1
|
Hough RF, Alvira CM, Bastarache JA, Erzurum SC, Kuebler WM, Schmidt EP, Shimoda LA, Abman SH, Alvarez DF, Belvitch P, Bhattacharya J, Birukov KG, Chan SY, Cornfield DN, Dudek SM, Garcia JGN, Harrington EO, Hsia CCW, Islam MN, Jonigk DD, Kalinichenko VV, Kolb TM, Lee JY, Mammoto A, Mehta D, Rounds S, Schupp JC, Shaver CM, Suresh K, Tambe DT, Ventetuolo CE, Yoder MC, Stevens T, Damarla M. Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 71:388-406. [PMID: 39189891 PMCID: PMC11450313 DOI: 10.1165/rcmb.2024-0330st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Collapse
|
2
|
Yadav D, Conner JA, Wang Y, Saunders TL, Ubogu EE. A novel inducible von Willebrand Factor Cre recombinase mouse strain to study microvascular endothelial cell-specific biological processes in vivo. Vascul Pharmacol 2024; 155:107369. [PMID: 38554988 DOI: 10.1016/j.vph.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Mouse models are invaluable to understanding fundamental mechanisms in vascular biology during development, in health and different disease states. Several constitutive or inducible models that selectively knockout or knock in genes in vascular endothelial cells exist; however, functional and phenotypic differences exist between microvascular and macrovascular endothelial cells in different organs. In order to study microvascular endothelial cell-specific biological processes, we developed a Tamoxifen-inducible von Willebrand Factor (vWF) Cre recombinase mouse in the SJL background. The transgene consists of the human vWF promoter with the microvascular endothelial cell-selective 734 base pair sequence to drive Cre recombinase fused to a mutant estrogen ligand-binding domain [ERT2] that requires Tamoxifen for activity (CreERT2) followed by a polyadenylation (polyA) signal. We initially observed Tamoxifen-inducible restricted bone marrow megakaryocyte and sciatic nerve microvascular endothelial cell Cre recombinase expression in offspring of a mixed strain hemizygous C57BL/6-SJL founder mouse bred with mT/mG mice, with >90% bone marrow megakaryocyte expression efficiency. Founder mouse offspring were backcrossed to the SJL background by speed congenics, and intercrossed for >10 generations to develop hemizygous Tamoxifen-inducible vWF Cre recombinase (vWF-iCre/+) SJL mice with stable transgene insertion in chromosome 1. Microvascular endothelial cell-specific Cre recombinase expression occurred in the sciatic nerves, brains, spleens, kidneys and gastrocnemius muscles of adult vWF-iCre/+ SJL mice bred with Ai14 mice, with retained low level bone marrow and splenic megakaryocyte expression. This novel mouse strain would support hypothesis-driven mechanistic studies to decipher the role(s) of specific genes transcribed by microvascular endothelial cells during development, as well as in physiologic and pathophysiologic states in an organ- and time-dependent manner.
Collapse
Affiliation(s)
- Dinesh Yadav
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy A Conner
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yimin Wang
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
4
|
Lyu ZS, Tang SQ, Xing T, Zhou Y, Lv M, Fu HX, Wang Y, Xu LP, Zhang XH, Lee HY, Kong Y, Huang XJ. The glycolytic enzyme PFKFB3 determines bone marrow endothelial progenitor cell damage after chemotherapy and irradiation. Haematologica 2022; 107:2365-2380. [PMID: 35354250 PMCID: PMC9521251 DOI: 10.3324/haematol.2021.279756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Bone marrow (BM) endothelial progenitor cell (EPC) damage of unknown mechanism delays the repair of endothelial cells (EC) and recovery of hematopoiesis after chemo-radiotherapy. We found increased levels of the glycolytic enzyme PFKFB3 in the damaged BM EPC of patients with poor graft function, a clinical model of EPC damage-associated poor hematopoiesis after allogeneic hematopoietic stem cell transplantation. Moreover, in vitro the glycolysis inhibitor 3-(3-pyridinyl)- 1-(4-pyridinyl)-2-propen-1-one (3PO) alleviated the damaged BM EPC from patients with poor graft function. Consistently, PFKFB3 overexpression triggered BM EPC damage after 5-fluorouracil treatment and impaired hematopoiesis-supporting ability in vitro. Mechanistically, PFKFB3 facilitated pro-apoptotic transcription factor FOXO3A and expression of its downstream genes, including p21, p27, and FAS, after 5-fluorouracil treatment in vitro. Moreover, PFKFB3 induced activation of NF-κB and expression of its downstream adhesion molecule E-selectin, while it reduced hematopoietic factor SDF-1 expression, which could be rescued by FOXO3A silencing. High expression of PFKFB3 was found in damaged BM EC of murine models of chemo-radiotherapy-induced myelosuppression. Furthermore, a murine model of BM EC-specific PFKFB3 overexpression demonstrated that PFKFB3 aggravated BM EC damage, and impaired the recovery of hematopoiesis after chemotherapy in vivo, effects which could be mitigated by 3PO, indicating a critical role of PFKFB3 in regulating BM EC damage. Clinically, PFKFB3-induced FOXO3A expression and NF-κB activation were confirmed to contribute to the damaged BM EPC of patients with acute leukemia after chemotherapy. 3PO repaired the damaged BM EPC by reducing FOXO3A expression and phospho-NF-κB p65 in patients after chemotherapy. In summary, our results reveal a critical role of PFKFB3 in triggering BM EPC damage and indicate that endothelial-PFKFB3 may be a potential therapeutic target for myelosuppressive injury.
Collapse
Affiliation(s)
- Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing
| | - Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing
| | - Yang Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Hsiang-Ying Lee
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; School of Life Sciences, Peking University, Beijing
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing.
| |
Collapse
|
5
|
He WZ, Yang M, Jiang Y, He C, Sun YC, Liu L, Huang M, Jiao YR, Chen KX, Hou J, Huang M, Xu YL, Feng X, Liu Y, Guo Q, Peng H, Huang Y, Su T, Xiao Y, Li Y, Zeng C, Lei G, Luo XH, Li CJ. miR-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death Dis 2022; 13:494. [PMID: 35610206 PMCID: PMC9130327 DOI: 10.1038/s41419-022-04902-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
A specific bone capillary subtype, namely type H vessels, with high expression of CD31 and endomucin, was shown to couple angiogenesis and osteogenesis recently. The number of type H vessels in bone tissue declines with age, and the underlying mechanism for this reduction is unclear. Here, we report that microRNA-188-3p (miR-188-3p) involves this process. miRNA-188-3p expression is upregulated in skeletal endothelium and negatively regulates the formation of type H vessels during ageing. Mice with depletion of miR-188 showed an alleviated age-related decline in type H vessels. In contrast, endothelial-specific overexpression of miR-188-3p reduced the number of type H vessels, leading to decreased bone mass and delayed bone regeneration. Mechanistically, we found that miR-188 inhibits type H vessel formation by directly targeting integrin β3 in endothelial cells. Our findings indicate that miR-188-3p is a key regulator of type H vessel formation and may be a potential therapeutic target for preventing bone loss and accelerating bone regeneration.
Collapse
Affiliation(s)
- Wen-Zhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yu-Chen Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yi-Li Xu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The use of genetic models has facilitated the study of the origins and mechanisms of vascular disease. Mouse models have been developed to specifically target endothelial cell populations, with the goal of pinpointing when and where causative mutations wreck their devastating effects. Together, these approaches have propelled the development of therapies by providing an in-vivo platform to evaluate diagnoses and treatment options. This review summarizes the most widely used mouse models that have facilitated the study of vascular disease, with a focus on mouse models of vascular malformations and the road ahead. RECENT FINDINGS Over the past 3 decades, the vascular biology scientific community has been steadily generating a powerful toolkit of useful mouse lines that can be used to tightly regulate gene ablation, or to express transgenic genes, in the murine endothelium. Some of these models inducibly (constitutively) alter gene expression across all endothelial cells, or within distinct subsets, by expressing either Cre recombinase (or inducible versions such as CreERT), or the tetracycline controlled transactivator protein tTA (or rtTA). This now relatively standard technology has been used to gain cutting edge insights into vascular disorders, by allowing in-vivo modeling of key molecular pathways identified as dysregulated across the vast spectrum of vascular anomalies, malformations and dysplasias. However, as sequencing of human patient samples expands, the number of interesting candidate molecular culprits keeps increasing. Consequently, there is now a pressing need to create new genetic mouse models to test hypotheses and to query mechanisms underlying vascular disease. SUMMARY The current review assesses the collection of mouse driver lines that have been instrumental is identifying genes required for blood vessel formation, remodeling, maintenance/quiescence and disease. In addition, the usefulness of these driver lines is underscored here by cataloguing mouse lines developed to experimentally assess the role of key candidate genes in vascular malformations. Despite this solid and steady progress, numerous new candidate vascular malformation genes have recently been identified for which no mouse model yet exists.
