1
|
Huang YT, Hsu YT, Wu PY, Yeh YM, Lin PC, Hsu KF, Shen MR. Tight junction protein cingulin variant is associated with cancer susceptibility by overexpressed IQGAP1 and Rac1-dependent epithelial-mesenchymal transition. J Exp Clin Cancer Res 2024; 43:65. [PMID: 38424547 PMCID: PMC10905802 DOI: 10.1186/s13046-024-02987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chan Lin
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
González-Fernández R, González-Nicolás MÁ, Morales M, Ávila J, Lázaro A, Martín-Vasallo P. FKBP51, AmotL2 and IQGAP1 Involvement in Cilastatin Prevention of Cisplatin-Induced Tubular Nephrotoxicity in Rats. Cells 2022; 11:cells11091585. [PMID: 35563891 PMCID: PMC9099571 DOI: 10.3390/cells11091585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
The immunophilin FKBP51, the angiomotin AmotL2, and the scaffoldin IQGAP1 are overexpressed in many types of cancer, with the highest increase in leucocytes from patients undergoing oxaliplatin chemotherapy. Inflammation is involved in the pathogenesis of nephrotoxicity induced by platinum analogs. Cilastatin prevents renal damage caused by cisplatin. This functional and confocal microscopy study shows the renal focal-segmental expression of TNFα after cisplatin administration in rats, predominantly of tubular localization and mostly prevented by co-administration of cilastatin. FKBP51, AmotL2 and IQGAP1 protein expression increases slightly with cilastatin administration and to a much higher extent with cisplatin, in a cellular- and subcellular-specific manner. Kidney tubule cells expressing FKBP51 show either very low or no expression of TNFα, while cells expressing TNFα have low levels of FKBP51. AmotL2 and TNFα seem to colocalize and their expression is increased in tubular cells. IQGAP1 fluorescence increases with cilastatin, cisplatin and joint cilastatin-cisplatin treatment, and does not correlate with TNFα expression or localization. These data suggest a role for FKBP51, AmotL2 and IQGAP1 in cisplatin toxicity in kidney tubules and in the protective effect of cilastatin through inhibition of dehydropeptidase-I.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
| | - María Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Manuel Morales
- Department of Medical Oncology, Nuestra Señora de Candelaria University Hospital, 38010 Santa Cruz de Tenerife, Spain;
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (A.L.); (P.M.-V.); Tel.: +34-922-318358 (P.M.-V.)
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
- Correspondence: (A.L.); (P.M.-V.); Tel.: +34-922-318358 (P.M.-V.)
| |
Collapse
|
3
|
Kubick N, Klimovich P, Bieńkowska I, Poznanski P, Łazarczyk M, Sacharczuk M, Mickael ME. Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood-Brain Barrier. INSECTS 2021; 12:insects12100882. [PMID: 34680651 PMCID: PMC8540695 DOI: 10.3390/insects12100882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Understanding the evolutionary association between immune cells and the blood–brain barrier (BBB) is vital to develop therapeutic approaches. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. It is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. The drosophila genome lacks both genes. The Tre1 family (Tre1, moody, and Dmel_CG4313) contribute to regulating transepithelial migration in Drosophila. However, its evolutionary history is not known. We performed phylogenetic analysis to reconstruct the evolutionary history of the Tre1 family. We found Dmel_CG4313 only in insects. Tre1 exists only in invertebrates and is highly conserved. moody evolutionary history is more spread as it appears from Cnidaria up to mammals and is less conserved. The Tre1 family origin seems to be related to opsins. We have identified an SH3 motif in Tre1, moody, and Dmel_CG4313. SH3 regulates actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila. Thus, targeting the Tre1 family could help us regulate access to the brain. Abstract Understanding the evolutionary relationship between immune cells and the blood–brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila.
Collapse
Affiliation(s)
- Norwin Kubick
- Department of Biochemistry and Molecular Cell Biology (IBMZ), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Pavel Klimovich
- Department of Immunology, PM Forskningscentreum, 17854 Ekerö, Sweden;
| | - Irmina Bieńkowska
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
| | - Piotr Poznanski
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
| | - Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
| | - Michel-Edwar Mickael
- Department of Immunology, PM Forskningscentreum, 17854 Ekerö, Sweden;
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
- Correspondence:
| |
Collapse
|
4
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
5
|
Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events. Genes (Basel) 2021; 12:genes12020254. [PMID: 33578809 PMCID: PMC7916592 DOI: 10.3390/genes12020254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022] Open
Abstract
Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system.
