PROTAC: proteolysis targeting chimera; RQ: respiratory quotient; SCAP: SREBF chaperone; SCD1: stearoyl-coenzemy A desaturase 1; SMAILD: sequestosome 1 mediated autophagy-independent lysosomal degradation; SQSTM1: sequestosome 1; SREBF: sterol regulatory element binding transcription factor; TNFRSF10B/DR5: TNF receptor superfamily member 10b; TRAF6: TNF receptor associated factor 6; UPR: unfolded protein response; WAT: white adipose tissue; XBP1: X-box binding protein 1.
Collapse
Affiliation(s)
- Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Si-Tong Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Gang Cheng
- Beijing Kanglisheng Pharmaceutical Technology Development Co., Ltd, Beijing, China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Zhong
- School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Stadler L, Speckner K, Weiss M. Diffusion of Exit Sites on the Endoplasmic Reticulum: A Random Walk on a Shivering Backbone. Biophys J 2018; 115:1552-1560. [PMID: 30274831 PMCID: PMC6260206 DOI: 10.1016/j.bpj.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
Major parts of the endoplasmic reticulum (ER) in eukaryotic cells are organized as a dynamic network of membrane tubules connected by three-way junctions. On this network, self-assembled membrane domains, called ER exit sites (ERES), provide platforms at which nascent cargo proteins are packaged into vesicular carriers for subsequent transport along the secretory pathway. Although ERES appear stationary and spatially confined on long timescales, we show here via single-particle tracking that they exhibit a microtubule-dependent and heterogeneous anomalous diffusion behavior on short and intermediate timescales. By quantifying key parameters of their random walk, we show that the subdiffusive motion of ERES is distinct from that of ER junctions, i.e., ERES are not tied to junctions but rather are mobile on ER tubules. We complement and corroborate our experimental findings with model simulations that also indicate that ERES are not actively moved by microtubules. Altogether, our study shows that ERES perform a random walk on the shivering ER backbone, indirectly powered by microtubular activity. Similar phenomena can be expected for other domains on subcellular structures, setting a caveat for the interpretation of domain-tracking data.
Collapse
Affiliation(s)
- Lorenz Stadler
- Experimental Physics I, University of Bayreuth, Bayreuth, Germany
| | | | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
26
|
Abstract
Type I collagen, a major component of bone, skin, and other connective tissues, is synthesized in the endoplasmic reticulum (ER) and passes through the secretory pathway. Rerouting of its procollagen precursor to a degradative pathway is crucial for reducing intracellular buildup in pathologies caused by defects in procollagen folding and trafficking. Here, we identify an autophagy pathway initiated at ER exit sites (ERESs). Procollagen proteins following this pathway accumulate at ERESs modified with ubiquitin, LC3, p62, and other autophagy machinery. Modified ERESs carrying procollagen are then engulfed by lysosomes through a microautophagy-like mechanism, not involving conventional, double-membrane autophagosomes. Procollagen homeostasis thus involves a noncanonical mode of autophagy initiated at ERESs, which might also be important in degradation of other secretory proteins. Type I collagen is the main component of bone matrix and other connective tissues. Rerouting of its procollagen precursor to a degradative pathway is crucial for osteoblast survival in pathologies involving excessive intracellular buildup of procollagen that is improperly folded and/or trafficked. What cellular mechanisms underlie this rerouting remains unclear. To study these mechanisms, we employed live-cell imaging and correlative light and electron microscopy (CLEM) to examine procollagen trafficking both in wild-type mouse osteoblasts and osteoblasts expressing a bone pathology-causing mutant procollagen. We found that although most procollagen molecules successfully trafficked through the secretory pathway in these cells, a subpopulation did not. The latter molecules appeared in numerous dispersed puncta colocalizing with COPII subunits, autophagy markers and ubiquitin machinery, with more puncta seen in mutant procollagen-expressing cells. Blocking endoplasmic reticulum exit site (ERES) formation suppressed the number of these puncta, suggesting they formed after procollagen entry into ERESs. The punctate structures containing procollagen, COPII, and autophagic markers did not move toward the Golgi but instead were relatively immobile. They appeared to be quickly engulfed by nearby lysosomes through a bafilomycin-insensitive pathway. CLEM and fluorescence recovery after photobleaching experiments suggested engulfment occurred through a noncanonical form of autophagy resembling microautophagy of ERESs. Overall, our findings reveal that a subset of procollagen molecules is directed toward lysosomal degradation through an autophagic pathway originating at ERESs, providing a mechanism to remove excess procollagen from cells.
