1
|
Anglès F, Gupta V, Wang C, Balch WE. COPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation. Sci Rep 2024; 14:10160. [PMID: 38698045 PMCID: PMC11065896 DOI: 10.1038/s41598-024-60687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.
Collapse
Affiliation(s)
- Frédéric Anglès
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vijay Gupta
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
3
|
Alam JM, Maruyama T, Noshiro D, Kakuta C, Kotani T, Nakatogawa H, Noda NN. Complete set of the Atg8-E1-E2-E3 conjugation machinery forms an interaction web that mediates membrane shaping. Nat Struct Mol Biol 2024; 31:170-178. [PMID: 38057553 DOI: 10.1038/s41594-023-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/20/2023] [Indexed: 12/08/2023]
Abstract
Atg8, a ubiquitin-like protein, is conjugated with phosphatidylethanolamine (PE) via Atg7 (E1), Atg3 (E2) and Atg12-Atg5-Atg16 (E3) enzymatic cascade and mediates autophagy. However, its molecular roles in autophagosome formation are still unclear. Here we show that Saccharomyces cerevisiae Atg8-PE and E1-E2-E3 enzymes together construct a stable, mobile membrane scaffold. The complete scaffold formation induces an in-bud in prolate-shaped giant liposomes, transforming their morphology into one reminiscent of isolation membranes before sealing. In addition to their enzymatic roles in Atg8 lipidation, all three proteins contribute nonenzymatically to membrane scaffolding and shaping. Nuclear magnetic resonance analyses revealed that Atg8, E1, E2 and E3 together form an interaction web through multivalent weak interactions, where the intrinsically disordered regions in Atg3 play a central role. These data suggest that all six Atg proteins in the Atg8 conjugation machinery control membrane shaping during autophagosome formation.
Collapse
Affiliation(s)
| | | | - Daisuke Noshiro
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Chika Kakuta
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Kotani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hitoshi Nakatogawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Mann D, Fromm SA, Martinez-Sanchez A, Gopaldass N, Choy R, Mayer A, Sachse C. Atg18 oligomer organization in assembled tubes and on lipid membrane scaffolds. Nat Commun 2023; 14:8086. [PMID: 38057304 DOI: 10.1038/s41467-023-43460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Autophagy-related protein 18 (Atg18) participates in the elongation of early autophagosomal structures in concert with Atg2 and Atg9 complexes. How Atg18 contributes to the structural coordination of Atg2 and Atg9 at the isolation membrane remains to be understood. Here, we determined the cryo-EM structures of Atg18 organized in helical tubes, Atg18 oligomers in solution as well as on lipid membrane scaffolds. The helical assembly is composed of Atg18 tetramers forming a lozenge cylindrical lattice with remarkable structural similarity to the COPII outer coat. When reconstituted with lipid membranes, using subtomogram averaging we determined tilted Atg18 dimer structures bridging two juxtaposed lipid membranes spaced apart by 80 Å. Moreover, lipid reconstitution experiments further delineate the contributions of Atg18's FRRG motif and the amphipathic helical extension in membrane interaction. The observed structural plasticity of Atg18's oligomeric organization and membrane binding properties provide a molecular framework for the positioning of downstream components of the autophagy machinery.
Collapse
Affiliation(s)
- Daniel Mann
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Simon A Fromm
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Martinez-Sanchez
- Department of Information and Communications Engineering, Faculty of Computers Sciences, University of Murcia, Murcia, Spain
| | - Navin Gopaldass
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ramona Choy
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Andreas Mayer
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Carsten Sachse
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany.
| |
Collapse
|
5
|
Kotani T, Sakai Y, Kirisako H, Kakuta C, Kakuta S, Ohsumi Y, Nakatogawa H. A mechanism that ensures non-selective cytoplasm degradation by autophagy. Nat Commun 2023; 14:5815. [PMID: 37726301 PMCID: PMC10509180 DOI: 10.1038/s41467-023-41525-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
In autophagy, a membrane cisterna called the isolation membrane expands, bends, becomes spherical, and closes to sequester cytoplasmic constituents into the resulting double-membrane vesicle autophagosome for lysosomal/vacuolar degradation. Here, we discover a mechanism that allows the isolation membrane to expand with a large opening to ensure non-selective cytoplasm sequestration within the autophagosome. A sorting nexin complex that localizes to the opening edge of the isolation membrane plays a critical role in this process. Without the complex, the isolation membrane expands with a small opening that prevents the entry of particles larger than about 25 nm, including ribosomes and proteasomes, although autophagosomes of nearly normal size eventually form. This study sheds light on membrane morphogenesis during autophagosome formation and selectivity in autophagic degradation.
Collapse
Affiliation(s)
- Tetsuya Kotani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yuji Sakai
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiromi Kirisako
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Chika Kakuta
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hitoshi Nakatogawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
6
|
Wang N, Shibata Y, Paulo JA, Gygi SP, Rapoport TA. A conserved membrane curvature-generating protein is crucial for autophagosome formation in fission yeast. Nat Commun 2023; 14:4765. [PMID: 37553386 PMCID: PMC10409813 DOI: 10.1038/s41467-023-40530-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Organelles are shaped by curvature-generating proteins, which include the reticulons and REEPs that are involved in forming the endoplasmic reticulum (ER). A conserved REEP subfamily differs from the ER-shaping REEPs in abundance and membrane topology and has unidentified functions. Here, we show that Rop1, the single member of this family in the fission yeast Schizosacharomyces pombe, is crucial for the macroautophagy of organelles and cytosolic proteins. Rop1 is needed for the formation of phagophores, cup-like structures consisting of two closely apposed membrane sheets that encapsulate cargo. It is recruited at early stages to phagophores and is required for their maturation into autophagosomes. Rop1 function relies on its ability to generate high membrane curvature and on its colocalization with the autophagy component Atg2 that is thought to reside at the phagophore rim. We propose that Rop1 facilitates the formation and growth of the double-membrane structure of the autophagosome.
