1
|
Fu C, Dilasser F, Lin SZ, Karnat M, Arora A, Rajendiran H, Ong HT, Mui Hoon Brenda N, Phow SW, Hirashima T, Sheetz M, Rupprecht JF, Tlili S, Viasnoff V. Regulation of intercellular viscosity by E-cadherin-dependent phosphorylation of EGFR in collective cell migration. Proc Natl Acad Sci U S A 2024; 121:e2405560121. [PMID: 39231206 PMCID: PMC11406304 DOI: 10.1073/pnas.2405560121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/27/2024] [Indexed: 09/06/2024] Open
Abstract
Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.
Collapse
Affiliation(s)
- Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Florian Dilasser
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, Centre de Physique Theorique (UMR 7332), Turing Centre for Living systems, Marseille13009, France
| | - Marc Karnat
- Aix Marseille Univ, Université de Toulon, CNRS, Centre de Physique Theorique (UMR 7332), Turing Centre for Living systems, Marseille13009, France
| | - Aditya Arora
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Harini Rajendiran
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Nai Mui Hoon Brenda
- Department of Biomedical Engineering, National University of Singapore, Singapore117583, Singapore
| | - Sound Wai Phow
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, Centre de Physique Theorique (UMR 7332), Turing Centre for Living systems, Marseille13009, France
| | - Sham Tlili
- Aix Marseille Univ, Institut de Biologie du developpement de Marseille (UMR 7288), Turing Centre for Living systems, Marseille13009, France
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
- CNRS International Research Lab 3639, Singapore117411, Singapore
| |
Collapse
|
2
|
Crozet F, Levayer R. Emerging roles and mechanisms of ERK pathway mechanosensing. Cell Mol Life Sci 2023; 80:355. [PMID: 37947896 PMCID: PMC10638131 DOI: 10.1007/s00018-023-05007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
The coupling between mechanical forces and modulation of cell signalling pathways is essential for tissue plasticity and their adaptation to changing environments. Whilst the number of physiological and pathological relevant roles of mechanotransduction has been rapidly expanding over the last decade, studies have been mostly focussing on a limited number of mechanosensitive pathways, which include for instance Hippo/YAP/TAZ pathway, Wnt/β-catenin or the stretch-activated channel Piezo. However, the recent development and spreading of new live sensors has provided new insights into the contribution of ERK pathway in mechanosensing in various systems, which emerges now as a fast and modular mechanosensitive pathway. In this review, we will document key in vivo and in vitro examples that have established a clear link between cell deformation, mechanical stress and modulation of ERK signalling, comparing the relevant timescale and mechanical stress. We will then discuss different molecular mechanisms that have been proposed so far, focussing on the epistatic link between mechanics and ERK and discussing the relevant cellular parameters affecting ERK signalling. We will finish by discussing the physiological and the pathological consequences of the link between ERK and mechanics, outlining how this interplay is instrumental for self-organisation and long-range cell-cell coordination.
Collapse
Affiliation(s)
- Flora Crozet
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 Rue du Dr. Roux, 75015, Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 Rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
3
|
Vats A, Chaturvedi P. The Regenerative Power of Stem Cells: Treating Bleomycin-Induced Lung Fibrosis. Stem Cells Cloning 2023; 16:43-59. [PMID: 37719787 PMCID: PMC10505024 DOI: 10.2147/sccaa.s419474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with no known cure, characterized by the formation of scar tissue in the lungs, leading to respiratory failure. Although the exact cause of IPF remains unclear, the condition is thought to result from a combination of genetic and environmental factors. One of the most widely used animal models to study IPF is the bleomycin-induced lung injury model in mice. In this model, the administration of the chemotherapeutic agent bleomycin causes pulmonary inflammation and fibrosis, which closely mimics the pathological features of human IPF. Numerous recent investigations have explored the functions of various categories of stem cells in the healing process of lung injury induced by bleomycin in mice, documenting the beneficial effects and challenges of this approach. Differentiation of stem cells into various cell types and their ability to modulate tissue microenvironment is an emerging aspect of the regenerative therapies. This review article aims to provide a comprehensive overview of the role of stem cells in repairing bleomycin-induced lung injury. It delves into the mechanisms through which various types of stem cells, including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and lung resident stem cells, exert their therapeutic effects in this specific model. We have also discussed the unique set of intermediate markers and signaling factors that can influence the proliferation and differentiation of alveolar epithelial cells both during lung repair and homeostasis. Finally, we highlight the challenges and opportunities associated with translating stem cell therapy to the clinic for IPF patients. The novelty and implications of this review extend beyond the understanding of the potential of stem cells in treating IPF to the broader field of regenerative medicine. We believe that the review paves the way for further advancements in stem cell therapies, offering hope for patients suffering from this debilitating and currently incurable disease.
