1
|
Wijesinghe TP, Kaya B, Gonzálvez MA, Harmer JR, Gholam Azad M, Bernhardt PV, Dharmasivam M, Richardson DR. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure-Activity Relationships of the Novel PPP4pT Series. J Med Chem 2023; 66:15453-15476. [PMID: 37922410 DOI: 10.1021/acs.jmedchem.3c01612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 μM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
4
|
Dharmasivam M, Kaya B, Wijesinghe T, Gholam Azad M, Gonzálvez MA, Hussaini M, Chekmarev J, Bernhardt PV, Richardson DR. Designing Tailored Thiosemicarbazones with Bespoke Properties: The Styrene Moiety Imparts Potent Activity, Inhibits Heme Center Oxidation, and Results in a Novel "Stealth Zinc(II) Complex". J Med Chem 2023; 66:1426-1453. [PMID: 36649565 DOI: 10.1021/acs.jmedchem.2c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel, potent, and selective antitumor agent, namely (E)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one 4,4-dimethyl-3-thiosemicarbazone (PPP44mT), and its analogues were synthesized and characterized and displayed strikingly distinctive properties. This activity was mediated by the inclusion of a styrene moiety, which through steric and electrochemical mechanisms prevented deleterious oxy-myoglobin or oxy-hemoglobin oxidation relative to other potent thiosemicarbazones, i.e., di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Structure-activity relationship analysis demonstrated specific tuning of PPP44mT electrochemistry further inhibited oxy-myoglobin or oxy-hemoglobin oxidation. Both PPP44mT and its Cu(II) complexes showed conspicuous almost immediate cytotoxicity against SK-N-MC tumor cells (within 3 h). In contrast, [Zn(PPP44mT)2] demonstrated a pronounced delay in activity, taking 48 h before marked antiproliferative efficacy was apparent. As such, [Zn(PPP44mT)2] was designated as a "stealth Zn(II) complex" that overcomes the near immediate cytotoxicity of PPP44mT or its copper complexes. Upon examination of the suppression of oncogenic signaling, [Zn(PPP44mT)2] was superior at inhibiting cyclin D1 expression compared to DpC or Dp44mT.
Collapse
Affiliation(s)
- Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia.,Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, 34320Istanbul, Turkey
| | - Tharushi Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Australia
| | - Mohammad Hussaini
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Jason Chekmarev
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| |
Collapse
|
5
|
He YX, Shen H, Ji YZ, Hua HR, Zhu Y, Zeng XF, Wang F, Wang KX. N-myc downstream regulated gene 1 inhibition of tumor progression in Caco2 cells. World J Gastrointest Oncol 2022; 14:2313-2328. [PMID: 36568939 PMCID: PMC9782617 DOI: 10.4251/wjgo.v14.i12.2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Invasion and migration are the irreversible stages of colorectal cancer (CRC). The key is to find a sensitive, reliable molecular marker that can predict the migration of CRC at an early stage. N-myc downstream regulated gene 1 (NDRG1) is a multifunctional gene that has been tentatively reported to have a strong relationship with tumor invasion and migration, however the current molecular role of NDRG1 in CRC remains unknown.
AIM To explore the role of NDRG1 in the development of CRC.
METHODS NDRG1 stably over-expressed Caco2 cell line was established by lentiviral infection and NDRG1 knock-out Caco2 cell line was established by CRISPR/Cas9. Furthermore, the mRNA and protein levels of NDRG1 in Caco2 cells after NDRG1 over-expression and knockout were detected by real-time polymerase chain reaction and western blot. The cell proliferation rate was measured by the cell counting kit-8 method; cell cycle and apoptosis were detected by flow cytometry; invasion and migration ability were detected by the 24-transwell method.
RESULTS NDRG1 over-expression inhibited Caco2 proliferation and the cell cycle could be arrested at the G1/S phase when NDRG1 was over-expressed, while the number of cells in the G2 phase was significantly increased when NDRG1 was knocked out. This suggests that NDRG1 inhibited the proliferation of Caco2 cells by arresting the cell cycle in the G1/S phase. Our data also demonstrated that NDRG1 promotes early cell apoptosis. Invasion and migration of cells were extensively inhibited when NDRG1 was over-expressed.
CONCLUSION NDRG1 inhibits tumor progression in Caco2 cells which may represent a potential novel therapeutic strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Yi-Xiao He
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, Sichuan Province, China
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Hong Shen
- Department of Pathology, Zhaotong First People’s Hospital, Zhaotong 657000, Yunnan Province, China
| | - Yu-Zhu Ji
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, Sichuan Province, China
| | - Hai-Rong Hua
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Yu Zhu
- School of Nursing, Henan Vocational College of Applied Technology, Kaifeng 450000, Henan Province, China
| | - Xiang-Fei Zeng
- Department of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Fang Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Kai-Xin Wang
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518052, Guangdong Province, China
| |
Collapse
|
6
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
7
|
Chen S, Wei X, Zhang X, Yao M, Qiu Z, Chen L, Zhang L. Supplementation with Tex261 provides a possible preventive treatment for hypoxic pulmonary artery hypertension. Front Pharmacol 2022; 13:1028058. [PMID: 36408272 PMCID: PMC9669906 DOI: 10.3389/fphar.2022.1028058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 10/28/2023] Open
Abstract
Objectives: Pulmonary artery hypertension (PAH) is a serious disease for which there is no effective treatment. Its pathogenesis is complex and has not yet been clarified. Tex261 is a protein-coding gene whose functional enrichment nodes include the transporter activity of COP II. However, the role of Tex261 in PAH remains unknown. Methods: Sugen5416/Hypoxic PAH models were established, and pulmonary arteries (PAs) were isolated for proteomic sequencing. The binding sites between Hif-1α and Tex261 were verified by dual-luciferase reporter gene assay. Cell proliferation was detected by MTS and EdU assays. For determination of the preventive and therapeutic effects of Tex261, intratracheal instillation of adeno-associated virus (AVV6) with Tex261 vectors was performed. Results: Tex261 was screened according to the proteomic sequencing data. Hif-1α inhibited Tex261 promoter activity under hypoxia. Decreased Tex261 expression promoted PASMC proliferation. Tex261 regulated Sec23 via the Ndrg1-mediated Akt pathway. Tex261 overexpression improved the pressure and vessel remodeling of PAs induced by Sugen5416/hypoxia. Conclusion: Hypoxia suppressed Tex261 expression through Hif-1α activation. The decreased Tex261 could promote Ndrg1 and depress Akt activity and then inhibit Sec23 activity, which leads to cell proliferation and vessel remodeling. Elevated Tex261 has some preventive and therapeutic effects on rats with PAH.
Collapse
Affiliation(s)
- Shaokun Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Pathophysiology, The School of Basic Medical Sciences, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fuzhou, China
| | - Xiaozhen Wei
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Pathophysiology, The School of Basic Medical Sciences, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fuzhou, China
| | - Xu Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Pathophysiology, The School of Basic Medical Sciences, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fuzhou, China
| | - Mengge Yao
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Pathophysiology, The School of Basic Medical Sciences, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fuzhou, China
| | - Zhihuang Qiu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Pathophysiology, The School of Basic Medical Sciences, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fuzhou, China
| |
Collapse
|
8
|
Li X, Li F. p21-Activated Kinase: Role in Gastrointestinal Cancer and Beyond. Cancers (Basel) 2022; 14:cancers14194736. [PMID: 36230657 PMCID: PMC9563254 DOI: 10.3390/cancers14194736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Gastrointestinal tumors are the most common tumors with a high mortality rate worldwide. Numerous protein kinases have been studied in anticipation of finding viable tumor therapeutic targets, including PAK. PAK is a serine/threonine kinase that plays an important role in the malignant phenotype of tumors. The function of PAK in tumors is highlighted in cell proliferation, survival, motility, tumor cell plasticity and the tumor microenvironment, therefore providing a new possible target for clinical tumor therapy. Based on the current research works of PAK, we summarize and analyze the PAK features and signaling pathways in cells, especially the role of PAK in gastrointestinal tumors, thereby hoping to provide a theoretical basis for both the future studies of PAK and potential tumor therapeutic targets. Abstract Gastrointestinal tumors are the most common tumors, and they are leading cause of cancer deaths worldwide, but their mechanisms are still unclear, which need to be clarified to discover therapeutic targets. p21-activating kinase (PAK), a serine/threonine kinase that is downstream of Rho GTPase, plays an important role in cellular signaling networks. According to the structural characteristics and activation mechanisms of them, PAKs are divided into two groups, both of which are involved in the biological processes that are critical to cells, including proliferation, migration, survival, transformation and metabolism. The biological functions of PAKs depend on a large number of interacting proteins and the signaling pathways they participate in. The role of PAKs in tumors is manifested in their abnormality and the consequential changes in the signaling pathways. Once they are overexpressed or overactivated, PAKs lead to tumorigenesis or a malignant phenotype, especially in tumor invasion and metastasis. Recently, the involvement of PAKs in cellular plasticity, stemness and the tumor microenvironment have attracted attention. Here, we summarize the biological characteristics and key signaling pathways of PAKs, and further analyze their mechanisms in gastrointestinal tumors and others, which will reveal new therapeutic targets and a theoretical basis for the clinical treatment of gastrointestinal cancer.
