1
|
Diakonova M, Carter-Su C, Svitkina T. Endogenous SH2B1 protein localizes to lamellipodia and filopodia: platinum replica electron-microscopy study. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001451. [PMID: 39897164 PMCID: PMC11787627 DOI: 10.17912/micropub.biology.001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
The widely expressed adapter protein SH2B1 was initially identified as a binding partner and substrate of tyrosine kinase JAK2. SH2B1β potentiates JAK2 activation in response to different ligands, including growth hormone, leptin and prolactin. SH2B1β has been implicated in cell motility and regulation of actin rearrangement in response to growth hormone, prolactin and platelet-derived growth factor. Here we use immunofluorescence and platinum replica electron-microscopy (PREM) technique to study localization of endogenous SH2B1. We show that endogenous SH2B localizes to two actin-rich protrusive organelles in cells: lamellipodia and filopodia. Based on this and previously published data, we suggest that at least some SH2B1 isoforms directly bind to actin filaments in both structures. Additionally, SH2B1 isoforms may work as a partner of filamin A in lamellipodia and VASP in filopodia participating in modulation of the actin cytoskeleton in response to extracellular signals.
Collapse
Affiliation(s)
- Maria Diakonova
- Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | | | | |
Collapse
|
2
|
Carter-Su C, Argetsinger LS, Svezhova N. 2022 Cannon lecture: an ode to signal transduction: how the growth hormone pathway revealed insight into height, malignancy, and obesity. Am J Physiol Endocrinol Metab 2023; 325:E425-E437. [PMID: 37672248 PMCID: PMC10874654 DOI: 10.1152/ajpendo.00265.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Walter Cannon was a highly regarded American neurologist and physiologist with extremely broad interests. In the tradition of Cannon and his broad interests, we discuss our laboratory's multifaceted work in signal transduction over the past 40+ years. We show how our questioning of how growth hormone (GH) in the blood communicates with cells throughout the body to promote body growth and regulate body metabolism led to insight into not only body height but also important regulators of malignancy and body weight. Highlights include finding that 1) A critical initiating step in GH signal transduction is GH activating the GH receptor-associated tyrosine kinase JAK2; 2) GH activation of JAK2 leads to activation of a number of signaling proteins, including STAT transcription factors; 3) JAK2 is autophosphorylated on multiple tyrosines that regulate the activity of JAK2 and recruit signaling proteins to GH/GH receptor/JAK2 complexes; 4) Constitutively activated STAT proteins are associated with cancer; 5) GH activation of JAK2 recruits the adapter protein SH2B1 to GH/GH receptor/JAK2 complexes where it facilitates GH regulation of the actin cytoskeleton and motility; and 6) SH2B1 is recruited to other receptors in the brain, where it enhances satiety, most likely in part by regulating leptin action and neuronal connections of appetite-regulating neurons. These findings have led to increased understanding of how GH functions, as well as therapeutic interventions for certain cancer and obese individuals, thereby reinforcing the great importance of supporting basic research since one never knows ahead of time what important insight it can provide.
Collapse
Affiliation(s)
- Christin Carter-Su
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | | - Nadezhda Svezhova
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
3
|
Olascoaga-Caso EM, Tamariz-Domínguez E, Rodríguez-Alba JC, Juárez-Aguilar E. Exogenous growth hormone promotes an epithelial-mesenchymal hybrid phenotype in cancerous HeLa cells but not in non-cancerous HEK293 cells. Mol Cell Biochem 2022; 478:1117-1128. [PMID: 36222986 DOI: 10.1007/s11010-022-04583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
In cancer, the Epithelial to Mesenchymal Transition (EMT) is the process in which epithelial cells acquire mesenchymal features that allow metastasis, and chemotherapy resistance. Growth hormone (GH) has been associated with melanoma, breast, and endometrial cancer progression through an autocrine regulation of EMT. Since exogenous and autocrine expression of GH is known to have different molecular effects, we investigated whether exogenous GH is capable of regulating the EMT of cancer cells. Furthermore, we investigated whether exogenous GH could promote EMT in non-cancerous cells. To study the effect of GH (100 ng/ml) on cancer and non-cancer cells, we used HeLa and HEK293 cell lines, respectively. We evaluated the loss of cell-cell contacts, by cell scattering assay and migration by wound-healing assay. Additionally, we evaluated the morphological changes by phalloidin-staining. Finally, we evaluated the molecular markers E-cadherin and vimentin by flow cytometry. GH enhances cell scattering and the migratory rate and promotes morphological changes such as cell area increase and actin cytoskeleton filaments formation on HeLa cell line. Moreover, we found that GH favors the expression of the mesenchymal protein vimentin, followed by an increase in E-cadherin's epithelial protein expression, characteristics of an epithelial-mesenchymal hybrid phenotype that is associated with metastasis. On HEK293cells, GH promotes morphological changes, including cell area increment and filopodia formation, but not affects scattering, migration, nor EMT markers expression. Our results suggest that exogenous GH might participate in cervical cancer progression favoring a hybrid EMT phenotype but not on non-cancerous HEK293 cells.