Collapse
Affiliation(s)
- Ning Wang
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Yoko Shibata
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
SFN Enhanced the Radiosensitivity of Cervical Cancer Cells via Activating LATS2 and Blocking Rad51/MDC1 Recruitment to DNA Damage Site. Cancers (Basel) 2022; 14:cancers14081872. [PMID: 35454780 PMCID: PMC9026704 DOI: 10.3390/cancers14081872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Radiotherapy is the main treatment for cervical cancer patients in advanced stages. However a considerable number of patients are not sensitive to radiotherapy. Dysregulation of DNA double-strand break (DSB) repair is characteristic of cancer cells in a radiotherapy-resistance state. The aim of this study is to explore Sulforaphane (SFN) downstream target and the radiotherapy sensitization mechanism in cervical cancer. We identified SFN as cervical cancer cells radiotherapy sensitizer and LATS2 served as a downstream target of SFN treatment. SFN treatment resulted in the inhibition of the homologous recombination (HR) pathway, and LATS2 has an indispensable contribution to this SFN-facilitated radiotherapy sensitization. Abstract Background: Sulforaphane (SFN) is one kind of phytochemical anticancer drug. It inhibits cancer cell proliferation and promotes cell apoptosis while the mechanism behind is still uncertain. We aimed to explore its downstream target and the radiotherapy sensitization mechanism in cervical cancer. Methods: We treated established cervical cancer cells line (SiHa, HeLa, C33A) with SFN followed by irradiation, and explored its survival, apoptosis, and DNA damage repair in vitro and validated the radiosensitivity of SFN treatment in vivo. We conducted mRNA sequencing to identify differentially expressed mRNAs after SFN treatment. We further investigated SFN downstream target and its involvement in DNA damage repair under irradiation. Results: We found that SFN inhibited the survival of cervical cancer cells under radiotherapy treatment in vitro and prolonged the survival period after radiotherapy in the mouse tumorigenic model. SFN increased the protein expression of LATS2 and promoted apoptosis of cervical cancer cells. Overexpressed LATS2 decreased the cellular survival rate of cervical cancer cells. Additionally, SFN treatment and LATS2 overexpression prevented MDC1 and Rad51 from accumulating in the nucleus in cervical cancer cells after being exposed to ionized radiation. LATS2 loss intervened with SFN-alleviated RAD51 and MDC1 nucleus accumulation and resumed the repairment of DNA damage. Conclusion: We identified SFN as cervical cancer cells radiotherapy sensitizer and LATS2 served as a downstream target of SFN treatment. SFN treatment resulted in the inhibition of the homologous recombination (HR) pathway, and LATS2 has an indispensable contribution to this SFN-facilitated radiotherapy sensitization.
Collapse
|
8
|
Kim CL, Lim SB, Kim K, Jeong HS, Mo JS. Phosphorylation analysis of the Hippo-YAP pathway using Phos-tag. J Proteomics 2022; 261:104582. [DOI: 10.1016/j.jprot.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
9
|
Li S, Yan R, Xu J, Zhao S, Ma X, Sun Q, Zhang M, Li Y, Liu JJG, Chen L, Li S, Xu K, Ge L. A new type of ERGIC-ERES membrane contact mediated by TMED9 and SEC12 is required for autophagosome biogenesis. Cell Res 2022; 32:119-138. [PMID: 34561617 PMCID: PMC8461442 DOI: 10.1038/s41422-021-00563-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Under stress, the endomembrane system undergoes reorganization to support autophagosome biogenesis, which is a central step in autophagy. How the endomembrane system remodels has been poorly understood. Here we identify a new type of membrane contact formed between the ER-Golgi intermediate compartment (ERGIC) and the ER-exit site (ERES) in the ER-Golgi system, which is essential for promoting autophagosome biogenesis induced by different stress stimuli. The ERGIC-ERES contact is established by the interaction between TMED9 and SEC12 which generates a short distance opposition (as close as 2-5 nm) between the two compartments. The tight membrane contact allows the ERES-located SEC12 to transactivate COPII assembly on the ERGIC. In addition, a portion of SEC12 also relocates to the ERGIC. Through both mechanisms, the ERGIC-ERES contact promotes formation of the ERGIC-derived COPII vesicle, a membrane precursor of the autophagosome. The ERGIC-ERES contact is physically and functionally different from the TFG-mediated ERGIC-ERES adjunction involved in secretory protein transport, and therefore defines a unique endomembrane structure generated upon stress conditions for autophagic membrane formation.
Collapse
Affiliation(s)
- Shulin Li
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Yan
- grid.47840.3f0000 0001 2181 7878Department of Chemistry, University of California, Berkeley, CA USA
| | - Jialu Xu
- grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China ,Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Shiqun Zhao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China ,grid.419265.d0000 0004 1806 6075National Center for Nanoscience and Technology, Beijing, China
| | - Xinyu Ma
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiming Sun
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| | - Jun-Jie Gogo Liu
- grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China ,Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Liangyi Chen
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China ,grid.419265.d0000 0004 1806 6075National Center for Nanoscience and Technology, Beijing, China
| | - Sai Li
- grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China ,Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Ke Xu
- grid.47840.3f0000 0001 2181 7878Department of Chemistry, University of California, Berkeley, CA USA
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Spatial control of avidity regulates initiation and progression of selective autophagy. Nat Commun 2021; 12:7194. [PMID: 34893607 PMCID: PMC8664900 DOI: 10.1038/s41467-021-27420-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022] Open
Abstract
Autophagosomes form at the endoplasmic reticulum in mammals, and between the vacuole and the endoplasmic reticulum in yeast. However, the roles of these sites and the mechanisms regulating autophagosome formation are incompletely understood. Vac8 is required for autophagy and recruits the Atg1 kinase complex to the vacuole. Here we show that Vac8 acts as a central hub to nucleate the phagophore assembly site at the vacuolar membrane during selective autophagy. Vac8 directly recruits the cargo complex via the Atg11 scaffold. In addition, Vac8 recruits the phosphatidylinositol 3-kinase complex independently of autophagy. Cargo-dependent clustering and Vac8-dependent sequestering of these early autophagy factors, along with local Atg1 activation, promote phagophore assembly site assembly at the vacuole. Importantly, ectopic Vac8 redirects autophagosome formation to the nuclear membrane, indicating that the vacuolar membrane is not specifically required. We propose that multiple avidity-driven interactions drive the initiation and progression of selective autophagy. The molecular principles governing the initiation of autophagosome formation are not clearly understood. Here we show that the vacuolar protein Vac8 coordinates this process by promoting an avidity-driven assembly of several autophagy factors.