Collapse
|
9
|
Le N, Hufford TM, Park JS, Brewster RM. Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family. FASEB J 2021; 35:e21961. [PMID: 34665878 PMCID: PMC8573611 DOI: 10.1096/fj.202100443r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Many organisms rely on oxygen to generate cellular energy (adenosine triphosphate or ATP). During severe hypoxia, the production of ATP decreases, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution of the N-myc Downstream Regulated Gene (ndrg) family, ndrg1-4, and their transcriptional response to hypoxia. These genes have been primarily studied in cancer cells and hence little is understood about their normal function and regulation. We show here using in situ hybridization that ndrgs are expressed in metabolically demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. To investigate whether ndrgs are hypoxia-responsive, we exposed embryos to different durations and severity of hypoxia and analyzed transcript levels. We observed that ndrgs are differentially regulated by hypoxia and that ndrg1a has the most robust response, with a ninefold increase following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where the transcript is not observed under normoxic conditions and changes in Ndrg1a protein expression post-reoxygenation. These findings provide an entry point into understanding the role of this conserved gene family in the adaptation of normal cells to hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Nguyet Le
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Timothy M. Hufford
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jong S. Park
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Rachel M. Brewster
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| |
Collapse
|
10
|
Chekmarev J, Azad MG, Richardson DR. The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells 2021; 10:cells10092382. [PMID: 34572031 PMCID: PMC8465210 DOI: 10.3390/cells10092382] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
NDRG1 is an oncogenic signaling disruptor that plays a key role in multiple cancers, including aggressive pancreatic tumors. Recent studies have indicated a role for NDRG1 in the inhibition of multiple tyrosine kinases, including EGFR, c-Met, HER2 and HER3, etc. The mechanism of activity of NDRG1 remains unclear, but to impart some of its functions, NDRG1 binds directly to key effector molecules that play roles in tumor suppression, e.g., MIG6. More recent studies indicate that NDRG1s-inducing drugs, such as novel di-2-pyridylketone thiosemicarbazones, not only inhibit tumor growth and metastasis but also fibrous desmoplasia, which leads to chemotherapeutic resistance. The Casitas B-lineage lymphoma (c-Cbl) protein may be regulated by NDRG1, and is a crucial E3 ligase that regulates various protein tyrosine and receptor tyrosine kinases, primarily via ubiquitination. The c-Cbl protein can act as a tumor suppressor by promoting the degradation of receptor tyrosine kinases. In contrast, c-Cbl can also promote tumor development by acting as a docking protein to mediate the oncogenic c-Met/Crk/JNK and PI3K/AKT pathways. This review hypothesizes that NDRG1 could inhibit the oncogenic function of c-Cbl, which may be another mechanism of its tumor-suppressive effects.
Collapse
Affiliation(s)
- Jason Chekmarev
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
| | - Des R. Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +61-7-3735-7549
| |
Collapse
|
11
|
FOXP1 and NDRG1 act differentially as downstream effectors of RAD9-mediated prostate cancer cell functions. Cell Signal 2021; 86:110091. [PMID: 34298089 DOI: 10.1016/j.cellsig.2021.110091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Metastatic progression is the key feature of prostate cancer primarily responsible for mortality caused by this disease. RAD9 is an oncogene for prostate cancer, and the encoded protein enhances metastasis-related phenotypes. RAD9 is a transcription factor with a limited set of regulated target genes, but the complete list of downstream genes critical for prostate carcinogenesis is unknown. We used microarray gene expression profiling and chromatin immunoprecipitation in parallel to identify genes transcriptionally controlled by RAD9 that contribute to this cancer. We found expression of 44 genes altered in human prostate cancer DU145 cells when RAD9 is knocked down by siRNA, and all of them bind RAD9 at their genomic location. FOXP1 and NDRG1 were down regulated when RAD9 expression was reduced, and we evaluated them further. We demonstrate that reduced RAD9, FOXP1 or NDGR1 expression decreases cell proliferation, rapid migration, anchorage-independent growth, anoikis resistance, and aerobic glycolysis. Ectopic expression of FOXP1 or NDRG1 partially restored aerobic glycolysis to prostate cancer cells with reduced RAD9 abundance, but only FOXP1 significantly complemented the other deficiencies. We thus show, for the first time, that RAD9 regulates FOXP1 and NDRG1 expression, and they function differently as downstream effectors for RAD9-mediated prostate cancer cell activities.
Collapse
|
12
|
Geleta B, Park KC, Jansson PJ, Sahni S, Maleki S, Xu Z, Murakami T, Pajic M, Apte MV, Richardson DR, Kovacevic Z. Breaking the cycle: Targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma. FASEB J 2021; 35:e21347. [PMID: 33484481 DOI: 10.1096/fj.202002279r] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PaCa) is characterized by dense stroma that hinders treatment efficacy, with pancreatic stellate cells (PSCs) being a major contributor to this stromal barrier and PaCa progression. Activated PSCs release hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1) that induce PaCa proliferation, metastasis and resistance to chemotherapy. We demonstrate for the first time that the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is a potent inhibitor of the PaCa-PSC cross-talk, leading to inhibition of HGF and IGF-1 signaling. NDRG1 also potently reduced the key driver of PaCa metastasis, namely GLI1, leading to reduced PSC-mediated cell migration. The novel clinically trialed anticancer agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which upregulates NDRG1, potently de-sensitized PaCa cells to ligands secreted by activated PSCs. DpC and NDRG1 also inhibited the PaCa-mediated activation of PSCs via inhibition of sonic hedgehog (SHH) signaling. In vivo, DpC markedly reduced PaCa tumor growth and metastasis more avidly than the standard chemotherapy for this disease, gemcitabine. Uniquely, DpC was selectively cytotoxic against PaCa cells, while "re-programming" PSCs to an inactive state, decreasing collagen deposition and desmoplasia. Thus, targeting NDRG1 can effectively break the oncogenic cycle of PaCa-PSC bi-directional cross-talk to overcome PaCa desmoplasia and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Bekesho Geleta
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Cancer Drug Resistance Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sanaz Maleki
- Histopathology Laboratory, Department of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Takashi Murakami
- Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Zaklina Kovacevic
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Arias Padilla LF, Castañeda-Cortés DC, Rosa IF, Moreno Acosta OD, Hattori RS, Nóbrega RH, Fernandino JI. Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka. eLife 2021; 10:62757. [PMID: 33646121 PMCID: PMC7946426 DOI: 10.7554/elife.62757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
The production of an adequate number of gametes is necessary for normal reproduction, for which the regulation of proliferation from early gonadal development to adulthood is key in both sexes. Cystic proliferation of germline stem cells is an especially important step prior to the beginning of meiosis; however, the molecular regulators of this proliferation remain elusive in vertebrates. Here, we report that ndrg1b is an important regulator of cystic proliferation in medaka. We generated mutants of ndrg1b that led to a disruption of cystic proliferation of germ cells. This loss of cystic proliferation was observed from embryogenic to adult stages, impacting the success of gamete production and reproductive parameters such as spawning and fertilization. Interestingly, the depletion of cystic proliferation also impacted male sexual behavior, with a decrease of mating vigor. These data illustrate why it is also necessary to consider gamete production capacity in order to analyze reproductive behavior.
Collapse
Affiliation(s)
| | - Diana C Castañeda-Cortés
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ivana F Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Omar D Moreno Acosta
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ, Sao Paulo Fisheries Institute (APTA/SAA), Campos do Jordao, Brazil
| | - Ricardo S Hattori
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Rafael H Nóbrega
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
14
|
Kaempferol ameliorates the regulatory effects of PVT1/ miR-214 on epithelial-mesenchymal transition through the PAK4/β-catenin axis in SRA01/04 cells. Future Med Chem 2021; 13:613-623. [PMID: 33527844 DOI: 10.4155/fmc-2020-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To investigate whether kaempferol exhibits a protective effect on high glucose-induced epithelial-mesenchymal transition (EMT) by mediating the PVT1/miR-214 and PAK4/β-catenin pathways in SRA01/04 cells. Methods & methods: qRT-PCR and western blot assays were used for gene and protein determination, and migration and invasion assays were conducted. A coimmunoprecipitation assay was used for determining protein interactions. Results: High glucose effectively upregulated PVT1 expression, downregulated miR-214 expression and promoted cell migration and invasion. Kaempferol attenuated high glucose-induced EMT by increasing PVT1 expression and decreasing miR-214 expression. PAK4 was identified as a direct target of miR-214. PAK4 overexpression could rescue the effects of PVT1 deficiency on SRA01/04 cells. Conclusion: Kaempferol ameliorated the regulatory effects of PVT1/miR-214 on high glucose-induced EMT through PAK4/β-catenin in SRA01/04 cells.
Collapse
|
15
|
He L, Chang H, Qi Y, Zhang B, Shao Q. ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211062313. [PMID: 34908512 PMCID: PMC8689620 DOI: 10.1177/15330338211062313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Approximately 40% of rectal cancers during initial diagnosis are identified as locally advanced rectal cancers (LARCs), for which the standardized treatment scenario is total mesorectal excision following neoadjuvant chemoradiotherapy (nCRT). nCRT can lead to discernible reductions in local relapse rate and distant metastasis rate in LARC patients, in whom previously inoperable tumors may potentially be surgically removed. However, only 4% to 20% cases can attain pathological complete response, and the remaining patients who are unresponsive to nCRT have to suffer from the side effects plus toxicities and may encounter poor survival outcomes due to the late surgical intervention. As such, employing potential biomarkers to differentiate responders from nonresponders before nCRT implementation appears to be the overarching goal. Well-defined competing endogenous RNA (ceRNA) networks include long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA and circRNA-miRNA-mRNA networks. As ceRNAs, lncRNAs, and circRNAs sponge miRNAs to indirectly suppress miRNAs downstream of oncogenic mRNAs or tumor-suppressive mRNAs. The abnormal expression of mRNAs regulates the nCRT-induced DNA damage repair process through pluralistic carcinogenic signaling pathways, thereby bringing about alterations in the nCRT resistance/sensitivity of tumors. Moreover, many molecular mechanisms relevant to cell proliferation, metastasis, or apoptosis of cancers (eg, epithelial-mesenchymal transition and caspase-9-caspase-3 pathway) are influenced by ceRNA networks. Herein, we reviewed a large group of abnormally expressed mRNAs and noncoding RNAs that are associated with nCRT resistance/sensitivity in LARC patients and ultimately pinpointed the backbone role of ceRNA networks in the molecular mechanisms of nCRT resistance/sensitivity.