Collapse
Affiliation(s)
- E M Olascoaga-Caso
- PhD Health Sciences Program. Universidad Veracruzana, Xalapa, Veracruz, Mexico.,Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - E Tamariz-Domínguez
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - J C Rodríguez-Alba
- Flow Cytometry Unity, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Médicos y odontólogos s/n, Unidad del Bosque, 91010, Xalapa, Veracruz, Mexico
| | - E Juárez-Aguilar
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
4
|
Cruz Borbely KS, Marques ALX, Porto FL, Mendonça BS, Smaniotto S, Dos Santos Reis MD. Growth Hormone Stimulates Murine Macrophage Migration during Aging. Curr Aging Sci 2022; 15:266-273. [PMID: 35430985 DOI: 10.2174/1874609815666220415132815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/16/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Age-related impairments in macrophage functions have important consequences for the health of the elderly population. The aging process is also accompanied by a reduction in several hormones, including growth hormone (GH). Previous studies have shown that this hormone can affect macrophage activity in young individuals; however, the biological effects of GH stimulation on macrophages during aging have not yet been elucidated. OBJECTIVE The aim of this work was to investigate the in vitro effects of GH on peritoneal macrophages from aged mice. METHODS Peritoneal macrophages isolated from young (4 months-old) and old (12-15 months-old) mice were treated in vitro with 100 ng/mL of GH for 24 hours. After treatment, cells were analysed for cell morphology, reactive oxygen species (ROS) production, expression of integrins, cell adhesion to extracellular matrix molecules, and migration in transwell chambers. RESULTS Although GH-treated cells from old mice exhibited decreased ROS production, we did not observe the effects of GH on macrophage morphology or macrophage phagocytic activity in young and old mice-derived cell cultures. Macrophages from old mice had increased adhesion to laminin and fibronectin substrates, as did cells obtained from young mice treated with GH, but no change was observed in the expression of integrin receptors. Furthermore, cells from old mice exhibited increased migration compared to young mice and a significant increase in macrophage migration was observed under GH stimulation. CONCLUSION Our results showed that GH can interfere with the motility of macrophages from old mice, advancing our understanding of the interactions between the immune and neuroendocrine systems during aging.