Collapse
|
6
|
Shen EP, Chen MR, Chen WL, Chu HS, Chen KL, Hu FR. Knockdown of IQGAP-1 Enhances Tight Junctions and Prevents P. aeruginosa Invasion of Human Corneal Epithelial Cells. Ocul Immunol Inflamm 2020; 28:876-883. [PMID: 31621455 DOI: 10.1080/09273948.2019.1642494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine the role of IQ-domain GTPase-activating protein1 (IQGAP-1) in tight junctions of human corneal epithelial cells (HCECs) and its effect against P. aeruginosa (PAK) invasion. MATERIAL AND METHODS Primary human corneal epithelial cells (HCECs), immortalized HCECs, and IQGAP-1 RNA knockdown HCECs (siHCECs) were used. Confocal microscopy, transepithelial electrical resistance (TER), trypan blue exclusion assay and gentamicin invasion assay were done. RESULTS In primary and immortalized HCECs, IQGAP-1 co-localized with zonular occludin-1 (ZO-1) and actin. Enhanced actin and ZO-1 aggregation were seen in siHCECs. IQGAP-1 knockdown significantly increased TER of immortalized HCECs (P < .0001). Cell viability after PAK infection increased for siHCECs for up to 4 h after infection. PAK intracellular invasion was significantly lowered by 50% in siHCECs at 1 h post-infection. CONCLUSION IQGAP-1 knockdown increased the strength and integrity of tight junctions and may provide an early protective effect against P. aeruginosa invasion.
Collapse
Affiliation(s)
- Elizabeth P Shen
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation , Taipei, Taiwan.,School of Medicine, Tzu Chi University , Hua-Liang, Taiwan.,Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Kai-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
7
|
Osman MA, Antonisamy WJ, Yakirevich E. IQGAP1 control of centrosome function defines distinct variants of triple negative breast cancer. Oncotarget 2020; 11:2493-2511. [PMID: 32655836 PMCID: PMC7335670 DOI: 10.18632/oncotarget.27623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogenous and lethal disease that lacks diagnostic markers and therapeutic targets; as such common targets are highly sought after. IQGAP1 is a signaling scaffold implicated in TNBC, but its mechanism is unknown. Here we show that IQGAP1 localizes to the centrosome, interacts with and influences the expression level and localization of key centrosome proteins like BRCA1 and thereby impacts centrosome number. Genetic mutant analyses suggest that phosphorylation cycling of IQGAP1 is important to its subcellular localization and centrosome-nuclear shuttling of BRCA1; dysfunction of this process defines two alternate mechanisms associated with cell proliferation. TNBC cell lines and patient tumor tissues differentially phenocopy these mechanisms supporting clinical existence of molecularly distinct variants of TNBC defined by IQGAP1 pathways. These variants are defined, at least in part, by differential mis-localization or stabilization of IQGAP1-BRCA1 and rewiring of a novel Erk1/2-MNK1-JNK-Akt-β-catenin signaling signature. We discuss a model in which IQGAP1 modulates centrosome-nuclear crosstalk to regulate cell division and imparts on cancer. These findings have implications on cancer racial disparities and can provide molecular tools for classification of TNBC, presenting IQGAP1 as a common target amenable to personalized medicine.
Collapse
Affiliation(s)
- Mahasin A. Osman
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - William James Antonisamy
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
8
|
Araki S, Nakano M, Tsugane M, Sunaga F, Hattori M, Nakano M, Nagai T, Suzuki H. A simple microfluidic device for live-imaging of the vertical section of epithelial cells. Analyst 2020; 145:667-674. [PMID: 31799546 DOI: 10.1039/c9an02165e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated the capability of simple microfluidic devices with trenches having vertical sidewalls for live-cell fluorescence imaging of adherent cells. An epithelial cell line that forms a two-dimensional (2D) sheet was cultured to adhere to the vertical sidewall so that its vertical section can be imaged directly using ordinal inverted-type laser-scanning microscopy. The material and the structure of the device were characterized. We show that the detailed distribution of intracellular organelles, such as microtubules and mitochondria, and of intercellular apparatus, such as claudin and zonula occludens, can be imaged with high spatio-temporal resolution with a single scan.
