1
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Duncan FE. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. eLife 2024; 13:RP93172. [PMID: 39480006 PMCID: PMC11527430 DOI: 10.7554/elife.93172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, however aberrant protein homeostasis is a major contributor. We elucidated exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type-specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, ovaries and oocytes both harbor a panel of exceptionally long-lived proteins, including cytoskeletal, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules suggest a critical role in lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
Affiliation(s)
- Ewa K Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Karen M Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Christelle Guillermier
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Seby Edassery
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Matthew L Steinhauser
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
2
|
Chen SS, Li L, Yao B, Guo JL, Lu PS, Zhang HL, Zhang KH, Zou YJ, Luo NJ, Sun SC, Hu LL, Ren YP. Mutation of the SUMOylation site of Aurora-B disrupts spindle formation and chromosome alignment in oocytes. Cell Death Discov 2024; 10:447. [PMID: 39438456 PMCID: PMC11496499 DOI: 10.1038/s41420-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Aurora-B is a kinase that regulates spindle assembly and kinetochore-microtubule (KT-MT) attachment during mitosis and meiosis. SUMOylation is involved in the oocyte meiosis regulation through promoting spindle assembly and chromosome segregation, but its substrates to support this function is still unknown. It is reported that Aurora-B is SUMOylated in somatic cells, and SUMOylated Aurora-B contributes the process of mitosis. However, whether Aurora-B is SUMOylated in oocytes and how SUMOylation of Aurora-B impacts its function in oocyte meiosis remain poorly understood. In this study, we report that Aurora-B is modified by SUMOylation in mouse oocytes. The results show that Aurora-B colocalized and interacted with SUMO-2/3 in mouse oocytes, confirming that Aurora-B is modified by SUMO-2/3 in this system. Compared with that in young mice, the protein expression of SUMO-2/3 decreased in the oocytes of aged mice, indicating that SUMOylation might be related to mouse aging. Overexpression of Aurora-B SUMOylation site mutants, Aurora-BK207R and Aurora-BK292R, inhibited Aurora-B recruitment and first polar body extrusion, disrupting localization of gamma tubulin, spindle formation and chromosome alignment in oocytes. The results show that it was related to decreased recruitment of p-HDAC6 which induces the high stability of whole spindle microtubules including the microtubules of both correct and wrong KT-MT attachments though increased acetylation of microtubules. Therefore, our results corroborate the notion that Aurora-B activity is regulated by SUMO-2/3 in oocytes, and that SUMOylated Aurora B plays an important role in spindle formation and chromosome alignment.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Reproduction, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Li Li
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jia-Lun Guo
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nan-Jian Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Yan-Ping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
3
|
Qin X, Du J, He R, Li Y, Li H, Liang X. Potential mechanisms and therapeutic strategies for LPS-associated female fertility decline. J Assist Reprod Genet 2024; 41:2739-2758. [PMID: 39167249 DOI: 10.1007/s10815-024-03226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
As a major component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) can be recognized by toll-like receptors (TLRs) and induce inflammation through MyD88 or the TIR domain-containing adapter-inducing interferon-β (TRIF) pathway. Previous studies have found that LPS-associated inflammatory/immune challenges were associated with ovarian dysfunction and reduced female fertility. However, the etiology and pathogenesis of female fertility decline associated with LPS are currently complex and multifaceted. In this review, PubMed was used to search for references on LPS and fertility decline so as to elucidate the potential mechanisms of LPS-associated female fertility decline and summarize therapeutic strategies that may improve LPS-associated fertility decline.
Collapse
Affiliation(s)
- Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Pan ZN, Zhuang LL, Zhao HS, Yin SY, Chu M, Liu XY, Bao HC. Propylparaben exposure impairs G2/M and metaphase-anaphase transition during mouse oocyte maturation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116798. [PMID: 39083874 DOI: 10.1016/j.ecoenv.2024.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Propylparaben (PrPB) is a known endocrine disrupting chemicals that is widely applied as preservative in pharmaceuticals, food and cosmetics. PrPB has been detected in human urine samples and human serum and has been proven to cause functional decline in reproduction. However, the direct effects of PrPB on mammalian oocyte are still unknown. Here, we demonstrationed that exposure to PrPB disturbed mouse oocyte maturation in vitro, causing meiotic resumption arrest and first polar body extrusion failure. Our results indicated that 600 μM PrPB reduced the rate of oocyte germinal vesicle breakdown (GVBD). Further research revealed that PrPB caused mitochondrial dysfunction and oxidative stress, which led to oocyte DNA damage. This damage further disturbed the activity of the maturation promoting factor (MPF) complex Cyclin B1/ Cyclin-dependent kinase 1 (CDK1) and induced G2/M arrest. Subsequent experiments revealed that PrPB exposure can lead to spindle morphology disorder and chromosome misalignment due to unstable microtubules. In addition, PrPB adversely affected the attachment between microtubules and kinetochore, resulting in persistent activation of BUB3 amd BubR1, which are two spindle-assembly checkpoint (SAC) protein. Taken together, our studies indicated that PrPB damaged mouse oocyte maturation via disrupting MPF related G2/M transition and SAC depended metaphase-anaphase transition.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Li-Li Zhuang
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Hui-Shan Zhao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Shu-Yuan Yin
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Min Chu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Xiao-Yan Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China.
| | - Hong-Chu Bao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China.
| |
Collapse
|
5
|
Chen S, Sun Q, Yao B, Ren Y. The Molecular Mechanism of Aurora-B Regulating Kinetochore-Microtubule Attachment in Mitosis and Oocyte Meiosis. Cytogenet Genome Res 2024; 164:69-77. [PMID: 39068909 DOI: 10.1159/000540588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Aurora kinase B (Aurora-B), a member of the chromosomal passenger complex, is involved in correcting kinetochore-microtubule (KT-MT) attachment errors and regulating sister chromatid condensation and cytoplasmic division during mitosis. SUMMARY However, few reviews have discussed its mechanism in oocyte meiosis and the differences between its role in mitosis and meiosis. Therefore, in this review, we summarize the localization, recruitment, activation, and functions of Aurora-B in mitosis and oocyte meiosis. The accurate regulation of Aurora-B is essential for ensuring accurate chromosomal segregation and correct KT-MT attachments. Aurora-B regulates the stability of KT-MT attachments by competing with cyclin-dependent kinase 1 to control the phosphorylation of the SILK and RVSF motifs on kinetochore scaffold 1 and by competing with protein phosphatase 1 to influence the phosphorylation of NDC80 which is the substrate of Aurora-B. In addition, Aurora-B regulates the spindle assembly checkpoint by promoting the recruitment and activation of mitotic arrest deficient 2. KEY MESSAGES This review provides a theoretical foundation for elucidating the mechanism of cell division and understanding oocyte chromosomal aneuploidy.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China,
| | - Qiqi Sun
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yanping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Elizabeth Duncan F. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562852. [PMID: 37905022 PMCID: PMC10614913 DOI: 10.1101/2023.10.18.562852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, but aberrant protein homeostasis is a major contributor. We elucidated the exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, both ovaries and oocytes harbor a panel of exceptionally long-lived proteins, including cytoskeletal components, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules might play a critical role in both lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
|
7
|
Zhang J, Tian Y, Xu X, Wang B, Huang Z, Song K, Lou S, Kang J, Zhang N, Li J, Weng J, Liang Y, Ma W. PLD1 promotes spindle assembly and migration through regulating autophagy in mouse oocyte meiosis. Autophagy 2024; 20:1616-1638. [PMID: 38513669 PMCID: PMC11210919 DOI: 10.1080/15548627.2024.2333164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
