1
|
Mao S, Zhao X, Wang L, Man Y, Li K. Palmitoylation-related gene ZDHHC22 as a potential diagnostic and immunomodulatory target in Alzheimer's disease: insights from machine learning analyses and WGCNA. Eur J Med Res 2025; 30:46. [PMID: 39844282 PMCID: PMC11752772 DOI: 10.1186/s40001-025-02277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The mechanism of palmitoylation in the pathogenesis of Alzheimer's disease (AD) remains unclear. METHODS This study retrieved AD data sets from the GEO database to identify palmitoylation-associated genes (PRGs). This study applied WGCNA along with three machine learning algorithms-random forest, LASSO regression, and SVM-RFE-to further select key PRGs (KPRGs). The diagnostic performance of KPRGs was evaluated using Receiver Operating Characteristic (ROC) curve analysis. Immune cell infiltration analysis was conducted to assess correlations between KPRGs and immune cell types, and a competing endogenous RNA (ceRNA) regulatory network was constructed to explore their potential regulatory mechanisms. RESULTS 17 PRGs were identified from the AD data sets, with 7 genes showing increased expression and 10 showing decreased expression. Through WGCNA and machine learning analyses, ZDHHC22 was selected as a KPRG. The ROC curve analysis demonstrated that ZDHHC22 had an area under the curve value of 0.659, indicating moderate diagnostic potential. Immune cell infiltration analysis revealed significant associations between ZDHHC22 expression and the infiltration of several immune cell types, including naïve B cells, CD8 + T cells, and M1 macrophages. In addition, 25 miRNAs and 55 lncRNAs were predicted to potentially target ZDHHC22, forming the basis for a lncRNA-miRNA-mRNA ceRNA network. CONCLUSIONS This study is the first to use bioinformatics methods to identify ZDHHC22 as a key KPRG in AD, highlighting its potential role in disease diagnosis and immune regulation. The regulatory network of ZDHHC22 provides new insights into the molecular mechanisms of AD and lays the foundation for future targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sanying Mao
- Department of Neurology, The First People's Hospital of Jiande, Hangzhou, China
| | - Xiyao Zhao
- Department of Neurology, The First People's Hospital of Jiande, Hangzhou, China
| | - Lei Wang
- Department of Cardiology, Center Hospital of Shandong First Medical University, Jinan, China
| | - Yilong Man
- Department of Cardiology, Center Hospital of Shandong First Medical University, Jinan, China.
| | - Kaiyuan Li
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Liao D, Huang Y, Liu D, Zhang H, Shi X, Li X, Luo P. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Front Pharmacol 2024; 14:1342830. [PMID: 38293675 PMCID: PMC10824933 DOI: 10.3389/fphar.2023.1342830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
S-palmitoylation is a reversible posttranslational modification, and the palmitoylation reaction in human-derived cells is mediated by the zDHHC family, which is composed of S-acyltransferase enzymes that possess the DHHC (Asp-His-His-Cys) structural domain. zDHHC proteins form an autoacylation intermediate, which then attaches the fatty acid to cysteine a residue in the target protein. zDHHC proteins sublocalize in different neuronal structures and exert dif-ferential effects on neurons. In humans, many zDHHC proteins are closely related to human neu-rological disor-ders. This review focuses on a variety of neurological disorders, such as AD (Alz-heimer's disease), HD (Huntington's disease), SCZ (schizophrenia), XLID (X-linked intellectual disability), attention deficit hyperactivity disorder and glioma. In this paper, we will discuss and summarize the research progress regarding the role of zDHHC proteins in these neu-rological disorders.
Collapse
Affiliation(s)
- Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Life Science, Northwest University, Xi’an, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Liu H, Yan P, Wu C, Rao M, Zhu J, Lv L, Li W, Liang Y, Qi S, Lu K, Kong E. Palmitoylated Sept8-204 modulates learning and anxiety by regulating filopodia arborization and actin dynamics. Sci Signal 2023; 16:eadi8645. [PMID: 38051778 DOI: 10.1126/scisignal.adi8645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Septin proteins are involved in diverse physiological functions, including the formation of specialized cytoskeletal structures. Septin 8 (Sept8) is implicated in spine morphogenesis and dendritic branching through palmitoylation. We explored the role and regulation of a Sept8 variant in human neural-like cells and in the mouse brain. We identified Sept8-204 as a brain-specific variant of Sept8 that was abundant in neurons and modified by palmitoylation, specifically at Cys469, Cys470, and Cys472. Sept8-204 palmitoylation was mediated by the palmitoyltransferase ZDHHC7 and was removed by the depalmitoylase PPT1. Palmitoylation of Sept8-204 bound to F-actin and induced cytoskeletal dynamics to promote the outgrowth of filopodia in N2a cells and the arborization of neurites in hippocampal neurons. In contrast, a Sept8-204 variant that could not be palmitoylated because of mutation of all three Cys residues (Sept8-204-3CA) lost its ability to bind F-actin, and expression of this mutant did not promote morphological changes. Genetic deletion of Sept8, Sept8-204, or Zdhhc7 caused deficits in learning and memory and promoted anxiety-like behaviors in mice. Our findings provide greater insight into the regulation of Sept8-204 by palmitoylation and its role in neuronal morphology and function in relation to cognition.