Collapse
Affiliation(s)
- Seigo Araki
- Precision Engineering Course, Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Masayoshi Nakano
- Precision Engineering Course, Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Mamiko Tsugane
- Dept. Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan and Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Fumiko Sunaga
- Dept. Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mitsuru Hattori
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masahiro Nakano
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Suzuki
- Precision Engineering Course, Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan. and Dept. Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
9
|
Zheng X, Zhang W, Wang Z. Simvastatin preparations promote PDGF-BB secretion to repair LPS-induced endothelial injury through the PDGFRβ/PI3K/Akt/IQGAP1 signalling pathway. J Cell Mol Med 2019; 23:8314-8327. [PMID: 31576676 PMCID: PMC6850957 DOI: 10.1111/jcmm.14709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
Endothelial barrier dysfunction is a critical pathophysiological process of sepsis. Impaired endothelial cell migration is one of the main reasons for endothelial dysfunction. Statins may have a protective effect on endothelial barrier function. However, the effect and mechanism of statins on lipopolysaccharide (LPS)‐induced endothelial barrier dysfunction remain unclear. Simvastatin (SV) was loaded in nanostructured lipid carriers to produce SV nanoparticles (SV‐NPs). Normal SV and SV‐NPs were used to treat human umbilical vein vascular endothelial cells (HUVECs) injured by LPS. Barrier function was evaluated by monitoring cell monolayer permeability and transendothelial electrical resistance, and cell migration ability was measured by a wound healing assay. LY294002 and imatinib were used to inhibit the activity of PI3K/Akt and platelet‐derived growth factor receptor (PDGFR) β. IQ‐GTPase‐activating protein 1 (IQGAP1) siRNA was used to knockdown endogenous IQGAP1, which was used to verify the role of the PDGFRβ/PI3K/Akt/IQGAP1 pathway in SV/SV‐NPs‐mediated barrier protection in HUVECs injured by LPS. The results show that SV/SV‐NPs promoted the migration and decreased the permeability of HUVECs treated with LPS, and the efficacy of the SV‐NPs exceeded that of SV significantly. LY294002, imatinib and IQGAP1 siRNA all suppressed the barrier protection of SV/SV‐NPs. SV/SV‐NPs promoted the secretion of platelet‐derived growth factor‐BB (PDGF‐BB) and activated the PDGFRβ/PI3K/Akt/IQGAP1 pathway. SV preparations restored endothelial barrier function by restoring endothelial cell migration, which is involved in the regulation of the PDGFRβ/PI3K/Akt/IQGAP1 pathway and PDGF‐BB secretion. As an appropriate formulation for restoring endothelial dysfunction, SV‐NPs may be more effective than SV.
Collapse
Affiliation(s)
- Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Reimer M, Denby E, Zustiak SP, Schober JM. Ras GAP-related and C-terminal domain-dependent localization and tumorigenic activities of IQGAP1 in melanoma cells. PLoS One 2017; 12:e0189589. [PMID: 29240845 PMCID: PMC5730206 DOI: 10.1371/journal.pone.0189589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
IQGAP1 interacts with a number of binding partners through a calponin homology domain (CHD), a WW motif, IQ repeats, a Ras GAP-related domain (GRD), and a conserved C-terminal (CT) domain. Among various biological and cellular functions, IQGAP1 is known to play a role in actin cytoskeleton dynamics during membrane ruffling and lamellipodium protrusion. In addition, phosphorylation near the CT domain is thought to control IQGAP1 activity through regulation of intramolecular interaction. In a previous study, we discovered that IQGAP1 preferentially localizes to retracting areas in B16F10 mouse melanoma cells, not areas of membrane ruffling and lamellipodium protrusion. Nothing is known of the domains needed for retraction localization and very little is known of IQGAP1 function in the actin cytoskeleton of melanoma cells. Thus, we examined localization of IQGAP1 mutants to retracting areas, and characterized knock down phenotypes on tissue culture plastic and physiologic-stiffness hydrogels. Localization of IQGAP1 mutants (S1441E/S1443D, S1441A/S1443A, ΔCHD, ΔGRD or ΔCT) to retracting and protruding cell edges were measured. In retracting areas there was a decrease in S1441A/S1443A, ΔGRD and ΔCT localization, a minor decrease in ΔCHD localization, and normal localization of the S1441E/S1443D mutant. In areas of cell protrusion just behind the lamellipodium leading edge, we surprisingly observed both ΔGRD and ΔCT localization, and increased number of microtubules. IQGAP1 knock down caused loss of cell polarity on laminin-coated glass, decreased proliferation on tissue culture polystyrene, and abnormal spheroid growth on laminin-coated hydrogels. We propose that the GRD and CT domains regulate IQGAP1 localization to retracting actin networks to promote a tumorigenic role in melanoma cells.