Collapse
Affiliation(s)
| | - Aldilane Lays Xavier Marques
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Felipe Lima Porto
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Alagoas, Brazil
| | - Beatriz Santana Mendonça
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Alagoas, Brazil
| | - Maria Danielma Dos Santos Reis
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Alagoas, Brazil
| |
Collapse
|
5
|
Cote JL, Vander PB, Ellis M, Cline JM, Svezhova N, Doche ME, Maures TJ, Choudhury TA, Kong S, Klaft OGJ, Joe RM, Argetsinger LS, Carter-Su C. The nucleolar δ isoform of adapter protein SH2B1 enhances morphological complexity and function of cultured neurons. J Cell Sci 2022; 135:jcs259179. [PMID: 35019135 PMCID: PMC8918807 DOI: 10.1242/jcs.259179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
The adapter protein SH2B1 is recruited to neurotrophin receptors, including TrkB (also known as NTRK2), the receptor for brain-derived neurotrophic factor (BDNF). Herein, we demonstrate that the four alternatively spliced isoforms of SH2B1 (SH2B1α-SH2B1δ) are important determinants of neuronal architecture and neurotrophin-induced gene expression. Primary hippocampal neurons from Sh2b1-/- [knockout (KO)] mice exhibit decreased neurite complexity and length, and BDNF-induced expression of the synapse-related immediate early genes Egr1 and Arc. Reintroduction of each SH2B1 isoform into KO neurons increases neurite complexity; the brain-specific δ isoform also increases total neurite length. Human obesity-associated variants, when expressed in SH2B1δ, alter neurite complexity, suggesting that a decrease or increase in neurite branching may have deleterious effects that contribute to the severe childhood obesity and neurobehavioral abnormalities associated with these variants. Surprisingly, in contrast to SH2B1α, SH2B1β and SH2B1γ, which localize primarily in the cytoplasm and plasma membrane, SH2B1δ resides primarily in nucleoli. Some SH2B1δ is also present in the plasma membrane and nucleus. Nucleolar localization, driven by two highly basic regions unique to SH2B1δ, is required for SH2B1δ to maximally increase neurite complexity and BDNF-induced expression of Egr1, Arc and FosL1.
Collapse
Affiliation(s)
- Jessica L. Cote
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul B. Vander
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Ellis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joel M. Cline
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nadezhda Svezhova
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael E. Doche
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Travis J. Maures
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tahrim A. Choudhury
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Seongbae Kong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Olivia G. J. Klaft
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ray M. Joe
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lawrence S. Argetsinger
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christin Carter-Su
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Cheng Y, Duan C, Zhang C. New perspective on SH2B1: An accelerator of cancer progression. Biomed Pharmacother 2019; 121:109651. [PMID: 31739166 DOI: 10.1016/j.biopha.2019.109651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
SH2B1 is well-known as an adaptor protein, and deletion of SH2B1 results in severe obesity and both leptin and insulin resistance. Some studies have revealed that SH2B1 is involved in the progression of lung cancer, esophageal cancer, gastric cancer, oropharyngeal cancer, and so on. Biological function experiments have proven that SH2B1 can regulate cellular morphology, motility and adhesion by modifying the actin cytoskeletal reorganization, and it can promote cell mitogenesis, transformation, survival and differentiation via different signal pathways by enhancing the kinase activity of several receptor tyrosine kinases. In addition, SH2B1 is an obesity-related gene, and epidemiological surveys suggest a complex relationship between obesity and cancer. Therefore, what is the relationship between SH2B1 and cancer? Herein, we attempt to provide a mini overview of the roles of SH2B1 in cancer.
Collapse
Affiliation(s)
- Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China
| | - Chaojun Duan
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
8
|