PLD1 has been implicated in cytoskeletal reorganization and vesicle trafficking in somatic cells; however, its function remains unclear in oocyte meiosis. Herein, we found PLD1 stably expresses in mouse oocytes meiosis, with direct interaction with spindle, RAB11A+ vesicles and macroautophagic/autophagic vacuoles. The genetic or chemical inhibition of PLD1 disturbed MTOC clustering, spindle assembly and its cortical migration, also decreased PtdIns(4,5)P2, phosphorylated CFL1 (p-CFL1 [Ser3]) and ACTR2, and their local distribution on MTOC, spindle and vesicles. Furthermore in PLD1-suppressed oocytes, vesicle size was significantly reduced while F-actin density was dramatically increased in the cytoplasm, the asymmetric distribution of autophagic vacuoles was broken and the whole autophagic process was substantially enhanced, as illustrated with characteristic changes in autophagosomes, autolysosome formation and levels of ATG5, BECN1, LC3-II, SQSTM1 and UB. Exogenous administration of PtdIns(4,5)P2 or overexpression of CFL1 hyperphosphorylation mutant (CFL1S3E) could significantly improve polar MTOC focusing and spindle structure in PLD1-depleted oocytes, whereas overexpression of ACTR2 could rescue not only MTOC clustering, and spindle assembly but also its asymmetric positioning. Interestingly, autophagy activation induced similar defects in spindle structure and positioning; instead, its inhibition alleviated the alterations in PLD1-depleted oocytes, and this was highly attributed to the restored levels of PtdIns(4,5)P2, ACTR2 and p-CFL1 (Ser3). Together, PLD1 promotes spindle assembly and migration in oocyte meiosis, by maintaining rational levels of ACTR2, PtdIns(4,5)P2 and p-CFL1 (Ser3) in a manner of modulating autophagy flux. This study for the first time introduces a unique perspective on autophagic activity and function in oocyte meiotic development.Abbreviations: ACTR2/ARP2: actin related protein 2; ACTR3/ARP3: actin related protein 3; ATG5: autophagy related 5; Baf-A1: bafilomycin A1; BFA: brefeldin A; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GV: germinal vesicle; GVBD: germinal vesicle breakdown; IVM: in vitro maturation; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MI: metaphase of meiosis I; MII: metaphase of meiosis II; MO: morpholino; MTOC: microtubule-organizing center; MTOR: mechanistic target of rapamycin kinase; PB1: first polar body; PLA: proximity ligation assay; PLD1: phospholipase D1; PtdIns(4,5)P2/PIP2: phosphatidylinositol 4,5-bisphosphate; RAB11A: RAB11A, member RAS oncogene family; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TUBA/α-tubulin: tubulin alpha; TUBG/γ-tubulin: tubulin gamma; UB: ubiquitin; WASL/N-WASP: WASP like actin nucleation promoting factor.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bicheng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ke Song
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Shuo Lou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingyi Kang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ningning Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingyu Li
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Sventitskaya MA, Ogneva IV. Reorganization of the mouse oocyte' cytoskeleton after cultivation under simulated weightlessness. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:8-18. [PMID: 38245351 DOI: 10.1016/j.lssr.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
Female germ cells provide the structural basis for the development of a new organism, while the main molecular mechanisms of the impact of weightlessness on the cell remain unknown. The aim of this work was to determine the relative content and distribution of the main proteins of microtubules and microfilaments, to assess the relative RNA content of genes in mouse oocytes after short-term exposure to simulated microgravity, and to determine the potential for embryo development up to the 3-cell stage. Before starting the study, BALB/c mice were divided into two groups. One group received water and standard food without any modifications. Before exposure to simulated microgravity, the oocytes of these animals were randomly divided into two groups - c and µg. The second group of animals additionally received essential phospholipids containing at least 80% phosphatidylcholines, per os for 6 weeks before the start of the experiment at a dosage of 350 mg/kg of the animal's body to modify the lipid composition of the oocyte membrane. The obtained oocytes of these animals were also randomly divided into two groups - ce and µge. To determine the protein distribution and its relative content, immunofluorescence analysis was performed, and the RNA content of genes was assessed using real-time PCR with reverse transcription. After cultivation under simulated microgravity, beta-actin and acetylated alpha-tubulin are redistributed from the cortical layer to the central part of the oocyte, and the relative content of acetylated alpha-tubulin and tubulin isoforms decreases. At the same time, the mRNA content of most genes encoding cytoskeletal proteins was significantly higher in comparison with the control level. The use of essential phospholipids led to a decrease in the content of cellular cholesterol in the oocyte and leveled changes in the content and redistribution of acetylated alpha-tubulin and beta-actin after cultivation under simulated microgravity. In addition, after in vitro fertilization and further cultivation under simulated weightlessness, we observed a decrease in the number of embryos that passed the stage of the 2-cell embryo, but while taking essential phospholipids, the number of embryos that reached the 3-cell stage did not differ from the control group. The results obtained show changes in the content and redistribution of cytoskeletal proteins in the oocyte, which may be involved in the process of pronucleus migration, the formation of the fission spindle and the contractile ring under simulated weightlessness, which may be important for normal fertilization and cleavage of the future embryo.
Collapse
Affiliation(s)
- Maria A Sventitskaya
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoeshosse, Moscow, 123007, Russia; I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia.
| | - Irina V Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoeshosse, Moscow, 123007, Russia; I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia
| |
Collapse
|
9
|
Yang Y, Zhao C, Chen B, Yu X, Zhou Y, Ni D, Zhang X, Zhang J, Ling X, Zhang Z, Huo R. Follicular fluid C3a-peptide promotes oocyte maturation through F-actin aggregation. BMC Biol 2023; 21:285. [PMID: 38066646 PMCID: PMC10709936 DOI: 10.1186/s12915-023-01760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Immature cumulus-oocyte complexes are retrieved to obtain mature oocytes by in vitro maturation (IVM), a laboratory tool in reproductive medicine to obtain mature oocytes. Unfortunately, the efficiency of IVM is not satisfactory. To circumvent this problem, we therefore intended to commence with the composition of ovarian follicular fluid (FF), an important microenvironment influencing oocyte growth. It is well known that FF has a critical role in oocyte development and maturation. However, the components in human FF remain largely unknown, particularly with regard to small molecular peptides. RESULTS In current study, the follicular fluid derived from human mature and immature follicles were harvested. The peptide profiles of FF were further investigated by using combined ultrafiltration and LC-MS/MS. The differential peptides were preliminary determined by performing differentially expressed analysis. Human and mouse oocyte culture were used to verify the influence of differential peptides on oocyte development. Constructing plasmids, cell transfecting, Co-IP, PLA etc. were used to reveal the detail molecular mechanism. The results from differentially expressed peptide as well as cultured human and mouse oocytes analyses showed that highly conserved C3a-peptide, a cleavage product of complement C3a, definitely affected oocytes development. Intriguingly, C3a-peptide possessed a novel function that promoted F-actin aggregation and spindle migration, raised the percentage of oocytes at the MII stage, without increasing the chromosome aneuploidy ratio, especially in poor-quality oocytes. These effects of C3a-peptide were attenuated by C3aR morpholino inhibition, suggesting that C3a-peptide affected oocytes development by collaborating with its classical receptor, C3aR. Specially, we found that C3aR co-localized to the spindle with β-tubulin to recruit F-actin toward the spindle and subcortical region of the oocytes through specific binding to MYO10, a key regulator for actin organization, spindle morphogenesis and positioning in oocytes. CONCLUSIONS Our results provide a new perspective for improving IVM culture systems by applying FF components and also provide molecular insights into the physiological function of C3a-peptide, its interaction with C3aR, and their roles in enabling meiotic division of oocytes.
Collapse
Affiliation(s)
- Ye Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chun Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Xiaoning Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yuxi Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Danyu Ni
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Xiaolan Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Junqiang Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China.
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China.
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
- Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School,, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
He Q, Zheng Q, Liu Y, Miao Y, Zhang Y, Xu T, Bai S, Zhao X, Yang X, Xu Z. High-Salt Diet Causes Defective Oocyte Maturation and Embryonic Development to Impair Female Fertility in Mice. Mol Nutr Food Res 2023; 67:e2300401. [PMID: 37863820 DOI: 10.1002/mnfr.202300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/05/2023] [Indexed: 10/22/2023]
Abstract
SCOPE High salinity has been reported to induce many human disorders in tissues and organs to interfere with their normal physiological functions. However, it is unknown how salinity affects the development of female germ cells. This study suggests that a high-salt diet (HSD) may weaken oocyte quality to impair female fertility in mice and investigates the underlying mechanisms. METHODS AND RESULTS C57BL/6 female mice are fed with a regular diet (Control) or a high-salt diet (HSD). Oocyte maturation, fertilization rate, embryonic development, and female fertility are evaluated. In addition, the spindle organization, actin polymerization, and kinetochore-microtubule attachment of oocytes are examined in both groups. Moreover, single-cell transcriptome data are used to demonstrate how HSD alters the transcript levels of genes. The observations confirm that HSD leads to female subfertility due to the deterioration of oocyte and embryo quality. The mechanism underlying reveals HSD compromises the oocytes' autophagy, apoptosis level, and mitochondrial function. CONCLUSION The work illustrates that a high concentration of salt diet results in oocyte meiotic arrest, fertilization failure, and early developmental defection that embryos undergo to reduce female fertility in mice by perturbing the level of autophagy and apoptosis, mitochondrial function in oocytes.