Collapse
|
11
|
Mailler E, Guardia CM, Bai X, Jarnik M, Williamson CD, Li Y, Maio N, Golden A, Bonifacino JS. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat Commun 2021; 12:6750. [PMID: 34799570 PMCID: PMC8605025 DOI: 10.1038/s41467-021-26999-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.
Collapse
Affiliation(s)
- Elodie Mailler
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Carlos M Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nunziata Maio
- Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Meng F, Xie B, Martin JF. Targeting the Hippo pathway in heart repair. Cardiovasc Res 2021; 118:2402-2414. [PMID: 34528077 DOI: 10.1093/cvr/cvab291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo pathway is an evolutionarily and functionally conserved signaling pathway that controls organ size by regulating cell proliferation, apoptosis, and differentiation. Emerging evidence has shown that the Hippo pathway plays critical roles in cardiac development, homeostasis, disease, and regeneration. Targeting the Hippo pathway has tremendous potential as a therapeutic strategy for treating intractable cardiovascular diseases such as heart failure. In this review, we summarize the function of the Hippo pathway in the heart. Particularly, we highlight the posttranslational modification of Hippo pathway components, including the core kinases LATS1/2 and their downstream effectors YAP/TAZ, in different contexts, which has provided new insights and avenues in cardiac research.
Collapse
Affiliation(s)
- Fansen Meng
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Bing Xie
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030.,Texas Heart Institute, Houston, Texas, 77030
| |
Collapse
|
13
|
Goel H, Singhal S, Mathur R, Syeda S, Gupta RK, Kumar A, Shrivastava A, Jha AK. Promoter Hypermethylation of LATS2 Gene in Oral Squamous Cell Carcinoma (OSCC) Among North Indian Population. Asian Pac J Cancer Prev 2020; 21:1283-1287. [PMID: 32458634 PMCID: PMC7541850 DOI: 10.31557/apjcp.2020.21.5.1283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 11/25/2022] Open
Abstract
Large Tumor Suppressor (LATS2) gene are Tumor Suppressor gene, linked with epigenetic modifications. LATS2 promoter hypermethylation is an important epigenetic silencing mechanism leading to cancer. Cancer is the most common, vicious and dangerously increasing diseases of the world today, associated with high morbidity and mortality. Oral cancers (OC) are the blazing universal dilemma and is the sixth most frequent cancer observed in Indian population. Tobacco consumption is the main cause of the increase in OSCC. The association between LATS2 in the pathogenesis of cancers propose that their combination might be studied as a possible molecular marker for particular subgroups of patients. Therefore, the present study tried to investigate whether LATS2 promoter methylation was associated with oral squamous cell carcinoma (OSCC) in North Indian subjects. DNA methylation quantitative studies of LATS2 Tumor Suppressor genes were performed by methylation-specific polymerase chain reaction (MSP). 38 out of 70 patients (55 %) were found to be methylated for LATS2 gene, a statistically significant result was obtained (p-value < 0.005) for LATS2 genes. The results suggest that epigenetic changes may be related to the down-regulation of LATS2 expression. It can be concluded that LATS2 gene plays a significant role in the diagnosis of cancer and provide a better alternative as a diagnostic biomarker. Our data infer that a low LATS2 expression due to methylation may contribute to the cancer progression and could be useful for the diagnosis of OSCC. Therefore, investigation of promoter methylation in such genes may provide a biomarker which may prove to be useful in early detection of Oral Cancer.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Biotechnology, Institute of Applied Medicines and Research Ghaziabad, Uttar Pradesh, India
| | - Saloni Singhal
- Department of Biotechnology, Institute of Applied Medicines and Research Ghaziabad, Uttar Pradesh, India
| | - Runjhun Mathur
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Saima Syeda
- Department of Zoology, Delhi University, India
| | - Rishi Kumar Gupta
- Sh. Jagannath Charitable Cancer Hospital, Ghaziabad, Uttar Pradesh, India
| | - Anshuman Kumar
- Dharamshila Cancer Hospital and Research Centre, New Delhi, India
| | | | - Abhimanyu Kumar Jha
- Department of Biotechnology, Institute of Applied Medicines and Research Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Rusnak L, Tang C, Qi Q, Mo X, Fu H. Large tumor suppressor 2, LATS2, activates JNK in a kinase-independent mechanism through ASK1. J Mol Cell Biol 2019; 10:549-558. [PMID: 30496488 DOI: 10.1093/jmcb/mjy061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is an important mediator of the cell stress response pathways. Because of its central role in regulating cell death, the activity of ASK1 is tightly regulated by protein-protein interactions and post-translational modifications. Deregulation of ASK1 activity has been linked to human diseases, such as neurological disorders and cancer. Here we describe the identification and characterization of large tumor suppressor 2 (LATS2) as a novel binding partner for ASK1. LATS2 is a core kinase in the Hippo signaling pathway and is commonly downregulated in cancer. We found that LATS2 interacts with ASK1 and increases ASK1-mediated signaling to promote apoptosis and activate the JNK mitogen-activated protein kinase (MAPK). This change in MAPK signaling is dependent on the catalytic activity of ASK1 but does not require LATS2 kinase activity. This work identifies a novel role for LATS2 as a positive regulator of the ASK1-MKK-JNK signaling pathway and establishes a kinase-independent function of LATS2 that may be part of the intricate regulatory system for cellular response to diverse stress signals.