Collapse
|
27
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
28
|
Gorur A, Yuan L, Kenny SJ, Baba S, Xu K, Schekman R. COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol 2017; 216:1745-1759. [PMID: 28428367 PMCID: PMC5461032 DOI: 10.1083/jcb.201702135] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023] Open
Abstract
The coat protein complex II (COPII) is essential for the transport of large cargo, such as 300-nm procollagen I (PC1) molecules, from the endoplasmic reticulum (ER) to the Golgi. Previous work has shown that the CUL3-KLHL12 complex increases the size of COPII vesicles at ER exit sites to more than 300 nm in diameter and accelerates the secretion of PC1. However, the role of large COPII vesicles as PC1 transport carriers was not unambiguously demonstrated. In this study, using stochastic optical reconstruction microscopy, correlated light electron microscopy, and live-cell imaging, we demonstrate the existence of mobile COPII-coated vesicles that completely encapsulate the cargo PC1 and are physically separated from ER. We also developed a cell-free COPII vesicle budding reaction that reconstitutes the capture of PC1 into large COPII vesicles. This process requires COPII proteins and the GTPase activity of the COPII subunit SAR1. We conclude that large COPII vesicles are bona fide carriers of PC1.
Collapse
Affiliation(s)
- Amita Gorur
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Lin Yuan
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Satoshi Baba
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
29
|
Martinez H, García IA, Sampieri L, Alvarez C. Spatial-Temporal Study of Rab1b Dynamics and Function at the ER-Golgi Interface. PLoS One 2016; 11:e0160838. [PMID: 27500526 PMCID: PMC4976911 DOI: 10.1371/journal.pone.0160838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 07/26/2016] [Indexed: 12/27/2022] Open
Abstract
The GTPase Rab1b is involved in ER to Golgi transport, with multiple Rab1b effectors (located at ERES, VTCs and the Golgi complex) being required for its function. In this study, we performed live-cell dual-expression studies to analyze the dynamics of Rab1b and some effectors located at the ERES-Golgi interface. Rab1b occupied widely distributed mobile punctate and tubular structures, displaying a transient overlaps with its effectors and showing that these overlaps occurred at the same time in spatially distinct steps of ER to Golgi transport. In addition, we assessed Rab1b dynamics during cargo sorting by analyzing the concentration at ERES of a Golgi protein (SialT2-CFP) during Brefeldin A washout (BFA WO). Rab1b was associated to most of the ERES structures, but at different times during BFA WO, and recurrently SialT2-CFP was sorted in the ERES-Rab1b positive structures. Furthermore, we reveal for first time that Rab1b localization time at ERES depended on GBF1, a Rab1b effector that acts as the guanine nucleotide exchange factor of Arf1, and that Rab1b membrane association/dissociation dynamics at ERES was dependent on the GBF1 membrane association and activity, which strongly suggests that GBF1 activity modulates Rab1b membrane cycling dynamic.