Collapse
Affiliation(s)
- Amrita Vats
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Hiraoka Y, Matsumura M, Kakei Y, Takeda D, Shigeoka M, Kimoto A, Hasegawa T, Akashi M. Expression of JCAD and EGFR in Perineurial Cell-Cell Junctions of Human Inferior Alveolar Nerve. J Histochem Cytochem 2023; 71:321-332. [PMID: 37309668 PMCID: PMC10315992 DOI: 10.1369/00221554231182193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Although perineurium has an important role in maintenance of the blood-nerve barrier, understanding of perineurial cell-cell junctions is insufficient. The aim of this study was to analyze the expression of junctional cadherin 5 associated (JCAD) and epidermal growth factor receptor (EGFR) in the perineurium of the human inferior alveolar nerve (IAN) and investigate their roles in perineurial cell-cell junctions using cultured human perineurial cells (HPNCs). In human IAN, JCAD was strongly expressed in endoneurial microvessels. JCAD and EGFR were expressed at various intensities in the perineurium. In HPNCs, JCAD was clearly expressed at cell-cell junctions. EGFR inhibitor AG1478 treatment changed cell morphology and the ratio of JCAD-positive cell-cell contacts of HPNCs. Therefore, JCAD and EGFR may have a role in the regulation of perineurial cell-cell junctions.
Collapse
Affiliation(s)
- Yujiro Hiraoka
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Megumi Matsumura
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasumasa Kakei
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Kimoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
6
|
Kong X, Kapustka A, Sullivan B, Schwarz GJ, Leckband DE. Extracellular matrix regulates force transduction at VE-cadherin junctions. Mol Biol Cell 2022; 33:ar95. [PMID: 35653290 DOI: 10.1091/mbc.e22-03-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Increased tension on VE-cadherin (VE-cad) complexes activates adaptive cell stiffening and local cytoskeletal reinforcement--two key signatures of intercellular mechanotransduction. Here we demonstrate that tugging on VE-cad receptors initiates a cascade that results in downstream integrin activation. The formation of new integrin adhesions potentiates vinculin and actin recruitment to mechanically reinforce stressed cadherin adhesions. This cascade differs from documented antagonistic effects of integrins on intercellular junctions. We identify focal adhesion kinase, Abl kinase, and RhoA GTPase as key components of the positive feedback loop. Results further show that a consequence of integrin involvement is the sensitization of intercellular force transduction to the extracellular matrix (ECM) not by regulating junctional tension but by altering signal cascades that reinforce cell-cell adhesions. On type 1 collagen or fibronectin substrates, integrin subtypes α2β1 and α5β1, respectively, differentially control actin remodeling at VE-cad adhesions. Specifically, ECM-dependent differences in VE-cad force transduction mirror differences in the rigidity sensing mechanisms of α2β1 and α5β1 integrins. The findings verify the role of integrins in VE-cad force transduction and uncover a previously unappreciated mechanism by which the ECM impacts the mechanical reinforcement of interendothelial junctions.
Collapse
Affiliation(s)
- Xinyu Kong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gregory J Schwarz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Deborah E Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
7
|
Arnaud T, Rodrigues-Lima F, Viguier M, Deshayes F. Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis. Tissue Barriers 2022:2104085. [PMID: 35875939 PMCID: PMC10364651 DOI: 10.1080/21688370.2022.2104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.