Chesnokova V, Melmed S. Growth hormone in the tumor microenvironment. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:568-575. [PMID: 31939481 PMCID: PMC7025769 DOI: 10.20945/2359-3997000000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Tumor development is a multistep process whereby local mechanisms enable somatic mutations during preneoplastic stages. Once a tumor develops, it becomes a complex organ composed of multiple cell types. Interactions between malignant and non-transformed cells and tissues create a tumor microenvironment (TME) comprising epithelial cancer cells, cancer stem cells, non-tumorous cells, stromal cells, immune-inflammatory cells, blood and lymphatic vascular network, and extracellular matrix. We review reports and present a hypothesis that postulates the involvement of growth hormone (GH) in field cancerization. We discuss GH contribution to TME, promoting epithelial-to-mesenchymal transition, accumulation of unrepaired DNA damage, tumor vascularity, and resistance to therapy. Arch Endocrinol Metab. 2019;63(6):568-75.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Farhat K, Bodart G, Charlet-Renard C, Desmet CJ, Moutschen M, Beguin Y, Baron F, Melin P, Quatresooz P, Parent AS, Desmecht D, Sirard JC, Salvatori R, Martens H, Geenen VG. Growth Hormone (GH) Deficient Mice With GHRH Gene Ablation Are Severely Deficient in Vaccine and Immune Responses Against Streptococcus pneumoniae. Front Immunol 2018; 9:2175. [PMID: 30333823 PMCID: PMC6176084 DOI: 10.3389/fimmu.2018.02175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
The precise impact of the somatotrope axis upon the immune system is still highly debated. We have previously shown that mice with generalized ablation of growth hormone (GH) releasing hormone (GHRH) gene (Ghrh−/−) have normal thymus and T-cell development, but present a marked spleen atrophy and B-cell lymphopenia. Therefore, in this paper we have investigated vaccinal and anti-infectious responses of Ghrh−/− mice against S. pneumoniae, a pathogen carrying T-independent antigens. Ghrh−/− mice were unable to trigger production of specific IgM after vaccination with either native pneumococcal polysaccharides (PPS, PPV23) or protein-PPS conjugate (PCV13). GH supplementation of Ghrh−/− mice restored IgM response to PPV23 vaccine but not to PCV13 suggesting that GH could exert a specific impact on the spleen marginal zone that is strongly implicated in T-independent response against pneumococcal polysaccharides. As expected, after administration of low dose of S. pneumoniae, wild type (WT) completely cleared bacteria after 24 h. In marked contrast, Ghrh−/− mice exhibited a dramatic susceptibility to S. pneumoniae infection with a time-dependent increase in lung bacterial load and a lethal bacteraemia already after 24 h. Lungs of infected Ghrh−/− mice were massively infiltrated by inflammatory macrophages and neutrophils, while lung B cells were markedly decreased. The inflammatory transcripts signature was significantly elevated in Ghrh−/− mice. In this animal model, the somatotrope GHRH/GH/IGF1 axis plays a vital and unsuspected role in vaccine and immunological defense against S. pneumoniae.
Collapse
Affiliation(s)
- Khalil Farhat
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Gwennaëlle Bodart
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | | | - Christophe J Desmet
- GIGA-I3 Cellular and Molecular Immunology, University of Liège, Liège, Belgium
| | - Michel Moutschen
- GIGA-I3 Infectious diseases, University of Liège, Liège, Belgium
| | - Yves Beguin
- GIGA-I3 Hematology, University of Liège, Liège, Belgium
| | | | - Pierrette Melin
- Department of Clinical Microbiology, University Hospital of Liège, University of Liège, Liège, Belgium
| | | | - Anne-Simone Parent
- Division of Pediatric Endocrinology, University Hospital of Liège, Liège, Belgium
| | - Daniel Desmecht
- Department of Veterinary Pathology, University of Liège, Liège, Belgium
| | - Jean-Claude Sirard
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Roberto Salvatori
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Vincent G Geenen
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Phosphorylation of the Unique C-Terminal Tail of the Alpha Isoform of the Scaffold Protein SH2B1 Controls the Ability of SH2B1α To Enhance Nerve Growth Factor Function. Mol Cell Biol 2018; 38:MCB.00277-17. [PMID: 29229648 DOI: 10.1128/mcb.00277-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022] Open
Abstract
The scaffold protein SH2B1, a major regulator of body weight, is recruited to the receptors of multiple cytokines and growth factors, including nerve growth factor (NGF). The β isoform but not the α isoform of SH2B1 greatly enhances NGF-dependent neurite outgrowth of PC12 cells. Here, we asked how the unique C-terminal tails of the α and β isoforms modulate SH2B1 function. We compared the actions of SH2B1α and SH2B1β to those of the N-terminal 631 amino acids shared by both isoforms. In contrast to the β tail, the α tail inhibited the ability of SH2B1 to both cycle through the nucleus and enhance NGF-mediated neurite outgrowth, gene expression, phosphorylation of Akt and phospholipase C-gamma (PLC-γ), and autophosphorylation of the NGF receptor TrkA. These functions were restored when Tyr753 in the α tail was mutated to phenylalanine. We provide evidence that TrkA phosphorylates Tyr753 in SH2B1α, as well as tyrosines 439 and 55 in both SH2B1α and SH2B1β. Finally, coexpression of SH2B1α but not SH2B1α with a mutation of Y to F at position 753 (Y753F) inhibited the ability of SH2B1β to enhance neurite outgrowth. These results suggest that the C-terminal tails of SH2B1 isoforms are key determinants of the cellular role of SH2B1. Furthermore, the function of SH2B1α is regulated by phosphorylation of the α tail.