Collapse
Affiliation(s)
- Hernán Martinez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Iris A. García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- * E-mail:
| |
Collapse
|
30
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Church TW, Weatherall KL, Corrêa SAL, Prole DL, Brown JT, Marrion NV. Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Eur J Neurosci 2014; 41:305-15. [PMID: 25421315 DOI: 10.1111/ejn.12789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 11/27/2022]
Abstract
The activation of small conductance calcium-dependent (SK) channels regulates membrane excitability by causing membrane hyperpolarization. Three subtypes (SK1-3) have been cloned, with each subtype expressed within the nervous system. The locations of channel subunits overlap, with SK1 and SK2 subunits often expressed in the same brain region. We showed that expressed homomeric rat SK1 subunits did not form functional channels, because subunits accumulated in the Golgi. This raised the question of whether heteromeric channels could form with SK1 subunits. The co-expression of SK1 and SK2 subunits in HEK293 cells preferentially co-assembled to produce heteromeric channels with a fixed stoichiometry of alternating subunits. The expression in hippocampal CA1 neurons of mutant rat SK1 subunits [rat SK1(LV213/4YA)] that produced an apamin-sensitive current changed the amplitude and pharmacology of the medium afterhyperpolarization. The overexpression of rat SK1(LV213/4YA) subunits reduced the sensitivity of the medium afterhyperpolarization to apamin, substantiating the preferential co-assembly of SK1 and SK2 subunits to form heteromeric channels. Species-specific channel assembly occurred as the co-expression of human SK1 with rat SK2 did not form functional heteromeric channels. The replacement of two amino acids within the C-terminus of rat SK2 with those from human SK2 permitted the assembly of heteromeric channels when co-expressed with human SK1. These data showed that species-specific co-assembly was mediated by interaction between the C-termini of SK channel subunits. The finding that SK channels preferentially co-assembled to form heteromeric channels suggested that native heteromeric channels will predominate in cells expressing multiple SK channel subunits.
Collapse
Affiliation(s)
- Timothy W Church
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Proteins synthesised at the endoplasmic reticulum (ER) have to undergo a number of consecutive and coordinated steps to reach the Golgi complex. To understand the dynamic complexity of ER-to-Golgi transport at the structural and molecular level, light microscopy approaches are fundamental tools that allow in vivo observations of protein dynamics and interactions of fluorescent proteins in living cells. Imaging protein and organelle dynamics close to the ultra-structural level became possible by combining light microscopy with electron microscopy analyses or super-resolution light microscopy methods. Besides, increasing evidence suggests that the early secretory pathway is tightly connected to other cellular processes, such as signal transduction, and quantitative information at the systems level is fundamental to achieve a comprehensive molecular understanding of these connections. High-throughput microscopy in fixed and living cells in combination with systematic perturbation of gene expression by, e.g. RNA interference, will open new avenues to gain such an understanding of the early secretory pathway at the systems level. In this Commentary, we first outline examples that revealed the dynamic organisation of ER-to-Golgi transport in living cells. Next, we discuss the use of advanced imaging methods in studying ER-to-Golgi transport and, finally, delineate the efforts in understanding ER-to-Golgi transport at the systems level.
Collapse
Affiliation(s)
- Fatima Verissimo
- European Molecular Biology Laboratory, Cell Biology and Cell Biophysics Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
33
|
Takagi J, Renna L, Takahashi H, Koumoto Y, Tamura K, Stefano G, Fukao Y, Kondo M, Nishimura M, Shimada T, Brandizzi F, Hara-Nishimura I. MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in Arabidopsis. THE PLANT CELL 2013; 25:4658-75. [PMID: 24280388 PMCID: PMC3875742 DOI: 10.1105/tpc.113.118158] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 05/19/2023]
Abstract
Plant cells face unique challenges to efficiently export cargo from the endoplasmic reticulum (ER) to mobile Golgi stacks. Coat protein complex II (COPII) components, which include two heterodimers of Secretory23/24 (Sec23/24) and Sec13/31, facilitate selective cargo export from the ER; however, little is known about the mechanisms that regulate their recruitment to the ER membrane, especially in plants. Here, we report a protein transport mutant of Arabidopsis thaliana, named maigo5 (mag5), which abnormally accumulates precursor forms of storage proteins in seeds. mag5-1 has a deletion in the putative ortholog of the Saccharomyces cerevisiae and Homo sapiens Sec16, which encodes a critical component of ER exit sites (ERESs). mag mutants developed abnormal structures (MAG bodies) within the ER and exhibited compromised ER export. A functional MAG5/SEC16A-green fluorescent protein fusion localized at Golgi-associated cup-shaped ERESs and cycled on and off these sites at a slower rate than the COPII coat. MAG5/SEC16A interacted with SEC13 and SEC31; however, in the absence of MAG5/SEC16A, recruitment of the COPII coat to ERESs was accelerated. Our results identify a key component of ER export in plants by demonstrating that MAG5/SEC16A is required for protein export at ERESs that are associated with mobile Golgi stacks, where it regulates COPII coat turnover.