Collapse
Affiliation(s)
- Huicong Liu
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Peipei Yan
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Can Wu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Muding Rao
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiangli Zhu
- Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
| | - Luxian Lv
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Wenqiang Li
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
| | - Kefeng Lu
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Eryan Kong
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
5
|
Liu S, Chen L, Li J, Sun Y, Xu Y, Li Z, Zhu Z, Li X. Asiaticoside Mitigates Alzheimer's Disease Pathology by Attenuating Inflammation and Enhancing Synaptic Function. Int J Mol Sci 2023; 24:11976. [PMID: 37569347 PMCID: PMC10418370 DOI: 10.3390/ijms241511976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, hallmarked by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles. Due to the uncertainty of the pathogenesis of AD, strategies aimed at suppressing neuroinflammation and fostering synaptic repair are eagerly sought. Asiaticoside (AS), a natural triterpenoid derivative derived from Centella asiatica, is known for its anti-inflammatory, antioxidant, and wound-healing properties; however, its neuroprotective function in AD remains unclear. Our current study reveals that AS, when administered (40 mg/kg) in vivo, can mitigate cognitive dysfunction and attenuate neuroinflammation by inhibiting the activation of microglia and proinflammatory factors in Aβ1-42-induced AD mice. Further mechanistic investigation suggests that AS may ameliorate cognitive impairment by inhibiting the activation of the p38 MAPK pathway and promoting synaptic repair. Our findings propose that AS could be a promising candidate for AD treatment, offering neuroinflammation inhibition and enhancement of synaptic function.
Collapse
Affiliation(s)
- Sai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Long Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinran Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Xinuo Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
7
|
Liu ZY, Lan T, Tang F, He YZ, Liu JS, Yang JZ, Chen X, Wang ZF, Li ZQ. ZDHHC15 promotes glioma malignancy and acts as a novel prognostic biomarker for patients with glioma. BMC Cancer 2023; 23:420. [PMID: 37161425 PMCID: PMC10169355 DOI: 10.1186/s12885-023-10883-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Glioma is the most common and aggressive tumor in the adult brain. Recent studies have indicated that Zinc finger DHHC-type palmitoyltransferases (ZDHHCs) play vital roles in regulating the progression of glioma. ZDHHC15, a member of the ZDHHCs family, participates in various physiological activities in the brain. However, the biological functions and related mechanisms of ZDHHC15 in glioma remain poorly understood. METHODS Data from multiple glioma-associated datasets were used to investigate the expression profiles and potential biological functions of ZDHHC15 in glioma. Expression of ZDHHC15 and its association with clinicopathological characteristics in glioma were validated by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemical experiments. GO enrichment analysis, KEGG analysis, GSEA analysis, CCK-8, EdU, transwell, and western blotting assays were performed to confirm the functions and mechanism of ZDHHC15 in glioma. Moreover, we performed Kaplan-Meier analysis and Cox progression analysis to explore the prognostic significance of ZDHHC15 in glioma patients. RESULTS ZDHHC15 expression was significantly up-regulated in glioma and positively associated with malignant phenotypes. Results from the GO and KEGG enrichment analysis revealed that ZDHHC15 was involved in regulating cell cycle and migration. Knockdown of ZDHHC15 inhibited glioma cell proliferation and migration, while overexpression of ZDHHC15 presented opposite effects on glioma cells. Besides, results from GSEA analysis suggested that ZDHHC15 was enriched in STAT3 signaling pathway. Knockdown or overexpression of ZDHHC15 indeed affected the activation of STAT3 signaling pathway. Additionally, we identified ZDHHC15 as an independent prognostic biomarker in glioma, and higher expression of ZDHHC15 predicted a poorer prognosis in glioma patients. CONCLUSION Our findings suggest that ZDHHC15 promotes glioma malignancy and can serve as a novel prognostic biomarker for glioma patients. Targeting ZDHHC15 may be a promising therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Zhen-Yuan Liu
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tian Lan
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Tang
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong-Ze He
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin-Sheng Liu
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin-Zhou Yang
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Chen
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Zhi-Qiang Li
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Koropouli E, Wang Q, Mejías R, Hand R, Wang T, Ginty DD, Kolodkin AL. Palmitoylation regulates neuropilin-2 localization and function in cortical neurons and conveys specificity to semaphorin signaling via palmitoyl acyltransferases. eLife 2023; 12:e83217. [PMID: 37010951 PMCID: PMC10069869 DOI: 10.7554/elife.83217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/22/2023] [Indexed: 04/04/2023] Open
Abstract
Secreted semaphorin 3F (Sema3F) and semaphorin 3A (Sema3A) exhibit remarkably distinct effects on deep layer excitatory cortical pyramidal neurons; Sema3F mediates dendritic spine pruning, whereas Sema3A promotes the elaboration of basal dendrites. Sema3F and Sema3A signal through distinct holoreceptors that include neuropilin-2 (Nrp2)/plexinA3 (PlexA3) and neuropilin-1 (Nrp1)/PlexA4, respectively. We find that Nrp2 and Nrp1 are S-palmitoylated in cortical neurons and that palmitoylation of select Nrp2 cysteines is required for its proper subcellular localization, cell surface clustering, and also for Sema3F/Nrp2-dependent dendritic spine pruning in cortical neurons, both in vitro and in vivo. Moreover, we show that the palmitoyl acyltransferase ZDHHC15 is required for Nrp2 palmitoylation and Sema3F/Nrp2-dependent dendritic spine pruning, but it is dispensable for Nrp1 palmitoylation and Sema3A/Nrp1-dependent basal dendritic elaboration. Therefore, palmitoyl acyltransferase-substrate specificity is essential for establishing compartmentalized neuronal structure and functional responses to extrinsic guidance cues.
