1
|
Ando M, Horonushi D, Yuki H, Kato S, Yoshida A, Yasuda K. Spatial Discrimination Limit Analysis of Macrophage Phagocytosis Between Target Antigens and Non-Target Objects Using Microcapillary Manipulation Assay. MICROMACHINES 2024; 15:1394. [PMID: 39597206 PMCID: PMC11596049 DOI: 10.3390/mi15111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
During phagocytosis, the FcGR-IgG bond is thought to be necessary to promote cell-membrane extension as the zipper mechanism. However, does this zipper mechanism provide a spatial antigen discrimination capability that allows macrophages to selectively phagocytose only antigens, especially for clusters with a mixture of antigens and non-antigens? To elucidate the ability and limitation of the zipper mechanism, we fed a coupled 2 μm IgG-coated and 4.5 μm non-coated polystyrene bead mixtures to macrophages and observed their phagocytosis. Macrophage engulfed the mixed clusters, including the 4.5 μm non-coated polystyrene part, indicating that the non-coated particles can be engulfed even without the zipper mechanism as far as coupled to the opsonized particles. In contrast, when the non-opsonized particle part was held by the microcapillary manipulation assay, macrophages pinched off the non-coated polystyrene particle part and internalized the opsonized particle part only. The results suggest that (1) an IgG-coated surface is needed to anchor phagocytosis by cell-membrane protrusion; however, (2) once the antibody-dependent cell phagocytosis is started, phagocytosis can proceed with the uncoated objects as the followers of the internalizing opsonized particles even without the support of the zipper mechanism. They may also indicate the concern of misleading the immune system to target unexpected objects because of their aggregation with target pathogens and the possibility of new medical applications to capture the non-opsonized target objects by the aggregation with small antigens to activate an immune response.
Collapse
Affiliation(s)
- Maiha Ando
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
| | - Dan Horonushi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
| | - Haruka Yuki
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
| | - Shinya Kato
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan;
| | - Amane Yoshida
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan;
| |
Collapse
|
2
|
Zhao Y, Ma X, Meng X, Li H, Tang Q. Integrating machine learning and single-cell transcriptomic analysis to identify potential biomarkers and analyze immune features of ischemic stroke. Sci Rep 2024; 14:26069. [PMID: 39478056 PMCID: PMC11525974 DOI: 10.1038/s41598-024-77495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
This study employs machine learning and single-cell transcriptome sequencing (scRNA-seq) analysis to unearth novel biomarkers and delineate the immune characteristics of ischemic stroke (IS), thereby contributing fresh insights into IS treatment strategies.Our research leverages gene expression data sourced from the GEO database. We undertake weighted gene co-expression network analysis (WGCNA) to filter pertinent genes and subsequently employ machine learning algorithms for the identification of feature genes. Concurrently, we rigorously execute quality control measures, dimensionality reduction techniques, and cell annotation on the scRNA-seq data to pinpoint differentially expressed genes (DEGs). The identification of core genes, denoted as Hub genes, among the feature genes and DEGs, is achieved through meticulous overlapping analysis. We illuminate the immune characteristics of these Hub genes using a suite of analytical tools, encompassing CIBERSORT, MCPcounter, and pseudotemporal analysis, all based on immune cell annotations and single-cell transcriptome data.Subsequently, we harness the CMap database to prognosticate potential therapeutic drugs and scrutinize their associations with the identified Hub genes. Our findings unveil robust linkages between three pivotal Hub genes-namely, RNF13, VASP, and CD163-and specific immune cell types such as T cells and neutrophils. These Hub genes predominantly manifest in macrophages and microglial cells within the scRNA-seq immune cell population, exhibiting variances across different stages of cellular differentiation. In conclusion, this study unearths highly pertinent biomarkers for IS diagnosis and elucidates IS-induced immune infiltration characteristics, thus providing a firm foundation for a comprehensive exploration of potential immune mechanisms and the identification of novel therapeutic targets for IS.
Collapse
Affiliation(s)
- Yaowei Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Xiyuan Ma
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Xianghong Meng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
- Second Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, 150000, Heilongjiang, China.
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
- Second Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
3
|
Ran X, Zhang J, Wu Y, Du Y, Bao D, Pei H, Zhang Y, Zhou X, Li R, Tang X, She H, Mao Q. Prognostic gene landscapes and therapeutic insights in sepsis-induced coagulopathy. Thromb Res 2024; 237:1-13. [PMID: 38513536 DOI: 10.1016/j.thromres.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Sepsis is a common and critical condition encountered in clinical practice that can lead to multi-organ dysfunction. Sepsis-induced coagulopathy (SIC) significantly affects patient outcomes. However, the precise mechanisms remain unclear, making the identification of effective prognostic and therapeutic targets imperative. METHODS The analysis of transcriptome data from the whole blood of sepsis patients, facilitated the identification of key genes implicated in coagulation. Then we developed a prognostic model and a nomogram to predict patient survival. Consensus clustering classified sepsis patients into three subgroups for comparative analysis of immune function and immune cell infiltration. Single-cell sequencing elucidated alterations in intercellular communication between platelets and immune cells in sepsis, as well as the role of the coagulation-related gene FYN. Real-time quantitative PCR determined the mRNA levels of critical coagulation genes in septic rats' blood. Finally, administration of a FYN agonist to septic rats was observed for its effects on coagulation functions and survival. RESULTS This study identified four pivotal genes-CFD, FYN, ITGAM, and VSIG4-as significant predictors of survival in patients with sepsis. Among them, CFD, FYN, and ITGAM were underexpressed, while VSIG4 was upregulated in patients with sepsis. Moreover, a nomogram that incorporates the coagulation-related genes (CoRGs) risk score with clinical features of patients accurately predicted survival probabilities. Subgroup analysis of CoRGs expression delineated three molecular sepsis subtypes, each with distinct prognoses and immune profiles. Single-cell sequencing shed light on heightened communication between platelets and monocytes, T cells, and plasmacytoid dendritic cells, alongside reduced interactions with neutrophils in sepsis. The collagen signaling pathway was found to be essential in this dynamic. FYN may affect platelet function by modulating factors such as ELF1, PTCRA, and RASGRP2. The administration of the FYN agonist can effectively improve coagulation dysfunction and survival in septic rats. CONCLUSIONS The research identifies CoRGs as crucial prognostic markers for sepsis, highlighting the FYN gene's central role in coagulation disorders associated with the condition and suggesting novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Xiaoli Ran
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Daiqin Bao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Haoyu Pei
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yue Zhang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaoqiong Zhou
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rui Li
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xu Tang
- Department of Anesthesiology, Affiliated Banan Hospital of Chongqing Medical University, Chongqing 400042, China.
| | - Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
4
|
Gui J, Zhou H, Wan H, Yang D, Liu Q, Zhu L, Mi Y. The Role of Vasodilator-stimulated Phosphoproteins in the Development of Malignant Tumors. Curr Cancer Drug Targets 2024; 24:477-489. [PMID: 37962042 PMCID: PMC11092557 DOI: 10.2174/0115680096262439231023110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 11/15/2023]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is an actin-binding protein that includes three structural domains: Enabled/VASP homolog1 (EVH1), EVH2, and proline-rich (PRR). VASP plays an important role in various cellular behaviors related to cytoskeletal regulation. More importantly, VASP plays a key role in the progression of several malignant tumors and is associated with malignant cell proliferation, invasion, and metastasis. Here, we have summarized current studies on the impact of VASP on the development of several malignant tumors and their mechanisms. This study provides a new theoretical basis for clinical molecular diagnosis and molecular targeted therapy.
Collapse
Affiliation(s)
- Jiandong Gui
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hongyuan Wan
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Dongjie Yang
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Qing Liu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Huadong Sanatorium, 67 Dajishan, Wuxi 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
5
|
Wilmink M, Spalinger MR. SKAP2-A Molecule at the Crossroads for Integrin Signalling and Immune Cell Migration and Function. Biomedicines 2023; 11:2788. [PMID: 37893161 PMCID: PMC10603853 DOI: 10.3390/biomedicines11102788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Src-kinase associated protein 2 (SKAP2) is an intracellular scaffolding protein that is broadly expressed in immune cells and is involved in various downstream signalling pathways, including, but not limited to, integrin signalling. SKAP2 has a wide range of binding partners and fine-tunes the rearrangement of the cytoskeleton, thereby regulating cell migration and immune cell function. Mutations in SKAP2 have been associated with several inflammatory disorders such as Type 1 Diabetes and Crohn's disease. Rodent studies showed that SKAP2 deficient immune cells have diminished pathogen clearance due to impaired ROS production and/or phagocytosis. However, there is currently no in-depth understanding of the functioning of SKAP2. Nevertheless, this review summarises the existing knowledge with a focus of its role in signalling cascades involved in cell migration, tissue infiltration and immune cell function.