Collapse
|
11
|
Wang S, Cheng Y, Gao Y, He Z, Zhou W, Chang R, Peng Z, Zheng Y, Duan C, Zhang C. SH2B1 promotes epithelial-mesenchymal transition through the IRS1/β-catenin signaling axis in lung adenocarcinoma. Mol Carcinog 2018; 57:640-652. [PMID: 29380446 PMCID: PMC5900930 DOI: 10.1002/mc.22788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/13/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Lung adenocarcinoma (LADC), the most prevalent type of human lung cancer, is characterized by many molecular abnormalities. SH2B1, a member of the SH2‐domain containing family, have recently been shown to act as tumor activators in multiple cancers, including LADC. However, the mechanisms underlying SH2B1 overexpression are not completely understood. Here, we reported that SH2B1 expression levels were significantly upregulated and positively associated with EMT markers and poor patient survival in LADC specimens. Modulation of SH2B1 levels had distinct effects on cell proliferation, cell cycle, migration, invasion, and morphology in A549 and H1299 cells in vitro and in vivo. At the molecular level, overexpression of SH2B1 resulted in the upregulation of the EMT markers, especially induced β‐catenin accumulation and activated β‐catenin signaling to promote LADC cell proliferation and metastasis, while silencing SH2B1 had the opposite effect. Furthermore, ectopic expression of SH2B1 in H1299 cells increased IRS1 expression level. Reduced expression of IRS1 considerably inhibited H1299 cell proliferation, migration, and invasion which were driven by SH2B1 overexpression. Collectively, these results provide unequivocal evidence to establish that SH2B1‐IRS1‐β‐catenin axis is required for promoting EMT, and might prove to be a promising strategy for restraining tumor progression in LADC patients.
Collapse
Affiliation(s)
- Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical College, Jining Medical College, Jining, Shandong, P.R. China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhiwei He
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhenzi Peng
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yingying Zheng
- Department of Endocrinology, Affiliated Hospital of Jining Medical College, Jining Medical College, Jining, Shandong, P.R. China
| | - Chaojun Duan
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
12
|
Dos Santos Reis MD, Dos Santos YMO, de Menezes CA, Borbely KSC, Smaniotto S. Resident murine macrophage migration and phagocytosis are modulated by growth hormone. Cell Biol Int 2018; 42:615-623. [PMID: 29363842 DOI: 10.1002/cbin.10939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
Growth hormone (GH) plays a physiological role in the immune system. In macrophages, GH enhances the production of hydrogen peroxide, superoxide anions, nitric oxide, cytokines, and chemokines, including interferon-γ and macrophage inflammatory protein-1α. However, some of the effects of GH stimulation on the biological functions of macrophages remain to be elucidated. Herein, we showed that in vivo GH treatment resulted in decreased expression of VLA-5 and VLA-6 integrins on the macrophage surface, accompanied by a reduction in macrophage adhesion to extracellular matrix (ECM) ligands, fibronectin, and laminin. Additionally, a decrease in macrophage adhesion to laminin was observed when the cells were treated in vitro with GH. In transwell migration assays, GH-treated macrophages showed increased migration after 6 h. Although in vitro GH treatment did not influence the phagocytic activity of macrophages, when the treatment was performed in vivo, peritoneal macrophages from GH-treated mice showed a higher percentage of phagocytosis and higher phagocytic capacity than cells from control animals. These results led us to analyse the role of insulin-like growth factor-1 (IGF-1), a GH stimulated factor, on macrophage phagocytosis. We observed an increase in phagocytic activity when J774 murine macrophages were treated with IGF-1 for 24 h. Our results revealed an important role for GH in resident macrophage migration and phagocytic activity. Specifically, we demonstrate that IGF-1 may be the GH stimulated factor that induces macrophage phagocytosis in vivo.