Collapse
Affiliation(s)
- Michael Reimer
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Elisabeth Denby
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Silviya P. Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Joseph M. Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Lázaro-Diéguez F, Müsch A. Cell-cell adhesion accounts for the different orientation of columnar and hepatocytic cell divisions. J Cell Biol 2017; 216:3847-3859. [PMID: 28887437 PMCID: PMC5674875 DOI: 10.1083/jcb.201608065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/01/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
Mitotic spindle alignment with the basal or substrate-contacting domain ensures that dividing epithelial cells remain in the plane of the monolayer. Spindle orientation with respect to the substratum is established in metaphase coincident with maximal cell rounding, which enables unobstructed spindle rotation. Misaligned metaphase spindles are believed to result in divisions in which one daughter loses contact with the basal lamina. Here we describe a rescue mechanism that drives substrate-parallel spindle alignment of quasi-diagonal metaphase spindles in anaphase. It requires a Rho- and E-cadherin adhesion-dependent, substrate-parallel contractile actin belt at the apex that governs anaphase cell flattening. In contrast to monolayered Madin-Darby canine kidney cells, hepatocytic epithelial cells, which typically feature tilted metaphase spindles, lack this anaphase flattening mechanism and as a consequence maintain their spindle tilt through cytokinesis. This results in out-of-monolayer divisions, which we propose contribute to the stratified organization of hepatocyte cords in vivo.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
12
|
Deng S, Liu H, Qiu K, You H, Lei Q, Lu W. Role of the Golgi Apparatus in the Blood-Brain Barrier: Golgi Protection May Be a Targeted Therapy for Neurological Diseases. Mol Neurobiol 2017; 55:4788-4801. [PMID: 28730529 DOI: 10.1007/s12035-017-0691-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) protects the brain from toxic material in the blood, provides nutrients for brain tissues, and screens harmful substances from the brain. The specific brain microvascular endothelial cells (BMVECs), tight junction between endothelial cells, and astrocytes ensure proper function of the central nervous system (CNS). Pathological factors disrupt the integrity of the BBB by destroying the normal function of endothelial cells and decreasing the production of tight junction proteins or the expression of proteins specifically localized on astrocytes. Interestingly, fragmentation of the Golgi apparatus is observed in neurological diseases and is involved in the destruction of the BBB function. The Golgi acts as a processing center in which proteins are transported after being processed in the endoplasmic reticulum. Besides reprocessing, classifying, and packaging proteins, the Golgi apparatus (GA) also acts as a signaling platform and calcium pool. In this review, we summarized the current literature on the potential relationship between the Golgi and endothelial cells, tight junction, and astrocytes. The normal function of the BBB is maintained as long as the normal function and morphology of the GA are not disturbed. Furthermore, we speculate that protecting the Golgi may be a novel therapeutic approach to protect the BBB and treat neurological diseases due to BBB dysfunction.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Hui Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Ke Qiu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Hong You
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
13
|
Raya-Sandino A, Castillo-Kauil A, Domínguez-Calderón A, Alarcón L, Flores-Benitez D, Cuellar-Perez F, López-Bayghen B, Chávez-Munguía B, Vázquez-Prado J, González-Mariscal L. Zonula occludens-2 regulates Rho proteins activity and the development of epithelial cytoarchitecture and barrier function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1714-1733. [PMID: 28554775 DOI: 10.1016/j.bbamcr.2017.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Silencing Zonula occludens 2 (ZO-2), a tight junctions (TJ) scaffold protein, in epithelial cells (MDCK ZO-2 KD) triggers: 1) Decreased cell to substratum attachment, accompanied by reduced expression of claudin-7 and integrin β1, and increased vinculin recruitment to focal adhesions and stress fibers formation; 2) Lowered cell-cell aggregation and appearance of wider intercellular spaces; 3) Increased RhoA/ROCK activity, mediated by GEF-HI recruitment to cell borders by cingulin; 4) Increased Cdc42 activity, mitotic spindle disorientation and the appearance of cysts with multiple lumens; 5) Increased Rac and cofilin activity, multiple lamellipodia formation and random cell migration but increased wound closure; 6) Diminished cingulin phosphorylation and disappearance of planar network of microtubules at the TJ region; and 7) Increased transepithelial electrical resistance at steady state, coupled to an increased expression of ZO-1 and claudin-4 and a decreased expression of claudin-2 and paracingulin. Hence, ZO-2 is a crucial regulator of Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.