Collapse
Affiliation(s)
- Tessa Arnaud
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | | | | | | |
Collapse
|
8
|
Miller B, Sewell-Loftin MK. Mechanoregulation of Vascular Endothelial Growth Factor Receptor 2 in Angiogenesis. Front Cardiovasc Med 2022; 8:804934. [PMID: 35087885 PMCID: PMC8787114 DOI: 10.3389/fcvm.2021.804934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelial cells that compose the vascular system in the body display a wide range of mechanotransductive behaviors and responses to biomechanical stimuli, which act in concert to control overall blood vessel structure and function. Such mechanosensitive activities allow blood vessels to constrict, dilate, grow, or remodel as needed during development as well as normal physiological functions, and the same processes can be dysregulated in various disease states. Mechanotransduction represents cellular responses to mechanical forces, translating such factors into chemical or electrical signals which alter the activation of various cell signaling pathways. Understanding how biomechanical forces drive vascular growth in healthy and diseased tissues could create new therapeutic strategies that would either enhance or halt these processes to assist with treatments of different diseases. In the cardiovascular system, new blood vessel formation from preexisting vasculature, in a process known as angiogenesis, is driven by vascular endothelial growth factor (VEGF) binding to VEGF receptor 2 (VEGFR-2) which promotes blood vessel development. However, physical forces such as shear stress, matrix stiffness, and interstitial flow are also major drivers and effectors of angiogenesis, and new research suggests that mechanical forces may regulate VEGFR-2 phosphorylation. In fact, VEGFR-2 activation has been linked to known mechanobiological agents including ERK/MAPK, c-Src, Rho/ROCK, and YAP/TAZ. In vascular disease states, endothelial cells can be subjected to altered mechanical stimuli which affect the pathways that control angiogenesis. Both normalizing and arresting angiogenesis associated with tumor growth have been strategies for anti-cancer treatments. In the field of regenerative medicine, harnessing biomechanical regulation of angiogenesis could enhance vascularization strategies for treating a variety of cardiovascular diseases, including ischemia or permit development of novel tissue engineering scaffolds. This review will focus on the impact of VEGFR-2 mechanosignaling in endothelial cells (ECs) and its interaction with other mechanotransductive pathways, as well as presenting a discussion on the relationship between VEGFR-2 activation and biomechanical forces in the extracellular matrix (ECM) that can help treat diseases with dysfunctional vascular growth.
Collapse
Affiliation(s)
- Bronte Miller
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Sullivan B, Light T, Vu V, Kapustka A, Hristova K, Leckband D. Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor-dependent signaling. Proc Natl Acad Sci U S A 2022; 119:e2100679119. [PMID: 35074920 PMCID: PMC8794882 DOI: 10.1073/pnas.2100679119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.
Collapse
Affiliation(s)
- Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Taylor Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Vinh Vu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218;
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Quantitative Biology and Biophysics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
10
|
Ramírez Moreno M, Bulgakova NA. The Cross-Talk Between EGFR and E-Cadherin. Front Cell Dev Biol 2022; 9:828673. [PMID: 35127732 PMCID: PMC8811214 DOI: 10.3389/fcell.2021.828673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies. These defects in either are further exacerbated by the reciprocal interactions between the two transmembrane proteins. On the one hand, EGFR can destabilize E-cadherin adhesion by increasing E-cadherin endocytosis, modifying its interactions with cytoskeleton and decreasing its expression, thus promoting tumorigenesis. On the other hand, E-cadherin regulates EGFR localization and tunes its activity. As a result, loss and mutations of E-cadherin promote cancer cell invasion due to uncontrolled activation of EGFR, which displays enhanced surface motility and changes in endocytosis. In this minireview, we discuss the molecular and cellular mechanisms of the cross-talk between E-cadherin and EGFR, highlighting emerging evidence for the role of endocytosis in this feedback, as well as its relevance to tissue morphogenesis, homeostasis and cancer progression.
Collapse
Affiliation(s)
| | - Natalia A. Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Rivera AD, Pieropan F, Chacon‐De‐La‐Rocha I, Lecca D, Abbracchio MP, Azim K, Butt AM. Functional genomic analyses highlight a shift in Gpr17-regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum. Aging Cell 2021; 20:e13335. [PMID: 33675110 PMCID: PMC8045941 DOI: 10.1111/acel.13335] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ageing is characterised by a decline in neuronal function and associated cognitive deficits. There is increasing evidence that myelin disruption is an important factor that contributes to the age-related loss of brain plasticity and repair responses. In the brain, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Currently, a leading hypothesis points to ageing as a major reason for the ultimate breakdown of remyelination in Multiple Sclerosis (MS). However, an incomplete understanding of the cellular and molecular processes underlying brain ageing hinders the development of regenerative strategies. Here, our combined systems biology and neurobiological approach demonstrate that oligodendroglial and myelin genes are amongst the most altered in the ageing mouse cerebrum. This was underscored by the identification of causal links between signalling pathways and their downstream transcriptional networks that define oligodendroglial disruption in ageing. The results highlighted that the G-protein coupled receptor Gpr17 is central to the disruption of OPCs in ageing and this was confirmed by genetic fate-mapping and cellular analyses. Finally, we used systems biology strategies to identify therapeutic agents that rejuvenate OPCs and restore myelination in age-related neuropathological contexts.