Collapse
Affiliation(s)
- Lin He
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Hao Chang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Bing Zhang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
16
|
Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers (Basel) 2020; 12:cancers12123781. [PMID: 33334021 PMCID: PMC7765366 DOI: 10.3390/cancers12123781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Combination of chemotherapeutics for the treatment of childhood cancer can lead to the use of lower cytotoxic drug doses and better therapeutic tolerability (i.e., lower side effects) for patients. We discovered novel molecular targets of two lead thiosemicarbazone agents of the di-2-pyridylketone thiosemicarbazone class. These molecular targets include: cyclooxygenase, the DNA repair protein, O6-methylguanine DNA methyltransferase, mismatch repair proteins, and topoisomerase 2α. This research also identifies promising synergistic interactions of these thiosemicarbazones particularly with the standard chemotherapeutic, celecoxib. Abstract Combining low-dose chemotherapies is a strategy for designing less toxic and more potent childhood cancer treatments. We examined the effects of combining the novel thiosemicarbazones, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), or its analog, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), with the standard chemotherapies, celecoxib (CX), etoposide (ETO), or temozolomide (TMZ). These combinations were analyzed for synergism to inhibit proliferation of three pediatric tumor cell-types, namely osteosarcoma (Saos-2), medulloblastoma (Daoy) and neuroblastoma (SH-SY5Y). In terms of mechanistic dissection, this study discovered novel thiosemicarbazone targets not previously identified and which are important for considering possible drug combinations. In this case, DpC and Dp44mT caused: (1) up-regulation of a major protein target of CX, namely cyclooxygenase-2 (COX-2); (2) down-regulation of the DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), which is known to affect TMZ resistance; (3) down-regulation of mismatch repair (MMR) proteins, MSH2 and MSH6, in Daoy and SH-SY5Y cells; and (4) down-regulation in all three cell-types of the MMR repair protein, MLH1, and also topoisomerase 2α (Topo2α), the latter of which is an ETO target. While thiosemicarbazones up-regulate the metastasis suppressor, NDRG1, in adult cancers, it is demonstrated herein for the first time that they induce NDRG1 in all three pediatric tumor cell-types, validating its role as a potential target. In fact, siRNA studies indicated that NDRG1 was responsible for MGMT down-regulation that may prevent TMZ resistance. Examining the effects of combining thiosemicarbazones with CX, ETO, or TMZ, the most promising synergism was obtained using CX. Of interest, a positive relationship was observed between NDRG1 expression of the cell-type and the synergistic activity observed in the combination of thiosemicarbazones and CX. These studies identify novel thiosemicarbazone targets relevant to childhood cancer combination chemotherapy.
Collapse
|
17
|
Park KC, Dharmasivam M, Richardson DR. The Role of Extracellular Proteases in Tumor Progression and the Development of Innovative Metal Ion Chelators that Inhibit their Activity. Int J Mol Sci 2020; 21:E6805. [PMID: 32948029 PMCID: PMC7555822 DOI: 10.3390/ijms21186805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The crucial role of extracellular proteases in cancer progression is well-known, especially in relation to the promotion of cell invasion through extracellular matrix remodeling. This also occurs by the ability of extracellular proteases to induce the shedding of transmembrane proteins at the plasma membrane surface or within extracellular vesicles. This process results in the regulation of key signaling pathways by the modulation of kinases, e.g., the epidermal growth factor receptor (EGFR). Considering their regulatory roles in cancer, therapeutics targeting various extracellular proteases have been discovered. These include the metal-binding agents di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which increase c-MET degradation by multiple mechanisms. Both the direct and indirect inhibition of protease expression and activity can be achieved through metal ion depletion. Considering direct mechanisms, chelators can bind zinc(II) that plays a catalytic role in enzyme activity. In terms of indirect mechanisms, Dp44mT and DpC potently suppress the expression of the kallikrein-related peptidase-a prostate-specific antigen-in prostate cancer cells. The mechanism of this activity involves promotion of the degradation of the androgen receptor. Additional suppressive mechanisms of Dp44mT and DpC on matrix metalloproteases (MMPs) relate to their ability to up-regulate the metastasis suppressors N-myc downstream regulated gene-1 (NDRG1) and NDRG2, which down-regulate MMPs that are crucial for cancer cell invasion.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
| | - Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
18
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
19
|
Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, Wang J, Zhang E, Deng L. MicroRNAs target the Wnt/β‑catenin signaling pathway to regulate epithelial‑mesenchymal transition in cancer (Review). Oncol Rep 2020; 44:1299-1313. [PMID: 32700744 PMCID: PMC7448411 DOI: 10.3892/or.2020.7703] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial‑mesenchymal transition (EMT), during which cancer cells lose the epithelial phenotype and gain the mesenchymal phenotype, has been verified to result in tumor migration and invasion. Numerous studies have shown that dysregulation of the Wnt/β‑catenin signaling pathway gives rise to EMT, which is characterized by nuclear translocation of β‑catenin and E‑cadherin suppression. Wnt/β‑catenin signaling was confirmed to be affected by microRNAs (miRNAs), several of which are down‑ or upregulated in metastatic cancer cells, indicating their complex roles in Wnt/β‑catenin signaling. In this review, we demonstrated the targets of various miRNAs in altering Wnt/β‑catenin signaling to promote or inhibit EMT, which may elucidate the underlying mechanism of EMT regulation by miRNAs and provide evidence for potential therapeutic targets in the treatment of invasive tumors.
Collapse
Affiliation(s)
- Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Ge Zhang
- Department of Big Data Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Aiyun Shan
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Chunfeng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Liang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiayu Sun
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Xin Liao
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Changfeng Zhu
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Yueyue Chen
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Enxin Zhang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
20
|
Tang L, Gao Y, Song Y, Li Y, Li Y, Zhang H, Li D, Li J, Liu C, Li F. PAK4 phosphorylating RUNX1 promotes ERα-positive breast cancer-induced osteolytic bone destruction. Int J Biol Sci 2020; 16:2235-2247. [PMID: 32549768 PMCID: PMC7294946 DOI: 10.7150/ijbs.47225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
The biological function of nuclear PAK4 in ERα-positive breast cancer osteolytic bone destruction remains unclear. Here, we find that the nuclear PAK4 promotes osteoclastogenesis and tumor-induced osteolysis via phosphorylating RUNX1. We show that nuclear PAK4 interacts with and phosphorylates RUNX1 at Thr-207, which induces its localization from the nucleus to the cytoplasm and influences direct interaction with SIN3A/HDAC1 and PRMT1. Furthermore, we reveal that RUNX1 phosphorylation by PAK4 at Thr-207 promotes osteolytic bone destruction via targeting downstream genes related to osteoclast differentiation and maturation. Importantly, we verify changes in RUNX1 subcellular localization when nuclear PAK4 is positive in breast cancer bone metastasis tissues. Functionally, we demonstrate that RUNX1 phosphorylation promotes osteolytic bone maturation and ERα-positive breast cancer-induced osteolytic bone damage in the mouse model of orthotopic breast cancer bone metastasis. Our results suggest PAK4 can be a therapeutic target for ERα-positive breast cancer osteolytic bone destruction.
Collapse
Affiliation(s)
- Lina Tang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yongqi Song
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| |
Collapse
|
21
|
Menezes SV, Fouani L, Huang MLH, Geleta B, Maleki S, Richardson A, Richardson DR, Kovacevic Z. The metastasis suppressor, NDRG1, attenuates oncogenic TGF-β and NF-κB signaling to enhance membrane E-cadherin expression in pancreatic cancer cells. Carcinogenesis 2020; 40:805-818. [PMID: 30561520 DOI: 10.1093/carcin/bgy178] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/18/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
The metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), plays multifaceted roles in inhibiting oncogenic signaling and can suppress the epithelial mesenchymal transition (EMT), a key step in metastasis. In this investigation, NDRG1 inhibited the oncogenic effects of transforming growth factor-β (TGF-β) in PANC-1 pancreatic cancer cells, promoting expression and co-localization of E-cadherin and β-catenin at the cell membrane. A similar effect of NDRG1 at supporting E-cadherin and β-catenin co-localization at the cell membrane was also demonstrated for HT-29 colon and CFPAC-1 pancreatic cancer cells. The increase in E-cadherin in PANC-1 cells in response to NDRG1 was mediated by the reduction of three transcriptional repressors of E-cadherin, namely SNAIL, SLUG and ZEB1. To dissect the mechanisms how NDRG1 inhibits nuclear SNAIL, SLUG and ZEB1, we assessed involvement of the nuclear factor-κB (NF-κB) pathway, as its aberrant activation contributes to the EMT. Interestingly, NDRG1 comprehensively inhibited oncogenic NF-κB signaling at multiple sites in this pathway, suppressing NEMO, Iĸĸα and IĸBα expression, as well as reducing the activating phosphorylation of Iĸĸα/β and IĸBα. NDRG1 also reduced the levels, nuclear co-localization and DNA-binding activity of NF-κB p65. Further, Iĸĸα, which integrates NF-κB and TGF-β signaling to upregulate ZEB1, SNAIL and SLUG, was identified as an NDRG1 target. Considering this, therapies targeting NDRG1 could be a new strategy to inhibit metastasis, and as such, we examined novel anticancer agents, namely di-2-pyridylketone thiosemicarbazones, which upregulate NDRG1. These agents downregulated SNAIL, SLUG and ZEB1 in vitro and in vivo using a PANC-1 tumor xenograft model, demonstrating their marked potential.