Collapse
Affiliation(s)
- Eleftheria Koropouli
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Qiang Wang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Rebeca Mejías
- Department of Physiology,University of SevilleSevilleSpain
| | - Randal Hand
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Alex L Kolodkin
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
9
|
Abazari D, Wild AR, Qiu T, Dickinson BC, Bamji SX. Activity-dependent post-translational regulation of palmitoylating and depalmitoylating enzymes in the hippocampus. J Cell Sci 2023; 136:jcs260629. [PMID: 37039765 PMCID: PMC10113885 DOI: 10.1242/jcs.260629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 04/12/2023] Open
Abstract
Activity-induced changes in protein palmitoylation can regulate the plasticity of synaptic connections, critically impacting learning and memory. Palmitoylation is a reversible post-translational modification regulated by both palmitoyl-acyl transferases that mediate palmitoylation and palmitoyl thioesterases that depalmitoylate proteins. However, it is not clear how fluctuations in synaptic activity can mediate the dynamic palmitoylation of neuronal proteins. Using primary hippocampal cultures, we demonstrate that synaptic activity does not impact the transcription of palmitoylating and depalmitoylating enzymes, changes in thioesterase activity, or post-translational modification of the depalmitoylating enzymes of the ABHD17 family and APT2 (also known as LYPLA2). In contrast, synaptic activity does mediate post-translational modification of the palmitoylating enzymes ZDHHC2, ZDHHC5 and ZDHHC9 (but not ZDHHC8) to influence protein-protein interactions, enzyme stability and enzyme function. Post-translational modifications of the ZDHHC enzymes were also observed in the hippocampus following fear conditioning. Taken together, our findings demonstrate that signaling events activated by synaptic activity largely impact activity of the ZDHHC family of palmitoyl-acyl transferases with less influence on the activity of palmitoyl thioesterases.
Collapse
Affiliation(s)
- Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Angela R. Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tian Qiu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Shernaz X. Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
10
|
Casellas-Vidal D, Mademont-Soler I, Sánchez J, Plaja A, Castells N, Camós M, Nieto-Moragas J, Del Mar García M, Rodriguez-Solera C, Rivera H, Brunet J, Álvarez S, Perapoch J, Queralt X, Obón M. ZDHHC15 as a candidate gene for autism spectrum disorder. Am J Med Genet A 2023; 191:941-947. [PMID: 36565021 DOI: 10.1002/ajmg.a.63099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
The phenotypic repercussion of ZDHHC15 haploinsufficiency is not well-known. This gene was initially suggested as a candidate for X-linked mental retardation, but such an association was later questioned. We studied a multiplex family with three members with autism spectrum disorder (ASD) by array CGH, karyotype, exome sequencing and X-chromosome inactivation patterns. Medical history interviews, cognitive and physical examinations, and sensory profiling were also assessed. The three family members with ASD (with normal cognitive abilities and an abnormal sensory profile) were the only carriers of a 1.7 Mb deletion in the long arm of chromosome X, involving: ZDHHC15, MAGEE2, PBDC1, MAGEE1, MIR384 and MIR325. The normal chromosome X was preferentially inactivated in female carriers, and the whole exome sequencing of an affected family member did not reveal any additional genetic variant that could explain the phenotype. Thus, in the present family, ASD segregates with a deletion on chromosome X that includes ZDHHC15. Considering our results together with gene data (regarding function, expression, conservation and animal/cellular models), ZDHHC15 is a candidate gene for ASD. Emerging evidence also suggests that this gene could be associated with other neurodevelopmental disorders, with incomplete penetrance and variable expressivity.