Collapse
Affiliation(s)
- Lauren Rusnak
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Cong Tang
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.,The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Kreis NN, Louwen F, Yuan J. The Multifaceted p21 (Cip1/Waf1/ CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091220. [PMID: 31438587 PMCID: PMC6770903 DOI: 10.3390/cancers11091220] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | - Frank Louwen
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
16
|
Function of p21 (Cip1/Waf1/ CDKN1A) in Migration and Invasion of Cancer and Trophoblastic Cells. Cancers (Basel) 2019; 11:cancers11070989. [PMID: 31311187 PMCID: PMC6678555 DOI: 10.3390/cancers11070989] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/18/2022] Open
Abstract
Tumor progression and pregnancy have several features in common. Tumor cells and placental trophoblasts share many signaling pathways involved in migration and invasion. Preeclampsia, associated with impaired differentiation and migration of trophoblastic cells, is an unpredictable and unpreventable disease leading to maternal and perinatal mortality and morbidity. Like in tumor cells, most pathways, in which p21 is involved, are deregulated in trophoblasts of preeclamptic placentas. The aim of the present study was to enlighten p21’s role in tumorigenic choriocarcinoma and trophoblastic cell lines. We show that knockdown of p21 induces defects in chromosome movement during mitosis, though hardly affecting proliferation and cell cycle distribution. Moreover, suppression of p21 compromises the migration and invasion capability of various trophoblastic and cancer cell lines mediated by, at least partially, a reduction of the extracellular signal-regulated kinase 3, identified using transcriptome-wide profiling, real-time PCR, and Western blot. Further analyses show that downregulation of p21 is associated with reduced matrix metalloproteinase 2 and tissue inhibitor of metalloproteinases 2. This work evinces that p21 is involved in chromosome movement during mitosis as well as in the motility and invasion capacity of trophoblastic and cancer cell lines.
Collapse
|
17
|
Rahmat MB, Zhang S, Koh CG. POPX2 is a novel LATS phosphatase that regulates the Hippo pathway. Oncotarget 2019; 10:1525-1538. [PMID: 30863499 PMCID: PMC6407677 DOI: 10.18632/oncotarget.26689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/09/2019] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway regulates cell proliferation, survival, apoptosis and differentiation. During carcinogenesis, members of the Hippo pathway are mutated to avoid anoikis and promote anchorage independent growth. Although many regulators of the Hippo pathway have been reported, negative regulators of the hippo kinases are not well studied. Through an interactome screen, we found that POPX2 phosphatase interacts with several of the Hippo pathway core kinases, including LATS1 which is the direct kinase regulating the transcription co-activators, YAP and TAZ. Phosphorylated YAP/TAZ are retained in the cytoplasm and prevented from translocation into the nucleus to activate transcription of target genes. We found that POPX2 could dephosphorylate LATS1 on Threonine-1079, leading to inactivation of LATS1 kinase. As a result, YAP/TAZ are not phosphorylated and are able to translocate into the nucleus to activate target genes involved in cell proliferation. Furthermore, POPX2 knock-out using CRISPR in the highly metastatic MDA-MB-231 breast cancer cells results in decreased cell proliferation and impairment of anchorage independent growth. We propose that POPX2 act as a suppressor of the Hippo pathway through LATS1 dephosphorylation and inactivation.
Collapse
Affiliation(s)
| | - Songjing Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
18
|
Nozaki M, Yabuta N, Fukuzawa M, Mukai S, Okamoto A, Sasakura T, Fukushima K, Naito Y, Longmore GD, Nojima H. LATS1/2 kinases trigger self-renewal of cancer stem cells in aggressive oral cancer. Oncotarget 2019; 10:1014-1030. [PMID: 30800215 PMCID: PMC6383686 DOI: 10.18632/oncotarget.26583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs), which play important roles in tumor initiation and progression, are resistant to many types of therapies. However, the regulatory mechanisms underlying CSC-specific properties, including self-renewal, are poorly understood. Here, we found that LATS1/2, the core Hippo pathway-kinases, were highly expressed in the oral squamous cell carcinoma line SAS, which exhibits high capacity of CSCs, and that depletion of these kinases prevented SAS cells from forming spheres under serum-free conditions. Detailed examination of the expression and activation of LATS kinases and related proteins over a time course of sphere formation revealed that LATS1/2 were more highly expressed and markedly activated before initiation of self-renewal. Moreover, TAZ, SNAIL, CHK1/2, and Aurora-A were expressed in hierarchical, oscillating patterns during sphere formation, suggesting that the process consists of four sequential steps. Our results indicate that LATS1/2 trigger self-renewal of CSCs by regulating the Hippo pathway, the EMT, and cell division.
Collapse
Affiliation(s)
- Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Moe Fukuzawa
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | - Ayumi Okamoto
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | | | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Yue ZW, Wang SB, Liu JZ. [Effects of large tumor suppressor homolog 2 gene overexpression on the proliferation and apoptosis of oral squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:609-612. [PMID: 30593104 DOI: 10.7518/hxkq.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the effect of large tumor suppressor homolog 2 (LATS2) gene overexpression on the proliferation and apoptosis of oral squamous cell carcinoma (OSCC). METHODS Lentivirous particles were transferred into SCC-25 cell to upregulate LATS2 gene expression. Cell proliferation was detected by CCK-8 assay. Apoptosis was detected through flow cytometry. The expression changes of Bax, Bcl-2, and LATS2 were analyzed by Western blot. RESULTS Gene transfection increased LATS2 expression. Compared with the control group and pEGFP-control group, SCC-25 cell proliferation in the pGFP-LATS2 group was inhibited, whereas the apoptosis ratio increased (P<0.05). Bcl-2 expression decreased, and Bax expression increased. CONCLUSIONS Overexpression of LATS2 could inhibit SCC-25 cell proliferation and induce apoptosis.
Collapse
Affiliation(s)
- Zeng-Wen Yue
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shu-Bin Wang
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jin-Zhong Liu
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
20
|
Long non-coding RNAs involved in autophagy regulation. Cell Death Dis 2017; 8:e3073. [PMID: 28981093 PMCID: PMC5680586 DOI: 10.1038/cddis.2017.464] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/17/2023]
Abstract
Autophagy degrades non-functioning or damaged proteins and organelles to maintain cellular homeostasis in a physiological or pathological context. Autophagy can be protective or detrimental, depending on its activation status and other conditions. Therefore, autophagy has a crucial role in a myriad of pathophysiological processes. From the perspective of autophagy-related (ATG) genes, the molecular dissection of autophagy process and the regulation of its level have been largely unraveled. However, the discovery of long non-coding RNAs (lncRNAs) provides a new paradigm of gene regulation in almost all important biological processes, including autophagy. In this review, we highlight recent advances in autophagy-associated lncRNAs and their specific autophagic targets, as well as their relevance to human diseases such as cancer, cardiovascular disease, diabetes and cerebral ischemic stroke.