Collapse
Affiliation(s)
| | - Marianne Rebecca Spalinger
- Department for Gastroenterology and Hepatology, University Hospital Zürich, Sternwartstrasse 14, 8091 Zürich, Switzerland;
| |
Collapse
|
6
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Montaño-Rendón F, Walpole GF, Krause M, Hammond GR, Grinstein S, Fairn GD. PtdIns(3,4)P2, Lamellipodin, and VASP coordinate actin dynamics during phagocytosis in macrophages. J Cell Biol 2022; 221:e202207042. [PMID: 36165850 PMCID: PMC9521245 DOI: 10.1083/jcb.202207042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositides are pivotal regulators of vesicular traffic and signaling during phagocytosis. Phagosome formation, the initial step of the process, is characterized by local membrane remodeling and reorganization of the actin cytoskeleton that leads to formation of the pseudopods that drive particle engulfment. Using genetically encoded fluorescent probes, we found that upon particle engagement a localized pool of PtdIns(3,4)P2 is generated by the sequential activities of class I phosphoinositide 3-kinases and phosphoinositide 5-phosphatases. Depletion of this locally generated pool of PtdIns(3,4)P2 blocks pseudopod progression and ultimately phagocytosis. We show that the PtdIns(3,4)P2 effector Lamellipodin (Lpd) is recruited to nascent phagosomes by PtdIns(3,4)P2. Furthermore, we show that silencing of Lpd inhibits phagocytosis and produces aberrant pseudopodia with disorganized actin filaments. Finally, vasodilator-stimulated phosphoprotein (VASP) was identified as a key actin-regulatory protein mediating phagosome formation downstream of Lpd. Mechanistically, our findings imply that a pathway involving PtdIns(3,4)P2, Lpd, and VASP mediates phagocytosis at the stage of particle engulfment.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Glenn F.W. Walpole
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Gregory D. Fairn
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Faix J, Rottner K. Ena/VASP proteins in cell edge protrusion, migration and adhesion. J Cell Sci 2022; 135:274697. [DOI: 10.1242/jcs.259226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT
The tightly coordinated, spatiotemporal control of actin filament remodeling provides the basis of fundamental cellular processes, such as cell migration and adhesion. Specific protein assemblies, composed of various actin-binding proteins, are thought to operate in these processes to nucleate and elongate new filaments, arrange them into complex three-dimensional (3D) arrays and recycle them to replenish the actin monomer pool. Actin filament assembly is not only necessary to generate pushing forces against the leading edge membrane or to propel pathogens through the cytoplasm, but also coincides with the generation of stress fibers (SFs) and focal adhesions (FAs) that generate, transmit and sense mechanical tension. The only protein families known to date that directly enhance the elongation of actin filaments are formins and the family of Ena/VASP proteins. Their mechanisms of action, however, in enhancing processive filament elongation are distinct. The aim of this Review is to summarize our current knowledge on the molecular mechanisms of Ena/VASP-mediated actin filament assembly, and to discuss recent insights into the cell biological functions of Ena/VASP proteins in cell edge protrusion, migration and adhesion.
Collapse
Affiliation(s)
- Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
9
|
aVASP boosts protrusive activity of macroendocytic cups and drives phagosome rocketing after internalization. Eur J Cell Biol 2022; 101:151200. [DOI: 10.1016/j.ejcb.2022.151200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
|
10
|
Böning MAL, Parzmair GP, Jeron A, Düsedau HP, Kershaw O, Xu B, Relja B, Schlüter D, Dunay IR, Reinhold A, Schraven B, Bruder D. Enhanced Susceptibility of ADAP-Deficient Mice to Listeria monocytogenes Infection Is Associated With an Altered Phagocyte Phenotype and Function. Front Immunol 2021; 12:724855. [PMID: 34659211 PMCID: PMC8515145 DOI: 10.3389/fimmu.2021.724855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date, only limited data exist regarding the role of ADAP in pathogen-specific immunity during in vivo infection, and its contribution in phagocyte-mediated antibacterial immunity remains elusive. Here, we show that mice lacking ADAP (ADAPko) are highly susceptible to the infection with the intracellular pathogen Listeria monocytogenes (Lm) by showing enhanced immunopathology in infected tissues together with increased morbidity, mortality, and excessive infiltration of neutrophils and monocytes. Despite high phagocyte numbers in the spleen and liver, ADAPko mice only inefficiently controlled pathogen growth, hinting at a functional impairment of infection-primed phagocytes in the ADAP-deficient host. Flow cytometric analysis of hallmark pro-inflammatory mediators and unbiased whole genome transcriptional profiling of neutrophils and inflammatory monocytes uncovered broad molecular alterations in the inflammatory program in both phagocyte subsets following their activation in the ADAP-deficient host. Strikingly, ex vivo phagocytosis assay revealed impaired phagocytic capacity of neutrophils derived from Lm-infected ADAPko mice. Together, our data suggest that an alternative priming of phagocytes in ADAP-deficient mice during Lm infection induces marked alterations in the inflammatory profile of neutrophils and inflammatory monocytes that contribute to enhanced immunopathology while limiting their capacity to eliminate the pathogen and to prevent the fatal outcome of the infection.
Collapse
Affiliation(s)
- Martha A L Böning
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerald P Parzmair
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Jeron
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Henning P Düsedau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Baolin Xu
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
11
|
Stahnke S, Döring H, Kusch C, de Gorter DJJ, Dütting S, Guledani A, Pleines I, Schnoor M, Sixt M, Geffers R, Rohde M, Müsken M, Kage F, Steffen A, Faix J, Nieswandt B, Rottner K, Stradal TEB. Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Curr Biol 2021; 31:2051-2064.e8. [PMID: 33711252 DOI: 10.1016/j.cub.2021.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.
Collapse
Affiliation(s)
- Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hermann Döring
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - David J J de Gorter
- Institute of Molecular Cell Biology, Westphalian Wilhelms University Münster WWU, Münster, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Aleks Guledani
- Institute of Molecular Cell Biology, Westphalian Wilhelms University Münster WWU, Münster, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico
| | - Michael Sixt
- Institute of Science and Technology IST Austria, Klosterneuburg, Austria
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Frieda Kage
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School MHH, 30625 Hannover, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany; Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| |
Collapse
|
12
|
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol 2021; 31:R619-R632. [PMID: 34033794 DOI: 10.1016/j.cub.2021.01.036] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of the innate immune system, notably macrophages, neutrophils and dendritic cells, perform essential antimicrobial and homeostatic functions. These functions rely on the dynamic surveillance of the environment supported by the formation of elaborate membrane protrusions. Such protrusions - pseudopodia, lamellipodia and filopodia - facilitate the sampling of the surrounding fluid by macropinocytosis, as well as the engulfment of particulates by phagocytosis. Both processes entail extreme plasma membrane deformations that require the coordinated rearrangement of cytoskeletal polymers, which exert protrusive force and drive membrane coalescence and scission. The resulting vacuolar compartments undergo pronounced remodeling and ultimate resolution by mechanisms that also involve the cytoskeleton. Here, we describe the regulation and functions of cytoskeletal assembly and remodeling during macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Verma DK, Peruzza L, Trusch F, Yadav MK, Ravindra, Shubin SV, Morgan KL, Mohindra V, Hauton C, van West P, Pradhan PK, Sood N. Transcriptome analysis reveals immune pathways underlying resistance in the common carp Cyprinus carpio against the oomycete Aphanomyces invadans. Genomics 2020; 113:944-956. [PMID: 33127583 DOI: 10.1016/j.ygeno.2020.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/30/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection. In the present study, we investigated the transcriptomes of head kidney of common carp experimentally infected with A. invadans. In time course analysis, 5288 genes were found to be differentially expressed (DEGs), of which 731 were involved in 21 immune pathways. The analysis of immune-related DEGs suggested that efficient processing and presentation of A. invadans antigens, enhanced phagocytosis, recognition of pathogen-associated molecular patterns, and increased recruitment of leukocytes to the sites of infection contribute to resistance of common carp against A. invadans. Herein, we provide a systematic understanding of the disease resistance mechanisms in common carp at molecular level as a valuable resource for developing disease management strategies for this devastating fish-pathogenic oomycete.