Collapse
Affiliation(s)
| | - Irene Mademont-Soler
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial Girona, Institut Català de la Salut, Girona, Spain
| | - Joana Sánchez
- Centre de Salut Mental Infantil i Juvenil, Institut d'Assistència Sanitària, Girona, Spain
| | - Alberto Plaja
- Unitat d'Arrays, Departament de Genètica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Neus Castells
- Unitat d'Arrays, Departament de Genètica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Maria Camós
- Servei de Pediatria, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Javier Nieto-Moragas
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial Girona, Institut Català de la Salut, Girona, Spain
| | | | | | - Helena Rivera
- Centre de Salut Mental Infantil i Juvenil, Institut d'Assistència Sanitària, Girona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospital Universitari Doctor Josep Trueta, IDIBGI, Girona, Spain
| | - Sara Álvarez
- Servicio de Diagnóstico Genético, NIMGenetics, Madrid, Spain
| | - Josep Perapoch
- Servei de Pediatria, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Xavier Queralt
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial Girona, Institut Català de la Salut, Girona, Spain
| | - María Obón
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial Girona, Institut Català de la Salut, Girona, Spain
| |
Collapse
|
11
|
Piguel NH, Sanders SS, De Simone FI, Martin-de-Saavedra MD, McCoig E, Dionisio LE, Smith KR, Thomas GM, Penzes P. Palmitoylation controls the stability of 190 kDa ankyrin-G in dendritic spines and is regulated by ZDHHC8 and lithium. Front Mol Neurosci 2023; 16:1144066. [PMID: 36969554 PMCID: PMC10031057 DOI: 10.3389/fnmol.2023.1144066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction AnkG, encoded by the ANK3 gene, is a multifunctional scaffold protein with complex isoform expression: the 480 and 270 kDa isoforms have roles at the axon initial segment and node of Ranvier, whereas the 190 kDa isoform (AnkG-190) has an emerging role in the dendritic shaft and spine heads. All isoforms of AnkG undergo palmitoylation, a post-translational modification regulating protein attachment to lipid membranes. However, palmitoylation of AnkG-190 has not been investigated in dendritic spines. The ANK3 gene and altered expression of AnkG proteins are associated with a variety of neuropsychiatric and neurodevelopmental disorders including bipolar disorder and are implicated in the lithium response, a commonly used mood stabilizer for bipolar disorder patients, although the precise mechanisms involved are unknown. Result Here, we showed that Cys70 palmitoylation stabilizes the localization of AnkG-190 in spine heads and at dendritic plasma membrane nanodomains. Mutation of Cys70 impairs AnkG-190 function in dendritic spines and alters PSD-95 scaffolding. Interestingly, we find that lithium reduces AnkG-190 palmitoylation thereby increasing its mobility in dendritic spines. Finally, we demonstrate that the palmitoyl acyl transferase ZDHHC8, but not ZDHHC5, increases AnkG-190 stability in spine heads and is inhibited by lithium. Discussion Together, our data reveal that palmitoylation is critical for AnkG-190 localization and function and a potential ZDHHC8/AnkG-190 mechanism linking AnkG-190 mobility to the neuronal effects of lithium.
Collapse
Affiliation(s)
- Nicolas H. Piguel
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shaun S. Sanders
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Francesca I. De Simone
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Maria D. Martin-de-Saavedra
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Madrid, Spain
| | - Emmarose McCoig
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Leonardo E. Dionisio
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Katharine R. Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Gareth M. Thomas
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern University Center for Autism and Neurodevelopment, Chicago, IL, United States
| |
Collapse
|
12
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
13
|
Akefe IO, Osborne SL, Matthews B, Wallis TP, Meunier FA. Lipids and Secretory Vesicle Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:357-397. [PMID: 37615874 DOI: 10.1007/978-3-031-34229-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In recent years, the number of studies implicating lipids in the regulation of synaptic vesicle exocytosis has risen considerably. It has become increasingly clear that lipids such as phosphoinositides, lysophospholipids, cholesterol, arachidonic acid and myristic acid play critical regulatory roles in the processes leading up to exocytosis. Lipids may affect membrane fusion reactions by altering the physical properties of the membrane, recruiting key regulatory proteins, concentrating proteins into exocytic "hotspots" or by modulating protein functions allosterically. Discrete changes in phosphoinositides concentration are involved in multiple trafficking events including exocytosis and endocytosis. Lipid-modifying enzymes such as the DDHD2 isoform of phospholipase A1 were recently shown to contribute to memory acquisition via dynamic modifications of the brain lipid landscape. Considering the increasing reports on neurodegenerative disorders associated with aberrant intracellular trafficking, an improved understanding of the control of lipid pathways is physiologically and clinically significant and will afford unique insights into mechanisms and therapeutic methods for neurodegenerative diseases. Consequently, this chapter will discuss the different classes of lipids, phospholipase enzymes, the evidence linking them to synaptic neurotransmitter release and how they act to regulate key steps in the multi-step process leading to neuronal communication and memory acquisition.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Shona L Osborne
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
14
|