Collapse
|
21
|
STK38L kinase ablation promotes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines. Oncotarget 2017; 8:78556-78572. [PMID: 29108249 PMCID: PMC5667982 DOI: 10.18632/oncotarget.20833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDACs) are highly aggressive malignancies, associated with poor clinical prognosis and limited therapeutic options. Oncogenic KRAS mutations are found in over 90% of PDACs, playing a central role in tumor progression. Global gene expression profiling of PDAC reveals 3-4 major molecular subtypes with distinct phenotypic traits and pharmacological vulnerabilities, including variations in oncogenic KRAS pathway dependencies. PDAC cell lines of the aberrantly differentiated endocrine exocrine (ADEX) subtype are robustly KRAS-dependent for survival. The KRAS gene is located on chromosome 12p11-12p12, a region amplified in 5-10% of primary PDACs. Within this amplicon, we identified co-amplification of KRAS with the STK38L gene in a subset of primary human PDACs and PDAC cell lines. Therefore, we determined whether PDAC cell lines are dependent on STK38L expression for proliferation and viability. STK38L encodes a serine/threonine kinase, which shares homology with Hippo pathway kinases LATS1/2. We show that STK38L expression is elevated in a subset of primary PDACs and PDAC cell lines displaying ADEX subtype characteristics, including overexpression of mutant KRAS. RNAi-mediated depletion of STK38L in a subset of ADEX subtype cell lines inhibits cellular proliferation and induces apoptosis. Concomitant with these effects, STK38L depletion causes increased expression of the LATS2 kinase and the cell cycle regulator p21. LATS2 depletion partially rescues the cytostatic and cytotoxic effects of STK38L depletion. Lastly, high STK38L mRNA expression is associated with decreased overall patient survival in PDACs. Collectively, our findings implicate STK38L as a candidate targetable vulnerability in a subset of molecularly-defined PDACs.
Collapse
|
22
|
Abstract
Proper cellular functionality and homeostasis are maintained by the convergent integration of various signaling cascades, which enable cells to respond to internal and external changes. The Dbf2-related kinases LATS1 and LATS2 (LATS) have emerged as central regulators of cell fate, by modulating the functions of numerous oncogenic or tumor suppressive effectors, including the canonical Hippo effectors YAP/TAZ, the Aurora mitotic kinase family, estrogen signaling and the tumor suppressive transcription factor p53. While the basic functions of the LATS kinase module are strongly conserved over evolution, the genomic duplication event leading to the emergence of two closely related kinases in higher organisms has increased the complexity of this signaling network. Here, we review the LATS1 and LATS2 intrinsic features as well as their reported cellular activities, emphasizing unique characteristics of each kinase. While differential activities between the two paralogous kinases have been reported, many converge to similar pathways and outcomes. Interestingly, the regulatory networks controlling the mRNA expression pattern of LATS1 and LATS2 differ strongly, and may contribute to the differences in protein binding partners of each kinase and in the subcellular locations in which each kinase exerts its functions.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
23
|
Pfleger CM. The Hippo Pathway: A Master Regulatory Network Important in Development and Dysregulated in Disease. Curr Top Dev Biol 2017; 123:181-228. [PMID: 28236967 DOI: 10.1016/bs.ctdb.2016.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Hippo Pathway is a master regulatory network that regulates proliferation, cell growth, stemness, differentiation, and cell death. Coordination of these processes by the Hippo Pathway throughout development and in mature organisms in response to diverse external and internal cues plays a role in morphogenesis, in controlling organ size, and in maintaining organ homeostasis. Given the importance of these processes, the Hippo Pathway also plays an important role in organismal health and has been implicated in a variety of diseases including eye disease, cardiovascular disease, neurodegeneration, and cancer. This review will focus on Drosophila reports that identified the core components of the Hippo Pathway revealing specific downstream biological outputs of this complicated network. A brief description of mammalian reports will complement review of the Drosophila studies. This review will also survey upstream regulation of the core components with a focus on feedback mechanisms.
Collapse
Affiliation(s)
- Cathie M Pfleger
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
24
|
Contribution of LATS1 and LATS2 promoter methylation in OSCC development. J Cell Commun Signal 2016; 11:49-55. [PMID: 27761802 DOI: 10.1007/s12079-016-0356-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023] Open
Abstract
The aberrant DNA methylation of the tumor suppressor genes involved in DNA Damage Response (DDR) signaling and cell cycle regulation may lead to the tumorigenesis. Our purpose here is to analyze the promoter methylation and mRNA expression levels of LATS1 and LATS2 (LATS1/2) genes in OSCC. Promoter methylation status of LATS1/2 genes was evaluated in 70 OSCC paraffin-embedded tissues and 70 normal oral samples, using Methylation Specific PCR (MSP). LATS1/2 mRNA expression profiles were also investigated in 14 OSCC patients and 14 normal samples, using real-time PCR. In both candidate genes, promoter methylation assessment revealed significant relationship between cases and controls (OR = 2.24, 95 % CI = 1.40-3.54, P = 0.001; LATS1 and OR = 15.5, 95%CI = 3.64-64.76, P < 0.001; LATS2). As well as, the evaluation of mRNA expression levels showed decreased expression in OSCC tissues in compare to control tissues. (Mean ± SD 1.74 ± 0.14 in OSCC versus 2.10 ± 0.24 in controls, P < 0.001; LATS1 and Mean ± SD 1.36 ± 0.077 in OSCC versus 1.96 ± 0.096 in controls, P < 0.001; LATS2). To the best our knowledge, this is the first report regarding the down-regulation of LATS1/2 through promoter methylation in OSCC. It is suggested to explore the down-stream transcription factors of both genes for finding the molecular mechanism of this deregulation in OSCC.