Collapse
Affiliation(s)
- Qinyuan He
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Qiutong Zheng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Maternal and Child Health Care Hospital of Wuxi, Wuxi, Jiangsu, 214002, China
| | - Yanping Liu
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215006, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yumeng Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Shufen Bai
- Department of Obstetrics and Gynecology, Nanjing Pukou District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210000, China
| | - Xia Zhao
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Maternal and Child Health Care Hospital of Wuxi, Wuxi, Jiangsu, 214002, China
| |
Collapse
|
11
|
Pan MH, Xu R, Zheng Z, Xiong J, Dong H, Wei Q, Ma B. The formins inhibitor SMIFH2 inhibits the cytoskeleton dynamics and mitochondrial function during goat oocyte maturation. Theriogenology 2023; 211:40-48. [PMID: 37562190 DOI: 10.1016/j.theriogenology.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The cytoskeleton plays a crucial role in facilitating the successful completion of the meiotic maturation of oocytes. Its influence extends to the process of oocyte nuclear maturation and the proper functioning of various organelles during cytoplasmic maturation. The formin family of proteins plays a crucial role in the molecular regulation of cytoskeletal assembly and organization; however, its role in goat oocytes are not fully understood. Our study examined the inhibition of formins activity, which revealed its crucial role in the maturation of goat oocytes. We observed that the inhibition of formins resulted in meiotic defects in goat oocytes, as evidenced by the hindered extrusion of polar bodies and the expansion of cumulus cells. Additionally, the oocytes exhibited altered actin dynamics and compromised spindle/chromosome structure upon formins inhibition. The results of the transcriptomic analysis highlighted a noteworthy alteration in the mRNA levels of genes implicated in mitochondrial functions and oxidative phosphorylation in formins inhibited oocytes. Validation experiments provided evidence that the meiotic defects observed in these oocytes were due to the excessive early apoptosis induced by reactive oxygen species (ROS). Our findings demonstrate that the involvement of formins in sustaining the cytoskeletal dynamics and mitochondrial function is crucial for the successful meiotic maturation of goat oocytes.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zhi Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jinfeng Xiong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Haiying Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Pelzer D, de Plater L, Bradbury P, Eichmuller A, Bourdais A, Halet G, Maître J. Cell fragmentation in mouse preimplantation embryos induced by ectopic activation of the polar body extrusion pathway. EMBO J 2023; 42:e114415. [PMID: 37427462 PMCID: PMC10476277 DOI: 10.15252/embj.2023114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Cell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis. Extended exposure of the cell cortex to chromosomes locally triggers actomyosin contractility and pinches off cell fragments. This process is reminiscent of meiosis, during which small GTPase-mediated signals from chromosomes coordinate polar body extrusion (PBE) by actomyosin contraction. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition.
Collapse
Affiliation(s)
- Diane Pelzer
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| | - Ludmilla de Plater
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| | - Peta Bradbury
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| | - Adrien Eichmuller
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| | - Anne Bourdais
- Institut de Génétique et Développement de RennesUniversité de Rennes, CNRS UMR 6290RennesFrance
| | - Guillaume Halet
- Institut de Génétique et Développement de RennesUniversité de Rennes, CNRS UMR 6290RennesFrance
| | - Jean‐Léon Maître
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| |
Collapse
|
13
|
Li X, Bloomfield M, Bridgeland A, Cimini D, Chen J. A fine balance among key biophysical factors is required for recovery of bipolar mitotic spindle from monopolar and multipolar abnormalities. Mol Biol Cell 2023; 34:ar90. [PMID: 37342878 PMCID: PMC10398891 DOI: 10.1091/mbc.e22-10-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
During mitosis, equal partitioning of chromosomes into two daughter cells requires assembly of a bipolar mitotic spindle. Because the spindle poles are each organized by a centrosome in animal cells, centrosome defects can lead to monopolar or multipolar spindles. However, the cell can effectively recover the bipolar spindle by separating the centrosomes in monopolar spindles and clustering them in multipolar spindles. To interrogate how a cell can separate and cluster centrosomes as needed to form a bipolar spindle, we developed a biophysical model, based on experimental data, which uses effective potential energies to describe key mechanical forces driving centrosome movements during spindle assembly. Our model identified general biophysical factors crucial for robust bipolarization of spindles that start as monopolar or multipolar. These factors include appropriate force fluctuation between centrosomes, balance between repulsive and attractive forces between centrosomes, exclusion of the centrosomes from the cell center, proper cell size and geometry, and a limited centrosome number. Consistently, we found experimentally that bipolar centrosome clustering is promoted as mitotic cell aspect ratio and volume decrease in tetraploid cancer cells. Our model provides mechanistic explanations for many more experimental phenomena and a useful theoretical framework for future studies of spindle assembly.
Collapse
Affiliation(s)
- Xiaochu Li
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- BIOTRANS Graduate Program, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Mathew Bloomfield
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Alexandra Bridgeland
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Systems Biology Program, College of Science, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Daniela Cimini
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Jing Chen
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Center for Soft Matter and Biological Physics, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
14
|
Camlin NJ, Venkatachalam I, Evans JP. Oscillations in PP1 activity are essential for accurate progression through mammalian oocyte meiosis. Cell Cycle 2023; 22:1614-1636. [PMID: 37340734 PMCID: PMC10361142 DOI: 10.1080/15384101.2023.2225924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Tightly controlled fluctuations in kinase and phosphatase activity play important roles in regulating M-phase transitions. Protein Phosphatase 1 (PP1) is one of these phosphatases, with oscillations in PP1 activity driving mitotic M-phase. Evidence from a variety of experimental systems also points to roles in meiosis. Here, we report that PP1 is important for M-phase transitions through mouse oocyte meiosis. We employed a unique small-molecule approach to inhibit or activate PP1 at distinct phases of mouse oocyte meiosis. These studies show that temporal control of PP1 activity is essential for the G2/M transition, metaphase I/anaphase I transition, and the formation of a normal metaphase II oocyte. Our data also reveal that inappropriate activation of PP1 is more deleterious at the G2/M transition than at prometaphase I-to-metaphase I, and that an active pool of PP1 during prometaphase is vital for metaphase I/anaphase I transition and metaphase II chromosome alignment. Taken together, these results establish that loss of oscillations in PP1 activity causes a range of severe meiotic defects, pointing to essential roles for PP1 in female fertility, and more broadly, M-phase regulation.
Collapse
Affiliation(s)
- Nicole J. Camlin
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
| | - Ilakkiya Venkatachalam
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
- Department of Human Genetics, University of Michigan, Ann Arbor, MIUnited States
| | - Janice P. Evans
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
| |
Collapse
|
15
|
Quiogue AR, Sumiyoshi E, Fries A, Chuang CH, Bowerman B. Cortical microtubules oppose actomyosin-driven membrane ingression during C. elegans meiosis I polar body extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542508. [PMID: 37292632 PMCID: PMC10245968 DOI: 10.1101/2023.05.26.542508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During C. elegans oocyte meiosis I, cortical actomyosin is locally remodeled to assemble a contractile ring near the spindle. In contrast to mitosis, when most cortical actomyosin converges into a contractile ring, the small oocyte ring forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness are required for contractile ring assembly within the oocyte cortical actomyosin network. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a complex of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize to patches distributed throughout the oocyte cortex during meiosis I. By reducing their function, we further show that KNL-1 and BUB-1, like CLS-2, are required for cortical microtubule stability, to limit membrane ingression throughout the oocyte, and for meiotic contractile ring assembly and polar body extrusion. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules, respectively, leads to excess or decreased membrane ingression throughout the oocyte and defective polar body extrusion. Finally, genetic backgrounds that elevate cortical microtubule levels suppress the excess membrane ingression in cls-2 mutant oocytes. These results support our hypothesis that CLS-2, as part of a sub-complex of kinetochore proteins that also co-localize to patches throughout the oocyte cortex, stabilizes microtubules to stiffen the oocyte cortex and limit membrane ingression throughout the oocyte, thereby facilitating contractile ring dynamics and the successful completion of polar body extrusion during meiosis I.