Collapse
Affiliation(s)
- Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Nanou A, Bourbouli M, Vetrano S, Schaeper U, Ley S, Kollias G. Endothelial Tpl2 regulates vascular barrier function via JNK-mediated degradation of claudin-5 promoting neuroinflammation or tumor metastasis. Cell Rep 2021; 35:109168. [PMID: 34038728 DOI: 10.1016/j.celrep.2021.109168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/08/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Increased vascular permeability and leakage are hallmarks of several pathologies and determine disease progression and severity by facilitating inflammatory/metastatic cell infiltration. Using tissue-specific genetic ablation in endothelial cells, we have investigated in vivo the role of Tumor progression locus 2 (Tpl2), a mitogen-activated protein kinase kinase kinase (MAP3K) member with pleiotropic effects in inflammation and cancer. In response to proinflammatory stimuli, endothelial Tpl2 deletion alters tight junction claudin-5 protein expression through inhibition of JNK signaling and lysosomal degradation activation, resulting in reduced vascular permeability and immune cell infiltration. This results in significantly attenuated disease scores in experimental autoimmune encephalomyelitis and fewer tumor nodules in a hematogenic lung cancer metastasis model. Accordingly, pharmacologic inhibition of Tpl2 or small interfering RNA (siRNA)-mediated Tpl2 knockdown recapitulates our findings and reduces lung metastatic tumor invasions. These results establish an endothelial-specific role for Tpl2 and highlight the therapeutic potential of blocking the endothelial-specific Tpl2 pathway in chronic inflammatory and metastatic diseases.
Collapse
Affiliation(s)
- Aikaterini Nanou
- Institute for Bioinnovation, Biomedical Science Research Center (BSRC) "Alexander Fleming," Vari, Attika, Greece
| | - Mara Bourbouli
- Institute for Bioinnovation, Biomedical Science Research Center (BSRC) "Alexander Fleming," Vari, Attika, Greece
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; IBD Center, Humanitas Research Hospital, Rozzano, Italy
| | | | - Steven Ley
- Immune Cell Signalling Laboratory, The Francis Crick Institute, London, UK; Imperial College, London, UK
| | - George Kollias
- Institute for Bioinnovation, Biomedical Science Research Center (BSRC) "Alexander Fleming," Vari, Attika, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
8
|
Guo Z, Mo Z. Regulation of endothelial cell differentiation in embryonic vascular development and its therapeutic potential in cardiovascular diseases. Life Sci 2021; 276:119406. [PMID: 33785330 DOI: 10.1016/j.lfs.2021.119406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the cardiovascular system begins operating earlier than any other organ in the embryo. Endothelial cell (EC) forms the inner lining of blood vessels, and its extensive proliferation and migration are requisite for vasculogenesis and angiogenesis. Many aspects of cellular biology are involved in vasculogenesis and angiogenesis, including the tip versus stalk cell specification. Recently, epigenetics has attracted growing attention in regulating embryonic vascular development and controlling EC differentiation. Some proteins that regulate chromatin structure have been shown to be directly implicated in human cardiovascular diseases. Additionally, the roles of important EC signaling such as vascular endothelial growth factor and its receptors, angiopoietin-1 and tyrosine kinase containing immunoglobulin and epidermal growth factor homology domain-2, and transforming growth factor-β in EC differentiation during embryonic vasculature development are briefly discussed in this review. Recently, the transplantation of human induced pluripotent stem cell (iPSC)-ECs are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction. Patient-specific iPSC-derived EC is a potential new target to study differences in gene expression or response to drugs. However, clinical application of the iPSC-ECs in regenerative medicine is often limited by the challenges of maintaining cell viability and function. Therefore, novel insights into the molecular mechanisms underlying EC differentiation might provide a better understanding of embryonic vascular development and bring out more effective EC-based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Zhou Q, Tu T, Tai S, Tang L, Yang H, Zhu Z. Endothelial specific deletion of HMGB1 increases blood pressure and retards ischemia recovery through eNOS and ROS pathway in mice. Redox Biol 2021; 41:101890. [PMID: 33582562 PMCID: PMC7887649 DOI: 10.1016/j.redox.2021.101890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies demonstrated HMGB1, an extracellular inflammation molecule, played an important role on endothelial cells. This study aimed to define the role and related mechanism of HMGB1 in endothelial cells. Endothelial-specific deletion of HMGB1(HMGB1ECKO) was generated and Akt/eNOS signaling, reactive oxygen species (ROS) production, endothelium dependent relaxation (EDR), and angiogenesis were determined in vitro and in vivo. Decreased activation of Akt/eNOS signaling, sprouting, and proliferation, and increased ROS production were evidenced in endothelial cells derived from HMGB1ECKO mice as compared with wild type controls. Decreased EDR and retarded blood flow recovery after hind limb ischemia were also demonstrated in HMGB1ECKO mice. Both impaired EDR and angiogenesis could be partly rescued by superoxide dismutase in HMGB1ECKO mice. In conclusion, intracellular HMGB1 might be a key regulator of endothelial Akt/eNOS pathway and ROS production, thus plays an important role in EDR regulation and angiogenesis.
Collapse
Affiliation(s)
- Qin Zhou
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi Tai
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Tang
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaowei Zhu
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Zhang Y, Cedervall J, Hamidi A, Herre M, Viitaniemi K, D'Amico G, Miao Z, Unnithan RVM, Vaccaro A, van Hooren L, Georganaki M, Thulin Å, Qiao Q, Andrae J, Siegbahn A, Heldin CH, Alitalo K, Betsholtz C, Dimberg A, Olsson AK. Platelet-Specific PDGFB Ablation Impairs Tumor Vessel Integrity and Promotes Metastasis. Cancer Res 2020; 80:3345-3358. [PMID: 32586981 DOI: 10.1158/0008-5472.can-19-3533] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor B (PDGFB) plays a crucial role in recruitment of PDGF receptor β-positive pericytes to blood vessels. The endothelium is an essential source of PDGFB in this process. Platelets constitute a major reservoir of PDGFB and are continuously activated in the tumor microenvironment, exposing tumors to the plethora of growth factors contained in platelet granules. Here, we show that tumor vascular function, as well as pericyte coverage is significantly impaired in mice with conditional knockout of PDGFB in platelets. A lack of PDGFB in platelets led to enhanced hypoxia and epithelial-to-mesenchymal transition in the primary tumors, elevated levels of circulating tumor cells, and increased spontaneous metastasis to the liver or lungs in two mouse models. These findings establish a previously unknown role for platelet-derived PDGFB, whereby it promotes and maintains vascular integrity in the tumor microenvironment by contributing to the recruitment of pericytes. SIGNIFICANCE: Conditional knockout of PDGFB in platelets demonstrates its previously unknown role in the maintenance of tumor vascular integrity and host protection against metastasis.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Anahita Hamidi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Melanie Herre
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Kati Viitaniemi
- Wihuri Research Institute and Translational Cancer Medicine Research Program, Biomedicum Helsinki, 00014 University of Helsinki, Yliopistonkatu, Helsinki, Finland
| | - Gabriela D'Amico
- Wihuri Research Institute and Translational Cancer Medicine Research Program, Biomedicum Helsinki, 00014 University of Helsinki, Yliopistonkatu, Helsinki, Finland
| | - Zuoxiu Miao
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Ragaseema Valsala Madhavan Unnithan
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden.,Department of Biotechnology, Govt. Arts College, Thiruvananthapuram, India
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Åsa Thulin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Qi Qiao
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Research Program, Biomedicum Helsinki, 00014 University of Helsinki, Yliopistonkatu, Helsinki, Finland
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden.,ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet, Novum, Blickagången 6, Huddinge, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden.
| |
Collapse
|
11
|
Nrf2 activation in myeloid cells and endothelial cells differentially mitigates sickle cell disease pathology in mice. Blood Adv 2020; 3:1285-1297. [PMID: 31015205 DOI: 10.1182/bloodadvances.2018017574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is caused by a monogenic mutation of the β-globin gene and affects millions of people worldwide. SCD is associated with sustained hemolytic anemia, vasoocclusion, ischemia-reperfusion injury, oxidative tissue damage, inflammatory cell activation, and systemic endothelial dysfunction. The transcription factor Nrf2 coordinates the expression of a wide variety of genes encoding antioxidant, detoxification, and metabolic enzymes. Nrf2 participates in suppressing proinflammatory cytokines and organ protection in SCD. However, little is known regarding the mechanisms by which Nrf2 ameliorates SCD pathology or how some cells respond to Nrf2 stimuli to alleviate SCD pathology. Here, we asked whether monocytes/granulocytes and/or endothelial cells are particularly critical in alleviating the pathology of SCD. By targeting these cells with a Cre recombinase system, we generated SCD::Keap1F/F::LysM-Cre and Tie1-Cre mice with constitutive Nrf2 activation in monocytes/granulocytes and endothelial cells, respectively. Analyses of SCD::Keap1F/F::LysM-Cre and SCD::Keap1F/F::Tie1-Cre mice revealed significantly reduced inflammation, along with decreased white blood cell counts and lower Tnfα and Il1β expression in the lungs. Notably, SCD::Keap1F/F::LysM-Cre mice exhibited reduced heme distribution in the liver, consistent with a decrease in the damaged areas. Vascular function in SCD::Keap1F/F::Tie1-Cre mice was significantly improved, with a 50% decrease in vascular leakage and low expression of the adhesion molecules Vcam1 and P-selectin. Thus, Nrf2 activation in monocytes/granulocytes and endothelial cells contributes differentially and cooperatively to the improvement of SCD pathology.