Nasseri GG, Matin N, Wild AR, Tosefsky K, Flibotte S, Stacey RG, Hollman RB, Foster LJ, Bamji SX. Synaptic activity-dependent changes in the hippocampal palmitoylome. Sci Signal 2022; 15:eadd2519. [PMID: 36473050 DOI: 10.1126/scisignal.add2519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic protein S-palmitoylation is critical for neuronal function, development, and synaptic plasticity. Synaptic activity-dependent changes in palmitoylation have been reported for a small number of proteins. Here, we characterized the palmitoylome in the hippocampi of male mice before and after context-dependent fear conditioning. Of the 121 differentially palmitoylated proteins identified, just over half were synaptic proteins, whereas others were associated with metabolic functions, cytoskeletal organization, and signal transduction. The synapse-associated proteins generally exhibited increased palmitoylation after fear conditioning. In contrast, most of the proteins that exhibited decreased palmitoylation were associated with metabolic processes. Similar results were seen in cultured rat hippocampal neurons in response to chemically induced long-term potentiation. Furthermore, we found that the palmitoylation of one of the synaptic proteins, plasticity-related gene-1 (PRG-1), also known as lipid phosphate phosphatase-related protein type 4 (LPPR4), was important for synaptic activity-induced insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into the postsynaptic membrane. The findings identify proteins whose dynamic palmitoylation may regulate their role in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Glory G Nasseri
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nusrat Matin
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Angela R Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kira Tosefsky
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Facility, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - R Greg Stacey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rocio B Hollman
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
15
|
Yan P, Liu H, Zhou T, Sun P, Wang Y, Wang X, Zhang L, Wang T, Dong J, Zhu J, Lv L, Li W, Qi S, Liang Y, Kong E. Crosstalk of Synapsin1 palmitoylation and phosphorylation controls the dynamicity of synaptic vesicles in neurons. Cell Death Dis 2022; 13:786. [PMID: 36097267 PMCID: PMC9468182 DOI: 10.1038/s41419-022-05235-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
The dynamics of synaptic vesicles (SVs) within presynaptic domains are tightly controlled by synapsin1 phosphorylation; however, the mechanism underlying the anchoring of synapsin1 with F-actin or SVs is not yet fully understood. Here, we found that Syn1 is modified with protein palmitoylation, and examining the roles of Syn1 palmitoylation in neurons led us to uncover that Syn1 palmitoylation is negatively regulated by its phosphorylation; together, they manipulate the clustering and redistribution of SVs. Using the combined approaches of electron microscopy and genetics, we revealed that Syn1 palmitoylation is vital for its binding with F-actin but not SVs. Inhibition of Syn1 palmitoylation causes defects in SVs clustering and a reduced number of total SVs in vivo. We propose a model in which SVs redistribution is triggered by upregulated Syn1 phosphorylation and downregulated Syn1 palmitoylation, and they reversibly promote SVs clustering. The crosstalk of Syn1 palmitoylation and phosphorylation thereby bidirectionally manipulates SVs dynamics in neurons.
Collapse
Affiliation(s)
- Peipei Yan
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Huicong Liu
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tao Zhou
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Pu Sun
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Yilin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Xibin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Lin Zhang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tian Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jing Dong
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Luxian Lv
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Yinming Liang
- grid.412990.70000 0004 1808 322XLaboratory of Genetic Regulators in the Immune System, Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Tang F, Liu Z, Chen X, Yang J, Wang Z, Li Z. Current knowledge of protein palmitoylation in gliomas. Mol Biol Rep 2022; 49:10949-10959. [PMID: 36044113 DOI: 10.1007/s11033-022-07809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Malignant tumor cells can obtain proliferative benefits from deviant metabolic networks. Emerging evidence suggests that lipid metabolism are dramatically altered in gliomas and excessive fatty acd accumulation is detrimentally correlated with the prognosis of glioma patients. Glioma cells possess remarkably high levels of free fatty acids, which, in turn, enhance post-translational modifications (e.g. palmitoylation). Our and other groups found that palmitoylational modification is essential for remaining intracellular homeostasis and cell survival. Disrupting the balance between palmitoylation and depalmitoylation affects glioma cell viability, apoptosis, invasion, self-renew and pyroptosis. In this review, we focused on summarizing roles and relevant mechanisms of protein palmitoylational modification in gliomas.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Zhenyuan Liu
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Xi Chen
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Jinzhou Yang
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhiqiang Li
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Hu L, Tao Z, Wu X. Insights into auto- S-fatty acylation: targets, druggability, and inhibitors. RSC Chem Biol 2021; 2:1567-1579. [PMID: 34977571 PMCID: PMC8637764 DOI: 10.1039/d1cb00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Posttranslational S-fatty acylation (or S-palmitoylation) modulates protein localization and functions, and has been implicated in neurological, metabolic, and infectious diseases, and cancers. Auto-S-fatty acylation involves reactive cysteine residues in the proteins which directly react with fatty acyl-CoA through thioester transfer reactions, and is the first step in some palmitoyl acyltransferase (PAT)-mediated catalysis reactions. In addition, many structural proteins, transcription factors and adaptor proteins might possess such "enzyme-like" activities and undergo auto-S-fatty acylation upon fatty acyl-CoA binding. Auto-S-fatty acylated proteins represent a new class of potential drug targets, which often harbor lipid-binding hydrophobic pockets and reactive cysteine residues, providing potential binding sites for covalent and non-covalent modulators. Therefore, targeting auto-S-fatty acylation could be a promising avenue to pharmacologically intervene in important cellular signaling pathways. Here, we summarize the recent progress in understanding the regulation and functions of auto-S-fatty acylation in cell signaling and diseases. We highlight the druggability of auto-S-fatty acylated proteins, including PATs and other proteins, with potential in silico and rationalized drug design approaches. We also highlight structural analysis and examples of currently known small molecules targeting auto-S-fatty acylation, to gain insights into targeting this class of proteins, and to expand the "druggable" proteome.