Collapse
Affiliation(s)
| | | | - Adam Fries
- Institute of Molecular Biology
- Imaging Core, Office of the Vice President for Research, University of Oregon, Eugene, OR USA 97403
| | | | | |
Collapse
|
16
|
Effects of Ran-GTP/importin β inhibition on the meiotic division of porcine oocytes. Histochem Cell Biol 2022; 158:571-582. [PMID: 35930054 DOI: 10.1007/s00418-022-02134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
The Ran-GTP/importin β pathway has been implicated in a diverse array of mitotic functions in somatic mitosis; however, the possible meiotic roles of Ran-GTP/importin β in mammalian oocyte meiosis are still not fully understood. In the present study, importazole (IPZ), a small molecule inhibitor of the interaction between Ran and importin β was used to explore the potential meiotic roles of Ran-GTP/importin β in porcine oocytes undergoing meiosis. After IPZ treatment, the extrusion rate of the first polar body (PB1) was significantly decreased, and a higher proportion of the oocytes were arrested at the germinal vesicle breakdown (GVBD) stage. Moreover, IPZ treatment led to severe defects in metaphase I (MI) spindle assembly and chromosome alignment during the germinal vesicle (GV)-to-MI stage, as well as failure of metaphase II (MII) spindle reassembly and homologous chromosome segregation during the MI-to-MII stage. Notably, IPZ treatment decreased TPX2 expression and abnormal subcellular localization. Furthermore, the expression levels of aurora kinase A (AURKA) and transforming acidic coiled-coil 3 (TACC3) were significantly reduced after IPZ treatment. Collectively, these data indicate that the interaction of Ran-GTP and importin β is essential for proper spindle assembly and successful chromosome segregation during two consecutive meiotic divisions in porcine oocytes, and regulation of this complex might be related to its effect on the TPX2 signaling cascades.
Collapse
|
17
|
Zhao T, Pan Y, Li Q, Ding T, Niayale R, Zhang T, Wang J, Wang Y, Zhao L, Han X, Baloch AR, Cui Y, Yu S. Leukemia inhibitory factor enhances the development and subsequent blastocysts quality of yak oocytes in vitro. Front Vet Sci 2022; 9:997709. [PMID: 36213393 PMCID: PMC9533679 DOI: 10.3389/fvets.2022.997709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a multipotent cytokine of the IL-6 family which plays a critical role in the maturation and development of oocytes. This study evaluated the influence of LIF on the maturation and development ability of yak oocytes, and the quality of subsequent blastocysts under in vitro culture settings. Different concentrations of LIF (0, 25, 50, and 100 ng/mL) were added during the in vitro culture of oocytes to detect the maturation rate of oocytes, levels of mitochondria, reactive oxygen species (ROS), actin, and apoptosis in oocytes, mRNA transcription levels of apoptosis and antioxidant-related genes in oocytes, and total cell number and apoptosis levels in subsequent blastocysts. The findings revealed that 50 ng/mL LIF could significantly increase the maturation rate (p < 0.01), levels of mitochondria (p < 0.01) and actin (p < 0.01), and mRNA transcription levels of anti-apoptotic and antioxidant-related genes in yak oocytes. Also, 50 ng/mL LIF could significantly lower the generation of ROS (p < 0.01) and apoptosis levels of oocytes (p < 0.01). In addition, blastocysts formed from 50 ng/mL LIF-treated oocytes showed significantly larger total cell numbers (p < 0.01) and lower apoptosis rates (p < 0.01) than the control group. In conclusion, the addition of LIF during the in vitro maturation of yak oocytes improved the quality and the competence of maturation and development in oocytes, as well as the quality of subsequent blastocysts. The result of this study provided some insights into the role and function of LIF in vitro yak oocytes maturation, as well as provided fundamental knowledge for assisted reproductive technologies in the yak.
Collapse
Affiliation(s)
- Tian Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Qin Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Tianyi Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Robert Niayale
- School of Veterinary Medicine, University for Development Studies, Tamale, Ghana
| | - Tongxiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Yaying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Abdul Rasheed Baloch
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
- *Correspondence: Sijiu Yu
| |
Collapse
|
18
|
He Y, Peng L, Li J, Li Q, Chu Y, Lin Q, Rui R, Ju S. TPX2 deficiency leads to spindle abnormity and meiotic impairment in porcine oocytes. Theriogenology 2022; 187:164-172. [DOI: 10.1016/j.theriogenology.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
|
19
|
Dunkley S, Scheffler K, Mogessie B. Cytoskeletal form and function in mammalian oocytes and zygotes. Curr Opin Cell Biol 2022; 75:102073. [PMID: 35364486 DOI: 10.1016/j.ceb.2022.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
The actin and microtubule cytoskeletons of mammalian oocytes and zygotes exist in distinct forms at various subcellular locations. This enables each cytoskeletal system to perform vastly different functions in time and space within the same cell. In recent years, key discovery enabling tools including light-sensitive microscopy assays have helped to illuminate cytoskeletal form and function in female reproductive cell biology. New findings include unexpected participation of F-actin in oocyte chromosome segregation, oocyte specific modes of spindle self-organization as well as existence of nuclear actin polymers whose functions are only starting to emerge. Functional actin-microtubule interactions have also been identified as an important feature that supports mammalian embryo development. Other advances have revealed reproductive age-related changes in chromosome structure and dynamics that predispose mammalian eggs to aneuploidy.
Collapse
Affiliation(s)
- Sam Dunkley
- School of Biochemistry, University of Bristol, BS8 1TD, Bristol, UK
| | | | - Binyam Mogessie
- School of Biochemistry, University of Bristol, BS8 1TD, Bristol, UK; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
20
|
Bourdais A, Dehapiot B, Halet G. Cofilin regulates actin network homeostasis and microvilli length in mouse oocytes. J Cell Sci 2021; 134:273797. [PMID: 34841429 DOI: 10.1242/jcs.259237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
How multiple actin networks coexist in a common cytoplasm while competing for a shared pool of monomers is still an ongoing question. This is exemplified by meiotic maturation in the mouse oocyte, which relies on the dynamic remodeling of distinct cortical and cytoplasmic F-actin networks. Here, we show that the conserved actin-depolymerizing factor cofilin is activated in a switch-like manner upon meiosis resumption from prophase arrest. Interfering with cofilin activation during maturation resulted in widespread elongation of microvilli, while cytoplasmic F-actin was depleted, leading to defects in spindle migration and polar body extrusion. In contrast, cofilin inactivation in metaphase II-arrested oocytes resulted in a shutdown of F-actin dynamics, along with a dramatic overgrowth of the polarized actin cap. However, inhibition of the Arp2/3 complex to promote actin cap disassembly elicited ectopic microvilli outgrowth in the polarized cortex. These data establish cofilin as a key player in actin network homeostasis in oocytes and reveal that microvilli can act as a sink for monomers upon disassembly of a competing network.