Collapse
Affiliation(s)
- Andrea D. Rivera
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
- Department of NeuroscienceInstitute of Human AnatomyUniversity of PaduaPaduaItaly
| | - Francesca Pieropan
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
| | | | - Davide Lecca
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
| | | | - Kasum Azim
- Department of NeurologyNeuroregenerationMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Arthur M. Butt
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
12
|
Yu HH, Zallen JA. Abl and Canoe/Afadin mediate mechanotransduction at tricellular junctions. Science 2021; 370:370/6520/eaba5528. [PMID: 33243859 DOI: 10.1126/science.aba5528] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
Epithelial structure is generated by the dynamic reorganization of cells in response to mechanical forces. Adherens junctions transmit forces between cells, but how cells sense and respond to these forces in vivo is not well understood. We identify a mechanotransduction pathway involving the Abl tyrosine kinase and Canoe/Afadin that stabilizes cell adhesion under tension at tricellular junctions in the Drosophila embryo. Canoe is recruited to tricellular junctions in response to actomyosin contractility, and this mechanosensitivity requires Abl-dependent phosphorylation of a conserved tyrosine in the Canoe actin-binding domain. Preventing Canoe tyrosine phosphorylation destabilizes tricellular adhesion, and anchoring Canoe at tricellular junctions independently of mechanical inputs aberrantly stabilizes adhesion, arresting cell rearrangement. These results identify a force-responsive mechanism that stabilizes tricellular adhesion under tension during epithelial remodeling.
Collapse
Affiliation(s)
- Huapeng H Yu
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
13
|
Lenne PF, Rupprecht JF, Viasnoff V. Cell Junction Mechanics beyond the Bounds of Adhesion and Tension. Dev Cell 2021; 56:202-212. [PMID: 33453154 DOI: 10.1016/j.devcel.2020.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
Cell-cell junctions, in particular adherens junctions, are major determinants of tissue mechanics during morphogenesis and homeostasis. In attempts to link junctional mechanics to tissue mechanics, many have utilized explicitly or implicitly equilibrium approaches based on adhesion energy, surface energy, and contractility to determine the mechanical equilibrium at junctions. However, it is increasingly clear that they have significant limitations, such as that it remains challenging to link the dynamics of the molecular components to the resulting physical properties of the junction, to its remodeling ability, and to its adhesion strength. In this perspective, we discuss recent attempts to consider the aspect of energy dissipation at junctions to draw contact points with soft matter physics where energy loss plays a critical role in adhesion theories. We set the grounds for a theoretical framework of the junction mechanics that bridges the dynamics at the molecular scale to the mechanics at the tissue scale.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix Marseille Université, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France.
| | - Jean-François Rupprecht
- Aix Marseille Université, CNRS, CPT, Turing Centre for Living Systems, 13288 Marseille, France.
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; CNRS Biomechanics of Cell Contacts, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
14
|
Michael M, Parsons M. New perspectives on integrin-dependent adhesions. Curr Opin Cell Biol 2020; 63:31-37. [PMID: 31945690 PMCID: PMC7262580 DOI: 10.1016/j.ceb.2019.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 01/12/2023]
Abstract
Integrins are heterodimeric transmembrane receptors that connect the extracellular matrix environment to the actin cytoskeleton via adaptor molecules through assembly of a range of adhesion structures. Recent advances in biochemical, imaging and biophysical methods have enabled a deeper understanding of integrin signalling and their associated regulatory processes. The identification of the consensus integrin-based 'adhesomes' within the last 5 years has defined common core components of adhesion complexes and associated partners. These approaches have also uncovered unexpected adhesion protein behaviour and molecules recruited to adhesion sites that have expanded our understanding of the molecular and physical control of integrin signalling.