Collapse
Affiliation(s)
- Lu Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| |
Collapse
|
18
|
AKAP150 and its Palmitoylation Contributed to Pain Hypersensitivity Via Facilitating Synaptic Incorporation of GluA1-Containing AMPA Receptor in Spinal Dorsal Horn. Mol Neurobiol 2021; 58:6505-6519. [PMID: 34559357 DOI: 10.1007/s12035-021-02570-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The A-kinase anchoring protein 150 (AKAP150) organizes kinases and phosphatases to regulate AMPA receptors (AMPARs) that are pivotal for synaptic plasticity. AKAP150 itself undergoes S-palmitoylation. However, the roles of AKAP150 and its palmitoylation in spinal nociceptive processing remain unknown. In this study, we found that intraplantar injection of complete Freund's adjuvant (CFA) significantly increased the synaptic expression of AKAP150 and caused a reorganization of AKAP150 signaling complex in spinal dorsal horn. Knockdown of AKAP150 or interruption of its interactions with kinases effectively suppressed the CFA-induced synaptic expression of GluA1 subunit of AMPARs. Our data also showed that an upregulation of AKAP150 palmitoylation was involved in the synaptic redistribution of AKAP150. Inhibition of AKAP150 palmitoylation by expression of palmitoylation-defective mutant AKAP150 (C36, 123S) effectively repressed the CFA-induced phosphorylation and synaptic expression of GluA1 subunit, meanwhile, attenuated the development of mechanical allodynia and thermal hyperalgesia. Furthermore, we found that an increased expression of palmitoyl acyltransferase ZDHHC2 contributed to the upregulation of AKAP150 palmitoylation and GluA1 accumulation in inflamed mouse. These data indicated that AKAP150 and its palmitoylation were involved in AMPA receptor-dependent modification of nociceptive transmission, and the manipulations of AKAP150 signaling complex and palmitoylation might serve as potential therapeutic strategies for persistent pain after inflammation.
Collapse
|
19
|
Lewis SA, Bakhtiari S, Heim J, Cornejo P, Liu J, Huang A, Musmacker A, Jin SC, Bilguvar K, Padilla-Lopez SR, Kruer MC. Mutation in ZDHHC15 Leads to Hypotonic Cerebral Palsy, Autism, Epilepsy, and Intellectual Disability. NEUROLOGY-GENETICS 2021; 7:e602. [PMID: 34345675 PMCID: PMC8323736 DOI: 10.1212/nxg.0000000000000602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/03/2021] [Indexed: 11/15/2022]
Abstract
Objective To determine whether mutations reported for ZDHHC15 can cause mixed neurodevelopmental disorders, we performed both functional studies on variant pathogenicity and ZDHHC15 function in animal models. Methods We examined protein function of 4 identified variants in ZDHHC15 in a yeast complementation assay and locomotor defects of loss-of-function genotypes in a Drosophila model. Results Although we assessed multiple patient variants, only 1 (p.H158R) affected protein function. We report a patient with a diagnosis of hypotonic cerebral palsy, autism, epilepsy, and intellectual disability associated with this bona fide damaging X-linked variant. Features include tall forehead with mild brachycephaly, down-slanting palpebral fissures, large ears, long face, facial muscle hypotonia, high-arched palate with dental crowding, and arachnodactyly. The patient had mild diminished cerebral volume, with left-sided T2/FLAIR hyperintense periatrial ovoid lesion. We found that loss-of-function mutations in orthologs of this gene cause flight and coordinated movement defects in Drosophila. Conclusions Our findings support a functional expansion of this gene to a role in motor dysfunction. Although ZDHHC15 mutations represent a rare cause of neurodevelopmental disability, candidate variants need to be carefully assessed before pathogenicity can be determined.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Jennifer Heim
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Patricia Cornejo
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - James Liu
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Aris Huang
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Andrew Musmacker
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Sheng Chih Jin
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Kaya Bilguvar
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Sergio R Padilla-Lopez
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| | - Michael C Kruer
- Pediatric Movement Disorders Program (S.A.L., S.B., J.H., J.L., S.R.P.-L., M.C.K.), Barrow Neurological Institute, Phoenix Children's Hospital; Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine (S.A.L., S.B., J.L., S.R.P.-L., M.C.K.), University of Arizona College of Medicine; Division of Neuroradiology (P.C.), Department of Radiology, Phoenix Children's Hospital, AZ; Programs in Neuroscience and Molecular & Cellular Biology (A.H., A.M.), Arizona State University, Tempe; and Department of Genetics (S.C.J.), Washington University, St. Louis, MO; Department of Genetics (K.B.), Yale University, New Haven, CT
| |
Collapse
|
20
|
Wallis TP, Venkatesh BG, Narayana VK, Kvaskoff D, Ho A, Sullivan RK, Windels F, Sah P, Meunier FA. Saturated free fatty acids and association with memory formation. Nat Commun 2021; 12:3443. [PMID: 34103527 PMCID: PMC8187648 DOI: 10.1038/s41467-021-23840-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Polyunsaturated free fatty acids (FFAs) such as arachidonic acid, released by phospholipase activity on membrane phospholipids, have long been considered beneficial for learning and memory and are known modulators of neurotransmission and synaptic plasticity. However, the precise nature of other FFA and phospholipid changes in specific areas of the brain during learning is unknown. Here, using a targeted lipidomics approach to characterise FFAs and phospholipids across the rat brain, we demonstrated that the highest concentrations of these analytes were found in areas of the brain classically involved in fear learning and memory, such as the amygdala. Auditory fear conditioning led to an increase in saturated (particularly myristic and palmitic acids) and to a lesser extent unsaturated FFAs (predominantly arachidonic acid) in the amygdala and prefrontal cortex. Both fear conditioning and changes in FFA required activation of NMDA receptors. These results suggest a role for saturated FFAs in memory acquisition.