Collapse
|
25
|
Aylon Y, Oren M. The Hippo pathway, p53 and cholesterol. Cell Cycle 2016; 15:2248-55. [PMID: 27419353 PMCID: PMC5004696 DOI: 10.1080/15384101.2016.1207840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/19/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023] Open
Abstract
ASBTRACT Increased rates of cholesterol and lipid synthesis have long been recognized as important aspects of the metabolic rewiring that occurs during cancerous transformation. Many genes encoding enzymes involved in cholesterol and fatty acid biogenesis are transcriptional targets of the sterol regulatory element-binding proteins (SREBPs). The SREBPs act as a hub for metabolic and proliferation-related signals; their activity is the focus of a tug-of-war between tumor suppressors, who generally inhibit SREBP function, and oncogenes, who often promote, and rely on, SREBP activity. The Hippo pathway plays a central role in coordinating cell proliferation and organ size, whereas p53 is a crucial tumor suppressor that maintains metabolic homeostasis and orchestrates cellular stress responses. Together, the Hippo and p53 signaling pathways cooperate on multiple levels to fine-tune SREPB activity and regulate cholesterol/lipid levels. Cholesterol biosynthesis inhibitors such as statins are appealing conceptually, but have yet to show an indisputable effect on cancer development. Fortunately, the complex regulation surrounding the Hippo-p53-SREBP network potentially provides a broad interface for additional novel cancer-targeting interventions.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Torigata K, Daisuke O, Mukai S, Hatanaka A, Ohka F, Motooka D, Nakamura S, Ohkawa Y, Yabuta N, Kondo Y, Nojima H. LATS2 Positively Regulates Polycomb Repressive Complex 2. PLoS One 2016; 11:e0158562. [PMID: 27434182 PMCID: PMC4951031 DOI: 10.1371/journal.pone.0158562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/19/2016] [Indexed: 11/19/2022] Open
Abstract
LATS2, a pivotal Ser/Thr kinase of the Hippo pathway, plays important roles in many biological processes. LATS2 also function in Hippo-independent pathway, including mitosis, DNA damage response and epithelial to mesenchymal transition. However, the physiological relevance and molecular basis of these LATS2 functions remain obscure. To understand novel functions of LATS2, we constructed a LATS2 knockout HeLa-S3 cell line using TAL-effector nuclease (TALEN). Integrated omics profiling of this cell line revealed that LATS2 knockout caused genome-wide downregulation of Polycomb repressive complex 2 (PRC2) and H3K27me3. Cell-cycle analysis revealed that downregulation of PRC2 was not due to cell cycle aberrations caused by LATS2 knockout. Not LATS1, a homolog of LATS2, but LATS2 bound PRC2 on chromatin and phosphorylated it. LATS2 positively regulates histone methyltransferase activity of PRC2 and their expression at both the mRNA and protein levels. Our findings reveal a novel signal upstream of PRC2, and provide insight into the crucial role of LATS2 in coordinating the epigenome through regulation of PRC2.
Collapse
Affiliation(s)
- Kosuke Torigata
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Okuzaki Daisuke
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Akira Hatanaka
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Fumiharu Ohka
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Yutaka Kondo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
- * E-mail:
| |
Collapse
|
27
|
Okamoto A, Yabuta N, Mukai S, Torigata K, Nojima H. Phosphorylation of CHO1 by Lats1/2 regulates the centrosomal activation of LIMK1 during cytokinesis. Cell Cycle 2016; 14:1568-82. [PMID: 25786116 DOI: 10.1080/15384101.2015.1026489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Large tumor suppressor 1 and 2 (Lats1/2) regulate centrosomal integrity, chromosome segregation and cytokinesis. As components of the centralspindlin complex, the kinesin-like protein CHO1 and its splicing variant MKLP1 colocalize with chromosome passenger proteins and GTPases and regulate the formation of the contractile ring and cytokinesis; however, the regulatory mechanisms of CHO1/MKLP1 remain elusive. Here, we show that Lats1/2 phosphorylate Ser716 in the F-actin-interacting region of CHO1, which is absent in MKLP1. Phosphorylated CHO1 localized to the centrosomes and midbody, and the actin polymerization factor LIM-kinase 1 (LIMK1) was identified as its binding partner. Overexpression of constitutively phosphorylated and non-phosphorylated CHO1 altered the mitotic localization and activation of LIMK1 at the centrosomes in HeLa cells, leading to the inhibition of cytokinesis through excessive phosphorylation of Cofilin and mislocalization of Ect2. These results suggest that Lats1/2 stringently control cytokinesis by regulating CHO1 phosphorylation and the mitotic activation of LIMK1 on centrosomes.
Collapse
Affiliation(s)
- Ayumi Okamoto
- a Department of Molecular Genetics ; Research Institute for Microbial Diseases; Osaka University ; Suita City , Osaka , Japan
| | | | | | | | | |
Collapse
|
28
|
Evaluation of LATS1 and LATS2 Promoter Methylation with the Risk of Pterygium Formation. J Ophthalmol 2016; 2016:5431021. [PMID: 26942001 PMCID: PMC4749796 DOI: 10.1155/2016/5431021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 01/08/2023] Open
Abstract
Purpose. Pterygium is a serious eye problem in countries with high exposure to UV. However, despite numerous studies, the molecular etiology of pterygium is unclear. Recent studies have indicated that LATS1 and LATS2 genes are involved in DDR signaling pathways against continuous UV exposure. Our aim was to evaluate the LATS1 and LATS2 promoter methylation with the risk of pterygium formation. Methods. We evaluated the promoter methylation status of LATS1 and LATS2 using methylation-specific PCR technique. Also, mRNA expression of LATS1 and LATS2 was assessed in 14 cases of pterygium and 14 normal specimens by real-time PCR. Results. Promoter methylation of LATS1 and LATS2 was detected significantly between pterygium tissues and normal tissues [LATS1; OR = 4.9; 95% CI: 1.54 to 15.48, P = 0.003; LATS2; OR = 7.1; 95% CI: 1.53 to 33.19, P = 0.004]. The gene expression analysis showed a statistically significant difference between pterygium tissues and healthy controls for both LATS1 and LATS2 (P < 0.05). Conclusions. The data of this study is the first report regarding the effect of promoter methylation of the LATS1 and LATS2 in the pterygium. To confirm these data, doing further studies in various genetic populations with large sample sizes using advanced molecular techniques is proposed.