Collapse
Affiliation(s)
- Dev Kumar Verma
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Luca Peruzza
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Present address: Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Franziska Trusch
- International Centre for Aquaculture Research and Development, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom; Present address: University of Dundee, School of Life Sciences, Department of Plant Sciences (@ James Hutton Institute), Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | - Manoj Kumar Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Ravindra
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Sergei V Shubin
- College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Kenton L Morgan
- The Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, Liverpool, United Kingdom
| | - Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Pieter van West
- International Centre for Aquaculture Research and Development, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - P K Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India.
| |
Collapse
|
14
|
Alkorashy AI, Doghish AS, Abulsoud AI, Ewees MG, Abdelghany TM, Elshafey MM, Elkhatib WF. Effect of scopoletin on phagocytic activity of U937-derived human macrophages: Insights from transcriptomic analysis. Genomics 2020; 112:3518-3524. [PMID: 32243896 DOI: 10.1016/j.ygeno.2020.03.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Scopoletin is a botanical coumarin. Notably, scopoletin effect on phagocytic activity has not been addressed on transcriptomic level. Accordingly, this study investigated the effect of scopoletin on phagocytosis-linked gene transcription. Whole phagocytosis transcriptional profiling of stimulated U937-derived macrophages (SUDMs) in response to scopoletin as compared to non-treated SUDMs was studied. Regarding scopoletin effect on 92 phagocytosis-linked genes, 12 of them were significantly affected (p-value < .05). Seven genes were downregulated (CDC42, FCGR1A/FCGR1C, ITGA9, ITGB3, PLCE1, RHOD & RND3) and five were upregulated (DIRAS3, ITGA1, PIK3CA, PIK3R3 & PLCD1). Moreover, scopoletin enhanced phagocytic activity of SUDMs. The current results highlighted the potential use of scopoletin as immunity booster and as an adjuvant remedy in management of some autoimmune reactions. To the best of our knowledge, this is the first report that unravels the effect of scopoletin on phagocytosis via transcriptomic analysis.
Collapse
Affiliation(s)
- Amgad I Alkorashy
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mostafa M Elshafey
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
15
|
Bacillus anthracis Edema Toxin Inhibits Efferocytosis in Human Macrophages and Alters Efferocytic Receptor Signaling. Int J Mol Sci 2019; 20:ijms20051167. [PMID: 30866434 PMCID: PMC6429438 DOI: 10.3390/ijms20051167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
The Bacillus anthracis Edema Toxin (ET), composed of a Protective Antigen (PA) and the Edema Factor (EF), is a cellular adenylate cyclase that alters host responses by elevating cyclic adenosine monophosphate (cAMP) to supraphysiologic levels. However, the role of ET in systemic anthrax is unclear. Efferocytosis is a cAMP-sensitive, anti-inflammatory process of apoptotic cell engulfment, the inhibition of which may promote sepsis in systemic anthrax. Here, we tested the hypothesis that ET inhibits efferocytosis by primary human macrophages and evaluated the mechanisms of altered efferocytic signaling. ET, but not PA or EF alone, inhibited the efferocytosis of early apoptotic neutrophils (PMN) by primary human M2 macrophages (polarized with IL-4, IL-10, and/or dexamethasone) at concentrations relevant to those encountered in systemic infection. ET inhibited Protein S- and MFGE8-dependent efferocytosis initiated by signaling through MerTK and αVβ5 receptors, respectively. ET inhibited Rac1 activation as well as the phosphorylation of Rac1 and key activating sites of calcium calmodulin-dependent kinases CamK1α, CamK4, and vasodilator-stimulated phosphoprotein, that were induced by the exposure of M2(Dex) macrophages to Protein S-opsonized apoptotic PMN. These results show that ET impairs macrophage efferocytosis and alters efferocytic receptor signaling.
Collapse
|
16
|
Hua Y, Yan K, Wan C. Clever Cooperation: Interactions Between EspF and Host Proteins. Front Microbiol 2018; 9:2831. [PMID: 30524410 PMCID: PMC6262023 DOI: 10.3389/fmicb.2018.02831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
EspF is a central effector protein of enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium (CR) that is secreted through the type III secretion system to host cells. The interaction between EspF and host proteins plays an important role in bacterial pathogenesis. EspF protein binds to host SNX9 and N-WASP proteins to promote the colonization of pathogenic bacteria in intestinal epithelial cells; combines with cytokeratin 18, actin, 14-3-3ζ, Arp2/3, profilin, and ZO-1 proteins to intervene in the redistribution of intermediate filaments, the rearrangement of actin, and the disruption of tight junctions; acts together with Abcf2 to boost host cell intrinsic apoptosis; and collaborates with Anxa6 protein to inhibit phagocytosis. The interaction between EspF and host proteins is key to the pathogenic mechanism of EHEC and EPEC. Here, we review how EspF protein functions through interactions with these 10 host proteins and contributes to the pathogenicity of EHEC/EPEC.
Collapse
Affiliation(s)
- Ying Hua
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| | - Kaina Yan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| | - Chengsong Wan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| |
Collapse
|
17
|
Yoon SJ, Park YJ, Kim JS, Lee S, Lee SH, Choi S, Min JK, Choi I, Ryu CM. Pseudomonas syringae evades phagocytosis by animal cells via type III effector-mediated regulation of actin filament plasticity. Environ Microbiol 2018; 20:3980-3991. [PMID: 30251365 DOI: 10.1111/1462-2920.14426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023]
Abstract
Certain animal and plant pathogenic bacteria have developed virulence factors including effector proteins that enable them to overcome host immunity. A plant pathogen, Pseudomonas syringae pv. tomato (Pto) secretes a large repertoire of effectors via a type III secretory apparatus, thereby suppressing plant immunity. Here, we show that Pto causes sepsis in mice. Surprisingly, the effector HopQ1 disrupted animal phagocytosis by inhibiting actin rearrangement via direct interaction with the LIM domain of the animal target protein LIM kinase, a key regulator of actin polymerization. The results provide novel insight into animal host-plant pathogen interactions. In addition, the current study firstly demonstrates that certain plant pathogenic bacteria such as Pto evade phagocytosis by animal cells due to cross-kingdom suppression of host immunity.
Collapse
Affiliation(s)
- Sung-Jin Yoon
- Metabolic Regulation Research Center, KRIBB, Yuseong-gu, Daejeon 34141, South Korea
| | - Young-Jun Park
- Metabolic Regulation Research Center, KRIBB, Yuseong-gu, Daejeon 34141, South Korea.,Department of Functional Genomics, University of Science and Technology (UST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun-Seob Kim
- Infectious Disease Research Center, KRIBB, Yuseong-gu, Daejeon 34141, South Korea
| | - Soohyun Lee
- Infectious Disease Research Center, KRIBB, Yuseong-gu, Daejeon 34141, South Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, KRIBB, Yuseong-gu, Daejeon 34141, South Korea
| | - Song Choi
- Metabolic Regulation Research Center, KRIBB, Yuseong-gu, Daejeon 34141, South Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, KRIBB, Yuseong-gu, Daejeon 34141, South Korea
| | - Inpyo Choi
- Department of Functional Genomics, University of Science and Technology (UST), Yuseong-gu, Daejeon, 34141, Republic of Korea.,Immunotherapy Convergence Research Center, KRIBB, Yuseong-gu, Daejeon, 34141, South Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, KRIBB, Yuseong-gu, Daejeon 34141, South Korea.,Biosystems and Bioengineering Program, University of Science and Technology (UST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Mylvaganam SM, Grinstein S, Freeman SA. Picket-fences in the plasma membrane: functions in immune cells and phagocytosis. Semin Immunopathol 2018; 40:605-615. [DOI: 10.1007/s00281-018-0705-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
|
19
|
Wu Z, Blessing NA, Simske JS, Bruggeman LA. Fyn-binding protein ADAP supports actin organization in podocytes. Physiol Rep 2018; 5. [PMID: 29192064 PMCID: PMC5727265 DOI: 10.14814/phy2.13483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 01/19/2023] Open
Abstract
The renal podocyte is central to the filtration function of the kidney that is dependent on maintaining both highly organized, branched cell structures forming foot processes, and a unique cell-cell junction, the slit diaphragm. Our recent studies investigating the developmental formation of the slit diaphragm identified a novel claudin family tetraspannin, TM4SF10, which is a binding partner for ADAP (also known as Fyn binding protein Fyb). To investigate the role of ADAP in podocyte function in relation to Fyn and TM4SF10, we examined ADAP knockout (KO) mice and podocytes. ADAP KO mice developed glomerular pathology that began as hyalinosis and progressed to glomerulosclerosis, with aged male animals developing low levels of albuminuria. Podocyte cell lines established from the KO mice had slower attachment kinetics compared to wild-type cells, although this did not affect the total number of attached cells nor the ability to form focal contacts. After attachment, the ADAP KO cells did not attain typical podocyte morphology, lacking the elaborate cell protrusions typical of wild-type podocytes, with the actin cytoskeleton forming circumferential stress fibers. The absence of ADAP did not alter Fyn levels nor were there differences between KO and wild-type podocytes in the reduction of Fyn activating phosphorylation events with puromycin aminonucleoside treatment. In the setting of endogenous TM4SF10 overexpression, the absence of ADAP altered the formation of cell-cell contacts containing TM4SF10. These studies suggest ADAP does not alter Fyn activity in podocytes, but appears to mediate downstream effects of Fyn controlled by TM4SF10 involving actin cytoskeleton organization.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Natalya A Blessing
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jeffrey S Simske
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Leslie A Bruggeman
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
20
|
GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1107-1120. [PMID: 29737402 DOI: 10.1007/s00438-018-1443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690 K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.