Collapse
Affiliation(s)
- Sharleen V Menezes
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Michael L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bekesho Geleta
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sanaz Maleki
- Histopathology Laboratory, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Jin R, Wang X, Zang R, Liu C, Zheng S, Li H, Sun N, He J. Desmoglein-2 modulates tumor progression and osimertinib drug resistance through the EGFR/Src/PAK1 pathway in lung adenocarcinoma. Cancer Lett 2020; 483:46-58. [PMID: 32272148 DOI: 10.1016/j.canlet.2020.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Desmoglein-2 (DSG2), a member of the cadherin superfamily, has been implicated in cell-cell adhesion and tumorigenesis. Here, we demonstrate that high DSG2 expression in both lung adenocarcinoma (LUAD) cell lines and tissues is associated with poor prognosis in LUAD patients. Notably, DSG2 overexpression promoted cell proliferation and migration, and increased resistance to the EGFR tyrosine kinase inhibitor osimertinib, whereas DSG2 silencing could reverse these results. Moreover, direct interaction between DSG2 and EGFR in the cell membrane stimulated EGFR signaling to promote tumorigenesis, and loss of DSG2 resulted in EGFR translocation into the cytoplasm. In addition, DSG2 was required for EGFR binding to Src; consequently, DSG2 silencing inhibited tumor cell malignancy via suppression of the EGFR-Src-Rac1-PAK1 signaling pathway. Consistent with these findings, a nude mouse xenograft model using H1975 cells demonstrated that DSG2 promoted LUAD cell growth in vivo and increased osimertinib resistance. Collectively, these observations are the first to elucidate a unique role for DSG2 in the development and progression of lung adenocarcinoma via EGFR signaling.
Collapse
Affiliation(s)
- Runsen Jin
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China; Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, PR China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, PR China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| |
Collapse
|
23
|
Luo Q, Li B, Li G. Mannose Suppresses the Proliferation and Metastasis of Lung Cancer by Targeting the ERK/GSK-3β/β-Catenin/SNAIL Axis. Onco Targets Ther 2020; 13:2771-2781. [PMID: 32308412 PMCID: PMC7135191 DOI: 10.2147/ott.s241816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION It has been found that mannose exerts antitumoural properties in vitro and in animal models. Whether mannose has potential anti-proliferative and anti-metastatic properties against non-small-cell lung cancer (NSCLC) is still unclear. METHODS Here, we performed ex vivo experiments and established a nude mouse model to evaluate the anticancer effects of mannose on NSCLC cells and its effects on the ERK/GSK-3β/β-catenin/SNAIL axis. A CCK-8 assay was conducted to evaluate the effects of mannose on lung cancer cells (A549 and HCC827) and normal lung cells (HPAEpiC). Transwells were used to examine the motility of cancer cells. qRT-PCR was used to evaluate the effects of mannose on the mRNA expression of β-catenin. Western blotting was conducted to explore the effects of mannose on the ERK/GSK-3β/β-catenin/SNAIL axis and nuclear accumulation of β-catenin. An animal model was established to evaluate the antitumoural effect of mannose on hepatic metastasis in vivo. RESULTS In this study, we found that mannose inhibited the proliferation of A549 and HCC827 cells in vitro both time- and dose-dependently. However, it exerted only a slight influence on the viability of normal lung cells in vitro. Moreover, mannose also inhibited the migrating and invading capacity of NSCLC cells in vitro. Using Western blotting, we observed that mannose reduced SNAIL and β-catenin expression and ERK activation and promoted phospho-GSK-3β expression. The ERK agonist LM22B-10 promoted the metastatic ability of NSCLC cells and increased SNAIL and β-catenin expression in cancer cells, which could be reversed by mannose. Furthermore, ERK-mediated phosphorylation of the β-catenin-Tyr654 residue might participate in the nuclear accumulation of β-catenin and its transcriptional function. The results from animal experiments showed that mannose effectively reduced hepatic metastasis of A549 cells in vivo. Furthermore, mannose inhibited ERK/GSK-3β/β-catenin/SNAIL in tumour tissues obtained from nude mice. DISCUSSION Collectively, these findings suggest that mannose exerts anti-metastatic activity against NSCLC by inhibiting the activation of the ERK/GSK-3β/β-catenin/SNAIL axis, which indicates the potential anticancer effects of mannose.
Collapse
Affiliation(s)
- Qingsong Luo
- Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan610072, People’s Republic of China
| | - Bei Li
- Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan610072, People’s Republic of China
| | - Gang Li
- Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan610072, People’s Republic of China
| |
Collapse
|
24
|
Gamell C, Bandilovska I, Gulati T, Kogan A, Lim SC, Kovacevic Z, Takano EA, Timpone C, Agupitan AD, Litchfield C, Blandino G, Horvath LG, Fox SB, Williams SG, Russo A, Gallo E, Paul PJ, Mitchell C, Sandhu S, Keam SP, Haupt S, Richardson DR, Haupt Y. E6AP Promotes a Metastatic Phenotype in Prostate Cancer. iScience 2019; 22:1-15. [PMID: 31739170 PMCID: PMC6864340 DOI: 10.1016/j.isci.2019.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 11/18/2022] Open
Abstract
Although primary prostate cancer is largely curable, progression to metastatic disease is associated with very poor prognosis. E6AP is an E3 ubiquitin ligase and a transcriptional co-factor involved in normal prostate development. E6AP drives prostate cancer when overexpressed. Our study exposed a role for E6AP in the promotion of metastatic phenotype in prostate cells. We revealed that elevated levels of E6AP in primary prostate cancer correlate with regional metastasis and demonstrated that E6AP promotes acquisition of mesenchymal features, migration potential, and ability for anchorage-independent growth. We identified the metastasis suppressor NDRG1 as a target of E6AP and showed it is key in E6AP induction of mesenchymal phenotype. We showed that treatment of prostate cancer cells with pharmacological agents upregulated NDRG1 expression suppressed E6AP-induced cell migration. We propose that the E6AP-NDRG1 axis is an attractive therapeutic target for the treatment of E6AP-driven metastatic prostate cancer. Elevated E6AP levels in primary PC in men correlate with regional metastasis Elevated E6AP levels promote mesenchymal features and migration potential E6AP promotes a metastatic phenotype by reducing NDRG1 expression levels Pharmacological upregulation of NDRG1 suppresses E6AP-induced cell migration
Collapse
Affiliation(s)
- Cristina Gamell
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Ivona Bandilovska
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Twishi Gulati
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Arielle Kogan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Syer Choon Lim
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Zaklina Kovacevic
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Elena A Takano
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Clelia Timpone
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Arjelle D Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Cassandra Litchfield
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | | | - Lisa G Horvath
- The Chris O'Brien Lifehouse, Sydney, NSW 2050, Australia; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Stephen B Fox
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Scott G Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Andrea Russo
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Piotr J Paul
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon P Keam
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Department of Pathology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
25
|
Mechanisms of Metastasis in Colorectal Cancer and Metastatic Organotropism: Hematogenous versus Peritoneal Spread. JOURNAL OF ONCOLOGY 2019; 2019:7407190. [PMID: 31641356 PMCID: PMC6770301 DOI: 10.1155/2019/7407190] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Metastasis is the major cause of death in patients with colorectal carcinoma (CRC). The most common sites of metastasis are the liver and the peritoneum. Peritoneal carcinomatosis is often considered the end stage of the disease after the tumor has spread to the liver. However, almost half of CRC patients with peritoneal carcinomatosis do not present with liver metastasis. This brings up the question of whether peritoneal spread can still be considered as the end stage of a metastasized CRC or whether it should just be interpreted as a site of metastasis alternative to the liver. This review tries to discuss this question and summarize the current status of literature on potential characteristics in tumor biology in the primary tumor, i.e., factors (transcription factors and direct and indirect E-cadherin repressors) and pathways (WNT, TGF-β, and RAS) modulating EMT, regulation of EMT on a posttranscriptional and posttranslational level (miRNAs), and angiogenesis. In addition to tumor-specific characteristics, factors in the tumor microenvironment, immunological markers, ways of transport of tumor cells, and adhesion molecules appear to differ between hematogenous and peritoneal spread. Factors such as integrins and exosomal integrins, cancer stem cell phenotype, and miRNA expression appear to contribute in determining the metastatic route. We went through each step of the metastasis process comparing hematogenous to peritoneal spread. We identified differences with respect to organotropism, epithelial-mesenchymal transition, angiogenesis and inflammation, and tumor microenvironment which will be further elucidated in this review. A better understanding of the underlying mechanisms and contributing factors of metastasis development in CRC has huge relevance as it is the foundation to help find specific targets for treatment of CRC.