Collapse
Affiliation(s)
- Maria Danielma Dos Santos Reis
- Laboratory of Cell Biology, Institute of Biology and Health Science, Federal University of Alagoas, Maceió, CEP 57072-970, Alagoas, Brazil
| | | | - Clarice Agudo de Menezes
- Laboratory of Cell Biology, Institute of Biology and Health Science, Federal University of Alagoas, Maceió, CEP 57072-970, Alagoas, Brazil
| | - Karen Steponavicius Cruz Borbely
- Laboratory of Cell Biology, Institute of Biology and Health Science, Federal University of Alagoas, Maceió, CEP 57072-970, Alagoas, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biology and Health Science, Federal University of Alagoas, Maceió, CEP 57072-970, Alagoas, Brazil
| |
Collapse
|
13
|
Giuranna J, Volckmar AL, Heinen A, Peters T, Schmidt B, Spieker A, Straub H, Grallert H, Müller TD, Antel J, Haußmann U, Klafki H, Liangyou R, Hebebrand J, Hinney A. The Effect of SH2B1 Variants on Expression of Leptin- and Insulin-Induced Pathways in Murine Hypothalamus. Obes Facts 2018; 11:93-108. [PMID: 29631267 PMCID: PMC5981666 DOI: 10.1159/000486962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE We aimed to determine the effect of human SH2B1 variants on leptin and insulin signaling, major regulators of energy homeostasis, on the RNA level. METHODS We analyzed the expression of infrequent alleles of seven SH2B1 variants (Arg67Cys, Lys150Arg, Thr175Ala, Thr343Met, Thr484Ala, Ser616Pro and Pro689Leu) in response to insulin or leptin cell stimulation. Two of these were identified in own mutation screens, the others were predicted to be deleterious or to serve as controls. The variants were analyzed in a homologous system of mouse hypothalamic cells. Changes in expression of downstream genes were measured. Student’s t-test for independent samples was applied and effect sizes using Cohen’s d were calculated. RESULTS In 34 of 54 analyzed genes involved in leptin (JAK/STAT or AKT) signaling, variants nominally changed expression. The expression of three genes was considerably increased (p values ≤ 0.001: Gbp2b (67Cys; d = 25.11), Irf9 (689Leu; d = 44.65) and Isg15 (150Arg; d = 20.35)). Of 32 analyzed genes in the insulin signaling pathway, the expression of 10 genes nominally changed (p ≤ 0.05), three resulted in p values ≤ 0.01 ( Cap1 (150Arg; d = 7.48), Mapk1 (343Met; d = –6.80) and Sorbs1 (689Leu; d = 7.82)). CONCLUSION The increased expression of genes in leptin (JAK/STAT or AKT) signaling implies that the main mode of action for human SH2B1 mutations might affect leptin signaling rather than insulin signaling.
Collapse
Affiliation(s)
- Johanna Giuranna
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Heinen
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anne Spieker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helena Straub
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz-Zentrum Munich, Munich, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz-Zentrum Munich, Munich, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ute Haußmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Essen, Essen, Germany
| | - Hans Klafki
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Essen, Essen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University Göttingen, Göttingen, Germany
| | - Rui Liangyou
- Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Prof. Dr. Anke Hinney, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstraße 21, 45147 Essen, Germany,
| |
Collapse
|
14
|
Lins MP, de Araújo Vieira LF, Rosa AAM, Smaniotto S. Growth hormone in the presence of laminin modulates interaction of human thymic epithelial cells and thymocytes in vitro. Biol Res 2016; 49:37. [PMID: 27590178 PMCID: PMC5010746 DOI: 10.1186/s40659-016-0097-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/12/2016] [Indexed: 12/05/2022] Open
Abstract
Background Several evidences indicate that hormones and neuropeptides function as immunomodulators. Among these, growth hormone (GH) is known to act on the thymic microenvironment, supporting its role in thymocyte differentiation. The aim of this study was to evaluate the effect of GH on human thymocytes and thymic epithelial cells (TEC) in the presence of laminin. Results GH increased thymocyte adhesion on BSA-coated and further on laminin-coated surfaces. The number of migrating cells in laminin-coated membrane was higher in GH-treated thymocyte group. In both results, VLA-6 expression on thymocytes was constant. Also, treatment with GH enhanced laminin production by TEC after 24 h in culture. However, VLA-6 integrin expression on TEC remained unchanged. Finally, TEC/thymocyte co-culture model demonstrated that GH elevated absolute number of double-negative (CD4−CD8−) and single-positive CD4+ and CD8+ thymocytes. A decrease in cell number was noted in double-positive (CD4+CD8+) thymocytes. Conclusions The results of this study demonstrate that GH is capable of enhancing the migratory capacity of human thymocytes in the presence of laminin and promotes modulation of thymocyte subsets after co-culture with TEC.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Alfredo Aurélio Marinho Rosa
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil.