Collapse
|
12
|
Abstract
Endocardial cells are specialized endothelial cells that form the innermost layer of the heart wall. By virtue of genetic lineage-tracing technology, many of the unexpected roles of endocardium during murine heart development, diseases, and regeneration have been identified recently. In addition to heart valves developed from the well-known endothelial to mesenchymal transition, recent fate-mapping studies using mouse models reveal that multiple cardiac cell lineages are also originated from the endocardium. This review focuses on a variety of different cell types that are recently reported to be endocardium derived during murine heart development, diseases, and regeneration. These multiple cell fates underpin the unprecedented roles of endocardial progenitors in function, pathological progression, and regeneration of the heart. Because emerging studies suggest that developmental mechanisms can be redeployed and recapitulated in promoting heart disease development and also cardiac repair and regeneration, understanding the mechanistic regulation of endocardial plasticity and modulation of their cell fate conversion may uncover new therapeutic potential in facilitating heart regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Kathy O Lui
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Bin Zhou
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| |
Collapse
|
13
|
CD40 in Endothelial Cells Restricts Neural Tissue Invasion by Toxoplasma gondii. Infect Immun 2019; 87:IAI.00868-18. [PMID: 31109947 DOI: 10.1128/iai.00868-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
Little is known about whether pathogen invasion of neural tissue is affected by immune-based mechanisms in endothelial cells. We examined the effects of endothelial cell CD40 on Toxoplasma gondii invasion of the retina and brain, organs seeded hematogenously. T. gondii circulates in the bloodstream within infected leukocytes (including monocytes and dendritic cells) and as extracellular tachyzoites. After T. gondii infection, mice that expressed CD40 restricted to endothelial cells exhibited diminished parasite loads and histopathology in the retina and brain. These mice also had lower parasite loads in the retina and brain after intravenous (i.v.) injection of infected monocytes or dendritic cells. The protective effect of endothelial cell CD40 was not explained by changes in cellular or humoral immunity, reduced transmigration of leukocytes into neural tissue, or reduced invasion by extracellular parasites. Circulating T. gondii-infected leukocytes (dendritic cells used as a model) led to infection of neural endothelial cells. The number of foci of infection in these cells were reduced if endothelial cells expressed CD40. Infected dendritic cells and macrophages expressed membrane-associated inducible Hsp70. Infected leukocytes triggered Hsp70-dependent autophagy in CD40+ endothelial cells and anti-T. gondii activity dependent on ULK1 and beclin 1. Reduced parasite load in the retina and brain not only required CD40 expression in endothelial cells but was also dependent on beclin 1 and the expression of inducible Hsp70 in dendritic cells. These studies suggest that during endothelial cell-leukocyte interaction, CD40 restricts T. gondii invasion of neural tissue through a mechanism that appears mediated by endothelial cell anti-parasitic activity stimulated by Hsp70.
Collapse
|
14
|
Barakat A, Nakao S, Zandi S, Sun D, Schmidt-Ullrich R, Hayes KC, Hafezi-Moghadam A. In contrast to Western diet, a plant-based, high-fat, low-sugar diet does not exacerbate retinal endothelial injury in streptozotocin-induced diabetes. FASEB J 2019; 33:10327-10338. [PMID: 31264891 DOI: 10.1096/fj.201900462r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Controversy remains about how diet affects the vascular endothelial dysfunction associated with disordered insulin-glucose homeostasis. It is postulated that the type and level of certain macronutrients contribute to endothelial dysfunction in vascular diabetes complications. However, it is not well understood how specific macronutrients affect the molecular inflammatory response under conditions of hyperglycemia. Here, we examined retinal microvascular endothelial injury in streptozotocin (STZ)-diabetic rats fed a laboratory Western diet (WD). WD, characterized by its high content of saturated fat, cholesterol, and sugar, significantly increased retinal leukocyte accumulation and endothelial injury in the STZ-diabetic rats. Suppression of endothelial NF-κB signaling in the STZ model reduced the WD-induced increase in leukocyte accumulation. To isolate the effect of dietary fat, we generated high-fat diets with varying fatty acid balance and type. These diets contained moderate amounts of carbohydrates but no sugar. We found that neither high levels of saturated or unsaturated fats per se increased retinal leukocyte accumulation and endothelial injury in the STZ-diabetic rat model but that the combination of high levels of dietary cholesterol with specific saturated fatty acids that are abundant in WD exacerbated leukocyte accumulation and endothelial injury in the retinas of STZ-diabetic rats.-Barakat, A., Nakao, S., Zandi, S., Sun, D., Schmidt-Ullrich, R., Hayes, K. C., Hafezi-Moghadam, A. In contrast to Western diet, a plant-based, high-fat, low-sugar diet does not exacerbate retinal endothelial injury in streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Aliaa Barakat
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shintaro Nakao
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souska Zandi
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Swiss Eye Institute, Rotkreuz and Berner Augenklinik am Lindenhofspital, Bern, Switzerland
| | - Dawei Sun
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, The Second Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - K C Hayes
- Department of Biology, Foster Biomedical Research Laboratory, Brandeis University, Waltham, Massachusetts, USA
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Kilani B, Gourdou-Latyszenok V, Guy A, Bats ML, Peghaire C, Parrens M, Renault MA, Duplàa C, Villeval JL, Rautou PE, Couffinhal T, James C. Comparison of endothelial promoter efficiency and specificity in mice reveals a subset of Pdgfb-positive hematopoietic cells. J Thromb Haemost 2019; 17:827-840. [PMID: 30801958 DOI: 10.1111/jth.14417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Essentials To reliably study the respective roles of blood and endothelial cells in hemostasis, mouse models with a strong and specific endothelial expression of the Cre recombinase are needed. Using mT/mG reporter mice and conditional JAK2V617F/WT mice, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Comparison of recombination efficiency and specificity towards blood lineage reveals major differences between endothelial transgenic mice. Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2;JAK2V617F/WT transgenic mice. SUMMARY: Background The vessel wall, and particularly blood endothelial cells (BECs), are intensively studied to better understand hemostasis and target thrombosis. To understand the specific role of BECs, it is important to have mouse models that allow specific and homogeneous expression of genes of interest in all BEC beds without concomitant expression in blood cells. Inducible Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 transgenic mice are widely used for BEC targeting. However, issues remain in terms of recombination efficiency and specificity regarding hematopoietic cells. Objectives To determine which mouse model to choose when strong expression of a transgene is required in adult BECs from various organs, without concomitant expression in hematopoietic cells. Methods Using mT/mG reporter mice to measure recombination efficiency and conditional JAK2V617F/WT mice to assess specificity regarding hematopoietic cells, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Results Adult Cdh5(PAC)-CreERT2 mice are endothelial specific but require a dose of 10 mg of tamoxifen to allow constant Cre expression. Pdgfb-iCreERT2 mice injected with 5 mg of tamoxifen are appropriate for most endothelial research fields except liver studies, as hepatic sinusoid ECs are not recombined. Surprisingly, 2 months after induction of Cre-mediated recombination, all Pdgfb-iCreERT2;JAK2V617F/WT mice developed a myeloproliferative neoplasm that is related to the presence of JAK2V617F in hematopoietic cells, showing for the first time that Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2 transgenic mice. Conclusion This study provides useful guidelines for choosing the best mouse line to study the role of BECs in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Badr Kilani
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | | | - Alexandre Guy
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Marie-Lise Bats
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Claire Peghaire
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Marie Parrens
- CHU de Bordeaux, Laboratoire d'Anatomopathologie, Pessac, F-33600, France
| | - Marie-Ange Renault
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Cecile Duplàa
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | | | - Pierre-Emmanuel Rautou
- Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Thierry Couffinhal
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
- CHU de Bordeaux, service des Maladies Cardiaques et Vasculaires, Pessac, F-33600, France
| | - Chloe James
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
- CHU de Bordeaux, Laboratoire d'Hématologie, F-33600, Pessac, France
| |
Collapse
|
16
|
Winkler F, Herz K, Rieck S, Kimura K, Hu T, Röll W, Hesse M, Fleischmann BK, Wenzel D. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Sci Rep 2018; 8:17582. [PMID: 30514882 PMCID: PMC6279819 DOI: 10.1038/s41598-018-36039-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
For the monitoring of vascular growth as well as adaptive or therapeutic (re)vascularization endothelial-specific reporter mouse models are valuable tools. However, currently available mouse models have limitations, because not all endothelial cells express the reporter in all developmental stages. We have generated PECAM/eGFP embryonic stem (ES) cell and mouse lines where the reporter gene labels PECAM+ endothelial cells and vessels with high specificity. Native eGFP expression and PECAM staining were highly co-localized in vessels of various organs at embryonic stages E9.5, E15.5 and in adult mice. Expression was found in large and small arteries, capillaries and in veins but not in lymphatic vessels. Also in the bone marrow arteries and sinusoidal vessel were labeled, moreover, we could detect eGFP in some CD45+ hematopoietic cells. We also demonstrate that this labeling is very useful to monitor sprouting in an aortic ring assay as well as vascular remodeling in a murine injury model of myocardial infarction. Thus, PECAM/eGFP transgenic ES cells and mice greatly facilitate the monitoring and quantification of endothelial cells ex vivo and in vivo during development and injury.
Collapse
Affiliation(s)
- Florian Winkler
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Katia Herz
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kenichi Kimura
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tianyuan Hu
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Wilhelm Röll
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Wu Y, Su SA, Xie Y, Shen J, Zhu W, Xiang M. Murine models of vascular endothelial injury: Techniques and pathophysiology. Thromb Res 2018; 169:64-72. [PMID: 30015230 DOI: 10.1016/j.thromres.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/08/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial injury (VEI) triggers pathological processes in various cardiovascular diseases, such as coronary heart disease and hypertension. To further elucidate the in vivo pathological mechanisms of VEI, many animal models have been established. For the easiness of genetic manipulation and feeding, murine models become most commonly applied for investigating VEI. Subsequently, countless valuable information concerning pathogenesis has been obtained and therapeutic strategies for VEI have been developed. This review will highlight some typical murine VEI models from the perspectives of pharmacological intervention, surgery and genetic manipulation. The techniques, pathophysiology, advantages, disadvantages and the experimental purpose of each model will also be discussed.