Collapse
|
26
|
Solan JL, Márquez-Rosado L, Lampe PD. Cx43 phosphorylation-mediated effects on ERK and Akt protect against ischemia reperfusion injury and alter the stability of the stress-inducible protein NDRG1. J Biol Chem 2019; 294:11762-11771. [PMID: 31189653 DOI: 10.1074/jbc.ra119.009162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/09/2019] [Indexed: 11/06/2022] Open
Abstract
Gap junctions contain intercellular channels that enable intercellular communication of small molecules while also serving as a signaling scaffold. Connexins, the proteins that form gap junctions in vertebrates, are highly regulated and typically have short (<2 h) half-lives. Connexin43 (Cx43), the predominate connexin in the myocardium and epithelial tissues, is phosphorylated on more than a dozen serine residues and interacts with a variety of protein kinases. These interactions regulate Cx43 and gap junction formation and stability. Casein kinase 1 (CK1)-mediated phosphorylation of Cx43 promotes gap junction assembly. Using murine knock-in technology and quantitative PCR, immunoblotting, and immunoprecipitation assays, we show here that mutation of the CK1 phosphorylation sites in Cx43 reduces the levels of total Cx43 in the myocardium and increases Cx43 phosphorylation on sites phosphorylated by extracellular signal-regulated kinase (ERK). In aged myocardium, we found that, compared with WT Cx43, mutant Cx43 expression increases ERK activation, phosphorylation of Akt substrates, and protection from ischemia-induced injury. Our findings also uncovered that Cx43 interacts with the hypoxia-inducible protein N-Myc downstream-regulated gene 1 protein (NDRG1) and that Cx43 phosphorylation status controls this interaction and dramatically affects NDRG1 stability. We propose that, in addition to altering gap junction stability, Cx43 phosphorylation directly and dynamically regulates cellular signaling through ERK and Akt in response to ischemic injury. We conclude that gap junction-dependent NDRG1 regulation might explain some cellular responses to hypoxia.
Collapse
Affiliation(s)
- Joell L Solan
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Lucrecia Márquez-Rosado
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
27
|
Pütz SM. Mbt/PAK4 together with SRC modulates N-Cadherin adherens junctions in the developing Drosophila eye. Biol Open 2019; 8:8/3/bio038406. [PMID: 30885947 PMCID: PMC6451336 DOI: 10.1242/bio.038406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tissue morphogenesis is accompanied by changes of adherens junctions (AJ). During Drosophila eye development, AJ reorganization includes the formation of isolated N-Cadherin AJ between photoreceptors R3/R4. Little is known about how these N-Cadherin AJ are established and maintained. This study focuses on the kinases Mbt/PAK4 and SRC, both known to alter E-Cadherin AJ across phyla. Drosophila p21-activated kinase Mbt and the non-receptor tyrosine kinases Src64 and Src42 regulate proper N-Cadherin AJ. N-Cadherin AJ elongation depends on SRC kinase activity. Cell culture experiments demonstrate binding of both Drosophila SRC isoforms to N-Cadherin and its subsequent tyrosine phosphorylation. In contrast, Mbt stabilizes but does not bind N-Cadherin in vitro. Mbt is required in R3/R4 for zipping the N-Cadherin AJ between these cells, independent of its kinase activity and Cdc42-binding. The mbt phenotype can be reverted by mutations in Src64 and Src42. Because Mbt neither directly binds to SRC proteins nor has a reproducible influence on their kinase activity, the conclusion is that Mbt and SRC signaling converge on N-Cadherin. N-Cadherin AJ formation during eye development requires a proper balance between the promoting effects of Mbt and the inhibiting influences of SRC kinases. Summary: N-Cadherin adherens junction formation in the Drosophila larval eye imaginal disc is controlled by the combined functions of the p21-activated kinase Mbt/PAK4 and the kinases Src64 and Src42.
Collapse
Affiliation(s)
- Stephanie M Pütz
- Institute of Medical Radiation and Cell Research, University of Würzburg, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
28
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
29
|
Sahni S, Park KC, Kovacevic Z, Richardson DR. Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1361-1378. [PMID: 30763642 DOI: 10.1016/j.bbadis.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
N-myc downstream regulated gene 1 (NDRG1) is an intriguing metastasis suppressor protein, which plays an important role in suppressing multiple oncogenic signaling pathways. Interestingly, multiple isoforms of NDRG1 have been identified, although the molecular mechanisms involved in their generation remains elusive. Herein, we demonstrate the role of two mechanisms involving autophagic and proteasomal machinery as part of an intricate system to generate different NDRG1 isoforms. Examining multiple pancreatic cancer cell-types using immunoblotting demonstrated three major isoforms of NDRG1 at approximately 41-, 46- and 47-kDa. The top NDRG1 band at 47-kDa was shown to be processed by the proteasome, followed by autophagic metabolism of the middle NDRG1 band at 46-kDa. The role of the proteasomal and autophagic pathways in NDRG1 processing was further confirmed by co-localization analysis of confocal images using PSMD9 and LC3 as classical markers of these respective pathways. All NDRG1 isoforms were demonstrated to be, at least in part, phosphorylated forms of the protein. Inhibition of two well-characterized upstream kinases of NDRG1, namely GSK3β and SGK1, resulted in decreased levels of the top NDRG1 band. Studies demonstrated that inhibition of GSK3β decreased levels of the top 47-kDa NDRG1 band, independent of its kinase activity, and this effect was not mediated via the proteasomal pathway. In contrast, the decrease in the top NDRG1 band at 47-kDa after SGK1 inhibition, was due to suppression of its kinase activity. Overall, these studies elucidated the complex and intricate regulatory pathways involving both proteasomal and autophagic processing of the metastasis suppressor protein, NDRG1.
Collapse
Affiliation(s)
- Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
30
|
Menezes SV, Kovacevic Z, Richardson DR. The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6. J Biol Chem 2019; 294:4045-4064. [PMID: 30679310 DOI: 10.1074/jbc.ra118.006279] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
The metastasis suppressor, N-Myc downstream-regulated gene-1 (NDRG1) inhibits a plethora of oncogenic signaling pathways by down-regulating the epidermal growth factor receptor (EGFR). Herein, we examined the mechanism involved in NDRG1-mediated EGFR down-regulation. NDRG1 overexpression potently increased the levels of mitogen-inducible gene 6 (MIG6), which inhibits EGFR and facilitates its lysosomal processing and degradation. Conversely, silencing NDRG1 in multiple human cancer cell types decreased MIG6 expression, demonstrating the regulatory role of NDRG1. Further, NDRG1 overexpression facilitated MIG6-EGFR association in the cytoplasm, possibly explaining the significantly (p <0.001) increased half-life of MIG6 from 1.6 ± 0.2 h under control conditions to 7.9 ± 0.4 h after NDRG1 overexpression. The increased MIG6 levels enhanced EGFR co-localization with the late endosome/lysosomal marker, lysosomal-associated membrane protein 2 (LAMP2). An increase in EGFR levels after MIG6 silencing was particularly apparent when NDRG1 was overexpressed, suggesting a role for MIG6 in NDRG1-mediated down-regulation of EGFR. Silencing phosphatase and tensin homolog (PTEN), which facilitates early to late endosome maturation, decreased MIG6, and also increased EGFR levels in both the presence and absence of NDRG1 overexpression. These results suggest a role for PTEN in regulating MIG6 expression. Anti-tumor drugs of the di-2-pyridylketone thiosemicarbazone class that activate NDRG1 expression also potently increased MIG6 and induced its cytosolic co-localization with NDRG1. This was accompanied by a decrease in activated and total EGFR levels and its redistribution to late endosomes/lysosomes. In conclusion, NDRG1 promotes EGFR down-regulation through the EGFR inhibitor MIG6, which leads to late endosomal/lysosomal processing of EGFR.