Collapse
Affiliation(s)
- Anne Bourdais
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| | - Benoit Dehapiot
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| | - Guillaume Halet
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| |
Collapse
|
21
|
Osteoarthritis Affects Mammalian Oogenesis: Effects of Collagenase-Induced Osteoarthritis on Oocyte Cytoskeleton in a Mouse Model. Int J Inflam 2021; 2021:8428713. [PMID: 34795891 PMCID: PMC8595018 DOI: 10.1155/2021/8428713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Known as a degenerative joint disorder of advanced age affecting predominantly females, osteoarthritis can develop in younger and actively working people because of activities involving loading and injuries of joints. Collagenase-induced osteoarthritis (CIOA) in a mouse model allowed us to investigate for the first time its effects on key cytoskeletal structures (meiotic spindles and actin distribution) of ovulated mouse oocytes. Their meiotic spindles, actin caps, and chromatin were analyzed by immunofluorescence. A total of 193 oocytes from mice with CIOA and 209 from control animals were obtained, almost all in metaphase I (M I) or metaphase II (MII). The maturation rate was lower in CIOA (26.42% M II) than in controls (55.50% M II). CIOA oocytes had significantly larger spindles (average 37 μm versus 25 μm in controls, p < 0.001), with a proportion of large spindles more than 64% in CIOA versus up to 15% in controls (p < 0.001). Meiotic spindles were wider in 68.35% M I and 54.90% M II of CIOA oocytes (mean 18.04 μm M I and 17.34 μm M II versus controls: 11.64 μm M I and 12.64 μm M II), and their poles were approximately two times broader (mean 6.9 μm) in CIOA than in controls (3.6 μm). CIOA oocytes often contained disoriented microtubules. Actin cap was visible in over 91% of controls and less than 20% of CIOA oocytes. Many CIOA oocytes without an actin cap had a nonpolarized thick peripheral actin ring (61.87% of M I and 52.94% of M II). Chromosome alignment was normal in more than 82% in both groups. In conclusion, CIOA affects the cytoskeleton of ovulated mouse oocytes—meiotic spindles are longer and wider, their poles are broader and with disorganized fibers, and the actin cap is replaced by a broad nonpolarized ring. Nevertheless, meiotic spindles were successfully formed in CIOA oocytes and, even when abnormal, allowed correct alignment of chromosomes.
Collapse
|
22
|
Blengini CS, Schindler K. Acentriolar spindle assembly in mammalian female meiosis and the consequences of its perturbations on human reproduction. Biol Reprod 2021; 106:253-263. [PMID: 34791041 DOI: 10.1093/biolre/ioab210] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of meiosis is to generate developmentally competent, haploid gametes with the correct number of chromosomes. For reasons not completely understood, female meiosis is more prone to chromosome segregation errors than meiosis in males, leading to an abnormal number of chromosomes, or aneuploidy, in gametes. Meiotic spindles are the cellular machinery essential for the proper segregation of chromosomes. One unique feature of spindle structures in female meiosis is spindles poles that lack centrioles. The process of building a meiotic spindle without centrioles is complex and requires precise coordination of different structural components, assembly factors, motor proteins, and signaling molecules at specific times and locations to regulate each step. In this review, we discuss the basics of spindle formation during oocyte meiotic maturation focusing on mouse and human studies. Finally, we review different factors that could alter the process of spindle formation and its stability. We conclude with a discussion of how different assisted reproductive technologies (ART) could affect spindles and the consequences these perturbations may have for subsequent embryo development.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| | - Karen Schindler
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
23
|
Mori M, Yao T, Mishina T, Endoh H, Tanaka M, Yonezawa N, Shimamoto Y, Yonemura S, Yamagata K, Kitajima TS, Ikawa M. RanGTP and the actin cytoskeleton keep paternal and maternal chromosomes apart during fertilization. J Cell Biol 2021; 220:e202012001. [PMID: 34424312 PMCID: PMC8404465 DOI: 10.1083/jcb.202012001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022] Open
Abstract
Zygotes require two accurate sets of parental chromosomes, one each from the mother and the father, to undergo normal embryogenesis. However, upon egg-sperm fusion in vertebrates, the zygote has three sets of chromosomes, one from the sperm and two from the egg. The zygote therefore eliminates one set of maternal chromosomes (but not the paternal chromosomes) into the polar body through meiosis, but how the paternal chromosomes are protected from maternal meiosis has been unclear. Here we report that RanGTP and F-actin dynamics prevent egg-sperm fusion in proximity to maternal chromosomes. RanGTP prevents the localization of Juno and CD9, egg membrane proteins that mediate sperm fusion, at the cell surface in proximity to maternal chromosomes. Following egg-sperm fusion, F-actin keeps paternal chromosomes away from maternal chromosomes. Disruption of these mechanisms causes the elimination of paternal chromosomes during maternal meiosis. This study reveals a novel critical mechanism that prevents aneuploidy in zygotes.
Collapse
Affiliation(s)
- Masashi Mori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiromi Endoh
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahito Tanaka
- Physics and Cell Biology Laboratory, National Institute of Genetics & Department of Genetics, SOKENDAI University, Kanagawa, Japan
| | - Nao Yonezawa
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yuta Shimamoto
- Physics and Cell Biology Laboratory, National Institute of Genetics & Department of Genetics, SOKENDAI University, Kanagawa, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Pan MH, Wan X, Wang HH, Pan ZN, Zhang Y, Sun SC. FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis in mouse oocytes†. Biol Reprod 2021; 102:1203-1212. [PMID: 32167535 DOI: 10.1093/biolre/ioaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
Formin-like 3 (FMNL3) is a member of the formin-likes (FMNLs), which belong to the formin family. As an F-actin nucleator, FMNL3 is essential for several cellular functions, such as polarity control, invasion, and migration. However, the roles of FMNL3 during oocytes meiosis remain unclear. In this study, we investigated the functions of FMNL3 during mouse oocyte maturation. Our results showed that FMNL3 mainly concentrated in the oocyte cortex and spindle periphery. Depleting FMNL3 led to the failure of polar body extrusion, and we also found large polar bodies in the FMNL3-deleted oocytes, indicating the occurrence of symmetric meiotic division. There was no effect of FMNL3 on spindle organization; however, we observed spindle migration defects at late metaphase I, which might be due to the decreased cytoplasmic actin. Microinjecting Fmnl3-EGFP mRNA into Fmnl3-depleted oocytes significantly rescued these defects. In addition, the results of co-immunoprecipitation and the perturbation of protein expression experiments suggested that FMNL3 interacted with the actin-binding protein FASCIN for the regulation of actin filaments in oocytes. Thus, our results provide the evidence that FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| |
Collapse
|
25
|
Ral GTPase is essential for actin dynamics and Golgi apparatus distribution in mouse oocyte maturation. Cell Div 2021; 16:3. [PMID: 34112192 PMCID: PMC8194175 DOI: 10.1186/s13008-021-00071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.
Collapse
|
26
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Wang X, Hales BF, Robaire B. Effects of flame retardants on ovarian function. Reprod Toxicol 2021; 102:10-23. [PMID: 33819575 DOI: 10.1016/j.reprotox.2021.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Flame retardants have been added to a variety of consumer products and are now found ubiquitously throughout the environment. Epidemiological, in vivo, and in vitro studies have shown that polybrominated diphenyl ether (PBDE) flame retardants may have a negative impact on human health; this has resulted in their phase-out and replacement by alternative flame retardants, such as hexabromocyclododecane (HBCDD), tetrabromobisphenol A (TBBPA), and organophosphate esters (OPEs). Evidence suggests that some of these chemicals induce ovarian dysfunction and thus may be detrimental to female fertility; however, the effects of many of these flame retardants on the ovary remain unclear. In this review, we present an overview of the effects of brominated and organophosphate ester flame retardants on ovarian function and discuss the possible mechanisms which may mediate these effects.
Collapse
Affiliation(s)
- Xiaotong Wang
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
28
|
Umeda M, Ikeuchi M, Ishikawa M, Ito T, Nishihama R, Kyozuka J, Torii KU, Satake A, Goshima G, Sakakibara H. Plant stem cell research is uncovering the secrets of longevity and persistent growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:326-335. [PMID: 33533118 PMCID: PMC8252613 DOI: 10.1111/tpj.15184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 05/07/2023]
Abstract
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project 'Principles of pluripotent stem cells underlying plant vitality' was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.