Collapse
|
21
|
Laban H, Weigert A, Zink J, Elgheznawy A, Schürmann C, Günther L, Abdel Malik R, Bothur S, Wingert S, Bremer R, Rieger MA, Brüne B, Brandes RP, Fleming I, Benz PM. VASP regulates leukocyte infiltration, polarization, and vascular repair after ischemia. J Cell Biol 2018; 217:1503-1519. [PMID: 29507126 PMCID: PMC5881493 DOI: 10.1083/jcb.201702048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/06/2017] [Accepted: 01/26/2018] [Indexed: 01/14/2023] Open
Abstract
In ischemic vascular diseases, leukocyte recruitment and polarization are crucial for revascularization and tissue repair. The study of Laban et al. provides evidence that VASP is a major regulator of leukocyte recruitment and polarization and vascular repair after ischemia. Mechanistically, the study supports a novel role of VASP in chemokine receptor trafficking. In ischemic vascular diseases, leukocyte recruitment and polarization are crucial for revascularization and tissue repair. We investigated the role of vasodilator-stimulated phosphoprotein (VASP) in vascular repair. After hindlimb ischemia induction, blood flow recovery, angiogenesis, arteriogenesis, and leukocyte infiltration into ischemic muscles in VASP−/− mice were accelerated. VASP deficiency also elevated the polarization of the macrophages through increased signal transducer and activator of transcription (STAT) signaling, which augmented the release of chemokines, cytokines, and growth factors to promote leukocyte recruitment and vascular repair. Importantly, VASP deletion in bone marrow–derived cells was sufficient to mimic the increased blood flow recovery of global VASP−/− mice. In chemotaxis experiments, VASP−/− neutrophils/monocytes were significantly more responsive to M1-related chemokines than wild-type controls. Mechanistically, VASP formed complexes with the chemokine receptor CCR2 and β-arrestin-2, and CCR2 receptor internalization was significantly reduced in VASP−/− leukocytes. Our data indicate that VASP is a major regulator of leukocyte recruitment and polarization in postischemic revascularization and support a novel role of VASP in chemokine receptor trafficking.
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Amro Elgheznawy
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Christoph Schürmann
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Lea Günther
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Randa Abdel Malik
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sabrina Bothur
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Rolf Bremer
- HBB Datenkommunikation and Abrechnungssysteme, Hannover, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ralf P Brandes
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Peter M Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany .,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Rangaraju S, Raza SA, Li NX, Betarbet R, Dammer EB, Duong D, Lah JJ, Seyfried NT, Levey AI. Differential Phagocytic Properties of CD45 low Microglia and CD45 high Brain Mononuclear Phagocytes-Activation and Age-Related Effects. Front Immunol 2018; 9:405. [PMID: 29552013 PMCID: PMC5840283 DOI: 10.3389/fimmu.2018.00405] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
In the central nervous system (CNS), microglia are innate immune mononuclear phagocytes (CNS MPs) that can phagocytose infectious particles, apoptotic cells, neurons, and pathological protein aggregates, such as Aβ in Alzheimer’s disease (AD). While CD11b+CD45low microglia account for the majority of CNS MPs, a small population of CD11b+CD45high CNS MPs is also recognized in AD that surround Aβ plaques. These transcriptionally and pathologically unique CD45high cells have unclear origin and undefined phagocytic characteristics. We have comprehensively validated rapid flow cytometric assays of bulk-phase and amyloid β fibril (fAβ) phagocytosis and applied these to study acutely isolated CNS MPs. Using these methods, we provide novel insights into differential abilities of CD11b+ CD45low and CD45high CNS MPs to phagocytose macroparticles and fAβ under normal, acute, and chronic neuroinflammatory states. CD45high CNS MPs also highly upregulate TREM2, CD11c, and several disease-associated microglia signature genes and have a higher phagocytic capacity for Aβ as compared to CD45low microglia in the 5xFAD mouse model of AD that becomes more apparent with aging. Our data suggest an overall pro-phagocytic and protective role for CD11b+CD45high CNS MPs in neurodegeneration, which if promoted, could be beneficial.
Collapse
Affiliation(s)
- Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Syed Ali Raza
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Noel Xiang'An Li
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Ranjita Betarbet
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Eric B Dammer
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Duc Duong
- Department of Biochemistry, Emory University, Atlanta, GA, United States
| | - James J Lah
- Department of Neurology, Emory University, Atlanta, GA, United States
| | | | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, GA, United States
| |
Collapse
|
23
|
Acevedo LA, Greenwood AI, Nicholson LK. A Noncanonical Binding Site in the EVH1 Domain of Vasodilator-Stimulated Phosphoprotein Regulates Its Interactions with the Proline Rich Region of Zyxin. Biochemistry 2017; 56:4626-4636. [PMID: 28783324 DOI: 10.1021/acs.biochem.7b00618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is a processive actin polymerase with roles in the control of cell shape and cell migration. Through interaction with the cytoskeletal adaptor protein Zyxin, VASP can localize to damaged stress fibers where it serves to repair and reinforce these structures. VASP localization is mediated by its N-terminal Ena/VASP homology (EVH1) domain, which binds to the (W/F)PxφP motif (most commonly occurring as FPPPP) found in cytoskeletal proteins such as vinculin, lamellipodin, and Zyxin. Sequentially close clusters of four or five of these motifs frequently occur, as in the proline rich region of Zyxin with four such motifs. This suggests that tetrameric VASP might bind very tightly to Zyxin through avidity, with all four EVH1 domains binding to a single Zyxin molecule. Here, quantitative nuclear magnetic resonance titration analysis reveals a dominant bivalent 1:1 (Zyxin:EVH1) interaction between the Zyxin proline rich region and the VASP EVH1 domain that utilizes the EVH1 canonical binding site and a novel secondary binding site on the opposite face of the EVH1 domain. We further show that binding to the secondary binding site is specifically inhibited by mutation of VASP EVH1 domain residue Y39 to E, which mimics Abl-induced phosphorylation of Y39. On the basis of these findings, we propose a model in which phosphorylation of Y39 acts as a stoichiometry switch that governs binding partner selection by the constitutive VASP tetramer. These results have broader implications for other multivalent VASP EVH1 domain binding partners and for furthering our understanding of the role of Y39 phosphorylation in regulating VASP localization and cellular function.
Collapse
Affiliation(s)
- Lucila Andrea Acevedo
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | - Alexander I Greenwood
- Department of Applied Science, College of William and Mary , Williamsburg, Virginia 23185, United States
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Shah A, Kannambath S, Herbst S, Rogers A, Soresi S, Carby M, Reed A, Mostowy S, Fisher MC, Shaunak S, Armstrong-James DP. Calcineurin Orchestrates Lateral Transfer of Aspergillus fumigatus during Macrophage Cell Death. Am J Respir Crit Care Med 2017; 194:1127-1139. [PMID: 27163634 PMCID: PMC5114448 DOI: 10.1164/rccm.201601-0070oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Pulmonary aspergillosis is a lethal mold infection in the immunocompromised host. Understanding initial control of infection and how this is altered in the immunocompromised host are key goals for comprehension of the pathogenesis of pulmonary aspergillosis. OBJECTIVES To characterize the outcome of human macrophage infection with Aspergillus fumigatus and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. METHODS We defined the outcome of human macrophage infection with A. fumigatus, as well as the impact of calcineurin inhibitors, through a combination of single-cell fluorescence imaging, transcriptomics, proteomics, and in vivo studies. MEASUREMENTS AND MAIN RESULTS Macrophage phagocytosis of A. fumigatus enabled control of 90% of fungal germination. However, fungal germination in the late phagosome led to macrophage necrosis. During programmed necroptosis, we observed frequent cell-cell transfer of A. fumigatus between macrophages, which assists subsequent control of germination in recipient macrophages. Lateral transfer occurred through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated phosphoprotein envelope. Its relevance to the control of fungal germination was also shown by direct visualization in our zebrafish aspergillosis model in vivo. The calcineurin inhibitor FK506 (tacrolimus) reduced cell death and lateral transfer in vitro by 50%. This resulted in uncontrolled fungal germination in macrophages and also resulted in hyphal escape. CONCLUSIONS These observations identify programmed, necrosis-dependent lateral transfer of A. fumigatus between macrophages as an important host strategy for controlling fungal germination. This process is critically dependent on calcineurin. Our studies provide fundamental insights into the pathogenesis of pulmonary aspergillosis in the immunocompromised host.