Collapse
Affiliation(s)
- Sharleen V Menezes
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - Zaklina Kovacevic
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - Des R Richardson
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| |
Collapse
|
31
|
Han W, Wang Y, Fan J, Wang C. Is APC hypermethylation a diagnostic biomarker for bladder cancer? A meta-analysis. Onco Targets Ther 2018; 11:8359-8369. [PMID: 30568459 PMCID: PMC6267632 DOI: 10.2147/ott.s177601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Numerous studies have been performed to investigate the association between APC promoter hypermethylation and bladder cancer risk. Nevertheless, the conclusion was uncertain due to small sample size, different ethnicities, and tumor subtype. Hence, to accurately assess the effect of APC promoter hypermethylation on the risk of bladder cancer, we performed the meta-analysis. Materials and methods We retrieved the relevant literatures from electronic databases such as PubMed, Web of Science, Wanfang, Vapp, and CNKI (Chinese National Knowledge Infrastructure). 95% CI and OR were calculated to evaluate the associations of APC promoter hypermethylation with risk and clinical features of bladder cancer. Heterogeneity among studies was assessed with Q test and I 2 statistic. In addition, the diagnostic sensitivity, specificity, and area under the curve (AUC) value of APC hypermethylation for bladder cancer were calculated. Results In total, 14 articles with 531 controls and 1,293 cases were included to assess the associations of APC promoter hypermethylation with the risk and clinical characteristics of bladder cancer. The significant association between APC promoter hypermethylation and bladder cancer risk was detected (OR =17.01, CI =7.40-39.07). Furthermore, the results revealed that APC promoter hypermethylation was significantly correlated with the grade of bladder tumor (pTNM stage: OR =1.84, CI =0.87-3.93; grade: OR =4.11, CI =1.62-10.43). According to the results of diagnostic evaluation, the diagnostic sensitivity, specificity, and AUC value of APC hypermethylation for bladder cancer risk were 0.52 (95% CI =0.41-0.63), 0.98 (95% CI =0.90-1.00), and 0.80 (95% CI =0.76-0.83), respectively. Conclusion This meta-analysis revealed that APC promoter hypermethylation was a risk factor for bladder cancer risk. In addition, APC promoter hypermethylation was significantly associated with the grade of bladder cancer. APC hypermethylation might be a useful biomarker for the clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Wei Han
- Department of Pharmacy, Central Hospital of Zibo Mining Group Limited Liability Company, Zibo, China
| | - Yutao Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Jingli Fan
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Chunlei Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| |
Collapse
|
32
|
Extract from Moringa oleifera seeds suppresses the epithelial-mesenchymal transition-mediated metastasis of gastric cancer by targeting the metastatic suppressor NDRG1. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
33
|
Vaes N, Schonkeren SL, Brosens E, Koch A, McCann CJ, Thapar N, Hofstra RM, van Engeland M, Melotte V. A combined literature and in silico analysis enlightens the role of the NDRG family in the gut. Biochim Biophys Acta Gen Subj 2018; 1862:2140-2151. [DOI: 10.1016/j.bbagen.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
|
34
|
Chow HY, Dong B, Valencia CA, Zeng CT, Koch JN, Prudnikova TY, Chernoff J. Group I Paks are essential for epithelial- mesenchymal transition in an Apc-driven model of colorectal cancer. Nat Commun 2018; 9:3473. [PMID: 30150766 PMCID: PMC6110733 DOI: 10.1038/s41467-018-05935-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/02/2018] [Indexed: 02/05/2023] Open
Abstract
p21-activated kinases (Paks) play an important role in oncogenic signaling pathways and have been considered as potential therapeutic targets in various cancers. Most studies of Pak function employ gene knock-out or knock-down methods, but these approaches result in loss of both enzymatic and scaffolding properties of these proteins, and thus may not reflect the effects of small molecule inhibitors. Here we use a transgenic mouse model in which a specific peptide inhibitor of Group I Paks is conditionally expressed in response to Cre recombinase. Using this model, we show that inhibition of endogenous Paks impedes the transition of adenoma to carcinoma in an Apc-driven mouse model of colorectal cancer. These effects are mediated by inhibition of Wnt signaling through reduced β-catenin activity as well as suppression of an epithelial-mesenchymal transition program mediated by miR-200 and Snai1. These results highlight the potential therapeutic role of Pak1 inhibitors in colorectal cancer.
Collapse
Affiliation(s)
- H Y Chow
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - B Dong
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
| | - C A Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - C T Zeng
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
| | - J N Koch
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - T Y Prudnikova
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - J Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
35
|
Drulis-Fajdasz D, Rakus D, Wiśniewski JR, McCubrey JA, Gizak A. Systematic analysis of GSK-3 signaling pathways in aging of cerebral tissue. Adv Biol Regul 2018; 69:35-42. [PMID: 29958836 DOI: 10.1016/j.jbior.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a constitutively active kinase, involved in regulation of multiple physiological processes. In brain, changes in GSK-3 signaling are related to neurodegenerative issues, including Alzheimer's disease. Due to the wide range of GSK-3 cellular targets, a therapeutic use of the enzyme inhibitors entails significant risk of side effects. Thus, altering the ratio of specific pool of GSK-3 or specific substrates instead of changing the global activity of GSK-3 in brains might be a more appropriate strategy. This paper provides a comprehensive data on abundances of proteins involved in GSK-3 signaling in three regions of young and old mouse brains. It might help to identify novel protein targets with the highest therapeutic potential for treatment of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- D Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - D Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - J R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - A Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland.
| |
Collapse
|
36
|
Park KC, Menezes SV, Kalinowski DS, Sahni S, Jansson PJ, Kovacevic Z, Richardson DR. Identification of differential phosphorylation and sub-cellular localization of the metastasis suppressor, NDRG1. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2644-2663. [DOI: 10.1016/j.bbadis.2018.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
|
37
|
Sevinsky CJ, Khan F, Kokabee L, Darehshouri A, Maddipati KR, Conklin DS. NDRG1 regulates neutral lipid metabolism in breast cancer cells. Breast Cancer Res 2018; 20:55. [PMID: 29898756 PMCID: PMC6001025 DOI: 10.1186/s13058-018-0980-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Background Altered lipid metabolism is an emerging hallmark of aggressive breast cancers. The N-myc downstream regulated gene (NDRG1) gene plays a critical role in peripheral nervous system myelination, as inactivating mutations cause severe demyelinating neuropathy. In breast cancer, elevated NDRG1 expression has been linked to clinical outcomes, but its functional role in breast cancer physiology has remained unclear. Methods A meta-analysis of NDRG1 expression in multiple large publicly available genomic databases was conducted. Genome-wide expression correlation and Cox proportional hazards and Kaplan-Meier modeling of clinical outcomes associated with elevated expression were assessed. To study NDRG1 function, gene silencing and overexpression phenotypic studies were carried out in a panel of cell lines representing all major breast cancer molecular subtypes. Changes in cell proliferation, morphology, and neutral lipid accumulation due to altered NDRG1 expression were assessed by high throughput, quantitative microscopy. Comprehensive lipidomics mass spectrometry was applied to characterize global changes in lipid species due to NDRG1 silencing. Labeled fatty acids were used to monitor cellular fatty acid uptake and subcellular distribution under nutrient replete and starvation culture conditions. Results NDRG1 overexpression correlated with glycolytic and hypoxia-associated gene expression, and was associated with elevated rates of metastasis and patient mortality. Silencing NDRG1 reduced cell proliferation rates, causing lipid metabolism dysfunction including increased fatty acid incorporation into neutral lipids and lipid droplets. Conversely, NDRG1 expression minimized lipid droplet formation under nutrient replete and starvation conditions. Conclusions Here we report that NDRG1 contributes to breast cancer aggressiveness by regulating the fate of lipids in cells that exhibit an altered lipid metabolic phenotype. In line with its role in promoting myelination and its association with altered metabolism in cancer, our findings show that NDRG1 is a critical regulator of lipid fate in breast cancer cells. The association between NDRG1 and poor prognosis in breast cancer suggests it should play a more prominent role in patient risk assessment. The function of NDRG1 in breast cancer lipid metabolism may represent a promising therapeutic approach in the future. Electronic supplementary material The online version of this article (10.1186/s13058-018-0980-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher J Sevinsky
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, CRC 342, One Discovery Drive, Rensselaer, NY, 12144-3456, USA
| | - Faiza Khan
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, CRC 342, One Discovery Drive, Rensselaer, NY, 12144-3456, USA
| | - Leila Kokabee
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, CRC 342, One Discovery Drive, Rensselaer, NY, 12144-3456, USA
| | - Anza Darehshouri
- Electron Microscopy Core Facility, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Krishna Rao Maddipati
- Lipidomics Core Facility, Wayne State University, 435 Chemistry Bldg., Detroit, MI, 48202, USA
| | - Douglas S Conklin
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, CRC 342, One Discovery Drive, Rensselaer, NY, 12144-3456, USA.
| |
Collapse
|
38
|
Kim SC, Shin YK, Kim YA, Jang SG, Ku JL. Identification of genes inducing resistance to ionizing radiation in human rectal cancer cell lines: re-sensitization of radio-resistant rectal cancer cells through down regulating NDRG1. BMC Cancer 2018; 18:594. [PMID: 29801473 PMCID: PMC5970486 DOI: 10.1186/s12885-018-4514-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Background Resistance to preoperative radiotherapy is a major clinical problem in the treatment for locally advanced rectal cancer. The role of NDRG1 in resistance to ionizing radiation in rectal cancer has not been fully elucidated. This study aimed to investigate the effect of the reduced intracellular NDRG1 expression on radio-sensitivity of human rectal cancer cells for exploring novel approaches for treatment of rectal cancer. Methods Three radio-resistant human rectal cancer cell lines (SNU-61R80Gy, SNU-283R80Gy, and SNU-503R80Gy) were established from human rectal cancer cell lines (SNU-61, SNU-283, and SNU-503) using total 80 Gy of fractionated irradiation. Microarray analysis was performed to identify differently expressed genes in newly established radio-resistant human rectal cancer cells compared to parental rectal cancer cells. Results A microarray analysis indicated the RNA expression of five genes (NDRG1, ERRFI1, H19, MPZL3, and UCA1) was highly increased in radio-resistant rectal cancer cell lines. Short hairpin RNA-mediated silencing of NDRG1 sensitized rectal cancer cell lines to clinically relevant doses of radiation by causing more DNA double strand breakages to rectal cancer cells when exposed to radiation. Conclusions Targeting NDRG1 represents a promising strategy to increase response to radiotherapy in human rectal cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4514-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Young-Kyoung Shin
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ye-Ah Kim
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sang-Geun Jang
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ja-Lok Ku
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
39
|
N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2. Oncotarget 2018; 8:47709-47724. [PMID: 28537875 PMCID: PMC5564599 DOI: 10.18632/oncotarget.17711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Abstract
N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion, NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.