Collapse
Affiliation(s)
- Masaaki Umeda
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Momoko Ikeuchi
- Department of BiologyFaculty of ScienceNiigata UniversityNiigata950‐2181Japan
| | - Masaki Ishikawa
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Toshiro Ito
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Junko Kyozuka
- Graduate School of Life SciencesTohoku UniversitySendai980‐8577Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute and Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
- Institute of Transformative Biomolecules (WPI‐ITbM)Nagoya UniversityNagoya464‐8601Japan
| | - Akiko Satake
- Department of BiologyFaculty of ScienceKyushu UniversityFukuoka819‐0395Japan
| | - Gohta Goshima
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoya464‐8602Japan
- Sugashima Marine Biological LaboratoryGraduate School of ScienceNagoya UniversityToba517‐0004Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| |
Collapse
|
29
|
Ramirez I, Gholkar AA, Velasquez EF, Guo X, Tofig B, Damoiseaux R, Torres JZ. The myosin regulatory light chain Myl5 localizes to mitotic spindle poles and is required for proper cell division. Cytoskeleton (Hoboken) 2021; 78:23-35. [PMID: 33641240 DOI: 10.1002/cm.21654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Myosins are ATP-dependent actin-based molecular motors critical for diverse cellular processes like intracellular trafficking, cell motility, and cell invasion. During cell division, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring of the spindle to the cortex, and positioning of the spindle to the cell mid-plane. However, myosins are regulated by myosin regulatory light chains (RLCs), and whether RLCs are important for cell division has remained unexplored. Here, we have determined that the previously uncharacterized myosin RLC Myl5 associates with the mitotic spindle and is required for cell division. We show that Myl5 localizes to the leading edge and filopodia during interphase and to mitotic spindle poles and spindle microtubules during early mitosis. Importantly, depletion of Myl5 led to defects in mitotic spindle assembly, chromosome congression, and chromosome segregation and to a slower transition through mitosis. Furthermore, Myl5 bound to MYO10 in vitro and co-localized with MYO10 at the spindle poles. These results suggest that Myl5 is important for cell division and that it may be performing its function through MYO10.
Collapse
Affiliation(s)
- Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Erick F Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Xiao Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Bobby Tofig
- California NanoSystems Institute, Los Angeles, California, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, Los Angeles, California, USA.,Department of Molecular and Medical Pharmacology, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
30
|
Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J. Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190555. [PMID: 32829680 PMCID: PMC7482210 DOI: 10.1098/rstb.2019.0555] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (partitioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the Caenorhabditis elegans zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the C. elegans zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
| | | | | | | | - Josana Rodriguez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
31
|
Trebichalská Z, Kyjovská D, Kloudová S, Otevřel P, Hampl A, Holubcová Z. Cytoplasmic maturation in human oocytes: an ultrastructural study †. Biol Reprod 2020; 104:106-116. [PMID: 33404651 PMCID: PMC7786262 DOI: 10.1093/biolre/ioaa174] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
Female fertility relies on successful egg development. Besides chromosome segregation, complex structural and biochemical changes in the cytoplasmic compartment are necessary to confer the female gamete the capacity to undergo normal fertilization and sustain embryonic development. Despite the profound impact on egg quality, morphological bases of cytoplasmic maturation remain largely unknown. Here, we report our findings from the ultrastructural analysis of 69 unfertilized human oocytes from 34 young and healthy egg donors. By comparison of samples fixed at three consecutive developmental stages, we explored how ooplasmic architecture changes during meiotic maturation in vitro. The morphometric image analysis supported observation that the major reorganization of cytoplasm occurs before polar body extrusion. The organelles initially concentrated around prophase nucleus were repositioned toward the periphery and evenly distributed throughout the ooplasm. As maturation progressed, distinct secretory apparatus appeared to transform into cortical granules that clustered underneath the oocyte's surface. The most prominent feature was the gradual formation of heterologous complexes composed of variable elements of endoplasmic reticulum and multiple mitochondria with primitive morphology. Based on the generated image dataset, we proposed a morphological map of cytoplasmic maturation, which may serve as a reference for future comparative studies. In conclusion, this work improves our understanding of human oocyte morphology, cytoplasmic maturation, and intracellular factors defining human egg quality. Although this analysis involved spare oocytes completing development in vitro, it provides essential insight into the enigmatic process by which human egg progenitors prepare for fertilization.
Collapse
Affiliation(s)
- Z Trebichalská
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - D Kyjovská
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - S Kloudová
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - P Otevřel
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - A Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Z Holubcová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| |
Collapse
|
32
|
Inoue N, Saito T, Wada I. Unveiling a novel function of CD9 in surface compartmentalization of oocytes. Development 2020; 147:dev.189985. [PMID: 32665248 DOI: 10.1242/dev.189985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023]
Abstract
Gamete fusion is an indispensable process for bearing offspring. In mammals, sperm IZUMO1-oocyte JUNO recognition essentially carries out the primary step of this process. In oocytes, CD9 is also known to play a crucial role in gamete fusion. In particular, microvilli biogenesis through CD9 involvement appears to be a key event for successful gamete fusion, because CD9-disrupted oocytes produce short and sparse microvillous structures, resulting in almost no fusion ability with spermatozoa. In order to determine how CD9 and JUNO cooperate in gamete fusion, we analyzed the molecular profiles of each molecule in CD9- and JUNO-disrupted oocytes. Consequently, we found that CD9 is crucial for the exclusion of GPI-anchored proteins, such as JUNO and CD55, from the cortical actin cap region, suggesting strict molecular organization of the unique surface of this region. Through distinct surface compartmentalization due to CD9 governing, GPI-anchored proteins are confined to the appropriate fusion site of the oocyte.
Collapse
Affiliation(s)
- Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Takako Saito
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| |
Collapse
|
33
|
Effects of oxygen concentrations on developmental competence and transcriptomic profile of yak oocytes. ZYGOTE 2020; 28:459-469. [PMID: 32772955 DOI: 10.1017/s0967199420000337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oxygen concentration influences oocyte quality and subsequent embryo development, but it remains unclear whether oxygen concentrations affect the developmental competence and transcriptomic profile of yak oocytes. In this study, we investigated the effects of different oxygen concentrations (5% versus 20%) on the developmental competence, reactive oxygen species (ROS) levels, glutathione (GSH) content, and transcriptomic profile of yak oocytes. The results showed that a low oxygen concentration significantly increased the maturation rate of yak oocytes (81.2 ± 2.2% vs 75.9 ± 1.3%) and the blastocyst quality of yak in vitro fertilized embryos. Analysis of ROS and GSH showed that a low oxygen concentration reduced ROS levels and increased the content of GSH (75.05 ± 7.1 ng/oocyte vs 50.63 ± 5.6 ng/oocyte). Furthermore, transcriptomic analysis identified 120 differentially expressed genes (DEGs) between the two groups of oocytes. Gene enrichment analysis of the DEGs indicated multiple cellular processes, including oxidative phosphorylation, transcription regulation, mitochondrial regulation, oestrogen signalling pathway, HIF-1 signalling pathway, TNF signalling pathway, were involved in the response to oxygen concentration alterations. Taken together, these results indicated that a low oxygen concentration improved the developmental competence of yak oocytes.
Collapse
|
34
|
Hfm1 participates in Golgi-associated spindle assembly and division in mouse oocyte meiosis. Cell Death Dis 2020; 11:490. [PMID: 32606310 PMCID: PMC7327073 DOI: 10.1038/s41419-020-2697-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
HFM1 (helicase for meiosis 1) is widely recognized as an ATP-dependent DNA helicase and is expressed mainly in germ-line cells. HFM1 is a candidate gene of premature ovarian failure (POF), hence it is also known as POF9. However, the roles of HFM1 in mammalian oocytes remain uncertain. To investigate the functions of HFM1, we established a conditional knockout (cKO) mouse model. Specific knockout of Hfm1 in mouse oocytes from the primordial follicle stage resulted in depletion of ovarian follicular reserve and subfertility of mice. In particular, abnormal spindle, misaligned chromosomes, loss of cortical actin cap, and failing polar body extrusion were readily observed in Hfm1-cKO oocytes. Further studies indicated that in addition to its cytoplasmic distribution, Hfm1 accumulated at the spindle poles, colocalized with the Golgi marker protein, GM130. Generally, GM130 signals overlapped with p-Mapk at the two spindle poles to regulate meiotic spindle assembly and asymmetric division. In this research, centrosome associated proteins, such as GM130 and p-Mapk, detached from the spindle poles in Hfm1-cKO oocytes. In conclusion, our data suggest that Hfm1 participates in Golgi-associated spindle assembly and division in mouse oocyte meiosis. These findings provide clues for pathogenesis of POF.