Collapse
Affiliation(s)
- Yue Wu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Sheng-An Su
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Yao Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Jian Shen
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Wei Zhu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| |
Collapse
|
18
|
Abstract
Mesenchymal cells in the microenvironment of cancer exert important functions in tumorigenesis; however, little is known of intrinsic pathways that mediate these effects. MAPK signals, such as from MAPKAPK2 (MK2) are known to modulate tumorigenesis, yet their cell-specific role has not been determined. Here, we studied the cell-specific role of MK2 in intestinal carcinogenesis using complete and conditional ablation of MK2. We show that both genetic and chemical inhibition of MK2 led to decreased epithelial cell proliferation, associated with reduced tumor growth and invasive potential in the Apcmin/+ mouse model. Notably, this function of MK2 was not mediated by its well-described immunomodulatory role in immune cells. Deletion of MK2 in intestinal mesenchymal cells (IMCs) led to both reduced tumor multiplicity and growth. Mechanistically, MK2 in IMCs was required for Hsp27 phosphorylation and the production of downstream tumorigenic effector molecules, dominantly affecting epithelial proliferation, apoptosis, and angiogenesis. Genetic ablation of MK2 in intestinal epithelial or endothelial cells was less effective in comparison with its complete deletion, leading to reduction of tumor size via modulation of epithelial apoptosis and angiogenesis-associated proliferation, respectively. Similar results were obtained in a model of colitis-associated carcinogenesis, indicating a mesenchymal-specific role for MK2 also in this model. Our findings demonstrate the central pathogenic role of mesenchymal-specific MK2/Hsp27 axis in tumorigenesis and highlight the value of mesenchymal MK2 inhibition in the treatment of cancer.
Collapse
|
19
|
Atkinson SJ, Gontarczyk AM, Alghamdi AA, Ellison TS, Johnson RT, Fowler WJ, Kirkup BM, Silva BC, Harry BE, Schneider JG, Weilbaecher KN, Mogensen MM, Bass MD, Parsons M, Edwards DR, Robinson SD. The β3-integrin endothelial adhesome regulates microtubule-dependent cell migration. EMBO Rep 2018; 19:embr.201744578. [PMID: 29794156 PMCID: PMC6030693 DOI: 10.15252/embr.201744578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023] Open
Abstract
Integrin β3 is seen as a key anti-angiogenic target for cancer treatment due to its expression on neovasculature, but the role it plays in the process is complex; whether it is pro- or anti-angiogenic depends on the context in which it is expressed. To understand precisely β3's role in regulating integrin adhesion complexes in endothelial cells, we characterised, by mass spectrometry, the β3-dependent adhesome. We show that depletion of β3-integrin in this cell type leads to changes in microtubule behaviour that control cell migration. β3-integrin regulates microtubule stability in endothelial cells through Rcc2/Anxa2-driven control of active Rac1 localisation. Our findings reveal that angiogenic processes, both in vitro and in vivo, are more sensitive to microtubule targeting agents when β3-integrin levels are reduced.
Collapse
Affiliation(s)
- Samuel J Atkinson
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Aleksander M Gontarczyk
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Abdullah Aa Alghamdi
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Tim S Ellison
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Robert T Johnson
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Wesley J Fowler
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Benjamin M Kirkup
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Bernardo C Silva
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Bronwen E Harry
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Jochen G Schneider
- Luxembourg Center for Systems Biomedicine (LCSB), Luxembourg & Saarland University Medical Center, Internal Medicine II, University of Luxembourg, Homburg, Germany.,Centre Hospitalier Emily Mayrisch, Esch, Luxembourg
| | - Katherine N Weilbaecher
- Division of Molecular Oncology, Department of Internal Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Mette M Mogensen
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Mark D Bass
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guys Campus, London, UK
| | - Dylan R Edwards
- Faculty of Medicine and Health Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Stephen D Robinson
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| |
Collapse
|
20
|
Del Monte-Nieto G, Ramialison M, Adam AAS, Wu B, Aharonov A, D'Uva G, Bourke LM, Pitulescu ME, Chen H, de la Pompa JL, Shou W, Adams RH, Harten SK, Tzahor E, Zhou B, Harvey RP. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 2018; 557:439-445. [PMID: 29743679 DOI: 10.1038/s41586-018-0110-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
In vertebrate hearts, the ventricular trabecular myocardium develops as a sponge-like network of cardiomyocytes that is critical for contraction and conduction, ventricular septation, papillary muscle formation and wall thickening through the process of compaction 1 . Defective trabeculation leads to embryonic lethality2-4 or non-compaction cardiomyopathy (NCC) 5 . There are divergent views on when and how trabeculation is initiated in different species. In zebrafish, trabecular cardiomyocytes extrude from compact myocardium 6 , whereas in chicks, chamber wall thickening occurs before overt trabeculation 7 . In mice, the onset of trabeculation has not been described, but is proposed to begin at embryonic day 9.0, when cardiomyocytes form radially oriented ribs 2 . Endocardium-myocardium communication is essential for trabeculation, and numerous signalling pathways have been identified, including Notch2,8 and Neuregulin (NRG) 4 . Late disruption of the Notch pathway causes NCC 5 . Whereas it has been shown that mutations in the extracellular matrix (ECM) genes Has2 and Vcan prevent the formation of trabeculae in mice9,10 and the matrix metalloprotease ADAMTS1 promotes trabecular termination 3 , the pathways involved in ECM dynamics and the molecular regulation of trabeculation during its early phases remain unexplored. Here we present a model of trabeculation in mice that integrates dynamic endocardial and myocardial cell behaviours and ECM remodelling, and reveal new epistatic relationships between the involved signalling pathways. NOTCH1 signalling promotes ECM degradation during the formation of endocardial projections that are critical for individualization of trabecular units, whereas NRG1 promotes myocardial ECM synthesis, which is necessary for trabecular rearrangement and growth. These systems interconnect through NRG1 control of Vegfa, but act antagonistically to establish trabecular architecture. These insights enabled the prediction of persistent ECM and cardiomyocyte growth in a mouse NCC model, providing new insights into the pathophysiology of congenital heart disease.
Collapse
Affiliation(s)
- Gonzalo Del Monte-Nieto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia. .,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales, Australia.
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Arne A S Adam
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Bingruo Wu
- Departments of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, NY, USA
| | - Alla Aharonov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriele D'Uva
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lauren M Bourke
- Epigenetics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mara E Pitulescu
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Hanying Chen
- Departments of Pediatrics and Medical and Molecular Genetics, Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Ciber cardiovascular, ISCIII, Madrid, Spain
| | - Weinian Shou
- Departments of Pediatrics and Medical and Molecular Genetics, Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Sarah K Harten
- Epigenetics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bin Zhou
- Departments of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, NY, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia. .,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales, Australia. .,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales, Australia.
| |
Collapse
|
21
|
Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, Kupka S, Rieser E, Fisher A, Hutchinson C, Taraborrelli L, Hartwig T, Lafont E, Haas TL, Shimizu Y, Böiers C, Sarr A, Rickard J, Alvarez-Diaz S, Ashworth MT, Beal A, Enver T, Bertin J, Kaiser W, Strasser A, Silke J, Bouillet P, Walczak H. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 2018; 557:112-117. [PMID: 29695863 PMCID: PMC5947819 DOI: 10.1038/s41586-018-0064-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/16/2018] [Indexed: 01/17/2023]
Abstract
The Linear Ubiquitin chain Assembly Complex (LUBAC) is required for optimal gene activation and prevention of cell death upon activation of immune receptors, including TNFR11. Deficiency in the LUBAC components SHARPIN or HOIP in mice results in severe inflammation in adulthood or embryonic lethality, respectively, due to deregulation of TNFR1-mediated cell death2–8. In humans, deficiency in the third LUBAC component, HOIL-1, causes autoimmunity and inflammatory disease, similar to HOIP deficiency, whereas HOIL-1 deficiency in mice was reported to cause no overt phenotype9–11. By creating HOIL-1-deficient mice, we here show that HOIL-1 is, however, as essential for LUBAC function as HOIP, albeit for different reasons: whereas HOIP is LUBAC’s catalytically active component, HOIL-1 is required for LUBAC assembly, stability and optimal retention in the TNFR1-signalling complex (TNFR1-SC), thereby preventing aberrant cell death. Both, HOIL-1 and HOIP prevent embryonic lethality at mid-gestation by interfering with aberrant TNFR1-mediated endothelial cell death, which only partially depends on RIPK1 kinase activity. Co-deletion of Caspase-8 with RIPK3 or MLKL prevents cell death in Hoil-1-/- embryos, yet only combined loss of Caspase-8 with MLKL results in viable HOIL-1-deficient mice. Interestingly, Ripk3-/-Caspase-8-/-Hoil-1-/- embryos die at late-gestation due to haematopoietic defects that are rescued by co-deletion of RIPK1 but not MLKL. Collectively, these results demonstrate that both, HOIP and HOIL-1 are essential LUBAC components and are required for embryogenesis by preventing aberrant cell death. Furthermore, they unveil that, when LUBAC and Caspase-8 are absent, RIPK3 prevents RIPK1 from inducing embryonic lethality by causing defects in foetal haematopoiesis.