Collapse
Affiliation(s)
- Junpei Takagi
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Luciana Renna
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Hideyuki Takahashi
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasuko Koumoto
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Giovanni Stefano
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Federica Brandizzi
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
34
|
Midgley R, Moffat K, Berryman S, Hawes P, Simpson J, Fullen D, Stephens DJ, Burman A, Jackson T. A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection. J Gen Virol 2013; 94:2636-2646. [PMID: 23963534 PMCID: PMC3836498 DOI: 10.1099/vir.0.055442-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER–Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs.
Collapse
Affiliation(s)
| | - Katy Moffat
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK
| | | | | | | | - Daniel Fullen
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alison Burman
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK
| | - Terry Jackson
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
35
|
Cutrona MB, Beznoussenko GV, Fusella A, Martella O, Moral P, Mironov AA. Silencing of mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. Traffic 2013; 14:691-708. [PMID: 23433038 DOI: 10.1111/tra.12060] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 01/01/2023]
Abstract
The Sar1 GTPase coordinates the assembly of coat protein complex-II (COPII) at specific sites of the endoplasmic reticulum (ER). COPII is required for ER-to-Golgi transport, as it provides a structural and functional framework to ship out protein cargoes produced in the ER. To investigate the requirement of COPII-mediated transport in mammalian cells, we used small interfering RNA (siRNA)-mediated depletion of Sar1A and Sar1B. We report that depletion of these two mammalian forms of Sar1 disrupts COPII assembly and the cells fail to organize transitional elements that coordinate classical ER-to-Golgi protein transfer. Under these conditions, minimal Golgi stacks are seen in proximity to juxtanuclear ER membranes that contain elements of the intermediate compartment, and from which these stacks coordinate biosynthetic transport of protein cargo, such as the vesicular stomatitis virus G protein and albumin. Here, transport of procollagen-I is inhibited. These data provide proof-of-principle for the contribution of alternative mechanisms that support biosynthetic trafficking in mammalian cells, providing evidence of a functional boundary associated with a bypass of COPII.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- Department of Cellular and Translational Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Yeong FM. Multi-step down-regulation of the secretory pathway in mitosis: a fresh perspective on protein trafficking. Bioessays 2013; 35:462-71. [PMID: 23494566 PMCID: PMC3654163 DOI: 10.1002/bies.201200144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The secretory pathway delivers proteins synthesized at the rough endoplasmic reticulum (RER) to various subcellular locations via the Golgi apparatus. Currently, efforts are focused on understanding the molecular machineries driving individual processes at the RER and Golgi that package, modify and transport proteins. However, studies are routinely performed using non-dividing cells. This obscures the critical issue of how the secretory pathway is affected by cell division. Indeed, several studies have indicated that protein trafficking is down-regulated during mitosis. Moreover, the RER and Golgi apparatus exhibit gross reorganization in mitosis. Here I provide a relatively neglected perspective of how the mitotic cyclin-dependent kinase (CDK1) could regulate various stages of the secretory pathway. I highlight several aspects of the mitotic control of protein trafficking that remain unresolved and suggest that further studies on how the mitotic CDK1 influences the secretory pathway are necessary to obtain a deeper understanding of protein transport.