Collapse
Affiliation(s)
- Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Bharat G Venkatesh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Vinod K Narayana
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David Kvaskoff
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Alan Ho
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Robert K Sullivan
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - François Windels
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, P. R. China
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
21
|
Shimell JJ, Globa A, Sepers MD, Wild AR, Matin N, Raymond LA, Bamji SX. Regulation of hippocampal excitatory synapses by the Zdhhc5 palmitoyl acyltransferase. J Cell Sci 2021; 134:237816. [PMID: 33758079 PMCID: PMC8182408 DOI: 10.1242/jcs.254276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Palmitoylation is the most common post-translational lipid modification in the brain; however, the role of palmitoylation and palmitoylating enzymes in the nervous system remains elusive. One of these enzymes, Zdhhc5, has previously been shown to regulate synapse plasticity. Here, we report that Zdhhc5 is also essential for the formation of excitatory, but not inhibitory, synapses both in vitro and in vivo. We demonstrate in vitro that this is dependent on the enzymatic activity of Zdhhc5, its localization at the plasma membrane and its C-terminal domain, which has been shown to be truncated in a patient with schizophrenia. Loss of Zdhhc5 in mice results in a decrease in the density of excitatory hippocampal synapses accompanied by alterations in membrane capacitance and synaptic currents, consistent with an overall decrease in spine number and silent synapses. These findings reveal an important role for Zdhhc5 in the formation and/or maintenance of excitatory synapses. Summary: The plasma membrane-associated Zdhhc5 enzyme enhances excitatory synapse formation in vitro and in vivo through motifs at its C-terminal domain.
Collapse
Affiliation(s)
- Jordan J Shimell
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Andrea Globa
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marja D Sepers
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Angela R Wild
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nusrat Matin
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lynn A Raymond
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
22
|
Minnis CJ, Townsend S, Petschnigg J, Tinelli E, Bähler J, Russell C, Mole SE. Global network analysis in Schizosaccharomyces pombe reveals three distinct consequences of the common 1-kb deletion causing juvenile CLN3 disease. Sci Rep 2021; 11:6332. [PMID: 33737578 PMCID: PMC7973434 DOI: 10.1038/s41598-021-85471-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Juvenile CLN3 disease is a recessively inherited paediatric neurodegenerative disorder, with most patients homozygous for a 1-kb intragenic deletion in CLN3. The btn1 gene is the Schizosaccharomyces pombe orthologue of CLN3. Here, we have extended the use of synthetic genetic array (SGA) analyses to delineate functional signatures for two different disease-causing mutations in addition to complete deletion of btn1. We show that genetic-interaction signatures can differ for mutations in the same gene, which helps to dissect their distinct functional effects. The mutation equivalent to the minor transcript arising from the 1-kb deletion (btn1102–208del) shows a distinct interaction pattern. Taken together, our results imply that the minor 1-kb deletion transcript has three consequences for CLN3: to both lose and retain some inherent functions and to acquire abnormal characteristics. This has particular implications for the therapeutic development of juvenile CLN3 disease. In addition, this proof of concept could be applied to conserved genes for other mendelian disorders or any gene of interest, aiding in the dissection of their functional domains, unpacking the global consequences of disease pathogenesis, and clarifying genotype–phenotype correlations. In doing so, this detail will enhance the goals of personalised medicine to improve treatment outcomes and reduce adverse events.