Collapse
Affiliation(s)
- Nieves Peltzer
- UCL Cancer Institute, University College London, London, UK
| | | | | | - Peter Draber
- UCL Cancer Institute, University College London, London, UK.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Draberova
- UCL Cancer Institute, University College London, London, UK.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Eva Rieser
- UCL Cancer Institute, University College London, London, UK
| | - Amanda Fisher
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | - Elodie Lafont
- UCL Cancer Institute, University College London, London, UK
| | - Tobias L Haas
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Yutaka Shimizu
- UCL Cancer Institute, University College London, London, UK
| | | | - Aida Sarr
- UCL Cancer Institute, University College London, London, UK
| | - James Rickard
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Silvia Alvarez-Diaz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Allison Beal
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA, USA
| | - Tariq Enver
- UCL Cancer Institute, University College London, London, UK
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA, USA
| | - William Kaiser
- University of Texas Health Science Center, San Antonio, TX, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Henning Walczak
- UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
22
|
Kang TB, Jeong JS, Yang SH, Kovalenko A, Wallach D. Caspase-8 deficiency in mouse embryos triggers chronic RIPK1-dependent activation of inflammatory genes, independently of RIPK3. Cell Death Differ 2018; 25:1107-1117. [PMID: 29666472 PMCID: PMC5988659 DOI: 10.1038/s41418-018-0104-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Deletion of the Casp8 gene in epithelial tissues of mice results in severe inflammatory pathologies. Its ubiquitous deletion, or its specific deletion in endothelial cells, results in intrauterine death associated with capillary damage. These pathologies are all preventable by co-deletion of Casp8 and the genes encoding either the RIPK1 or the RIPK3 protein kinase. Since activation of RIPK3 in Caspase-8-deficient cells can trigger necroptotic cell death, and since RIPK1 can activate RIPK3, it is widely assumed that the inflammatory states resulting from Caspase-8 deficiency occur as a consequence of RIPK3-induced necroptosis. Here, we report that although on a Ripk3-null background Casp8 deletion in mice does not result in outright pathological changes, it triggers enhanced expression of a variety of inflammatory genes in utero, which gradually subsides after birth. Deletion of Ripk1, or even of only one of its two alleles, obliterates this activation. Resembling the embryonic pathology observed in RIPK3-expressing cells, the activation of inflammatory genes observed on a Ripk3-null background seems to be initiated in endothelial cells. Analysis of endothelial cells isolated from livers of Caspase-8-deficient embryos revealed neither an increase in the amount of RIPK1 in these cells after Casp8 deletion, nor triggering of RIPK1 phosphorylation. These findings indicate that the triggering of inflammation by Casp8 deletion in mice occurs, in part, independently of necroptosis or other functions of RIPK3, and rather reflects enhanced RIPK1-dependent signaling for activation of inflammatory genes.
Collapse
Affiliation(s)
- Tae-Bong Kang
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chung-Ju, 27478, Korea
| | - Ju-Seong Jeong
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Seung-Hoon Yang
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100, Rehovot, Israel.,Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Korea
| | - Andrew Kovalenko
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
23
|
Peng Y, Song L, Li D, Kesterson R, Wang J, Wang L, Rokosh G, Wu B, Wang Q, Jiao K. Sema6D acts downstream of bone morphogenetic protein signalling to promote atrioventricular cushion development in mice. Cardiovasc Res 2018; 112:532-542. [PMID: 28172500 DOI: 10.1093/cvr/cvw200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yin Peng
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lanying Song
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ding Li
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert Kesterson
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lizhong Wang
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregg Rokosh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
24
|
TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci 2017; 18:ijms18102157. [PMID: 29039786 PMCID: PMC5666838 DOI: 10.3390/ijms18102157] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Fibrotic diseases are characterized by net accumulation of extracellular matrix proteins in affected organs leading to their dysfunction and ultimate failure. Myofibroblasts have been identified as the cells responsible for the progression of the fibrotic process, and they originate from several sources, including quiescent tissue fibroblasts, circulating CD34⁺ fibrocytes and the phenotypic conversion of various cell types into activated myofibroblasts. Several studies have demonstrated that endothelial cells can transdifferentiate into mesenchymal cells through a process termed endothelial- mesenchymal transition (EndMT) and that this can give rise to activated myofibroblasts involved in the development of fibrotic diseases. Transforming growth factor β (TGF-β) has a central role in fibrogenesis by modulating the fibroblast phenotype and function, inducing myofibroblast transdifferentiation and promoting matrix accumulation. In addition, TGF-β by inducing EndMT may further contribute to the development of fibrosis. Despite extensive investigation of the pathogenesis of fibrotic diseases, no effective treatment strategies are available. Delineation of the mechanisms responsible for initiation and progression of fibrotic diseases is crucial for the development of therapeutic strategies for the treatment of the disease. In this review, we summarize the role of the TGF-β signaling pathway and EndMT in the development of fibrotic diseases and discuss their therapeutic potential.
Collapse
|
25
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Wang Y, Wu B, Lu P, Zhang D, Wu B, Varshney S, Del Monte-Nieto G, Zhuang Z, Charafeddine R, Kramer AH, Sibinga NE, Frangogiannis NG, Kitsis RN, Adams RH, Alitalo K, Sharp DJ, Harvey RP, Stanley P, Zhou B. Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nat Commun 2017; 8:578. [PMID: 28924218 PMCID: PMC5603578 DOI: 10.1038/s41467-017-00654-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
Coronary artery anomalies may cause life-threatening cardiac complications; however, developmental mechanisms underpinning coronary artery formation remain ill-defined. Here we identify an angiogenic cell population for coronary artery formation in mice. Regulated by a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis, these angiogenic cells generate mature coronary arteries. The NOTCH modulator POFUT1 critically regulates this signaling axis. POFUT1 inactivation disrupts signaling events and results in excessive angiogenic cell proliferation and plexus formation, leading to anomalous coronary arteries, myocardial infarction and heart failure. Simultaneous VEGFR2 inactivation fully rescues these defects. These findings show that dysregulated angiogenic precursors link coronary anomalies to ischemic heart disease.Though coronary arteries are crucial for heart function, the mechanisms guiding their formation are largely unknown. Here, Wang et al. identify a unique, endocardially-derived angiogenic precursor cell population for coronary artery formation in mice and show that a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis is key for coronary artery development.
Collapse
Affiliation(s)
- Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Pengfei Lu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Donghong Zhang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Brian Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gonzalo Del Monte-Nieto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Zhenwu Zhuang
- Department of Medicine, Yale University, New Haven, Connecticut, 06510, USA
| | - Rabab Charafeddine
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Adam H Kramer
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Nicolas E Sibinga
- Departments of Medicine, Developmental and Molecular Biology, Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Nikolaos G Frangogiannis
- Departments of Medicine, Microbiology and Immunology, Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Röntgenstraße 20, and Faculty of Medicine, University of Münster, 48149, Münster, Germany
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
| | - David J Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, NSW, 2052, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA. .,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
27
|
Menendez MT, Ong EC, Shepherd BT, Muthukumar V, Silasi-Mansat R, Lupu F, Griffin CT. BRG1 (Brahma-Related Gene 1) Promotes Endothelial Mrtf Transcription to Establish Embryonic Capillary Integrity. Arterioscler Thromb Vasc Biol 2017; 37:1674-1682. [PMID: 28729363 DOI: 10.1161/atvbaha.117.309785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/10/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The chromatin remodeling enzyme BRG1 (brahma-related gene 1) transcriptionally regulates target genes important for early blood vessel development and primitive hematopoiesis. However, because Brg1 deletion in vascular progenitor cells results in lethal anemia by embryonic day 10.5 (E10.5), roles for BRG1 in embryonic vascular development after midgestation are unknown. In this study, we sought to determine whether endothelial cell BRG1 regulates genes important for vascular development or maintenance later in embryonic development. APPROACH AND RESULTS Using mice with temporally inducible deletion of endothelial BRG1 (Brg1fl/fl;Cdh5(PAC)-CreERT2 ), we found that Brg1 excision between E9.5 and 11.5 results in capillary dilation and lethal hemorrhage by E14.5. This phenotype strongly resembles that seen when the SRF (serum response factor) transcription factor is deleted from embryonic endothelial cells. Although expression of Srf and several of its known endothelial cell target genes are downregulated in BRG1-depleted endothelial cells, we did not detect binding of BRG1 at these gene promoters, indicating that they are not direct BRG1 target genes. Instead, we found that BRG1 binds to the promoters of the SRF cofactors Mrtfa and Mrtfb (myocardin-related transcription factors A and B) in endothelial cells, and these genes are downregulated in Brg1-deficient endothelial cells. CONCLUSIONS BRG1 promotes transcription of endothelial Mrtfa and Mrtfb, which elevates expression of SRF and SRF target genes that establish embryonic capillary integrity. These data highlight a new and temporally specific role for BRG1 in embryonic vasculature and provide novel information about epigenetic regulation of Mrtf expression and SRF signaling in developing blood vessels.
Collapse
Affiliation(s)
- Matthew T Menendez
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - E-Ching Ong
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Brian T Shepherd
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Vijay Muthukumar
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Robert Silasi-Mansat
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Florea Lupu
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Courtney T Griffin
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.).
| |
Collapse
|
28
|
|
29
|
Saarela U, Akram SU, Desgrange A, Rak-Raszewska A, Shan J, Cereghini S, Ronkainen VP, Heikkilä J, Skovorodkin I, Vainio SJ. Novel fixed z-direction (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development 2017; 144:1113-1117. [PMID: 28219945 PMCID: PMC5358112 DOI: 10.1242/dev.142950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/07/2017] [Indexed: 01/29/2023]
Abstract
Tissue, organ and organoid cultures provide suitable models for developmental studies, but our understanding of how the organs are assembled at the single-cell level still remains unclear. We describe here a novel fixed z-direction (FiZD) culture setup that permits high-resolution confocal imaging of organoids and embryonic tissues. In a FiZD culture a permeable membrane compresses the tissues onto a glass coverslip and the spacers adjust the thickness, enabling the tissue to grow for up to 12 days. Thus, the kidney rudiment and the organoids can adjust to the limited z-directional space and yet advance the process of kidney morphogenesis, enabling long-term time-lapse and high-resolution confocal imaging. As the data quality achieved was sufficient for computer-assisted cell segmentation and analysis, the method can be used for studying morphogenesis ex vivo at the level of the single constituent cells of a complex mammalian organogenesis model system. Summary: Time-lapse confocal imaging of organoids and embryonic tissues through fixed z-direction culture allows long-term single-cell resolution live imaging of tissue growth and morphogenesis.