Collapse
Affiliation(s)
| | | | | | | | - Simona Soresi
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Martin Carby
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Anna Reed
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Serge Mostowy
- 4 Medical Research Council Centre for Molecular Bacteriology and Infection
| | | | - Sunil Shaunak
- 6 Department of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom; and
| | | |
Collapse
|
25
|
Abstract
Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the starting points of the field of immunology. After more than a century of research, phagocytosis is now appreciated to be a widely used process that enables the cellular uptake of a remarkable variety of particles, including bacteria, fungi, parasites, viruses, dead cells, and assorted debris and solid materials. Uptake of foreign particles is performed almost exclusively by specialized myeloid cells, commonly termed "professional phagocytes": neutrophils, monocytes, macrophages, and dendritic cells. Phagocytosis of microbes not only stops or at least restricts the spread of infection but also plays an important role in regulating the innate and adaptive immune responses. Activation of the myeloid cells upon phagocytosis leads to the secretion of cytokines and chemokines that convey signals to a variety of immune cells. Moreover, foreign antigens generated by the degradation of microbes following phagocytosis are loaded onto the major histocompatibility complex for presentation to specific T lymphocytes. However, phagocytosis is not restricted to professional myeloid phagocytes; an expanding diversity of cell types appear capable of engulfing apoptotic bodies and debris, playing a critical role in tissue remodeling and in the clearance of billions of effete cells every day.
Collapse
|
26
|
Li M, Beauchemin H, Popovic N, Peterson A, d'Hennezel E, Piccirillo CA, Sun C, Polychronakos C. The common, autoimmunity-predisposing 620Arg > Trp variant of PTPN22 modulates macrophage function and morphology. J Autoimmun 2017; 79:74-83. [PMID: 28237724 DOI: 10.1016/j.jaut.2017.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 01/02/2023]
Abstract
The C1858T single nucleotide polymorphism (SNP) in PTPN22 (protein tyrosine phosphatase nonreceptor 22) leads to the 620 Arg to Trp polymorphism in its encoded human protein LYP. This allelic variant is associated with multiple autoimmune diseases, including type 1 diabetes (T1D), Crohn's disease, rheumatoid arthritis and systemic lupus erythematosus. However, the underlying mechanisms are poorly understood. To study how this polymorphism influences the immune system, we generated a mouse strain with a knock-in of the Trp allele, imitating the human disease-associated variant. We did not find significant difference between the polymorphic and the wild type mice on the proportion of total CD4 T cell, CD8 T cell, NK cell, memory T lymphocyte, macrophage, dendritic cells in both peripheral lymph nodes and spleen. However, macrophages from Trp/Trp mice showed altered morphology and enhanced function, including higher expression of MHCII and B7 molecules and increased phagocytic ability, which further leads to a higher T-cell activation by specific antigen. Our model shows no alteration in immune cell profile by the Trp allele, but brings up macrophages as an important player to consider in explaining the PTPN22 Trp allele effect on autoimmune disease risk.
Collapse
Affiliation(s)
- Meihang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Institute of McGill University Health Centre, Child Health and Human Development Program, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Hugues Beauchemin
- Research Institute of McGill University Health Centre, Child Health and Human Development Program, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Natalija Popovic
- Research Institute of McGill University Health Centre, Child Health and Human Development Program, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alan Peterson
- Department of Oncology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Eva d'Hennezel
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Translational Immunology Unit, Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Translational Immunology Unit, Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Constantin Polychronakos
- Research Institute of McGill University Health Centre, Child Health and Human Development Program, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
27
|
Verma K, Datta S. The Monomeric GTPase Rab35 Regulates Phagocytic Cup Formation and Phagosomal Maturation in Entamoeba histolytica. J Biol Chem 2017; 292:4960-4975. [PMID: 28126902 DOI: 10.1074/jbc.m117.775007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of amoebic colitis is the detection of Entamoeba histolytica (Eh) trophozoites with ingested erythrocytes. Therefore, erythrophagocytosis is traditionally considered as one of the most important criteria to identify the pathogenic behavior of the amoebic trophozoites. Phagocytosis is an essential process for the proliferation and virulence of this parasite. Phagocytic cargo, upon internalization, follows a defined trafficking route to amoebic lysosomal degradation machinery. Here, we demonstrated the role of EhRab35 in the early and late phases of erythrophagocytosis by the amoeba. EhRab35 showed large vacuolar as well as punctate vesicular localization. The spatiotemporal dynamics of vacuolar EhRab35 and its exchange with soluble cytosolic pool were monitored by fluorescence recovery after photobleaching experiments. Using extensive microscopy and biochemical methods, we demonstrated that upon incubation with RBCs EhRab35 is recruited to the site of phagocytic cups as well as to the nascent phagosomes that harbor Gal/GalNAc lectin and actin. Overexpression of a dominant negative mutant of EhRab35 reduced phagocytic cup formation and thereby reduced RBC internalization, suggesting a potential role of the Rab GTPase in the cup formation. Furthermore, we also performed a phagosomal maturation assay and observed that the activated form of EhRab35 significantly increased the rate of RBC degradation. Interestingly, this mutant also significantly enhanced the number of acidic compartments in the trophozoites. Taken together, our results suggest that EhRab35 is involved in the initial stage of phagocytosis as well as in the phagolysosomal biogenesis in E. histolytica and thus contributes to the pathogenicity of the parasite.
Collapse
Affiliation(s)
- Kuldeep Verma
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| | - Sunando Datta
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| |
Collapse
|
28
|
Lee WL, Singaravelu P, Wee S, Xue B, Ang KC, Gunaratne J, Grimes JM, Swaminathan K, Robinson RC. Mechanisms of Yersinia YopO kinase substrate specificity. Sci Rep 2017; 7:39998. [PMID: 28051168 PMCID: PMC5209680 DOI: 10.1038/srep39998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Yersinia bacteria cause a range of human diseases, including yersiniosis, Far East scarlet-like fever and the plague. Yersiniae modulate and evade host immune defences through injection of Yersinia outer proteins (Yops) into phagocytic cells. One of the Yops, YopO (also known as YpkA) obstructs phagocytosis through disrupting actin filament regulation processes - inhibiting polymerization-promoting signaling through sequestration of Rac/Rho family GTPases and by using monomeric actin as bait to recruit and phosphorylate host actin-regulating proteins. Here we set out to identify mechanisms of specificity in protein phosphorylation by YopO that would clarify its effects on cytoskeleton disruption. We report the MgADP structure of Yersinia enterocolitica YopO in complex with actin, which reveals its active site architecture. Using a proteome-wide kinase-interacting substrate screening (KISS) method, we identified that YopO phosphorylates a wide range of actin-modulating proteins and located their phosphorylation sites by mass spectrometry. Using artificial substrates we clarified YopO's substrate length requirements and its phosphorylation consensus sequence. These findings provide fresh insight into the mechanism of the YopO kinase and demonstrate that YopO executes a specific strategy targeting actin-modulating proteins, across multiple functionalities, to compete for control of their native phospho-signaling, thus hampering the cytoskeletal processes required for macrophage phagocytosis.