Collapse
|
35
|
Bindl J, Molnar ES, Ecke M, Prassler J, Müller-Taubenberger A, Gerisch G. Unilateral Cleavage Furrows in Multinucleate Cells. Cells 2020; 9:E1493. [PMID: 32570994 PMCID: PMC7349700 DOI: 10.3390/cells9061493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Multinucleate cells can be produced in Dictyostelium by electric pulse-induced fusion. In these cells, unilateral cleavage furrows are formed at spaces between areas that are controlled by aster microtubules. A peculiarity of unilateral cleavage furrows is their propensity to join laterally with other furrows into rings to form constrictions. This means cytokinesis is biphasic in multinucleate cells, the final abscission of daughter cells being independent of the initial direction of furrow progression. Myosin-II and the actin filament cross-linking protein cortexillin accumulate in unilateral furrows, as they do in the normal cleavage furrows of mononucleate cells. In a myosin-II-null background, multinucleate or mononucleate cells were produced by cultivation either in suspension or on an adhesive substrate. Myosin-II is not essential for cytokinesis either in mononucleate or in multinucleate cells but stabilizes and confines the position of the cleavage furrows. In fused wild-type cells, unilateral furrows ingress with an average velocity of 1.7 µm × min-1, with no appreciable decrease of velocity in the course of ingression. In multinucleate myosin-II-null cells, some of the furrows stop growing, thus leaving space for the extensive broadening of the few remaining furrows.
Collapse
Affiliation(s)
- Julia Bindl
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany; (J.B.); (E.S.M.); (M.E.); (J.P.)
| | - Eszter Sarolta Molnar
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany; (J.B.); (E.S.M.); (M.E.); (J.P.)
| | - Mary Ecke
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany; (J.B.); (E.S.M.); (M.E.); (J.P.)
| | - Jana Prassler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany; (J.B.); (E.S.M.); (M.E.); (J.P.)
| | - Annette Müller-Taubenberger
- LMU Munich, Department of Cell Biology (Anatomy III), Biomedical Center, D-82152 Planegg-Martinsried, Germany;
| | - Günther Gerisch
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany; (J.B.); (E.S.M.); (M.E.); (J.P.)
| |
Collapse
|
36
|
Effects of Short-Term Inhibition of Rho Kinase on Dromedary Camel Oocyte In Vitro Maturation. Animals (Basel) 2020; 10:ani10050750. [PMID: 32344840 PMCID: PMC7277376 DOI: 10.3390/ani10050750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Our results revealed, for the first time, that short-term inhibition of Rho-associated protein kinases (ROCK) for 4 h prior to in vitro maturation (IVM) in a biphasic IVM approach improved oocyte nuclear maturation, producing more MII oocyte, through modulating the expression of cytokinesis- and antiapoptosis-related mRNA transcripts. This positive result suggests ROCK inhibitor as a potential candidate molecule to exploit in the control of oocyte meiotic maturation. Abstract This is the first report on a biphasic in vitro maturation (IVM) approach with a meiotic inhibitor to improve dromedary camel IVM. Spontaneous meiotic resumption poses a major setback for in vitro matured oocytes. The overall objective of this study was to improve in vitro maturation of dromedary camel oocytes using ROCK inhibitor (Y-27632) in a biphasic IVM to prevent spontaneous meiotic resumption. In the first experiment, we cultured immature cumulus–oocyte complexes (COCs, n = 375) in a prematuration medium supplemented with ROCK inhibitor (RI) for 2 h, 4 h, 6 h, and 24 h before submission to normal in vitro maturation to complete 28 h. The control was cultured for 28 h in the absence of RI. In the first phase of experiment two, we cultured COCs (n = 480) in the presence or absence (control) of RI for 2 h, 4 h, 6 h, and 24 h, and conducted real-time relative quantitative PCR (qPCR) on selected mRNA transcripts. The same was done in the second phase, but qPCR was done after completion of normal IVM. Assessment of nuclear maturation showed that pre-IVM for 4 h yielded an increase in MII oocyte (54.67% vs. 26.6% of control; p < 0.05). As expected, the same group showed the highest degree (2) of cumulus expansion. In experiment 2, qPCR results showed significantly higher expression of ACTB and BCL2 in the RI group treated for 4 h when compared with the other groups. However, their relative quantification after biphasic IVM did not reveal any significant difference, except for the positive response of BCL2 and BAX/BCL2 ratio after 4 and 6 h biphasic IVM. In conclusion, RI prevents premature oocyte maturation and gave a significantly positive outcome during the 4 h treatment. This finding is a paradigm for future investigation on dromedary camel biphasic IVM and for improving the outcome of IVM in this species.
Collapse
|
37
|
Ierushalmi N, Malik-Garbi M, Manhart A, Abu Shah E, Goode BL, Mogilner A, Keren K. Centering and symmetry breaking in confined contracting actomyosin networks. eLife 2020; 9:55368. [PMID: 32314730 PMCID: PMC7173961 DOI: 10.7554/elife.55368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Centering and decentering of cellular components is essential for internal organization of cells and their ability to perform basic cellular functions such as division and motility. How cells achieve proper localization of their organelles is still not well-understood, especially in large cells such as oocytes. Here, we study actin-based positioning mechanisms in artificial cells with persistently contracting actomyosin networks, generated by encapsulating cytoplasmic Xenopus egg extracts into cell-sized ‘water-in-oil’ droplets. We observe size-dependent localization of the contraction center, with a symmetric configuration in larger cells and a polar one in smaller cells. Centering is achieved via a hydrodynamic mechanism based on Darcy friction between the contracting network and the surrounding cytoplasm. During symmetry breaking, transient attachments to the cell boundary drive the contraction center to a polar location. The centering mechanism is cell-cycle dependent and weakens considerably during interphase. Our findings demonstrate a robust, yet tunable, mechanism for subcellular localization. In order to survive, cells need to react to their environment and change their shape or the localization of their internal components. For example, the nucleus – the compartment that contains the genetic information – is often localized at the center of the cell, but it can also be positioned at the side, for instance when cells move or divide asymmetrically. Cells use multiple positioning mechanisms to move their internal components, including a process that relies on networks of filaments made of a protein known as actin. These networks are constantly remodeled as actin proteins are added and removed from the network. Embedded molecular motors can cause the network of actin filaments to contract and push or pull on the compartments. Yet, the exact way these networks localize components in the cell remains unclear, especially in eggs and other large cells. To investigate this question, Ierushalmi et al. studied the actin networks in artificial cells that they created by enclosing the contents of frog eggs in small droplets surrounded by oil. This showed that the networks contracted either to the center of the cell or to its side. Friction between the contracting actin network and the fluid in the cell generated a force that tends to push the contraction center towards the middle of the cell. In larger cells, this led to the centering of the actin network. In smaller cells however, the network transiently attached to the boundary of the cell, leading the contraction center to be pulled to one side. By developing simpler artificial cells that mimic the positioning processes seen in real-life cells, Ierushalmi et al. discovered new mechanisms for how cells may center or de-center their components. This knowledge may be useful to understand diseases that can emerge when the nucleus or other compartments fail to move to the right location, and which are associated with certain organs developing incorrectly.
Collapse
Affiliation(s)
- Niv Ierushalmi
- Department of Physics, Technion- Israel Institute of Technology, Haifa, Israel
| | - Maya Malik-Garbi
- Department of Physics, Technion- Israel Institute of Technology, Haifa, Israel
| | - Angelika Manhart
- Department of Mathematics, University College London, London, United Kingdom
| | - Enas Abu Shah
- Department of Physics, Technion- Israel Institute of Technology, Haifa, Israel.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, United States
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, United States
| | - Kinneret Keren
- Department of Physics, Technion- Israel Institute of Technology, Haifa, Israel.,Network Biology Research Laboratories and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
38
|
Parra-Forero LY, Veloz-Contreras A, Vargas-Marín S, Mojica-Villegas MA, Alfaro-Pedraza E, Urióstegui-Acosta M, Hernández-Ochoa I. Alterations in oocytes and early zygotes following oral exposure to di(2-ethylhexyl) phthalate in young adult female mice. Reprod Toxicol 2019; 90:53-61. [PMID: 31442482 DOI: 10.1016/j.reprotox.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Because di(2-ethylhexyl) phthalate (DEHP) toxicity on ovarian function is incomplete, effects of DEHP oocyte fertilization and the resulting zygotes were investigated. Further, an analysis characterizing the stage of zygote arrest was performed. Female CD1 mice were dosed orally with DEHP (0, 20, 200 and 2000 μg/kg/day) for 30 days. Following an in vivo mating post-dosing, DEHP-treated females exhibited fewer oocytes/zygotes, fewer oocytes displaying the polar body extrusion, fewer 1-cell zygotes having 2-pronuclei, more unfertilized oocytes, and decreased number of zygotes at every stage of development. DEHP induced blastomere fragmentation in zygotes. DNA replication in zygotes directly assessed by the 5-Ethynyl-2'-deoxyuridine (5-EdU) incorporation assay and indirectly by dosing mice with 5-fluorouracil (5-FU) suggested that DEHP inhibits DNA replication. Our data suggest that DEHP at doses found in 'every-day' (200 μg/Kg/day) or occupational (2000 μg/Kg/day) environments induces zygote fragmentation and arrests its development from the 2-cell stage potentially impairing DNA replication.