| |
Collapse
|
15
|
Carter-Su C, Schwartz J, Argetsinger LS. Growth hormone signaling pathways. Growth Horm IGF Res 2016; 28:11-15. [PMID: 26421979 PMCID: PMC7644140 DOI: 10.1016/j.ghir.2015.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/26/2015] [Accepted: 09/06/2015] [Indexed: 01/12/2023]
Abstract
Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.
Collapse
Affiliation(s)
- Christin Carter-Su
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Jessica Schwartz
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lawrence S Argetsinger
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| |
Collapse
|
16
|
Mei S, Liu Y, Wu X, He Q, Min S, Li L, Zhang Y, Yang R. TNF-α-mediated microRNA-136 induces differentiation of myeloid cells by targeting NFIA. J Leukoc Biol 2015; 99:301-10. [PMID: 26329426 DOI: 10.1189/jlb.1a0115-032rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/19/2015] [Indexed: 01/05/2023] Open
Abstract
Immune cell-lineage specification and function are influenced by progenitor origin and environmental factors. The mechanism of differentiation of immune cells, such as neutrophils, monocytes, and myeloid-derived suppressor cells, in inflammatory environments has not been elucidated completely. In this study, we have identified human microRNA-136 as a positive regulator of the differentiation of granulocytes and monocytes. Ectopic microRNA-136 induced cells to express higher levels of CD11b, CD14, and C/EBPε, secrete more cytokines, and synthesize higher levels of reactive oxygen species and H(2)O(2). microRNA-136 was shown to target and degrade multiple differentiation-associated molecules, such as the transcription factor NFIA, which induced the release of another microRNA, microRNA-223, with the ability to promote CD11b expression. Furthermore, microRNA-136 expression was remarkably increased by TNF-α, which activated NF-κB to bind to the DNA-promoter region controlling microRNA-136 expression. Additionally, TNF-α may alter NFIA expression through its modulation of microRNA-136 expression. Thus, TNF-α-mediated microRNA-136 may play a critical role in the generation and differentiation of inflammatory immune cells.