Collapse
|
40
|
Ambrosio S, Amente S, Saccà CD, Capasso M, Calogero RA, Lania L, Majello B. LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene. Oncotarget 2018; 8:3854-3869. [PMID: 27894074 PMCID: PMC5354800 DOI: 10.18632/oncotarget.12924] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) with MYCN amplification is a highly aggressive and metastatic tumor in children. The high recurrence rate and resistance of NB cells to drugs urgently demands a better therapy for this disease. We have recently found that MYCN interacts with the lysine-specific demethylase 1 (LSD1), a histone modifier that participates in key aspects of gene transcription. In cancer cells, LSD1 contributes to the genetic reprogramming that underlies to Epithelial-Mesenchymal Transition (EMT) and tumor metastasis. Here, we show that LSD1 affects motility and invasiveness of NB cells by modulating the transcription of the metastasis suppressor NDRG1 (N-Myc Downstream-Regulated Gene 1). At mechanistic level, we found that LSD1 co-localizes with MYCN at the promoter region of the NDRG1 gene and inhibits its expression. Pharmacological inhibition of LSD1 relieves repression of NDRG1 by MYCN and affects motility and invasiveness of NB cells. These effects were reversed by overexpressing NDRG1. In NB tissues, high levels of LSD1 correlate with low levels of NDRG1 and reduced patients survival. Collectively, our findings elucidate a mechanism of how MYCN/LSD1 control motility and invasiveness of NB cells through transcription regulation of NDRG1 expression and suggest that pharmacological targeting of LSD1 represents a valuable approach for NB therapy.
Collapse
Affiliation(s)
- Susanna Ambrosio
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', Naples, Italy
| | - Carmen D Saccà
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', Naples, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Raffaele A Calogero
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
41
|
Chaker M, Minden A, Chen S, Weiss RH, Chini EN, Mahipal A, Azmi AS. Rho GTPase effectors and NAD metabolism in cancer immune suppression. Expert Opin Ther Targets 2017; 22:9-17. [PMID: 29207896 DOI: 10.1080/14728222.2018.1413091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Sustained proliferative signaling and de-regulated cellular bioenergetics are two of the chief hallmarks of cancer. Alterations in the Ras pathway and its downstream effectors are among the major drivers for uncontrolled cell growth in many cancers. The GTPases are one of the signaling molecules that activate crucial signal transducing pathways downstream of Ras through several effector proteins. The GTPases (GTP bound) interact with several effectors and modulate a number of different biological pathways including those that regulate cytoskeleton, cellular motility, cytokinesis, proliferation, apoptosis, transcription and nuclear signaling. Similarly, the altered glycolytic pathway, the so-called 'Warburg effect', rewires tumor cell metabolism to support the biosynthetic requirements of uncontrolled proliferation. There exists strong evidence for the critical role of the glycolytic pathway's rate limiting enzymes in promoting immunosuppression. Areas covered: We review the emerging roles of GTPase effector proteins particularly the p21 activated kinase 4 (PAK4) and nicotinamide biosynthetic pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT) as signaling molecules in immune surveillance and the immune response. Expert opinion: In this expert opinion article we highlight the recent information on the role of GTPases and the metabolic enzymes on the immune microenvironment and propose some unique immune therapeutic opportunities.
Collapse
Affiliation(s)
- Mahmoud Chaker
- a Department of Oncology , Wayne State University School of Medicine, Karmanos Cancer Institute , Detroit , MI , USA
| | - Audrey Minden
- b Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology , Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway , NJ , USA
| | - Suzie Chen
- b Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology , Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway , NJ , USA
| | - Robert H Weiss
- c Division of Nephrology, Department of Internal Medicine , University of California , Davis , CA , USA.,d Cancer Center , University of California , Davis , CA , USA.,e Medical Service , VA Northern California Health Care System , Mather , CA , USA
| | - Eduardo N Chini
- f Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology , Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Amit Mahipal
- f Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology , Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Asfar S Azmi
- a Department of Oncology , Wayne State University School of Medicine, Karmanos Cancer Institute , Detroit , MI , USA
| |
Collapse
|
42
|
Hu HF, Xu WW, Wang Y, Zheng CC, Zhang WX, Li B, He QY. Comparative Proteomics Analysis Identifies Cdc42-Cdc42BPA Signaling as Prognostic Biomarker and Therapeutic Target for Colon Cancer Invasion. J Proteome Res 2017; 17:265-275. [PMID: 29072916 DOI: 10.1021/acs.jproteome.7b00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis is one of the major causes of treatment failure in the patients with colon cancer. The aim of our study is to find key proteins and pathways that drive invasion and metastasis in colon cancer. Eight rounds of selection of cancer cells invading through matrigel-coated chamber were performed to obtain highly invasive colon cancer sublines HCT116-I8 and RKO-I8. Stable Isotope Labeling by Amino Acids in Cell Culture technology was used to identify the differently expressed proteins, and the proteomics data were analyzed by ingenuity pathway analysis. PAK1-PBD immunoprecipitation combined with Western blot were carried out to determine Cdc42 activity, and qRT-PCR and Western blot were used to determine gene expression. The functional role of Cdc42BPA and Cdc42 pathway in colon cancer invasion was studied by loss-of-function experiments including pharmacological blockade, siRNA knockdown, chamber invasion, and WST-1 assays. Human colon cancer tissue microarray was analyzed by immunohistochemistry for overexpression of Cdc42BPA and its correlation with clinicopathological parameters and patient survival outcomes. HCT116-I8 and RKO-I8 cells showed significantly stronger invasive potential as well as decreased E-cadherin and increased vimentin expressions compared with parental cells. The differently expressed proteins in I8 cells compared with parental cells were identified. Bioinformatics analysis of proteomics data suggested that Cdc42BPA protein and Cdc42 signaling pathway are important for colon cancer invasion, which was confirmed by experimental data showing upregulation of Cdc42BPA and higher expression of active GTP-bound form of Cdc42 in HCT116-I8 and RKO-I8 cells. Functionally, pharmacological and genetic blockade of Cdc42BPA and Cdc42 signaling markedly suppressed colon cancer cell invasion and reversed epithelial mesenchymal transition process. Furthermore, compared with adjacent normal tissues, Cdc42BPA expression was significantly higher in colon cancer tissues and further upregulated in metastatic tumors in lymph nodes. More importantly, Cdc42BPA expression was correlated with metastasis and poor survival of the patients with colon cancer. This study provides the first evidence that Cdc42BPA and Cdc42 signaling are important for colon cancer invasion, and Cdc42BPA has potential implications for colon cancer prognosis and treatment.
Collapse
Affiliation(s)
- Hui-Fang Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou 510632, China
| | - Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wei-Xia Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| |
Collapse
|
43
|
Cell cycle-dependent translocation and regulatory mechanism of CacyBP/SIP in gastric cancer cells. Anticancer Drugs 2017; 29:19-28. [PMID: 29099417 DOI: 10.1097/cad.0000000000000556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our previous results showed that calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) inhibits the proliferation and tumorigenicity of gastric cancer; however, the exact mechanism remains unclear, especially from the aspect of cell cycle. The subcellular localization of CacyBP/SIP, Siah-1, and Skp1 in SGC7901 gastric cancer cells was assessed by immunofluorescence after cell cycle synchronization. Levels of CacyBP/SIP, Siah-1, Skp1, β-catenin, and p-ERK1/2 were analyzed by western blotting. CacyBP/SIP phosphorylation (p-CacyBP/SIP) and the combining capacity of Siah-1 and Skp1 with CacyBP/SIP in nucleoprotein were determined by immunoprecipitation. CacyBP/SIP, Siah-1, and Skp1 were mainly in the cytoplasm in the G1 phase, but translocated to the nucleus during G2. Their expression in total protein was not altered, but elevated in the G2 phase in nucleoprotein. The CacyBP/SIP nucleus translocation of cells transfected with mutant CacyBP/SIP that does not bind S100 (CacyBP-ΔS100) was significantly increased compared with wild-type CacyBP/SIP. In the G2 phase, p-CacyBP/SIP expression and the combining capacity of Siah-1 and Skp1 with CacyBP/SIP were all increased, whereas levels of β-catenin and p-ERK1/2 reduced, compared with the G1 phase. CacyBP/SIP or CacyBP-ΔS100 overexpression was correlated with constitutively low β-catenin expression and affected its level through cell cycle. CacyBP/SIP overexpression led to retarded proliferation, G1 arrest, and β-catenin reduction, which could be abolished by lithium chloride, β-catenin activator, and further enhanced by the Wnt inhibitor XAV-939. In addition, CacyBP-ΔS100 further suppressed cell proliferation and induced G1 arrest compared with CacyBP/SIP. In conclusion, CacyBP/SIP nuclear localization, dependent on S100 protein, suppresses gastric cancer tumorigenesis through β-catenin degradation and the dephosphorylation of ERK1/2 during the G2 phase.