Collapse
Affiliation(s)
- Lyda Yuliana Parra-Forero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - Arlet Veloz-Contreras
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - Shirley Vargas-Marín
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - María Angelica Mojica-Villegas
- Laboratorio de Toxicología de la Reproducción-Fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-IPN, Col. San Pedro Zacatenco, Ciudad de México, 2508, Mexico
| | - Elim Alfaro-Pedraza
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | | | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico.
| |
Collapse
|
39
|
Illukkumbura R, Bland T, Goehring NW. Patterning and polarization of cells by intracellular flows. Curr Opin Cell Biol 2019; 62:123-134. [PMID: 31760155 PMCID: PMC6968950 DOI: 10.1016/j.ceb.2019.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Beginning with Turing’s seminal work [1], decades of research have demonstrated the fundamental ability of biochemical networks to generate and sustain the formation of patterns. However, it is increasingly appreciated that biochemical networks both shape and are shaped by physical and mechanical processes [2, 3, 4]. One such process is fluid flow. In many respects, the cytoplasm, membrane and actin cortex all function as fluids, and as they flow, they drive bulk transport of molecules throughout the cell. By coupling biochemical activity to long range molecular transport, flows can shape the distributions of molecules in space. Here we review the various types of flows that exist in cells, with the aim of highlighting recent advances in our understanding of how flows are generated and how they contribute to intracellular patterning processes, such as the establishment of cell polarity.
Collapse
Affiliation(s)
| | - Tom Bland
- The Francis Crick Institute, London, UK; Institute for the Physics of Living Systems, University College London, London, UK
| | - Nathan W Goehring
- The Francis Crick Institute, London, UK; Institute for the Physics of Living Systems, University College London, London, UK; MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
40
|
Roeles J, Tsiavaliaris G. Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat Commun 2019; 10:4651. [PMID: 31604948 PMCID: PMC6789129 DOI: 10.1038/s41467-019-12674-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian oocytes assemble a bipolar acentriolar microtubule spindle to segregate chromosomes during asymmetric division. There is increasing evidence that actin in the spindle interior not only participates in spindle migration and positioning but also protects oocytes from chromosome segregation errors leading to aneuploidy. Here we show that actin is an integral component of the meiotic machinery that closely interacts with microtubules during all major events of human oocyte maturation from the time point of spindle assembly till polar body extrusion and metaphase arrest. With the aid of drugs selectively affecting cytoskeleton dynamics and transiently disturbing the integrity of the two cytoskeleton systems, we identify interdependent structural rearrangements indicative of a close communication between actin and microtubules as fundamental feature of human oocytes. Our data support a model of actin-microtubule interplay that is essential for bipolar spindle assembly and correct partitioning of the nuclear genome in human oocyte meiosis.
Collapse
Affiliation(s)
- Johannes Roeles
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
41
|
Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci Rep 2019; 9:13121. [PMID: 31511568 PMCID: PMC6739377 DOI: 10.1038/s41598-019-49483-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization, and translation. A subset of maternal transcripts is stored in a translationally dormant state in the oocyte, and temporally driven translation of specific mRNAs propel meiotic progression, oocyte-to-embryo transition and early embryo development. We identified Ank2.3 as the only transcript variant present in the mouse oocyte and discovered that it is translated after nuclear envelope breakdown. Here we show that Ank2.3 mRNA is localized in higher concentration in the oocyte nucleoplasm and, after nuclear envelope breakdown, in the newly forming spindle where its translation occurs. Furthermore, we reveal that Ank2.3 mRNA contains an oligo-pyrimidine motif at 5'UTR that predetermines its translation through a cap-dependent pathway. Lastly, we show that prevention of ANK2 translation leads to abnormalities in oocyte cytokinesis.
Collapse
|
42
|
He YT, Yang LL, Luo SM, Shen W, Yin S, Sun QY. PAK4 Regulates Actin and Microtubule Dynamics during Meiotic Maturation in Mouse Oocyte. Int J Biol Sci 2019; 15:2408-2418. [PMID: 31595158 PMCID: PMC6775323 DOI: 10.7150/ijbs.34718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022] Open
Abstract
Meiotic maturation of oocyte is an important process for successful fertilization, in which cytoskeletal integrality takes a significant role. The p-21 activated kinases (PAKs) belong to serine/threonine kinases that affect wide range of processes that are crucial for cell motility, survival, cell cycle, and proliferation. In this study, we used a highly selective inhibitor of PAK4, PF-3758309, to investigate the functions of PAK4 during meiotic maturation of mouse oocytes. We found that PAK4 inhibition resulted in meiotic arrest by inducing abnormal microfilament and microtubule dynamics. PAK4 inhibition impaired the microtubule stability and led to the defective kinetochore-microtubule (K-M) attachment which inevitably resulted in aneuploidy. Also, PAK4 inhibition induced abnormal acentriolar centrosome assembly during meiotic maturation. In conclusion, all these combined results suggest that PAK4 is necessary for the oocyte meiosis maturation as a regulator of cytoskeleton.
Collapse
Affiliation(s)
- Ya-Ting He
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei-Lei Yang
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shi-Ming Luo
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shen Yin
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing-Yuan Sun
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
Effects of 2,3',4,4'5-pentachlorobiphenyl exposure during pregnancy on epigenetic imprinting and maturation of offspring's oocytes in mice. Arch Toxicol 2019; 93:2575-2592. [PMID: 31388691 DOI: 10.1007/s00204-019-02529-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a class of organic pollutants that have been widely found in the environment. The chemical 2,3',4,4'5-pentachlorobiphenyl (PCB118) is an important dioxin-like PCB compound with strong toxicity. PCB118 can accumulate in adipose tissue, serum and milk in mammals, and it is highly enriched in the follicular fluid. In this study, pregnant mice were exposed to 0, 20 and 100 μg/kg/day of PCB118 during pregnancy at the fetal primordial germ cell migration stage. The methylation patterns of the imprinted genes H19, Snrpn, Peg3 and Igf2r as well as the expression levels of Dnmt1, 3a, 3b and 3l, Uhrf1, Tet2 and Tet3 in fully grown germinal vesicle oocytes were measured in offspring. The rates of in vitro maturation, in vitro fertilization, oocyte spindle and chromosomal abnormalities were also calculated. The results showed that prenatal exposure to PCB118 altered the DNA methylation status of differentially methylated regions in some imprinted genes, and the expression levels of Dnmt1, 3a, and 3l, Uhrf1 and Tet3 were also changed. In addition, PCB118 disturbed the maturation process of progeny mouse oocytes in a dose-dependent manner. Therefore, attention should be paid to the potential impacts of PCB118-contaminated dietary intake during pregnancy on the offspring's reproductive health.
Collapse
|
44
|
Abstract
Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase of the phosphatidylinositol kinase-related kinase family that regulates cell growth, metabolism, and autophagy. Extensive research has linked mTOR to several human diseases including cancer, neurodegenerative disorders, and aging. In this review, recent publications regarding the mechanisms underlying the role of mTOR in female reproduction under physiological and pathological conditions are summarized. Moreover, we assess whether strategies to improve or suppress mTOR expression could have therapeutic potential for reproductive diseases like premature ovarian failure, polycystic ovarian syndrome, and endometriosis.
Collapse
|