Collapse
Affiliation(s)
- Wei Lin Lee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Pavithra Singaravelu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Bo Xue
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Khay Chun Ang
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Anatomy, National University of Singapore, Singapore
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, UK
- Diamond Light Source Ltd., UK
| | | | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Lee Kong Chan School of Medicine, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
29
|
Ryu JH, Sung J, Xie C, Shin MK, Kim CW, Kim NG, Choi YJ, Choi BD, Kang SS, Kang D. Aplysia kurodai -derived glycosaminoglycans increase the phagocytic ability of macrophages via the activation of AMP-activated protein kinase and cytoskeletal reorganization in RAW264.7 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
30
|
Verma K, Nozaki T, Datta S. Role of EhRab7A in phagocytosis of type 1 fimbriated E. coli by Entamoeba histolytica. Mol Microbiol 2016; 102:1043-1061. [PMID: 27663892 DOI: 10.1111/mmi.13533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 01/16/2023]
Abstract
Entamoeba histolytica, the causative agent of amoebic colitis and liver abscess in human, ingests the intestinal bacteria and variety of host cells. Phagocytosis of bacteria by the amebic trophozoite has been reported to be important for the virulence of the parasite. Here, we set out to characterize different stages of phagocytosis of type 1 E. coli and investigated the role of a set of amoebic Rab GTPases in the process. The localizations of the Rab GTPases during different stages of the phagocytosis were investigated using laser scanning confocal microscopy and their functional relevance were determined using fluorescence activated cell sorter based assay as well as colony forming unit assay. Our results demonstrate that EhRab7A is localized on the phagosomes and involved in both early and late stages of type 1 E. coli phagocytosis. We further showed that the E. coli or RBC containing phagosomes are distinct from the large endocytic vacuoles in the parasite which are exclusively used to transport human holotransferrin and low density lipoprotein. Remarkably, type 1 E. coli uptake was found to be insensitive to cytochalasin D treatment, suggesting that the initial stage of E. coli phagocytosis is independent of the formation of actin filaments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
31
|
Smith RC, King JG, Tao D, Zeleznik OA, Brando C, Thallinger GG, Dinglasan RR. Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity. Mol Cell Proteomics 2016; 15:3373-3387. [PMID: 27624304 DOI: 10.1074/mcp.m116.060723] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparum infection promote dramatic shifts in the proteomic profiles of An. gambiae granulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host.
Collapse
Affiliation(s)
- Ryan C Smith
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,**Department of Entomology, Iowa State University, Ames, Iowa 50011
| | - Jonas G King
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,‡‡Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi 39762
| | - Dingyin Tao
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,§§Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Oana A Zeleznik
- §Bioinformatics, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria.,¶Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.,‖BioTechMed OMICS Center Graz, 8010 Graz, Austria
| | - Clara Brando
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Gerhard G Thallinger
- §Bioinformatics, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria.,¶Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.,‖BioTechMed OMICS Center Graz, 8010 Graz, Austria
| | - Rhoel R Dinglasan
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205; .,¶¶Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
32
|
Dusseault J, Li B, Haider N, Goyette MA, Côté JF, Larose L. Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipogenesis. Diabetes 2016; 65:2652-66. [PMID: 27325288 DOI: 10.2337/db15-1559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/09/2016] [Indexed: 11/13/2022]
Abstract
Obesity results from an excessive expansion of white adipose tissue (WAT) from hypertrophy of preexisting adipocytes and enhancement of precursor differentiation into mature adipocytes. We report that Nck2-deficient mice display progressive increased adiposity associated with adipocyte hypertrophy. A negative relationship between the expression of Nck2 and WAT expansion was recapitulated in humans such that reduced Nck2 protein and mRNA levels in human visceral WAT significantly correlate with the degree of obesity. Accordingly, Nck2 deficiency promotes an adipogenic program that not only enhances adipocyte differentiation and lipid droplet formation but also results in dysfunctional elevated lipogenesis and lipolysis activities in mouse WAT as well as in stromal vascular fraction and 3T3-L1 preadipocytes. We provide strong evidence to support that through a mechanism involving primed PERK activation and signaling, Nck2 deficiency in adipocyte precursors is associated with enhanced adipogenesis in vitro and adiposity in vivo. Finally, in agreement with elevated circulating lipids, Nck2-deficient mice develop glucose intolerance, insulin resistance, and hepatic steatosis. Taken together, these findings reveal that Nck2 is a novel regulator of adiposity and suggest that Nck2 is important in limiting WAT expansion and dysfunction in mice and humans.
Collapse
Affiliation(s)
- Julie Dusseault
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Bing Li
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Nida Haider
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Marie-Anne Goyette
- Institut de Recherches Cliniques de Montréal (Université de Montréal), Montreal, Quebec, Canada
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal (Université de Montréal), Montreal, Quebec, Canada
| | - Louise Larose
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Porciello N, Kunkl M, Viola A, Tuosto L. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation. Front Immunol 2016; 7:186. [PMID: 27242793 PMCID: PMC4865508 DOI: 10.3389/fimmu.2016.00186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.
Collapse
Affiliation(s)
- Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| | - Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| |
Collapse
|
34
|
Miller CL, Muthupalani S, Shen Z, Drees F, Ge Z, Feng Y, Chen X, Gong G, Nagar KK, Wang TC, Gertler FB, Fox JG. Lamellipodin-Deficient Mice: A Model of Rectal Carcinoma. PLoS One 2016; 11:e0152940. [PMID: 27045955 PMCID: PMC4821566 DOI: 10.1371/journal.pone.0152940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/20/2016] [Indexed: 01/27/2023] Open
Abstract
During a survey of clinical rectal prolapse (RP) cases in the mouse population at MIT animal research facilities, a high incidence of RP in the lamellipodin knock-out strain, C57BL/6-Raph1tm1Fbg (Lpd-/-) was documented. Upon further investigation, the Lpd-/- colony was found to be infected with multiple endemic enterohepatic Helicobacter species (EHS). Lpd-/- mice, a transgenic mouse strain produced at MIT, have not previously shown a distinct immune phenotype and are not highly susceptible to other opportunistic infections. Predominantly male Lpd-/- mice with RP exhibited lesions consistent with invasive rectal carcinoma concomitant to clinically evident RP. Multiple inflammatory cytokines, CD11b+Gr1+ myeloid-derived suppressor cell (MDSC) populations, and epithelial cells positive for a DNA damage biomarker, H2AX, were elevated in affected tissue, supporting their role in the neoplastic process. An evaluation of Lpd-/- mice with RP compared to EHS-infected, but clinically normal (CN) Lpd-/- animals indicated that all of these mice exhibit some degree of lower bowel inflammation; however, mice with prolapses had significantly higher degree of focal lesions at the colo-rectal junction. When Helicobacter spp. infections were eliminated in Lpd-/- mice by embryo transfer rederivation, the disease phenotype was abrogated, implicating EHS as a contributing factor in the development of rectal carcinoma. Here we describe lesions in Lpd-/- male mice consistent with a focal inflammation-induced neoplastic transformation and propose this strain as a mouse model of rectal carcinoma.
Collapse
Affiliation(s)
- Cassandra L. Miller
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Frauke Drees
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Xiaowei Chen
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Karan K. Nagar
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Frank B. Gertler
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Tuosto L, Capuano C, Muscolini M, Santoni A, Galandrini R. The multifaceted role of PIP2 in leukocyte biology. Cell Mol Life Sci 2015; 72:4461-74. [PMID: 26265181 PMCID: PMC11113228 DOI: 10.1007/s00018-015-2013-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) represents about 1 % of plasma membrane phospholipids and behaves as a pleiotropic regulator of a striking number of fundamental cellular processes. In recent years, an increasing body of literature has highlighted an essential role of PIP2 in multiple aspects of leukocyte biology. In this emerging picture, PIP2 is envisaged as a signalling intermediate itself and as a membrane-bound regulator and a scaffold of proteins with specific PIP2 binding domains. Indeed PIP2 plays a key role in several functions. These include directional migration in neutrophils, integrin-dependent adhesion in T lymphocytes, phagocytosis in macrophages, lysosomes secretion and trafficking at immune synapse in cytolytic effectors and secretory cells, calcium signals and gene transcription in B lymphocytes, natural killer cells and mast cells. The coordination of these different aspects relies on the spatio-temporal organisation of distinct PIP2 pools, generated by the main PIP2 generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K). Three different isoforms of PIP5K, named α, β and γ, and different splice variants have been described in leukocyte populations. The isoform-specific coupling of specific isoforms of PIP5K to different families of activating receptors, including integrins, Fc receptors, toll-like receptors and chemokine receptors, is starting to be reported. Furthermore, PIP2 is turned over by multiple metabolising enzymes including phospholipase C (PLC) γ and phosphatidylinositol 3-kinase (PI3K) which, along with Rho family small G proteins, is widely involved in strategic functions within the immune system. The interplay between PIP2, lipid-modifying enzymes and small G protein-regulated signals is also discussed.
Collapse
Affiliation(s)
- Loretta Tuosto
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Via dei Sardi 70, 00185, Rome, Italy.