Collapse
Affiliation(s)
- Ulla Saarela
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland.,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Saad Ullah Akram
- Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Center for Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, 90014 Oulu, Finland
| | - Audrey Desgrange
- Sorbonne Universités, UPMC Univ Paris 06, IBPS - UMR7622 Developmental Biology, Paris F-75005, France.,Institut de Biologie Paris-Seine (IBPS) - CNRS UMR7622 Developmental Biology, F-75005 Paris, France
| | - Aleksandra Rak-Raszewska
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland.,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Jingdong Shan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland.,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Silvia Cereghini
- Sorbonne Universités, UPMC Univ Paris 06, IBPS - UMR7622 Developmental Biology, Paris F-75005, France.,Institut de Biologie Paris-Seine (IBPS) - CNRS UMR7622 Developmental Biology, F-75005 Paris, France
| | | | - Janne Heikkilä
- Center for Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, 90014 Oulu, Finland
| | - Ilya Skovorodkin
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland .,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland .,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| |
Collapse
|
30
|
Wu B, Wang Y, Xiao F, Butcher JT, Yutzey KE, Zhou B. Developmental Mechanisms of Aortic Valve Malformation and Disease. Annu Rev Physiol 2017; 79:21-41. [DOI: 10.1146/annurev-physiol-022516-034001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Feng Xiao
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853;
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229;
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| |
Collapse
|
31
|
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, Rautou PE. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol 2017; 66:212-227. [PMID: 27423426 DOI: 10.1016/j.jhep.2016.07.009] [Citation(s) in RCA: 677] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells representing the interface between blood cells on the one side and hepatocytes and hepatic stellate cells on the other side. LSECs represent a permeable barrier. Indeed, the association of 'fenestrae', absence of diaphragm and lack of basement membrane make them the most permeable endothelial cells of the mammalian body. They also have the highest endocytosis capacity of human cells. In physiological conditions, LSECs regulate hepatic vascular tone contributing to the maintenance of a low portal pressure despite the major changes in hepatic blood flow occurring during digestion. LSECs maintain hepatic stellate cell quiescence, thus inhibiting intrahepatic vasoconstriction and fibrosis development. In pathological conditions, LSECs play a key role in the initiation and progression of chronic liver diseases. Indeed, they become capillarized and lose their protective properties, and they promote angiogenesis and vasoconstriction. LSECs are implicated in liver regeneration following acute liver injury or partial hepatectomy since they renew from LSECs and/or LSEC progenitors, they sense changes in shear stress resulting from surgery, and they interact with platelets and inflammatory cells. LSECs also play a role in hepatocellular carcinoma development and progression, in ageing, and in liver lesions related to inflammation and infection. This review also presents a detailed analysis of the technical aspects relevant for LSEC analysis including the markers these cells express, the available cell lines and the transgenic mouse models. Finally, this review provides an overview of the strategies available for a specific targeting of LSECs.
Collapse
Affiliation(s)
- Johanne Poisson
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sara Lemoinne
- INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Université Pierre et Marie Curie Paris 6, Paris, France; Service d'hépatologie, Hôpital Saint-Antoine, APHP, Paris, France
| | - Chantal Boulanger
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - François Durand
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Richard Moreau
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Dominique Valla
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Pierre-Emmanuel Rautou
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France.
| |
Collapse
|
32
|
Abstract
Cardiac fibrosis remains an important health concern, but the study of fibroblast biology has been hindered by a lack of effective means for identifying and tracking fibroblasts. Recent advances in fibroblast-specific lineage tags and reporters have permitted a better understanding of these cells. After injury, multiple cell types have been implicated as the source for extracellular matrix-producing cells, but emerging studies suggest that resident cardiac fibroblasts contribute substantially to the remodeling process. In this review, we discuss recent findings regarding cardiac fibroblast origin and identity. Our understanding of cardiac fibroblast biology and fibrosis is still developing and will expand profoundly in the next few years, with many of the recent findings regarding fibroblast gene expression and behavior laying down the groundwork for interpreting the purpose and utility of these cells before and after injury. (Circ J 2016; 80: 2269-2276).
Collapse
Affiliation(s)
- Malina J Ivey
- Department of Cell and Molecular Biology, Center for Cardiovascular Research, University of Hawaii
| | | |
Collapse
|
33
|
Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 2016; 7:12260. [PMID: 27447449 PMCID: PMC5512625 DOI: 10.1038/ncomms12260] [Citation(s) in RCA: 662] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/15/2016] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibroblasts convert to myofibroblasts with injury to mediate healing after acute myocardial infarction (MI) and to mediate long-standing fibrosis with chronic disease. Myofibroblasts remain a poorly defined cell type in terms of their origins and functional effects in vivo. Here we generate Postn (periostin) gene-targeted mice containing a tamoxifen-inducible Cre for cellular lineage-tracing analysis. This Postn allele identifies essentially all myofibroblasts within the heart and multiple other tissues. Lineage tracing with four additional Cre-expressing mouse lines shows that periostin-expressing myofibroblasts in the heart derive from tissue-resident fibroblasts of the Tcf21 lineage, but not endothelial, immune/myeloid or smooth muscle cells. Deletion of periostin+ myofibroblasts reduces collagen production and scar formation after MI. Periostin-traced myofibroblasts also revert back to a less-activated state upon injury resolution. Our results define the myofibroblast as a periostin-expressing cell type necessary for adaptive healing and fibrosis in the heart, which arises from Tcf21+ tissue-resident fibroblasts. The origin and fate of myofibroblasts, the cells responsible for cardiac remodelling and fibrosis, is controversial. Here the authors show that cardiac myofibroblasts express periostin, derive exclusively from tissue-resident fibroblasts, are necessary for scar formation after injury, and can revert back to a less-activated state upon injury resolution.
Collapse
|
34
|
Furtado MB, Costa MW, Rosenthal NA. The cardiac fibroblast: Origin, identity and role in homeostasis and disease. Differentiation 2016; 92:93-101. [PMID: 27421610 DOI: 10.1016/j.diff.2016.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022]
Abstract
The mammalian heart is responsible for supplying blood to two separate circulation circuits in a parallel manner. This design provides efficient oxygenation and nutrients to the whole body through the left-sided pump, while the right-sided pump delivers blood to the pulmonary circulation for re-oxygenation. In order to achieve this demanding job, the mammalian heart evolved into a highly specialised organ comprised of working contractile cells or cardiomyocytes, a directional and insulated conduction system, capable of independently generating and conducting electric impulses that synchronises chamber contraction, valves that allow the generation of high pressure and directional blood flow into the circulation, coronary circulation, that supplies oxygenated blood for the heart muscle high metabolically active pumping role and inlet/outlet routes, as the venae cavae and pulmonary veins, aorta and pulmonary trunk. This organization highlights the complexity and compartmentalization of the heart. This review will focus on the cardiac fibroblast, a cell type until recently ignored, but that profoundly influences heart function in its various compartments. We will discuss current advances on definitions, molecular markers and function of cardiac fibroblasts in heart homeostasis and disease.
Collapse
Affiliation(s)
- Milena B Furtado
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| | - Mauro W Costa
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia; National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
35
|
Halt KJ, Pärssinen HE, Junttila SM, Saarela U, Sims-Lucas S, Koivunen P, Myllyharju J, Quaggin S, Skovorodkin IN, Vainio SJ. CD146(+) cells are essential for kidney vasculature development. Kidney Int 2016; 90:311-324. [PMID: 27165833 DOI: 10.1016/j.kint.2016.02.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 01/14/2023]
Abstract
The kidney vasculature is critical for renal function, but its developmental assembly mechanisms remain poorly understood and models for studying its assembly dynamics are limited. Here, we tested whether the embryonic kidney contains endothelial cells (ECs) that are heterogeneous with respect to VEGFR2/Flk1/KDR, CD31/PECAM, and CD146/MCAM markers. Tie1Cre;R26R(YFP)-based fate mapping with a time-lapse in embryonic kidney organ culture successfully depicted the dynamics of kidney vasculature development and the correlation of the process with the CD31(+) EC network. Depletion of Tie1(+) or CD31(+) ECs from embryonic kidneys, with either Tie1Cre-induced diphtheria toxin susceptibility or cell surface marker-based sorting in a novel dissociation and reaggregation technology, illustrated substantial EC network regeneration. Depletion of the CD146(+) cells abolished this EC regeneration. Fate mapping of green fluorescent protein (GFP)-marked CD146(+)/CD31(-) cells indicated that they became CD31(+) cells, which took part in EC structures with CD31(+) wild-type ECs. EC network development depends on VEGF signaling, and VEGF and erythropoietin are expressed in the embryonic kidney even in the absence of any external hypoxic stimulus. Thus, the ex vivo embryonic kidney culture models adopted here provided novel ways for targeting renal EC development and demonstrated that CD146(+) cells are critical for kidney vasculature development.