Collapse
Affiliation(s)
- Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Alejandro Castillo-Kauil
- Department of Cell Biology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Alaide Domínguez-Calderón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - David Flores-Benitez
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Francisco Cuellar-Perez
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Bruno López-Bayghen
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico.
| |
Collapse
|
14
|
Caceres PS, Benedicto I, Lehmann GL, Rodriguez-Boulan EJ. Directional Fluid Transport across Organ-Blood Barriers: Physiology and Cell Biology. Cold Spring Harb Perspect Biol 2017; 9:a027847. [PMID: 28003183 PMCID: PMC5334253 DOI: 10.1101/cshperspect.a027847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters, and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye-, and brain-blood barriers. We end by discussing how cross talk between barrier epithelial and endothelial cells, perivascular cells, and basement membrane signaling contribute to generate and maintain organ-blood barriers.
Collapse
Affiliation(s)
- Paulo S Caceres
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Enrique J Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
15
|
Abstract
IQGAP1 is a scaffold protein involved in the assembly of adherens junctions. Our work has recently revealed a novel role for IQGAP1 in the regulation of tight junctions (TJ) through differential recruitment of claudins to the nascent TJ. Here, we discuss the potential mechanisms of this regulation, including IQGAP1 effects on CDC42, and IQGAP1 interactions with sorting/trafficking molecules (e.g. Exo70). Given the many roles of IQGAP1 and the large number of interacting partners, we focus our discussion of these functions in the context of junction formation, trafficking, growth factor signaling and cancer. We also propose a potential role for IQGAP1 in regulating epithelial integrity and compartmentalized signaling in epithelia.
Collapse
Affiliation(s)
- Barbara E Tanos
- a Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK
| | - Charles Yeaman
- b Department of Anatomy and Cell Biology , The University of Iowa , Iowa City , IA , USA
| | - Enrique Rodriguez-Boulan
- c Department of Ophthalmology , Margaret Dyson Vision Research Institute, Weill Cornell Medical College , New York , NY , USA.,d Department of Cell and Developmental Biology , Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|
16
|
Salas PJ, Forteza R, Mashukova A. Multiple roles for keratin intermediate filaments in the regulation of epithelial barrier function and apico-basal polarity. Tissue Barriers 2016; 4:e1178368. [PMID: 27583190 PMCID: PMC4993576 DOI: 10.1080/21688370.2016.1178368] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
As multicellular organisms evolved a family of cytoskeletal proteins, the keratins (types I and II) expressed in epithelial cells diversified in more than 20 genes in vertebrates. There is no question that keratin filaments confer mechanical stiffness to cells. However, such a number of genes can hardly be explained by evolutionary advantages in mechanical features. The use of transgenic mouse models has revealed unexpected functional relationships between keratin intermediate filaments and intracellular signaling. Accordingly, loss of keratins or mutations in keratins that cause or predispose to human diseases, result in increased sensitivity to apoptosis, regulation of innate immunity, permeabilization of tight junctions, and mistargeting of apical proteins in different epithelia. Precise mechanistic explanations for these phenomena are still lacking. However, immobilization of membrane or cytoplasmic proteins, including chaperones, on intermediate filaments (“scaffolding”) appear as common molecular mechanisms and may explain the need for so many different keratin genes in vertebrates.
Collapse
Affiliation(s)
- Pedro J Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Radia Forteza
- Department of Cell Biology, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Anastasia Mashukova
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Physiology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
17
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|