Collapse
Affiliation(s)
- Shiyue Mei
- *Department of Immunology, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Yu Liu
- *Department of Immunology, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Xue Wu
- *Department of Immunology, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Qingsheng He
- *Department of Immunology, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Siping Min
- *Department of Immunology, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Ling Li
- *Department of Immunology, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Yuan Zhang
- *Department of Immunology, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Rongcun Yang
- *Department of Immunology, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| |
Collapse
|
17
|
Pearce LR, Joe R, Doche ME, Su HW, Keogh JM, Henning E, Argetsinger LS, Bochukova EG, Cline JM, Garg S, Saeed S, Shoelson S, O'Rahilly S, Barroso I, Rui L, Farooqi IS, Carter-Su C. Functional characterization of obesity-associated variants involving the α and β isoforms of human SH2B1. Endocrinology 2014; 155:3219-26. [PMID: 24971614 PMCID: PMC4138566 DOI: 10.1210/en.2014-1264] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously reported rare variants in sarcoma (Src) homology 2 (SH2) B adaptor protein 1 (SH2B1) in individuals with obesity, insulin resistance, and maladaptive behavior. Here, we identify 4 additional SH2B1 variants by sequencing 500 individuals with severe early-onset obesity. SH2B1 has 4 alternatively spliced isoforms. One variant (T546A) lies within the N-terminal region common to all isoforms. As shown for past variants in this region, T546A impairs SH2B1β enhancement of nerve growth factor-induced neurite outgrowth, and the individual with the T546A variant exhibits mild developmental delay. The other 3 variants (A663V, V695M, and A723V) lie in the C-terminal tail of SH2B1α. SH2B1α variant carriers were hyperinsulinemic but did not exhibit the behavioral phenotype observed in individuals with SH2B1 variants that disrupt all isoforms. In in vitro assays, SH2B1α, like SH2B1β, enhances insulin- and leptin-induced insulin receptor substrate 2 (IRS2) phosphorylation and GH-induced cell motility. None of the variants affect SH2B1α enhancement of insulin- and leptin-induced IRS2 phosphorylation. However, T546A, A663V, and A723V all impair the ability of SH2B1α to enhance GH-induced cell motility. In contrast to SH2B1β, SH2B1α does not enhance nerve growth factor-induced neurite outgrowth. These studies suggest that genetic variants that disrupt isoforms other than SH2B1β may be functionally significant. Further studies are needed to understand the mechanism by which the individual isoforms regulate energy homeostasis and behavior.
Collapse
|
18
|
Rui L. SH2B1 regulation of energy balance, body weight, and glucose metabolism. World J Diabetes 2014; 5:511-526. [PMID: 25126397 PMCID: PMC4127586 DOI: 10.4239/wjd.v5.i4.511] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/06/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The Src homology 2B (SH2B) family members (SH2B1, SH2B2 and SH2B3) are adaptor signaling proteins containing characteristic SH2 and PH domains. SH2B1 (also called SH2-B and PSM) and SH2B2 (also called APS) are able to form homo- or hetero-dimers via their N-terminal dimerization domains. Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins, including Janus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like growth factor-1 receptors, insulin receptor substrate-1 (IRS1), and IRS2. SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex. SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins. Accordingly, genetic deletion of SH2B1 results in severe leptin resistance, insulin resistance, hyperphagia, obesity, and type 2 diabetes in mice. Neuron-specific overexpression of SH2B1β transgenes protects against diet-induced obesity and insulin resistance. SH2B1 in pancreatic β cells promotes β cell expansion and insulin secretion to counteract insulin resistance in obesity. Moreover, numerous SH2B1 mutations are genetically linked to leptin resistance, insulin resistance, obesity, and type 2 diabetes in humans. Unlike SH2B1, SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis. The metabolic function of the SH2B family is conserved from insects to humans.
Collapse
|
19
|
Chia DJ. Minireview: mechanisms of growth hormone-mediated gene regulation. Mol Endocrinol 2014; 28:1012-25. [PMID: 24825400 DOI: 10.1210/me.2014-1099] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH exerts a diverse array of physiological actions that include prominent roles in growth and metabolism, with a major contribution via stimulating IGF-1 synthesis. GH achieves its effects by influencing gene expression profiles, and Igf1 is a key transcriptional target of GH signaling in liver and other tissues. This review examines the mechanisms of GH-mediated gene regulation that begin with signal transduction pathways activated downstream of the GH receptor and continue with chromatin events at target genes and additionally encompasses the topics of negative regulation and cross talk with other cellular inputs. The transcription factor, signal transducer and activator of transcription 5b, is regarded as the major signaling pathway by which GH achieves its physiological effects, including in stimulating Igf1 gene transcription in liver. Recent studies exploring the mechanisms of how activated signal transducer and activator of transcription 5b accomplishes this are highlighted, which begin to characterize epigenetic features at regulatory domains of the Igf1 locus. Further research in this field offers promise to better understand the GH-IGF-1 axis in normal physiology and disease and to identify strategies to manipulate the axis to improve human health.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Pediatrics, Icahn School of Medicine at Mt Sinai, New York, New York 10029
| |
Collapse
|