Collapse
Affiliation(s)
- Kimmo J Halt
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland
| | - Heikki E Pärssinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland
| | - Sanna M Junttila
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland
| | - Ulla Saarela
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland
| | - Susan Quaggin
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ilya N Skovorodkin
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Oulu, Finland; InfoTech Oulu, Oulu, Finland.
| |
Collapse
|
36
|
Abstract
Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Joshua G Travers
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Fadia A Kamal
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jeffrey Robbins
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Burns C Blaxall
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
37
|
He L, Liu Q, Hu T, Huang X, Zhang H, Tian X, Yan Y, Wang L, Huang Y, Miquerol L, Wythe JD, Zhou B. Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovasc Res 2016; 109:419-30. [PMID: 26768261 PMCID: PMC4752045 DOI: 10.1093/cvr/cvw005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
Aims Capillary and arterial endothelial cells share many common molecular markers in both the neonatal and adult hearts. Herein, we aim to establish a genetic tool that distinguishes these two types of vessels in order to determine the cellular mechanism underlying collateral artery formation. Methods and results Using Apln-GFP and Apln-LacZ reporter mice, we demonstrate that APLN expression is enriched in coronary vascular endothelial cells. However, APLN expression is reduced in coronary arterial endothelial cells. Genetic lineage tracing, using an Apln-CreER mouse line, robustly labelled capillary endothelial cells, but not arterial endothelial cells. We leveraged this differential activity of Apln-CreER to study collateral artery formation following myocardial infarction (MI). In a neonatal heart MI model, we found that Apln-CreER-labelled capillary endothelial cells do not contribute to the large collateral arteries. Instead, these large collateral arteries mainly arise from pre-existing, infrequently labelled coronary arteries, indicative of arteriogenesis. Furthermore, in an adult heart MI model, Apln-CreER activity also distinguishes large and small diameter arteries from capillaries. Lineage tracing in this setting demonstrated that most large and small coronary arteries in the infarcted myocardium and border region are derived not from capillaries, but from pre-existing arteries. Conclusion Apln-CreER-mediated lineage tracing distinguishes capillaries from large arteries, in both the neonatal and adult hearts. Through genetic fate mapping, we demonstrate that pre-existing arteries, but not capillaries, extensively contribute to collateral artery formation following myocardial injury. These results suggest that arteriogenesis is the major mechanism underlying collateral vessel formation.
Collapse
Affiliation(s)
- Lingjuan He
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaozhen Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianyuan Hu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuzhen Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueying Tian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Yan
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Wang
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lucile Miquerol
- Aix Marseille Universite, CNRS, IBDM UMR 7288, Marseille 13288, France
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
38
|
Li J, Xiong J, Yang B, Zhou Q, Wu Y, Luo H, Zhou H, Liu N, Li Y, Song Z, Zheng Q. Endothelial Cell Apoptosis Induces TGF-β Signaling-Dependent Host Endothelial-Mesenchymal Transition to Promote Transplant Arteriosclerosis. Am J Transplant 2015; 15:3095-111. [PMID: 26372910 DOI: 10.1111/ajt.13406] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023]
Abstract
Endothelial cells (ECs) apoptosis is an initial event in transplant arteriosclerosis (TA), resulting in allograft function loss. To elucidate the precise mechanisms of ECs apoptosis leading to neointimal smooth muscle cells (SMCs) accumulation during TA. We induced apoptosis in cultured ECs by overexpressing p53 through lentivirus-mediated transfection. ECs apoptosis induced the production of transforming growth factor (TGF)-β1 in both apoptotic and neighboring viable cells, leading to increased TGF-β1 in the culture media. Conditioned media from Ltv-p53-transfected ECs further promoted transition of cultured ECs to SM-like cells by activating TGF-β/Smad3, PI3K/Akt/mTOR, and MAPK/ERK signaling in a TGF-β-dependent manner. In transgenic rat aorta transplantation models, inhibition of ECs apoptosis in Bcl-xL(+/+) knock-in rat aortic allografts significantly reduced TGF-β1 production both in allograft endothelia and in blood plasma, which in turn decreased accumulation of SM22α+ cells from transgenic recipient ECs originally marked with EGFP knock-in in neointima and alleviated TA. Systemic treatment with SIS3, AP23573, or PD98059 also prevented recipient ECs-originated SM-like cells accumulation and intima hyperplasia in aortic allografts. These data suggest that allograft EC apoptosis induced recipient endothelial-mesenchymal (smooth muscle) transition via TGF-β signaling, resulting in recipient EC-derived SMC accumulation as a major mechanism of vascular remodeling during TA.
Collapse
Affiliation(s)
- J Li
- Department of Urology Oncological Surgery, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing, China
| | - J Xiong
- Department of Hepatobiliary Surgery and Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - B Yang
- Department of Hepatobiliary Surgery and Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Q Zhou
- Department of Gynecologic Oncology, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing, China
| | - Y Wu
- Department of Radiotherapy, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing, China
| | - H Luo
- Department of Urology Oncological Surgery, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing, China
| | - H Zhou
- Department of Urology Oncological Surgery, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing, China
| | - N Liu
- Department of Urology Oncological Surgery, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing, China
| | - Y Li
- Department of Urology Oncological Surgery, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing, China
| | - Z Song
- Department of Hepatobiliary Surgery and Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Q Zheng
- Department of Hepatobiliary Surgery and Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| |
Collapse
|
39
|
Assmann JC, Körbelin J, Schwaninger M. Genetic manipulation of brain endothelial cells in vivo. Biochim Biophys Acta Mol Basis Dis 2015; 1862:381-94. [PMID: 26454206 DOI: 10.1016/j.bbadis.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Julian C Assmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Department of Oncology and Hematology, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Physiologically, endothelial integrity and smooth muscle homeostasis play key roles in the maintenance of vascular structure and functions. Under pathological conditions, endothelial and smooth muscle cells display great plasticity by transdifferentiating into other cell phenotypes. This review aims to update the progress in endothelial and smooth muscle cell transformation and to discuss their underlying mechanisms. RECENT FINDINGS At the early stage of atherosclerosis, it was traditionally believed that smooth muscle cells from the media migrate into the intima in which they proliferate to form neointimal lesions. Recently, endothelial cells were shown to undergo transformation to form smooth muscle-like cells that contribute to neointimal formation. Furthermore, not only can medial smooth muscle cells migrate and proliferate, they also have the ability to differentiate into macrophages in the intima in which they form foam cells by uptaking lipids. Finally, the discovery of stem/progenitor cells in the vessel wall that can differentiate into all types of vascular cells has complicated the research field even further. SUMMARY Based on the current progress in the research field, it is worthy to explore the contributions of cell transformation to the pathogenesis of atherosclerosis to understand the mechanisms on how they are regulated in order to develop novel therapeutic application targeting these processes to reverse the disease progression.
Collapse
Affiliation(s)
- Ka Hou Lao
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | | | | |
Collapse
|
41
|
Savant S, La Porta S, Budnik A, Busch K, Hu J, Tisch N, Korn C, Valls AF, Benest AV, Terhardt D, Qu X, Adams RH, Baldwin HS, Ruiz de Almodóvar C, Rodewald HR, Augustin HG. The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells. Cell Rep 2015; 12:1761-73. [PMID: 26344773 PMCID: PMC6309948 DOI: 10.1016/j.celrep.2015.08.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 01/13/2023] Open
Abstract
Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.
Collapse
Affiliation(s)
- Soniya Savant
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Silvia La Porta
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Annika Budnik
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Junhao Hu
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Nathalie Tisch
- Biochemistry Center BZH, Heidelberg University, 69120 Heidelberg, Germany
| | - Claudia Korn
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Aida Freire Valls
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Andrew V Benest
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Dorothee Terhardt
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Xianghu Qu
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, 48145 Münster, Germany; Faculty of Medicine, University of Münster, 48145 Münster, Germany
| | - H Scott Baldwin
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Cardiac fibroblasts: from development to heart failure. J Mol Med (Berl) 2015; 93:823-30. [PMID: 26169532 DOI: 10.1007/s00109-015-1314-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 01/18/2023]
Abstract
Cardiac fibroblasts are a major cell population of the heart and are characterized by their capacity to produce extracellular matrix (ECM). In hearts subjected to pressure overload, excessive fibroblast accumulation is responsible for fibrosis of the myocardium, a major clinical issue. Hence, understanding mechanisms generating fibroblasts in this context has become a key question in the cardiovascular field. Recent studies now point to the activation of resident fibroblasts as the underlying cause of fibrosis. However, de novo generation of fibroblasts from endothelium and circulating hematopoietic cells has also been proposed to significantly contribute to fibrosis. Here, we discuss the latest findings on fibroblast origins, with a particular emphasis on the pressure overload model, and the implication of these findings for the development of anti-fibrotic therapies that are currently lacking.
Collapse
|
43
|
Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AKE, Welch HC, Timpson P. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 2015; 6:123-33. [PMID: 26103062 PMCID: PMC4601362 DOI: 10.4161/21541248.2014.973749] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma.