Collapse
Affiliation(s)
- Foong May Yeong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
37
|
Kenche H, Baty CJ, Vedagiri K, Shapiro SD, Blumental-Perry A. Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J 2012; 27:965-77. [PMID: 23169770 DOI: 10.1096/fj.12-216234] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The endoplasmic reticulum (ER) stress response (ERSR) and associated protein aggregation, is under investigation for its role in human diseases, including chronic obstructive pulmonary disease (COPD) where cigarette smoking (CS) is a risk factor for disease development. Our hypothesis states that CS-associated oxidative stress interferes with oxidative protein folding in the ER and elicits ERSR. We investigated ERSR induction following acute CS exposure and delineated mechanisms of CS-induced ERSR. Lung lysates from mice exposed or not to one cigarette were tested for activation of the ERSR. Up to 4-fold increase in phosphorylation of eIF2α and nuclear form of ATF6 was detected in CS-exposed animals. CS affected the formation of disulfide bonds through excessive posttranslational oxidation of protein disulfide isomerase (PDI). Increased amounts of complexes between PDI and its client proteins persisted in CS-exposed samples. BiP was not a constituent of these complexes, demonstrating the specificity of the early effects of CS exposure on ER. Disturbances in protein folding were accompanied by changes in the organization of ER network and ER exit sites. Our results provide evidence that ERSR is induced early in response to CS exposure and identifies the first known ER-resident target of CS PDI, demonstrating that CS affects oxidative protein folding.
Collapse
Affiliation(s)
- Harshavardhan Kenche
- Memorial Health University Medical Center, Anderson Cancer Institute, Hoskins Research Bldg., 4700 Waters Ave, Savannah, GA 31405, USA
| | | | | | | | | |
Collapse
|
38
|
Langhans M, Meckel T, Kress A, Lerich A, Robinson DG. ERES (ER exit sites) and the "secretory unit concept". J Microsc 2012; 247:48-59. [PMID: 22360601 DOI: 10.1111/j.1365-2818.2011.03597.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The higher plant Golgi apparatus consists of hundreds of individual Golgi stacks which move along the cortical ER, propelled by the actomysin system. Anterograde and retrograde transport between the endoplasmic reticulum (ER) and the plant Golgi occurs over a narrow interface (around 500 nm) and is generally considered to be mediated by COP-coated vesicles. Previously, ER exit sites (ERES) have been identified on the basis of to localization of transiently expressed COPII-coat proteins. As a consequence it has been held that ERES in higher plants are intimately associated with Golgi stacks, and that both move together as an integrated structure: the "secretory unit". Using a new COPII marker, as well as YFP-SEC24 (a bona fide COPII coat protein), we have made observations on tobacco leaf epidermis at high resolution in the CLSM. Our data clearly shows that COPII fluorescence is associated with the Golgi stacks rather than the surface of the ER and probably represents the temporary accumulation of COPII vesicles in the Golgi matrix prior to fusion with the cis-Golgi cisternae. We have calculated the numbers of COPII vesicles which would be required to provide a typical Golgi-associated COPII-fluorescent signal as being much less than 20. We have discussed the consequences of this and question the continued usage of the term "secretory unit".
Collapse
Affiliation(s)
- M Langhans
- Department of Plant Cell Biology, Centre for Organismal Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
39
|
ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS One 2012; 7:e38948. [PMID: 22701734 PMCID: PMC3372476 DOI: 10.1371/journal.pone.0038948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 05/15/2012] [Indexed: 12/17/2022] Open
Abstract
PTP1B is an endoplasmic reticulum (ER) anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC) in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM) associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC). Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research.