Collapse
|
44
|
Moussa RS, Kovacevic Z, Bae DH, Lane DJR, Richardson DR. Transcriptional regulation of the cyclin-dependent kinase inhibitor, p21 CIP1/WAF1, by the chelator, Dp44mT. Biochim Biophys Acta Gen Subj 2017; 1862:761-774. [PMID: 29032246 DOI: 10.1016/j.bbagen.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND The cyclin-dependent kinase inhibitor, p21, is well known for its role in cell cycle arrest. Novel anti-cancer agents that deplete iron pools demonstrate marked anti-tumor activity and are also active in regulating p21 expression. These agents induce p21 mRNA levels independently of the tumor suppressor, p53, and differentially regulate p21 protein expression depending on the cell-type. Several chelators, including an analogue of the potent anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), have entered clinical trials, and thus, their molecular mechanism of action is crucial to assess. Hence, this investigation examined how several iron chelators transcriptionally regulate p21. METHODS Promoter-deletion constructs; luciferase assays; RT-PCR; western analysis; gene silencing; co-immunoprecipitation. RESULTS The transcriptional regulation of the p21 promoter by iron chelators was demonstrated to be dependent on the chelator and cell-type examined. The potent anti-cancer chelator, Dp44mT, induced p21 promoter activity in SK-MEL-28 melanoma cells, but not in MCF-7 breast cancer cells. Further analysis of the p21 promoter identified a 50-bp region between -104 and -56-bp that was required for Dp44mT-induced activation in SK-MEL-28 cells. This region contained several Sp1-binding sites and mutational analysis of this region revealed the Sp1-3-binding site played a significant role in Dp44mT-induced activation of p21. Further, co-immunoprecipitation demonstrated that Dp44mT induced a marked increase in the interactions between Sp1 and the transcription factors, estrogen receptor-α and c-Jun. CONCLUSIONS AND GENERAL SIGNIFICANCE Dp44mT-induced p21 promoter activation via the Sp1-3-binding site and increased Sp1/ER-α and Sp1/c-Jun complex formation in SK-MEL-28 cells, suggesting these complexes were involved in p21 promoter activation.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
45
|
Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, Yang G, Shen Y, Fu X, Lo EH, Xie Z. Anesthesia and Surgery Impair Blood-Brain Barrier and Cognitive Function in Mice. Front Immunol 2017; 8:902. [PMID: 28848542 PMCID: PMC5552714 DOI: 10.3389/fimmu.2017.00902] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.
Collapse
Affiliation(s)
- Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Medical College of PLA, Beijing, China.,Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Changping Gu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Emiri T Mandeville
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Elga Esposito
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Guang Yang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Yuan Shen
- Department of Psychiatry, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaobing Fu
- Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Medical College of PLA, Beijing, China
| | - Eng H Lo
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
46
|
Ambrosio S, Saccà CD, Majello B. Epigenetic regulation of epithelial to mesenchymal transition by the Lysine-specific demethylase LSD1/KDM1A. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:905-910. [PMID: 28720390 DOI: 10.1016/j.bbagrm.2017.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 01/03/2023]
Abstract
The Lysine-specific demethylase 1, KDM1A/LSD1, plays a central role in the regulation of Pol II transcription through the removal of the activation mark (mono- and dimethyl lysine 4 of histone H3). LSD1 is often deregulated in human cancers, and it is frequently overexpressed in human solid cancers and leukemia. LSD1 regulates the epithelial mesenchymal transition (EMT) in epithelial cells, i.e., the ability to transition into mesenchymal cells, to lose homotypic adhesion and to acquire migratory capacity. From its initial discovery as a component of the Snail complex, multiple studies highlighted the causative role of LSD1 in cell invasiveness and EMT, describing its direct involvement in different molecular processes through the interaction with specific partners. Here we present an overview of the role of LSD1 in the EMT process, summarizing recent findings on its emerging functions in cell migration and invasion in cancer.
Collapse
Affiliation(s)
- Susanna Ambrosio
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Carmen D Saccà
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy.
| |
Collapse
|
47
|
Menezes SV, Sahni S, Kovacevic Z, Richardson DR. Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. J Biol Chem 2017; 292:12772-12782. [PMID: 28615452 DOI: 10.1074/jbc.r117.776393] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The iron-regulated metastasis suppressor N-myc downstream-regulated gene 1 (NDRG1) has been shown to inhibit numerous oncogenic signaling pathways in cancer cells. Recent findings have demonstrated that NDRG1 inhibits the ErbB family of receptors, which function as key inducers of carcinogenesis. NDRG1 attenuates ErbB signaling by inhibiting formation of epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) and HER2/HER3 heterodimers and by down-regulating EGFR via a mechanism involving its degradation. Understanding the complex interplay between NDRG1, iron, and ErbB signaling is vital for identifying novel, more effective targets for cancer therapy.
Collapse
Affiliation(s)
- Sharleen V Menezes
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
48
|
Sharma A, Mendonca J, Ying J, Kim H, Verdone JE, Zarif JC, Carducci M, Hammers H, Pienta KJ, Kachhap S. The prostate metastasis suppressor gene NDRG1 differentially regulates cell motility and invasion. Mol Oncol 2017; 11:655-669. [PMID: 28371345 PMCID: PMC5467496 DOI: 10.1002/1878-0261.12059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Experimental and clinical evidence suggests that N-myc downregulated gene 1 (NDRG1) functions as a suppressor of prostate cancer metastasis. Elucidating pathways that drive survival and invasiveness of NDRG1-deficient prostate cancer cells can help in designing therapeutics to target metastatic prostate cancer cells. However, the molecular mechanisms that lead NDRG1-deficient prostate cancer cells to increased invasiveness remain largely unknown. In this study, we demonstrate that NDRG1-deficient prostate tumors have decreased integrin expression and reduced cell adhesion and motility. Our data indicate that loss of NDRG1 differentially affects Rho GTPases. Specifically, there is a downregulation of active RhoA and Rac1 GTPases with a concomitant upregulation of active Cdc42 in NDRG1-deficient cells. Live cell imaging using a fluorescent sensor that binds to polymerized actin revealed that NDRG1-deficient cells have restricted actin dynamics, thereby affecting cell migration. These cellular and molecular characteristics are in sharp contrast to what is expected after loss of a metastasis suppressor. We further demonstrate that NDRG1-deficient cells have increased resistance to anoikis and increased invasiveness which is independent of its elevated Cdc42 activity. Furthermore, NDRG1 regulates expression and glycosylation of EMMPRIN, a master regulator of matrix metalloproteases. NDRG1 deficiency leads to an increase in EMMPRIN expression with a concomitant increase in matrix metalloproteases and thus invadopodial activity. Using a three-dimensional invasion assay and an in vivo metastasis assay for human prostate xenografts, we demonstrate that NDRG1-deficient prostate cancer cells exhibit a collective invasion phenotype and are highly invasive. Thus, our findings provide novel insights suggesting that loss of NDRG1 leads to a decrease in actin-mediated cellular motility but an increase in cellular invasion, resulting in increased tumor dissemination which positively impacts metastatic outcome.
Collapse
Affiliation(s)
- Anup Sharma
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Janet Mendonca
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - James Ying
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Hea‐Soo Kim
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - James E. Verdone
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Jelani C. Zarif
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Michael Carducci
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Hans Hammers
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Kenneth J. Pienta
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Sushant Kachhap
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| |
Collapse
|
49
|
A novel interaction of PAK4 with PPARγ to regulate Nox1 and radiation-induced epithelial-to-mesenchymal transition in glioma. Oncogene 2017; 36:5309-5320. [PMID: 28534509 PMCID: PMC5599308 DOI: 10.1038/onc.2016.261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/03/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022]
Abstract
Tumor recurrence in glioblastoma (GBM) is, in part, attributed to increased epithelial-to-mesenchymal transition (EMT) and enhanced tumor cell dissemination in adjacent brain parenchyma after ionizing radiation (IR). EMT is associated with aggressive behavior, increased stem-like characteristics and treatment resistance in malignancies; however, the underlying signaling mechanisms that regulate EMT are poorly understood. We identified grade-dependent PAK4 upregulation in gliomas and further determined its role in mesenchymal transition and radioresistance. IR treatment significantly elevated expression and nuclear localization of PAK4 in correlation with induction of reactive oxygen species (ROS) and mesenchymal transition in GBM cells. Stable PAK4 overexpression promoted mesenchymal transition by elevating EMT marker expression in these cells. Of note, transcription factor-DNA binding arrays and chromatin immunoprecipitation experiments identified the formation of a novel nuclear PAK4/PPARγ complex which was recruited to the promoter of Nox1, a PPARγ target gene. In addition, IR further elevated PAK4/PPARγ complex co-recruitment to Nox1 promoter, and increased Nox1 expression and ROS levels associated with mesenchymal transition in these cells. Conversely, specific PAK4 downregulation decreased PPARγ-mediated Nox1 expression and suppressed EMT in IR-treated cells. In vivo orthotopic tumor experiments showed inhibition of growth and suppression of IR-induced PPARγ and Nox1 expression by PAK4 downregulation in tumors. Our results provide the first evidence of a novel role for PAK4 in IR-induced EMT and suggest potential therapeutic efficacy of targeting PAK4 to overcome radioresistance in gliomas.
Collapse
|
50
|
Shang S, Hua F, Hu ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 2017; 8:33972-33989. [PMID: 28430641 PMCID: PMC5464927 DOI: 10.18632/oncotarget.15687] [Citation(s) in RCA: 445] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved and versatile pathway that is known to be involved in embryonic development, tissue homeostasis and a wide variety of human diseases. Aberrant activation of this pathway gives rise to the accumulation of β-catenin in the nucleus and promotes the transcription of many oncogenes such as c-Myc and CyclinD-1. As a result, it contributes to carcinogenesis and tumor progression of several cancers, including colon cancer, hepatocellular carcinoma, pancreatic cancer, lung cancer and ovarian cancer. β-Catenin is a pivotal component of the Wnt signaling pathway and it is tightly regulated at three hierarchical levels: protein stability, subcellular localization and transcriptional activity. Uncovering the regulatory mechanisms of β-catenin will provide new insights into the pathogenesis of cancer and other diseases, as well as new therapeutic strategies against these diseases. In this review we dissect the concrete regulatory mechanisms of β-catenin from three aspects mentioned above. Then we focus on the role of β-catenin in cancer initiation, progression, dormancy, immunity and cancer stem cell maintenance. At last, we summarize the recent progress in the development of agents for the pharmacological modulation of β-catenin activity in cancer therapy.
Collapse
Affiliation(s)
- Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|