Collapse
Affiliation(s)
- Marina Pajic
- a The Kinghorn Cancer Center; Cancer Division; Garvan Institute of Medical Research ; Sydney , Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wawrzyniak M, Pich C, Gross B, Schütz F, Fleury S, Quemener S, Sgandurra M, Bouchaert E, Moret C, Mury L, Rommens C, Mottaz H, Dombrowicz D, Michalik L. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. J Allergy Clin Immunol 2015; 135:1625-35.e5. [DOI: 10.1016/j.jaci.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
|
45
|
Optogenetic intervention to the vascular endothelium. Vascul Pharmacol 2015; 74:122-129. [PMID: 26015375 DOI: 10.1016/j.vph.2015.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/08/2015] [Accepted: 05/16/2015] [Indexed: 11/21/2022]
Abstract
Endothelium lining the interior of cardiovascular system and most visceral organs plays an important role in vascular function. Its dysfunction occurs in some of the most challenging diseases. An important function of the endothelium is to release vasoactive substances that act on the smooth muscle to change vascular tones. Substance secretion from endocrine cells relies on membrane potentials and firing activity, while it is unclear whether the membrane potential regulates substance release from the ECs. Understanding of this requires selective intervention to membrane potentials of the endothelial cells in situ. Here we show a novel intervention to endothelial cells using the optogenetic approach. A strain of transgenic mice was developed with the Cre-loxP recombination system. These transgenic mice expressed channelrhodopsin (ChR) in endothelial cells driven by the vascular endothelial cadherin or cdh5 promoter. Linked in a tandem with YFP, the ChR expression was detected by YFP fluorescence in various endothelium-lining tissues and organs. The YFP fluorescence was observed in the lumen of blood vessels and pericardium, but not in tissues beneath the endothelium lining. Optostimulation of dissociated endothelial cells evoked inward currents and depolarization. In the isolated and perfused heart, surprisingly, optostimulation of endothelial cells produced fast, robust, reproducible and long-lasting vasoconstriction that was not blocked by either ET-1A or TXA2 receptor antagonist. Similar optical vasoconstriction was found in the isolated and perfused kidney. These results indicate that the optogenetics is an effective intervention to vascular endothelium where optostimulation produces vasoconstriction.
Collapse
|
46
|
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S. State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. Circ Res 2015; 116:e99-132. [PMID: 25931450 DOI: 10.1161/res.0000000000000054] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Zandi S, Nakao S, Chun KH, Fiorina P, Sun D, Arita R, Zhao M, Kim E, Schueller O, Campbell S, Taher M, Melhorn MI, Schering A, Gatti F, Tezza S, Xie F, Vergani A, Yoshida S, Ishikawa K, Yamaguchi M, Sasaki F, Schmidt-Ullrich R, Hata Y, Enaida H, Yuzawa M, Yokomizo T, Kim YB, Sweetnam P, Ishibashi T, Hafezi-Moghadam A. ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep 2015; 10:1173-86. [PMID: 25704819 DOI: 10.1016/j.celrep.2015.01.050] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 01/10/2023] Open
Abstract
Age is a major risk factor in age-related macular degeneration (AMD), but the underlying cause is unknown. We find increased Rho-associated kinase (ROCK) signaling and M2 characteristics in eyes of aged mice, revealing immune changes in aging. ROCK isoforms determine macrophage polarization into M1 and M2 subtypes. M2-like macrophages accumulated in AMD, but not in normal eyes, suggesting that these macrophages may be linked to macular degeneration. M2 macrophages injected into the mouse eye exacerbated choroidal neovascular lesions, while M1 macrophages ameliorated them, supporting a causal role for macrophage subtypes in AMD. Selective ROCK2 inhibition with a small molecule decreased M2-like macrophages and choroidal neovascularization. ROCK2 inhibition upregulated M1 markers without affecting macrophage recruitment, underlining the plasticity of these macrophages. These results reveal age-induced innate immune imbalance as underlying AMD pathogenesis. Targeting macrophage plasticity opens up new possibilities for more effective AMD treatment.
Collapse
Affiliation(s)
- Souska Zandi
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Swiss Eye Institute, Rotkreuz and Berner Augenklinik am Lindenhofspital, 3012 Bern, Switzerland
| | - Shintaro Nakao
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Transplant Medicine, San Raffaele Hospital, 20132 Milan, Italy
| | - Dawei Sun
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, the First and Second Affiliated Hospitals of the Harbin Medical University, Harbin 150086, China
| | - Ryoichi Arita
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ming Zhao
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Oncology, Minimally Invasive Interventional Division, Medical Imaging Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Enoch Kim
- Surface Logix, Inc., 50 Soldiers Field Place, Brighton, MA 02135, USA
| | - Olivier Schueller
- Surface Logix, Inc., 50 Soldiers Field Place, Brighton, MA 02135, USA
| | - Stewart Campbell
- Surface Logix, Inc., 50 Soldiers Field Place, Brighton, MA 02135, USA
| | - Mahdi Taher
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Ivan Melhorn
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Schering
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Francesca Gatti
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Transplant Medicine, San Raffaele Hospital, 20132 Milan, Italy
| | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Transplant Medicine, San Raffaele Hospital, 20132 Milan, Italy
| | - Fang Xie
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, the First and Second Affiliated Hospitals of the Harbin Medical University, Harbin 150086, China
| | - Andrea Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Transplant Medicine, San Raffaele Hospital, 20132 Milan, Italy
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumiyuki Sasaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany
| | - Yasuaki Hata
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Enaida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuko Yuzawa
- Department of Ophthalmology, School of Medical Sciences, Nihon University, Tokyo 173-8610, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Paul Sweetnam
- Surface Logix, Inc., 50 Soldiers Field Place, Brighton, MA 02135, USA
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ali Hafezi-Moghadam
- Center for Excellence in Functional and Molecular Imaging, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun 2015; 6:6020. [PMID: 25597280 PMCID: PMC4309445 DOI: 10.1038/ncomms7020] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023] Open
Abstract
Under pathophysiological conditions in adults, endothelial cells (ECs) sprout from pre-existing blood vessels to form new ones by a process termed angiogenesis. During embryonic development, Apelin (APLN) is robustly expressed in vascular ECs. In adult mice, however, APLN expression in the vasculature is significantly reduced. Here we show that APLN expression is reactivated in adult ECs after ischaemia insults. In models of both injury ischaemia and tumor angiogenesis, we find that Apln-CreER genetically labels sprouting but not quiescent vasculature. By leveraging this specific activity, we demonstrate that abolishment of the VEGF-VEGFR2 signalling pathway as well as ablation of sprouting ECs diminished tumour vascularization and growth without compromising vascular homeostasis in other organs. Collectively, we show that Apln-CreER distinguishes sprouting vessels from stabilized vessels in multiple pathological settings. The Apln-CreER line described here will greatly aid future mechanistic studies in both vascular developmental biology and adult vascular diseases.
Collapse
|
49
|
Willet SG, Hale MA, Grapin-Botton A, Magnuson MA, MacDonald RJ, Wright CVE. Dominant and context-specific control of endodermal organ allocation by Ptf1a. Development 2015; 141:4385-94. [PMID: 25371369 DOI: 10.1242/dev.114165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The timing and gene regulatory logic of organ-fate commitment from within the posterior foregut of the mammalian endoderm is largely unexplored. Transient misexpression of a presumed pancreatic-commitment transcription factor, Ptf1a, in embryonic mouse endoderm (Ptf1a(EDD)) dramatically expanded the pancreatic gene regulatory network within the foregut. Ptf1a(EDD) temporarily suppressed Sox2 broadly over the anterior endoderm. Pancreas-proximal organ territories underwent full tissue conversion. Early-stage Ptf1a(EDD) rapidly expanded the endogenous endodermal Pdx1-positive domain and recruited other pancreas-fate-instructive genes, thereby spatially enlarging the potential for pancreatic multipotency. Early Ptf1a(EDD) converted essentially the entire glandular stomach, rostral duodenum and extrahepatic biliary system to pancreas, with formation of many endocrine cell clusters of the type found in normal islets of Langerhans. Sliding the Ptf1a(EDD) expression window through embryogenesis revealed differential temporal competencies for stomach-pancreas respecification. The response to later-stage Ptf1a(EDD) changed radically towards unipotent, acinar-restricted conversion. We provide strong evidence, beyond previous Ptf1a inactivation or misexpression experiments in frog embryos, for spatiotemporally context-dependent activity of Ptf1a as a potent gain-of-function trigger of pro-pancreatic commitment.
Collapse
Affiliation(s)
- Spencer G Willet
- Program in Developmental Biology and Center for Stem Cell Biology, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael A Hale
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N, DK-2200, Denmark
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Raymond J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher V E Wright
- Program in Developmental Biology and Center for Stem Cell Biology, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
50
|
Gong GC, Fan WZ, Li DZ, Tian X, Chen SJ, Fu YC, Xu WC, Wei CJ. Increased Specific Labeling of INS-1 Pancreatic Beta-Cell by Using RIP-Driven Cre Mutants with Reduced Activity. PLoS One 2015; 10:e0129092. [PMID: 26046525 PMCID: PMC4457865 DOI: 10.1371/journal.pone.0129092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Ectopically expressed Cre recombinase in extrapancreatic tissues in RIP-Cre mice has been well documented. The objective of this study was to find a simple solution that allows for improved beta-cell specific targeting. To this end, the RIP-Cre and reporter CMV-loxP-DsRed-loxP-EGFP expression cassettes were configurated into a one-plasmid and two-plasmid systems, which labeled approximately 80% insulin-positive INS-1 cells after 48 h transfection. However, off-target labeling was robustly found in more than 15% insulin-negative Ad293 cells. When an IRES element was inserted in front of Cre to reduce the translation efficiency, the ratio of recombination between INS-1 and Ad293 cells increased 3-4-fold. Further, a series of Cre mutants were generated by site-directed mutagenesis. When one of the mutants, Cre(H289P) in both configurations, was used in the experiment, the percentage of recombination dropped to background levels in a number of insulin-negative cell lines, but decreased only slightly in INS-1 cells. Consistently, DNA substrate digestion assay showed that the enzymatic activity of Cre(H289P) was reduced by 30-fold as compared to that of wild-type. In this study, we reported the generation of constructs containing RIP and Cre mutants, which enabled enhanced beta-cell specific labeling in vitro. These tools could be invaluable for beta-cell targeting and to the study of islet development.
Collapse
Affiliation(s)
- Gen-cheng Gong
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Wen-zhu Fan
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Di-zheng Li
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiong Tian
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Shao-jun Chen
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Yu-cai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Wen-can Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Chi-ju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
- * E-mail:
| |
Collapse
|