Collapse
|
40
|
Simpson JC, Joggerst B, Laketa V, Verissimo F, Cetin C, Erfle H, Bexiga MG, Singan VR, Hériché JK, Neumann B, Mateos A, Blake J, Bechtel S, Benes V, Wiemann S, Ellenberg J, Pepperkok R. Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway. Nat Cell Biol 2012; 14:764-74. [DOI: 10.1038/ncb2510] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/26/2012] [Indexed: 02/06/2023]
|
41
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
42
|
TRAPPC9 mediates the interaction between p150 and COPII vesicles at the target membrane. PLoS One 2012; 7:e29995. [PMID: 22279557 PMCID: PMC3261171 DOI: 10.1371/journal.pone.0029995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/07/2011] [Indexed: 11/19/2022] Open
Abstract
Background The transport of endoplasmic reticulum (ER)-derived COPII vesicles toward the ER-Golgi intermediate compartment (ERGIC) requires cytoplasmic dynein and is dependent on microtubules. p150Glued, a subunit of dynactin, has been implicated in the transport of COPII vesicles via its interaction with COPII coat components Sec23 and Sec24. However, whether and how COPII vesicle tether, TRAPP (Transport protein particle), plays a role in the interaction between COPII vesicles and microtubules is currently unknown. Principle Findings We address the functional relationship between COPII tether TRAPP and dynactin. Overexpressed TRAPP subunits interfered with microtubule architecture by competing p150Glued away from the MTOC. TRAPP subunit TRAPPC9 bound directly to p150Glued via the same carboxyl terminal domain of p150Glued that binds Sec23 and Sec24. TRAPPC9 also inhibited the interaction between p150Glued and Sec23/Sec24 both in vitro and in vivo, suggesting that TRAPPC9 serves to uncouple p150Glued from the COPII coat, and to relay the vesicle-dynactin interaction at the target membrane. Conclusions These findings provide a new perspective on the function of TRAPP as an adaptor between the ERGIC membrane and dynactin. By preserving the connection between dynactin and the tethered and/or fused vesicles, TRAPP allows nascent ERGIC to continue the movement along the microtubules as they mature into the cis-Golgi.
Collapse
|
43
|
Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1040-9. [PMID: 22265716 DOI: 10.1016/j.bbalip.2012.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/30/2011] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is a major site of synthesis of both lipids and proteins, many of which must be transported to other organelles. The COPII coat-comprising Sar1, Sec23/24, Sec13/31-generates transport vesicles that mediate the bulk of protein/lipid export from the ER. The coat exhibits remarkable flexibility in its ability to specifically select and accommodate a large number of cargoes with diverse properties. In this review, we discuss the fundamentals of COPII vesicle production and describe recent advances that further our understanding of just how flexible COPII cargo recruitment and vesicle formation may be. Large or bulky cargo molecules (e.g. collagen rods and lipoprotein particles) exceed the canonical size for COPII vesicles and seem to rely on the additional action of recently identified accessory molecules. Although the bulk of the research has focused on the fate of protein cargo, the mechanisms and regulation of lipid transport are equally critical to cellular survival. From their site of synthesis in the ER, phospholipids, sphingolipids and sterols exit the ER, either accompanying cargo in vesicles or directly across the cytoplasm shielded by lipid-transfer proteins. Finally, we highlight the current challenges to the field in addressing the physiological regulation of COPII vesicle production and the molecular details of how diverse cargoes, both proteins and lipids, are accommodated. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
44
|
Richards CI, Srinivasan R, Xiao C, Mackey EDW, Miwa JM, Lester HA. Trafficking of alpha4* nicotinic receptors revealed by superecliptic phluorin: effects of a beta4 amyotrophic lateral sclerosis-associated mutation and chronic exposure to nicotine. J Biol Chem 2011; 286:31241-9. [PMID: 21768117 PMCID: PMC3173132 DOI: 10.1074/jbc.m111.256024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
We employed a pH-sensitive GFP analog, superecliptic phluorin, to observe aspects of nicotinic acetylcholine receptor (nAChR) trafficking to the plasma membrane (PM) in cultured mouse cortical neurons. The experiments exploit differences in the pH among endoplasmic reticulum (ER), trafficking vesicles, and the extracellular solution. The data confirm that few α4β4 nAChRs, but many α4β2 nAChRs, remain in neutral intracellular compartments, mostly the ER. We observed fusion events between nAChR-containing vesicles and PM; these could be quantified in the dendritic processes. We also studied the β4R348C polymorphism, linked to amyotrophic lateral sclerosis (ALS). This mutation depressed fusion rates of α4β4 receptor-containing vesicles with the PM by ∼2-fold, with only a small decrease in the number of nAChRs per vesicle. The mutation also decreased the number of ER exit sites, showing that the reduced receptor insertion results from a change at an early stage in trafficking. We confirm the previous report that the mutation leads to reduced agonist-induced currents; in the cortical neurons studied, the reduction amounts to 2-3-fold. Therefore, the reduced agonist-induced currents are caused by the reduced number of α4β4-containing vesicles reaching the membrane. Chronic nicotine exposure (0.2 μM) did not alter the PM insertion frequency or trafficking behavior of α4β4-laden vesicles. In contrast, chronic nicotine substantially increased the number of α4β2-containing vesicle fusions at the PM; this stage in α4β2 nAChR up-regulation is presumably downstream from increased ER exit. Superecliptic phluorin provides a tool to monitor trafficking dynamics of nAChRs in disease and addiction.