Collapse
|
29
|
Kreis NN, Louwen F, Zimmer B, Yuan J. Loss of p21Cip1/CDKN1A renders cancer cells susceptible to Polo-like kinase 1 inhibition. Oncotarget 2015; 6:6611-26. [PMID: 25483104 PMCID: PMC4466638 DOI: 10.18632/oncotarget.2844] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
The deregulation of Polo-like kinase 1 is inversely linked to the prognosis of patients with diverse human tumors. Targeting Polo-like kinase 1 has been widely considered as one of the most promising strategies for molecular anticancer therapy. While the preclinical results are encouraging, the clinical outcomes are rather less inspiring by showing limited anticancer activity. It is thus of importance to identify molecules and mechanisms responsible for the sensitivity of Polo-like kinase 1 inhibition. We have recently shown that p21Cip1/CDKN1A is involved in the regulation of mitosis and its loss prolongs the mitotic duration accompanied by defects in chromosome segregation and cytokinesis in various tumor cells. In the present study, we demonstrate that p21 affects the efficacy of Polo-like kinase 1 inhibitors, especially Poloxin, a specific inhibitor of the unique Polo-box domain. Intriguingly, upon treatment with Polo-like kinase 1 inhibitors, p21 is increased in the cytoplasm, associated with anti-apoptosis, DNA repair and cell survival. By contrast, deficiency of p21 renders tumor cells more susceptible to Polo-like kinase 1 inhibition by showing a pronounced mitotic arrest, DNA damage and apoptosis. Furthermore, long-term treatment with Plk1 inhibitors induced fiercely the senescent state of tumor cells with functional p21. We suggest that the p21 status may be a useful biomarker for predicting the efficacy of Plk1 inhibition.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Brigitte Zimmer
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
30
|
Mei L, Chen Y, Wang Z, Wang J, Wan J, Yu C, Liu X, Li W. Synergistic anti-tumour effects of tetrandrine and chloroquine combination therapy in human cancer: a potential antagonistic role for p21. Br J Pharmacol 2015; 172:2232-45. [PMID: 25521075 DOI: 10.1111/bph.13045] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/28/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the Chinese medicinal herb Stephaniae tetrandrae, has a long history in Chinese clinical applications to treat diverse diseases. Tetrandrine induced apoptosis or, at low concentrations, autophagy of human hepatocellular carcinoma cells. Here we have tested the effects of inhibitors of autophagy such as chloroquine, on the response to low concentrations of tetrandrine in cancer cells. EXPERIMENTAL APPROACH Cultures of several cancer cell lines, including Huh7, U251, HCT116 and A549 cells, were exposed to tetrandrine, chloroquine or a combination of these compounds. Cell viability and content of reactive oxygen species (ROS) were measured and synergy assessed by calculation of the combination index. Western blot and RT-PCR assays were also used along with fluorescence microscopy and histochemical techniques. KEY RESULTS Combinations of tetrandrine and chloroquine were more cytotoxic than the same concentrations used separately and these effects showed synergy. Such effects involved increased ROS generation and were dependent on caspase-3 but independent of Akt activity. Blockade of tetrandrine-induced autophagy with 3-methyladenine or bafilomycin-A1 induced apoptosis in cancer cells. Lack of p21 protein (p21(-/-) HCT116 cells) increased sensitivity to the apoptotic effects of the combination of tetrandrine and chloroquine. In a tumour xenograft model in mice, combined treatment with tetrandrine and chloroquine induced ROS accumulation and cell apoptosis, and decreased tumour growth. CONCLUSIONS AND IMPLICATIONS The combinations of tetrandrine and chloroquine exhibited synergistic anti-tumour activity, in vitro and in vivo. Our results suggest a novel therapeutic strategy for tumour treatment.
Collapse
Affiliation(s)
- Liufeng Mei
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Binding of Kif23-iso1/CHO1 to 14-3-3 is regulated by sequential phosphorylations at two LATS kinase consensus sites. PLoS One 2015; 10:e0117857. [PMID: 25658096 PMCID: PMC4320110 DOI: 10.1371/journal.pone.0117857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/04/2015] [Indexed: 12/22/2022] Open
Abstract
Kif23 kinesin is an essential actor of cytokinesis in animals. It exists as two major isoforms, known as MKLP1 and CHO1, the longest of which, CHO1, contains two HXRXXS/T NDR/LATS kinase consensus sites. We demonstrate that these two sites are readily phosphorylated by NDR and LATS kinases in vitro, and this requires the presence of an upstream -5 histidine residue. We further show that these sites are phosphorylated in vivo and provide evidence revealing that LATS1,2 participate in the phosphorylation of the most C-terminal S814 site, present on both isoforms. This S814 phosphosite was previously reported to constitute a 14-3-3 binding site, which plays a role in Kif23 clustering during cytokinesis. Surprisingly, we found that phosphorylation of the upstream S716 NDR/LATS consensus site, present only in the longest Kif23 isoform, is required for efficient phosphorylation at S814, thus revealing sequential phosphorylation at these two sites, and differential regulation of Kif23-14-3-3 interaction for the two Kif23 isoforms. Finally, we provide evidence that Kif23 is largely unphosphorylated on S814 in post-abscission midbodies, making this Kif23 post-translational modification a potential marker to probe these structures.