Collapse
Affiliation(s)
- Christopher J Minnis
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, WC1E 6BT, UK. .,Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | - StJohn Townsend
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.,The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Julia Petschnigg
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, WC1E 6BT, UK
| | - Elisa Tinelli
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, WC1E 6BT, UK
| |
Collapse
|
23
|
Fan X, Yang H, Zhao C, Hu L, Wang D, Wang R, Fang Z, Chen X. Local anesthetics impair the growth and self-renewal of glioblastoma stem cells by inhibiting ZDHHC15-mediated GP130 palmitoylation. Stem Cell Res Ther 2021; 12:107. [PMID: 33541421 PMCID: PMC7863430 DOI: 10.1186/s13287-021-02175-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. METHODS The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. RESULTS In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. CONCLUSIONS In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Haoran Yang
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Delong Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Ruiting Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Zhiyou Fang
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Xueran Chen
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
24
|
Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc15-deficient mice. Transl Psychiatry 2021; 11:65. [PMID: 33462194 PMCID: PMC7813841 DOI: 10.1038/s41398-020-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Novelty-seeking behaviors and impulsivity are personality traits associated with several psychiatric illnesses including attention deficits hyperactivity disorders. The underlying neural mechanisms remain poorly understood. We produced and characterized a line of knockout mice for zdhhc15, which encodes a neural palmitoyltransferase. Genetic defects of zdhhc15 were implicated in intellectual disability and behavioral anomalies in humans. Zdhhc15-KO mice showed normal spatial learning and working memory but exhibited a significant increase in novelty-induced locomotion in open field. Striatal dopamine content was reduced but extracellular dopamine levels were increased during the habituation phase to a novel environment. Administration of amphetamine and methylphenidate resulted in a significant increase in locomotion and extracellular dopamine levels in the ventral striatum of mutant mice compared to controls. Number and projections of dopaminergic neurons in the nigrostriatal and mesolimbic pathways were normal. No significant change in the basal palmitoylation of known ZDHHC15 substrates including DAT was detected in striatum of zdhhc15 KO mice using an acyl-biotin exchange assay. These results support that a transient, reversible, and novelty-induced elevation of extracellular dopamine in ventral striatum contributes to novelty-seeking behaviors in rodents and implicate ZDHHC15-mediated palmitoylation as a novel regulatory mechanism of dopamine in the striatum.
Collapse
|
25
|
Mehvari S, Larti F, Hu H, Fattahi Z, Beheshtian M, Abedini SS, Arzhangi S, Ropers HH, Kalscheuer VM, Auld D, Kahrizi K, Riazalhosseini Y, Najmabadi H. Whole genome sequencing identifies a duplicated region encompassing Xq13.2q13.3 in a large Iranian family with intellectual disability. Mol Genet Genomic Med 2020; 8:e1418. [PMID: 32715656 PMCID: PMC7549592 DOI: 10.1002/mgg3.1418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background The X chromosome has historically been one of the most thoroughly investigated chromosomes regarding intellectual disability (ID), whose etiology is attributed to many factors including copy number variations (CNVs). Duplications of the long arm of the X chromosome have been reported in patients with ID, short stature, facial anomalies, and in many cases hypoplastic genitalia and/or behavioral abnormalities. Methods Here, we report on a large Iranian family with X‐linked ID caused by a duplication on the X chromosome identified by whole genome sequencing in combination with linkage analysis. Results Seven affected males in different branches of the family presented with ID, short stature, seizures, facial anomalies, behavioral abnormalities (aggressiveness, self‐injury, anxiety, impaired social interactions, and shyness), speech impairment, and micropenis. The duplication of the region Xq13.2q13.3, which is ~1.8 Mb in size, includes seven protein‐coding OMIM genes. Three of these genes, namely SLC16A2, RLIM, and NEXMIF, if impaired, can lead to syndromes presenting with ID. Of note, this duplicated region was located within a linkage interval with a LOD score >3. Conclusion Our report indicates that CNVs should be considered in multi‐affected families where no candidate gene defect has been identified in sequencing data analysis.
Collapse
Affiliation(s)
- Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hao Hu
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | - Seyedeh Sedigheh Abedini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hans-Hilger Ropers
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University Medicine, Mainz, Germany
| | | | - Daniel Auld
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Genome Centre, Montreal, Quebec, Canada
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Genome Centre, Montreal, Quebec, Canada
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| |
Collapse
|
26
|
Essandoh K, Philippe JM, Jenkins PM, Brody MJ. Palmitoylation: A Fatty Regulator of Myocardial Electrophysiology. Front Physiol 2020; 11:108. [PMID: 32140110 PMCID: PMC7042378 DOI: 10.3389/fphys.2020.00108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of cardiac physiology is well known to occur through the action of kinases that reversibly phosphorylate ion channels, calcium handling machinery, and signaling effectors. However, it is becoming increasingly apparent that palmitoylation or S-acylation, the post-translational modification of cysteines with saturated fatty acids, plays instrumental roles in regulating the localization, activity, stability, sorting, and function of numerous proteins, including proteins known to have essential functions in cardiomyocytes. However, the impact of this modification on cardiac physiology requires further investigation. S-acylation is catalyzed by the zDHHC family of S-acyl transferases that localize to intracellular organelle membranes or the sarcolemma. Recent work has begun to uncover functions of S-acylation in the heart, particularly in the regulation of cardiac electrophysiology, including modification of the sodium-calcium exchanger, phospholemman and the cardiac sodium pump, as well as the voltage-gated sodium channel. Elucidating the regulatory functions of zDHHC enzymes in cardiomyocytes and determination of how S-acylation is altered in the diseased heart will shed light on how these modifications participate in cardiac pathogenesis and potentially identify novel targets for the treatment of cardiovascular disease. Indeed, proteins with critical signaling roles in the heart are also S-acylated, including receptors and G-proteins, yet the dynamics and functions of these modifications in myocardial physiology have not been interrogated. Here, we will review what is known about zDHHC enzymes and substrate S-acylation in myocardial physiology and highlight future areas of investigation that will uncover novel functions of S-acylation in cardiac homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|