Collapse
Affiliation(s)
- Christopher I. Richards
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Rahul Srinivasan
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Cheng Xiao
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Elisha D. W. Mackey
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Julie M. Miwa
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Henry A. Lester
- From the Division of Biology, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
45
|
Characterization of human Sec16B: indications of specialized, non-redundant functions. Sci Rep 2011; 1:77. [PMID: 22355596 PMCID: PMC3216564 DOI: 10.1038/srep00077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway and from here newly synthesized proteins and lipids are delivered to the Golgi. The selective cargo export from the ER is mediated by COPII-assembly at specific sites of the ER, the so-called transitional ER (tER). The peripheral membrane protein Sec16, first identified in yeast, localizes to transitional ER and plays a key role in organization of these sites. Sec16 defines the tER and is thought to act as a scaffold for the COPII coat assembly. In humans two isoforms of Sec16 are present, the larger Sec16A and the smaller Sec16B. Nevertheless, the functional differences between the two isoforms are ill-defined. Here we describe characterization of the localization and dynamics of Sec16B relative to Sec16A, provide evidence that Sec16B is likely a minor or perhaps specialized form of Sec16, and that it is not functionally redundant with Sec16A.
Collapse
|
46
|
García IA, Martinez HE, Alvarez C. Rab1b regulates COPI and COPII dynamics in mammalian cells. CELLULAR LOGISTICS 2011; 1:159-163. [PMID: 22279615 DOI: 10.4161/cl.1.4.18221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 02/02/2023]
Abstract
Rabs GTPases are key regulatory factors that specifically associate to organelles that integrate membrane transport pathways. Rabs, through their interactions with diverse effector proteins, regulate the formation, movement, tethering and fusion of transport carriers (vesicles and/or tubules). The mammalian Rab1b GTPase is required for ER to Golgi transport and interacts with multiple effectors localized at the ER-Golgi interface. Here, we focus on interactions between Rab1b and effectors that play essential roles in COPII and COPI vesicle formation/function. Based on evidence to date, we propose a model of Rab1b action at the ER exit sites.
Collapse
Affiliation(s)
- Iris A García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Departamento Bioquímica Clínica; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba, Argentina
| | | | | |
Collapse
|
47
|
Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 2011; 240:211-34. [PMID: 21349096 DOI: 10.1111/j.1600-065x.2010.00982.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Brucella is an intracellular bacterial pathogen that causes abortion and infertility in mammals and leads to a debilitating febrile illness that can progress into a long lasting disease with severe complications in humans. Its virulence depends on survival and replication properties in host cells. In this review, we describe the stealthy strategy used by Brucella to escape recognition of the innate immunity and the means by which this bacterium evades intracellular destruction. We also discuss the development of adaptive immunity and its modulation during brucellosis that in course leads to chronic infections. Brucella has developed specific strategies to influence antigen presentation mediated by cells. There is increasing evidence that Brucella also modulates signaling events during host adaptive immune responses.