Collapse
|
32
|
Dai L, Huang C, Chen L, Shan G, Li Z. Altered expression of microRNAs in the response to ER stress. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-014-0657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Wang M, Guo L, Wu Q, Zeng T, Lin Q, Qiao Y, Wang Q, Liu M, Zhang X, Ren L, Zhang S, Pei Y, Yin Z, Ding F, Wang HR. ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance. Nat Commun 2014; 5:4901. [PMID: 25249323 DOI: 10.1038/ncomms5901] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/02/2014] [Indexed: 11/09/2022] Open
Abstract
ATM- and RAD3-related (ATR)/Chk1 and ataxia-telangiectasia mutated (ATM)/Chk2 signalling pathways play critical roles in the DNA damage response. Here we report that the E3 ubiquitin ligase Smurf1 determines cell apoptosis rates downstream of DNA damage-induced ATR/Chk1 signalling by promoting degradation of RhoB, a small GTPase recognized as tumour suppressor by promoting death of transformed cells. We show that Smurf1 targets RhoB for degradation to control its abundance in the basal state. DNA damage caused by ultraviolet light or the alkylating agent methyl methanesulphonate strongly activates Chk1, leading to phosphorylation of Smurf1 that enhances its self-degradation, hence resulting in a RhoB accumulation to promote apoptosis. Suppressing RhoB levels by overexpressing Smurf1 or blocking Chk1-dependent Smurf1 self-degradation significantly inhibits apoptosis. Hence, our study unravels a novel ATR/Chk1/Smurf1/RhoB pathway that determines cell fate after DNA damage, and raises the possibility that aberrant upregulation of Smurf1 promotes tumorigenesis by excessively targeting RhoB for degradation.
Collapse
Affiliation(s)
- Meilin Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qi Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yikai Qiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qun Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingdong Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lan Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Sheng Zhang
- Department of Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Yihua Pei
- Central Laboratory, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenyu Yin
- Department of Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Feng Ding
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hong-Rui Wang
- 1] State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China [2] Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
34
|
Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene 2014; 34:1758-67. [DOI: 10.1038/onc.2014.133] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
|
35
|
Saleh AA, Bhadra AK, Roy I. Cytotoxicity of mutant huntingtin fragment in yeast can be modulated by the expression level of wild type huntingtin fragment. ACS Chem Neurosci 2014; 5:205-15. [PMID: 24377263 PMCID: PMC3963126 DOI: 10.1021/cn400171d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/26/2013] [Indexed: 12/23/2022] Open
Abstract
Conflicting reports exist in the literature regarding the role of wild-type huntingtin in determining the toxicity of the aggregated, mutant huntingtin in Huntington's disease (HD). Some studies report the amelioration of toxicity of the mutant protein in the presence of the wild-type protein, while others indicate sequestration of the wild-type protein by mutant huntingtin. Over the years, yeast has been established as a valid model organism to study molecular changes associated with HD, especially at the protein level. We have used an inducible system to express human huntingtin fragments harboring normal (25Q) and pathogenic (103Q) polyglutamine lengths under the control of a galactose promoter in a yeast model of HD. We show that the relative expression level of each allele (wild-type/mutant) decides the cellular phenotype. When the expression level of wild-type huntingtin is high, an increase in the solubility of the mutant protein is observed. Fluorescence-recovery-after-photobleaching (FRAP) studies show that solubility reaches ∼94% in these cells. This leads to reduction in oxidative stress and cytotoxicity, and increases cell viability. In-cell FRET studies show that interaction between these proteins does not require the presence of a mediator. When the expression of wild-type huntingtin is low, it is sequestered into aggregates by the mutant protein. Even under these conditions, cytotoxicity is attenuated. Our findings indicate that the presence of wild-type huntingtin has a beneficial role even when its relative expression level is lower than that of the mutant protein.
Collapse
Affiliation(s)
- Aliabbas Ahmedbhai Saleh
- Department of Biotechnology, National Institute
of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ankan Kumar Bhadra
- Department of Biotechnology, National Institute
of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute
of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| |
Collapse
|
36
|
Udden SMN, Morita-Fujimura Y, Satake M, Ikawa S. c-ABL tyrosine kinase modulates p53-dependent p21 induction and ensuing cell fate decision in response to DNA damage. Cell Signal 2013; 26:444-52. [PMID: 24177958 DOI: 10.1016/j.cellsig.2013.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 02/05/2023]
Abstract
The c-ABL non-receptor tyrosine kinase and the p53 tumor suppressor protein are pivotal modulators of cellular responses to DNA damage. However, a comprehensive understanding of the role of c-ABL kinase in p53-dependent transcription of p21(CIP1/WAF1) and ensuing cell fate decision is still obscure. Here, we demonstrate that c-ABL tyrosine kinase regulates p53-dependent induction of p21. As a result, it modulates cell fate decision by p53 in response to DNA damage differently according to the extent of DNA damage. When human cancer cells were treated with DNA damaging agent, adriamycin (0.08 μg/ml), p21 was induced following p53 induction. Owing largely to p21, a substantial fraction of cells treated with adriamycin were blocked at the G2 phase of the cell cycle and most cells eventually became senescent. When these cells were simultaneously treated with a c-ABL kinase inhibitor, STI571, or a c-ABL-specific siRNA along with adriamycin, the p53-dependent p21 induction was dramatically diminished, even though p53 is substantially induced. Accordingly, G2-arrest, and cellular senescence largely dependent on p21 were substantially abrogated. On the contrary, when cells were treated with a relatively high dose of adriamycin (0.4 μg/ml) cells became apoptotic, and the simultaneous presence of a c-ABL kinase inhibitor STI571 augmented the extent of apoptosis. We speculate this is due to abrogation of p53-dependent p21 induction, which leads to elimination of anti-apoptotic function of p21. In summary, c-ABL appears to promote senescence or inhibit apoptosis, depending on the extent of DNA damage. These findings suggest that the combined use of ABL kinase inhibitor and DNA damaging drug in chemotherapy against tumors retaining wild type p53 should be carefully designed.
Collapse
Affiliation(s)
- S M Nashir Udden
- Center for Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan; Department of Project Programs, Tohoku University, Sendai 980-8575, Japan; Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan; Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yuiko Morita-Fujimura
- Center for Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan; Department of Project Programs, Tohoku University, Sendai 980-8575, Japan; International Advanced Research and Education Organization, Tohoku University, Sendai 980-8578, Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan; Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Shuntaro Ikawa
- Center for Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan; Department of Project Programs, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|