Collapse
Affiliation(s)
- Magdalene Michael
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Cam, London, SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Cam, London, SE1 1UL, UK.
| |
Collapse
|
15
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Arabkari V, Amirizadeh N, Nikougoftar M, Soleimani M. microRNA expression profiles in two- and three-dimensional culture conditions of human-umbilical-cord blood-derived CD34 + cells. J Cell Physiol 2019; 234:20072-20084. [PMID: 30953369 DOI: 10.1002/jcp.28606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
Human umbilical cord blood (HUCB) is a suitable source of hematopoietic stem cells (HSCs) for therapeutic transplantation. Different approaches have been used to expand the number of HSCs to increase the rate of HSC transplantation success in patients, such as using different cocktails of cytokines, feeder cell layers, and biocompatible scaffolds. microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally. They play crucial roles in hematopoiesis including stem cell proliferation, differentiation, stemness, and self-renewal properties. Here, we studied the UCB-derived CD34+ cell expansion and the miRNA signatures of CD34+ cells on two- and three-dimensional (2D and 3D) culture conditions. We successfully expanded the UCB-derived CD34+ cells in both liquid culture (2D) and on aminated polyethersulfone nanofiber scaffolds (3D). Next, we identified the miRNA signature of CD34+ cells and their target genes. We found 58 dysregulated miRNAs in 3D culture condition and 34 dysregulated miRNAs in 2D culture condition when compared to the freshly isolated CD34+ cells. Various types of target genes were also predicted in both conditions using two online databases.
Collapse
Affiliation(s)
- Vahid Arabkari
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Hägerling R, Hoppe E, Dierkes C, Stehling M, Makinen T, Butz S, Vestweber D, Kiefer F. Distinct roles of VE-cadherin for development and maintenance of specific lymph vessel beds. EMBO J 2018; 37:embj.201798271. [PMID: 30297530 DOI: 10.15252/embj.201798271] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 08/19/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells line blood and lymphatic vessels and form intercellular junctions, which preserve vessel structure and integrity. The vascular endothelial cadherin, VE-cadherin, mediates endothelial adhesion and is indispensible for blood vessel development and permeability regulation. However, its requirement for lymphatic vessels has not been addressed. During development, VE-cadherin deletion in lymphatic endothelial cells resulted in abortive lymphangiogenesis, edema, and prenatal death. Unexpectedly, inducible postnatal or adult deletion elicited vessel bed-specific responses. Mature dermal lymph vessels resisted VE-cadherin loss and maintained button junctions, which was associated with an upregulation of junctional molecules. Very different, mesenteric lymphatic collectors deteriorated and formed a strongly hyperplastic layer of lymphatic endothelial cells on the mesothelium. This massive hyperproliferation may have been favored by high mesenteric VEGF-C expression and was associated with VEGFR-3 phosphorylation and upregulation of the transcriptional activator TAZ Finally, intestinal lacteals fragmented into cysts or became highly distended possibly as a consequence of the mesenteric defects. Taken together, we demonstrate here the importance of VE-cadherin for lymphatic vessel development and maintenance, which is however remarkably vessel bed-specific.
Collapse
Affiliation(s)
- René Hägerling
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Esther Hoppe
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Cathrin Dierkes
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stefan Butz
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,DFG Cluster of Excellence 1003 "CiM - Cells in Motion", Münster, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany .,European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,DFG Cluster of Excellence 1003 "CiM - Cells in Motion", Münster, Germany
| |
Collapse
|
18
|
Tharp KM, Weaver VM. Modeling Tissue Polarity in Context. J Mol Biol 2018; 430:3613-3628. [PMID: 30055167 DOI: 10.1016/j.jmb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell-cell and cell-extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
First person – Poonam Sehgal. J Cell Sci 2018. [DOI: 10.1242/jcs.217547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Poonam Sehgal is the first author on ‘Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions’, published in Journal of Cell Science. The work in this article was carried out while Poonam was a postdoc in the lab of Dr Deborah Leckband at University of Illinois, Urbana-Champaign, USA, investigating the mechanism of E-cadherin-mediated force-transduction signaling in epithelial cells.
Collapse
|