Collapse
Affiliation(s)
- Anna Martirosyan
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | | | | |
Collapse
|
48
|
Srinivasan R, Pantoja R, Moss FJ, Mackey EDW, Son CD, Miwa J, Lester HA. Nicotine up-regulates alpha4beta2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. ACTA ACUST UNITED AC 2011; 137:59-79. [PMID: 21187334 PMCID: PMC3010053 DOI: 10.1085/jgp.201010532] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person’s history of tobacco use and his or her susceptibility to Parkinson’s disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4β2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4β2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Förster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)2(β2)3 stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a β2enhanced-ER-export mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4β2enhanced-ER-export nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4β2enhanced-ER-export receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4β2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the β2enhanced-ER-export subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Division of Biology MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Slavin I, García IA, Monetta P, Martinez H, Romero N, Alvarez C. Role of Rab1b in COPII dynamics and function. Eur J Cell Biol 2010; 90:301-11. [PMID: 21093099 DOI: 10.1016/j.ejcb.2010.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 12/27/2022] Open
Abstract
In eukaryotic cells, proteins destined for secretion are translocated into the endoplasmic reticulum (ER) and packaged into so-called COPII-coated vesicles. In the ER exit sites (ERES), COPII has the capacity of deforming the lipid bilayer, where it modulates the selective sorting and concentration of cargo proteins. In this study, we analyze the involvement of Rab1b in COPII dynamics and function by expressing either the Rab1b negative-mutant (Rab1N121I) or the Rab1b GTP restricted mutant (Rab1Q67L), or performing short interference RNA-based knockdown. We show that Rab1b interacts with the COPII components Sec23, Sec24 and Sec31 and that Rab1b inhibition changes the COPII phenotype. FRAP assays reveal that Rab1b modulates COPII association/dissociation kinetics at the ERES interface. Furthermore, Rab1b inhibition delays cargo sorting at the ER exit sites. We postulate that Rab1b is a key regulatory component of COPII dynamics and function.
Collapse
Affiliation(s)
- Ileana Slavin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | | | | | | | | | |
Collapse
|
50
|
Sharma P, Ignatchenko V, Grace K, Ursprung C, Kislinger T, Gramolini AO. Endoplasmic reticulum protein targeting of phospholamban: a common role for an N-terminal di-arginine motif in ER retention? PLoS One 2010; 5:e11496. [PMID: 20634894 PMCID: PMC2901339 DOI: 10.1371/journal.pone.0011496] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 06/16/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Phospholamban (PLN) is an effective inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase, which transports Ca(2+) into the SR lumen, leading to muscle relaxation. A mutation of PLN in which one of the di-arginine residues at positions 13 and 14 was deleted led to a severe, early onset dilated cardiomyopathy. Here we were interested in determining the cellular mechanisms involved in this disease-causing mutation. METHODOLOGY/PRINCIPAL FINDING Mutations deleting codons for either or both Arg13 or Arg14 resulted in the mislocalization of PLN from the ER. Our data show that PLN is recycled via the retrograde Golgi to ER membrane traffic pathway involving COP-I vesicles, since co-immunoprecipitation assays determined that COP I interactions are dependent on an intact di-arginine motif as PLN RDelta14 did not co-precipitate with COP I containing vesicles. Bioinformatic analysis determined that the di-arginine motif is present in the first 25 residues in a large number of all ER/SR Gene Ontology (GO) annotated proteins. Mutations in the di-arginine motif of the Sigma 1-type opioid receptor, the beta-subunit of the signal recognition particle receptor, and Sterol-O-acyltransferase, three proteins identified in our bioinformatic screen also caused mislocalization of these known ER-resident proteins. CONCLUSION We conclude that PLN is enriched in the ER due to COP I-mediated transport that is dependent on its intact di-arginine motif and that the N-terminal di-arginine motif may act as a general ER retrieval sequence.
Collapse
Affiliation(s)
- Parveen Sharma
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin Grace
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Claudia Ursprung
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony O. Gramolini
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cellular and Molecular Biology, Toronto General Research Institute, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|