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00185, Rome, Italy
| | - Michela Muscolini
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Via dei Sardi 70, 00185, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Viale Regina Elena 291, 00185, Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00185, Rome, Italy.
| |
Collapse
|
36
|
Guo M, Härtlova A, Dill BD, Prescott AR, Gierliński M, Trost M. High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages. Proteomics 2015; 15:3169-74. [PMID: 25504905 PMCID: PMC4833182 DOI: 10.1002/pmic.201400431] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/08/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
Abstract
Macrophages are important immune cells operating at the forefront of innate immunity by taking up foreign particles and microbes through phagocytosis. The RAW 264.7 cell line is commonly used for experiments in the macrophage and phagocytosis field. However, little is known how its functions compare to primary macrophages. Here, we have performed an in-depth proteomics characterization of phagosomes from RAW 264.7 and bone marrow derived macrophages by quantifying more than 2500 phagosomal proteins. Our data indicate that there are significant differences for a large number of proteins including important receptors such as mannose receptor 1 and Siglec-1. Moreover, bone marrow derived macrophages phagosomes mature considerably faster by fusion with endosomes and the lysosome which we validated using fluorogenic phagocytic assays. We provide a valuable resource for researcher in the field and recommend careful use of the RAW 264.7 cell line when studying phagosome functions. All MS data have been deposited in the ProteomeXchange with identifier PXD001293 (http://proteomecentral.proteomexchange.org/dataset/PXD001293).
Collapse
Affiliation(s)
- Manman Guo
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, Scotland, UK
| | - Anetta Härtlova
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, Scotland, UK
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, Scotland, UK
| | - Alan R Prescott
- Division of Cell Signalling and Immunology, College of Life Science, University of Dundee, Scotland, UK
| | - Marek Gierliński
- Division of Computational Biology, College of Life Sciences, University of Dundee, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, Scotland, UK
| |
Collapse
|
37
|
Kuropka B, Witte A, Sticht J, Waldt N, Majkut P, Hackenberger CPR, Schraven B, Krause E, Kliche S, Freund C. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration. Mol Cell Proteomics 2015; 14:2961-72. [PMID: 26246585 DOI: 10.1074/mcp.m115.048249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.
Collapse
Affiliation(s)
- Benno Kuropka
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany; §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Amelie Witte
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jana Sticht
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany
| | - Natalie Waldt
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Paul Majkut
- §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; ‖RiNA GmbH, Volmerstrasse 9, 12489 Berlin, Germany
| | | | - Burkhart Schraven
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany; **Helmholtz Center for Infection Research (HZI), Department of Immune Control, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Eberhard Krause
- §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany;
| | - Stefanie Kliche
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany;
| | - Christian Freund
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany;
| |
Collapse
|
38
|
Dios-Esponera A, Isern de Val S, Sevilla-Movilla S, García-Verdugo R, García-Bernal D, Arellano-Sánchez N, Cabañas C, Teixidó J. Positive and negative regulation by SLP-76/ADAP and Pyk2 of chemokine-stimulated T-lymphocyte adhesion mediated by integrin α4β1. Mol Biol Cell 2015. [PMID: 26202465 PMCID: PMC4569313 DOI: 10.1091/mbc.e14-07-1246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stimulation by chemokines of integrin α4β1-dependent T-lymphocyte adhesion is a crucial step for lymphocyte trafficking. The adaptor Vav1 is required for chemokine-activated T-cell adhesion mediated by α4β1. Conceivably, proteins associating with Vav1 could potentially modulate this adhesion. Correlating with activation by the chemokine CXCL12 of T-lymphocyte attachment to α4β1 ligands, a transient stimulation in the association of Vav1 with SLP-76, Pyk2, and ADAP was observed. Using T-cells depleted for SLP-76, ADAP, or Pyk2, or expressing Pyk2 kinase-inactive forms, we show that SLP-76 and ADAP stimulate chemokine-activated, α4β1-mediated adhesion, whereas Pyk2 opposes T-cell attachment. While CXCL12-promoted generation of high-affinity α4β1 is independent of SLP-76, ADAP, and Pyk2, the strength of α4β1-VCAM-1 interaction and cell spreading on VCAM-1 are targets of regulation by these three proteins. GTPase assays, expression of activated or dominant-negative Rac1, or combined ADAP and Pyk2 silencing indicated that Rac1 activation by CXCL12 is a common mediator response in SLP-76-, ADAP-, and Pyk2-regulated cell adhesion involving α4β1. Our data strongly suggest that chemokine-stimulated associations between Vav1, SLP-76, and ADAP facilitate Rac1 activation and α4β1-mediated adhesion, whereas Pyk2 opposes this adhesion by limiting Rac1 activation.
Collapse
Affiliation(s)
- Ana Dios-Esponera
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Soledad Isern de Val
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Silvia Sevilla-Movilla
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Rosa García-Verdugo
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - David García-Bernal
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Nohemí Arellano-Sánchez
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Carlos Cabañas
- Centro de Biología Molecular (CSIC), Department of Cell Biology and Immunology, Cantoblanco, 28049 Madrid, Spain
| | - Joaquin Teixidó
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| |
Collapse
|
39
|
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 2015; 262:193-215. [PMID: 25319336 DOI: 10.1111/imr.12212] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Abstract
Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.
Collapse
Affiliation(s)
- Yingyu Mao
- a Department of Biological Sciences; Center for Cancer, Genetic Diseases, and Gene Regulation; Fordham University ; Bronx , NY , USA
| | | |
Collapse
|
41
|
Maxeiner S, Shi N, Schalla C, Aydin G, Hoss M, Vogel S, Zenke M, Sechi AS. Crucial role for the LSP1-myosin1e bimolecular complex in the regulation of Fcγ receptor-driven phagocytosis. Mol Biol Cell 2015; 26:1652-64. [PMID: 25717183 PMCID: PMC4436777 DOI: 10.1091/mbc.e14-05-1005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/19/2015] [Indexed: 01/24/2023] Open
Abstract
The actin cytoskeleton is fundamental for the innate immune process of phagocytosis. This study shows that LSP1 plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–mediated phagocytosis and that its interactions with myosin1e and actin are crucial for the efficiency of this actin-driven process. Actin cytoskeleton remodeling is fundamental for Fcγ receptor–driven phagocytosis. In this study, we find that the leukocyte-specific protein 1 (LSP1) localizes to nascent phagocytic cups during Fcγ receptor–mediated phagocytosis, where it displays the same spatial and temporal distribution as the actin cytoskeleton. Down-regulation of LSP1 severely reduces the phagocytic activity of macrophages, clearly demonstrating a crucial role for this protein in Fcγ receptor–mediated phagocytosis. We also find that LSP1 binds to the class I molecular motor myosin1e. LSP1 interacts with the SH3 domain of myosin1e, and the localization and dynamics of both proteins in nascent phagocytic cups mirror those of actin. Furthermore, inhibition of LSP1–myosin1e and LSP1–actin interactions profoundly impairs pseudopodial formation around opsonized targets and their subsequent internalization. Thus the LSP1–myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–driven phagocytosis.
Collapse
Affiliation(s)
- Sebastian Maxeiner
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Nian Shi
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Carmen Schalla
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Guelcan Aydin
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Mareike Hoss
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Applied Ecology, D-52074 Aachen, Germany
| | - Simon Vogel
- Fraunhofer Institute for Molecular Biology and Applied Ecology, D-52074 Aachen, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Antonio S Sechi
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| |
Collapse
|
42
|
Chen J, Leskov IL, Yurdagul A, Thiel B, Kevil CG, Stokes KY, Orr AW. Recruitment of the adaptor protein Nck to PECAM-1 couples oxidative stress to canonical NF-κB signaling and inflammation. Sci Signal 2015; 8:ra20. [PMID: 25714462 DOI: 10.1126/scisignal.2005648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress stimulates nuclear factor κB (NF-κB) activation and NF-κB-dependent proinflammatory gene expression in endothelial cells during several pathological conditions, including ischemia/reperfusion injury. We found that the Nck family of adaptor proteins linked tyrosine kinase signaling to oxidative stress-induced activation of NF-κB through the classic IκB kinase-dependent pathway. Depletion of Nck prevented oxidative stress induced by exogenous hydrogen peroxide or hypoxia/reoxygenation injury from activating NF-κB in endothelial cells, increasing the abundance of the proinflammatory molecules ICAM-1 (intracellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) and recruiting leukocytes. Nck depletion also attenuated endothelial cell expression of genes encoding proinflammatory factors but not those encoding antioxidants. Nck promoted oxidative stress-induced activation of NF-κB by coupling the tyrosine phosphorylation of PECAM-1 (platelet endothelial cell adhesion molecule-1) to the activation of p21-activated kinase, which mediates oxidative stress-induced NF-κB signaling. Consistent with this mechanism, treatment of mice subjected to ischemia/reperfusion injury in the cremaster muscle with a Nck inhibitory peptide blocked leukocyte adhesion and emigration and the accompanying vascular leak. Together, these data identify Nck as an important mediator of oxidative stress-induced inflammation and a potential therapeutic target for ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Igor L Leskov
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Arif Yurdagul
- Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Bonnie Thiel
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
43
|
Lee WL, Grimes JM, Robinson RC. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization. Nat Struct Mol Biol 2015; 22:248-55. [PMID: 25664724 DOI: 10.1038/nsmb.2964] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/30/2014] [Indexed: 11/09/2022]
Abstract
Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.
Collapse
Affiliation(s)
- Wei Lin Lee
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. [2] Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathan M Grimes
- 1] Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Diamond Light Source, Oxfordshire, UK
| | - Robert C Robinson
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. [2] Department of Biochemistry, National University of Singapore, Singapore
| |
Collapse
|
44
|
Muscolini M, Camperio C, Porciello N, Caristi S, Capuano C, Viola A, Galandrini R, Tuosto L. Phosphatidylinositol 4–Phosphate 5–Kinase α and Vav1 Mutual Cooperation in CD28-Mediated Actin Remodeling and Signaling Functions. THE JOURNAL OF IMMUNOLOGY 2015; 194:1323-1333. [DOI: 10.4049/jimmunol.1401643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Phosphatidylinositol 4,5–biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4+ T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4–phosphate 5–kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions.
Collapse
Affiliation(s)
- Michela Muscolini
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Camperio
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Nicla Porciello
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Silvana Caristi
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Capuano
- †Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Antonella Viola
- ‡The Venetian Institute of Molecular Medicine, Padova 35129, Italy; and
- §Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | | | - Loretta Tuosto
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
45
|
Ke Y, Tan Y, Wei N, Yang F, Yang H, Cao S, Wang X, Wang J, Han Y, Bi Y, Cui Y, Yan Y, Song Y, Yang X, Du Z, Yang R. Yersinia protein kinase A phosphorylates vasodilator-stimulated phosphoprotein to modify the host cytoskeleton. Cell Microbiol 2014; 17:473-85. [PMID: 25298072 DOI: 10.1111/cmi.12378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 09/13/2014] [Accepted: 10/04/2014] [Indexed: 01/03/2023]
Abstract
Pathogenic Yersinia species evolved a type III secretion system that injects a set of effectors into the host cell cytosol to promote infection. One of these effectors, Yersinia protein kinase A (YpkA), is a multidomain effector that harbours a Ser/Thr kinase domain and a guanine dissociation inhibitor (GDI) domain. The intercellular targets of the kinase and GDI domains of YpkA were identified to be Gαq and the small GTPases RhoA and Rac1, respectively, which synergistically induce cytotoxic effects on infected cells. In this study, we demonstrate that vasodilator-stimulated phosphoprotein (VASP), which is critical for regulation of actin assembly, cell adhesion and motility, is a direct substrate of YpkA kinase activity. Ectopic co-expression of YpkA and VASP in HEK293T cells leads to the phosphorylation of VASP at S157, and YpkA kinase activity is essential for VASP phosphorylation at this site. Moreover, YpkA directly phosphorylates VASP in in vitro kinase assay. YpkA-mediated VASP phosphorylation significantly inhibits actin polymerization and promotes the disruption of actin cytoskeleton, which inhibits the phagocytosis. Taken together, our study found a novel molecular mechanism used by YpkA to disrupt cytoskeleton dynamics, thereby promoting the anti-phagocytosis ability of pathogenic Yersiniae.
Collapse
Affiliation(s)
- Yuehua Ke
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Beijing Institute of Disease Control and Prevention, Beijing, 100071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim MY, Kim JH, Cho JY. Cytochalasin B modulates macrophage-mediated inflammatory responses. Biomol Ther (Seoul) 2014; 22:295-300. [PMID: 25143807 PMCID: PMC4131529 DOI: 10.4062/biomolther.2014.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022] Open
Abstract
The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-κB translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton’s involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
47
|
Greenwood AI, Kwon J, Nicholson LK. Isomerase-catalyzed binding of interleukin-1 receptor-associated kinase 1 to the EVH1 domain of vasodilator-stimulated phosphoprotein. Biochemistry 2014; 53:3593-607. [PMID: 24857403 DOI: 10.1021/bi500031e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1) is a crucial signaling kinase in the immune system, involved in Toll-like receptor signaling. Vasodilator-stimulated phosphoprotein (VASP) is a central player in cell migration that regulates actin polymerization and connects signaling events to cytoskeletal remodeling. A VASP–IRAK1 interaction is thought to be important in controlling macrophage migration in response to protein kinase C-ε activation. We show that the monomeric VASP EVH1 domain directly binds to the 168WPPPP172 motif in the IRAK1 undefined domain (IRAK1-UD) with moderate affinity (KDApp = 203 ± 3 μM). We further show that this motif adopts distinct cis and trans isomers for the Trp168–Pro169 peptide bond with nearly equal populations, and that binding to the VASP EVH1 domain is specific for the trans isomer, coupling binding to isomerization. Nuclear magnetic resonance line shape analysis and tryptophan fluorescence experiments reveal the complete kinetics and thermodynamics of the binding reaction, showing diffusion-limited binding to the trans isomer followed by slow, isomerization-dependent binding. We further demonstrate that the peptidyl-prolyl isomerase cyclophilin A (CypA) catalyzes isomerization of the Trp168–Pro169 peptide bond and accelerates binding of the IRAK1-UD to the VASP EVH1 domain. We propose that binding of IRAK1 to tetrameric VASP is regulated by avidity through the assembly of IRAK1 onto receptor-anchored signaling complexes and that an isomerase such as CypA may modulate IRAK1 signaling in vivo. These studies demonstrate a direct interaction between IRAK1 and VASP and suggest a potential mechanism for how this interaction might be regulated by both assembly of IRAK1 onto an activated signaling complex and PPIase enzymes.
Collapse
Affiliation(s)
- Alexander I Greenwood
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | | | | |
Collapse
|
48
|
Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 2014; 256:222-39. [PMID: 24117824 DOI: 10.1111/imr.12118] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are best known for their protective search and destroy functions against invading microorganisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin-rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation-promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures.
Collapse
Affiliation(s)
- Pablo Rougerie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
49
|
Lettau M, Kliche S, Kabelitz D, Janssen O. The adapter proteins ADAP and Nck cooperate in T cell adhesion. Mol Immunol 2014; 60:72-9. [PMID: 24769494 DOI: 10.1016/j.molimm.2014.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Nck adapter proteins link receptor and receptor-associated tyrosine kinases with proteins implicated in the regulation of the actin cytoskeleton. Nck is involved in a multitude of receptor-initiated signaling pathways and its physiological role thus covers aspects of tissue development and homeostasis, malignant transformation/invasiveness of tumour cells and also immune cell function. In T cells, changes of cell polarity and morphology associated with cellular activation and effector function crucially rely on the T cell receptor-mediated recruitment and activation of different actin-regulatory proteins to orchestrate and drive cytoskeletal reorganization at the immunological synapse. In a former approach to determine the interactome of Nck in human T cells, we identified the adapter protein ADAP as a Nck-interacting protein. This adhesion and degranulation-promoting adapter protein had already been implicated in the inside-out activation of integrins. Employing co-immunoprecipitations, we demonstrate that both Nck family members Nck1 and Nck2 coprecipitate with ADAP. Specifically, Nck interacts via its Src homology 2 domain with phosphorylated tyrosine Y595DDV and Y651DDV sites of ADAP. Moreover, we show that endogenous ADAP is phosphorylated in primary human T cell blasts and thus associates with Nck. At the functional level, ADAP and Nck adapter proteins cooperatively facilitate T cell adhesion to the LFA-1 ligand ICAM-1. Our data indicate that the ADAP/Nck complex might provide a means to link integrin activation with the actin cytoskeleton.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| |
Collapse
|
50
|
Ansar M, Serrano D, Papademetriou I, Bhowmick TK, Muro S. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting. ACS NANO 2013; 7:10597-10611. [PMID: 24237309 PMCID: PMC3901850 DOI: 10.1021/nn404719c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.
Collapse
Affiliation(s)
- Maria Ansar
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
| | - Daniel Serrano
- Department of Cell Biology & Molecular Genetics and Biological Sciences Graduate Program, University of Maryland, College Park, MD
| | - Iason Papademetriou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Tridib Kumar Bhowmick
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| |
Collapse
|