1
|
Rana S, Singh SK. Discovery of Alanomyces manoharacharyi: A Novel Fungus Identified Using Genome Sequencing and Metabolomic Analysis. J Fungi (Basel) 2024; 10:791. [PMID: 39590710 PMCID: PMC11596026 DOI: 10.3390/jof10110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, a new species of Alanomyces was isolated as an endophyte from the bark of Azadirachta indica from Mulshi, Maharashtra. The identity of this isolate was confirmed based on the asexual morphological characteristics as well as multi-gene phylogeny based on the internal transcribed spacer (ITS) and large subunit (LSU) nuclear ribosomal RNA (rRNA) regions. As this was the second species to be reported in this genus, we sequenced the genome of this species to increase our knowledge about the possible applicability of this genus to various industries. Its genome length was found to be 35.01 Mb, harboring 7870 protein-coding genes as per Augustus and 8101 genes using GeMoMa. Many genes were annotated using the Clusters of Orthologous Groups (COGs) database, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), Swiss-Prot, NCBI non-redundant nucleotide sequences (NTs), and NCBI non-redundant protein sequences (NRs). The number of repeating sequences was predicted using Proteinmask and RepeatMasker; tRNA were detected using tRNAscan and snRNA were predicted using rfam_scan. The genome was also annotated using the Pathogen-Host Interactions Database (PHI-base) and AntiSMASH. To confirm the evolutionary history, average nucleotide identity (ANIb), phylogeny based on orthologous proteins, and single nucleotide polymorphisms (SNPs) were carried out. Metabolic profiling of the methanolic extract of dried biomass and ethyl acetate extract of the filtrate revealed a variety of compounds of great importance in the pharmaceutical and cosmetic industry. The characterization and genomic analysis of the newly discovered species Alanomyces manoharacharyi highlights its potential applicability across multiple industries, particularly in pharmaceuticals and cosmetics due to its diverse secondary metabolites and unique genetic features it possesses.
Collapse
Affiliation(s)
- Shiwali Rana
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Sanjay K. Singh
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| |
Collapse
|
2
|
White MD, Angara RK, Dias LT, Shinde DD, Thomas VC, Augusto L. Selective host autophagy is induced during the intracellular parasite Toxoplasma gondii infection controlling amino acid levels. mSphere 2024; 9:e0036924. [PMID: 38980070 PMCID: PMC11288035 DOI: 10.1128/msphere.00369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistant to available drugs. For its chronic persistence in the brain, the parasite relies on host cells' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustain its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in the accumulation of unfolded protein within the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis. IMPORTANCE Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii, a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host's autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite's chronic forms. Significantly, our investigation establishes the crucial role of host endoplasmic reticulum (ER)-phagy in the parasite's persistence within the host during latent infection.
Collapse
Affiliation(s)
- Matthew D. White
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rajendra K. Angara
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Leticia Torres Dias
- Program in Health Science, University of Santo Amaro (UNISA), São Paulo, Brazil
| | - Dhananjay D. Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Leonardo Augusto
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Program in Health Science, University of Santo Amaro (UNISA), São Paulo, Brazil
- Cognitive Neuroscience of Development & Aging Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Kreimendahl S, Pernas L. Metabolic immunity against microbes. Trends Cell Biol 2024; 34:496-508. [PMID: 38030541 DOI: 10.1016/j.tcb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Pathogens, including viruses, bacteria, fungi, and parasites, remodel the metabolism of their host to acquire the nutrients they need to proliferate. Thus, host cells are often perceived as mere exploitable nutrient pools during infection. Mounting reports challenge this perception and instead suggest that host cells can actively reprogram their metabolism to the detriment of the microbial invader. In this review, we present metabolic mechanisms that host cells use to defend against pathogens. We highlight the contribution of domesticated microbes to host defenses and discuss examples of host-pathogen arms races that are derived from metabolic conflict.
Collapse
Affiliation(s)
| | - Lena Pernas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Hussein M, Mahboob MBH, Tait JR, Grace JL, Montembault V, Fontaine L, Quinn JF, Velkov T, Whittaker MR, Landersdorfer CB. Providing insight into the mechanism of action of cationic lipidated oligomers using metabolomics. mSystems 2024; 9:e0009324. [PMID: 38606960 PMCID: PMC11097639 DOI: 10.1128/msystems.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
The increasing resistance of clinically relevant microbes against current commercially available antimicrobials underpins the urgent need for alternative and novel treatment strategies. Cationic lipidated oligomers (CLOs) are innovative alternatives to antimicrobial peptides and have reported antimicrobial potential. An understanding of their antimicrobial mechanism of action is required to rationally design future treatment strategies for CLOs, either in monotherapy or synergistic combinations. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of one CLO, C12-o-(BG-D)-10, which we have previously shown to be effective against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. The metabolomes of MRSA ATCC 43300 at 1, 3, and 6 h following treatment with C12-o-(BG-D)-10 (48 µg/mL, i.e., 3× MIC) were compared to those of the untreated controls. Our findings reveal that the studied CLO, C12-o-(BG-D)-10, disorganized the bacterial membrane as the first step toward its antimicrobial effect, as evidenced by marked perturbations in the bacterial membrane lipids and peptidoglycan biosynthesis observed at early time points, i.e., 1 and 3 h. Central carbon metabolism and the biosynthesis of DNA, RNA, and arginine were also vigorously perturbed, mainly at early time points. Moreover, bacterial cells were under osmotic and oxidative stress across all time points, as evident by perturbations of trehalose biosynthesis and pentose phosphate shunt. Overall, this metabolomics study has, for the first time, revealed that the antimicrobial action of C12-o-(BG-D)-10 may potentially stem from the dysregulation of multiple metabolic pathways.IMPORTANCEAntimicrobial resistance poses a significant challenge to healthcare systems worldwide. Novel anti-infective therapeutics are urgently needed to combat drug-resistant microorganisms. Cationic lipidated oligomers (CLOs) show promise as new antibacterial agents against Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Understanding their molecular mechanism(s) of antimicrobial action may help design synergistic CLO treatments along with monotherapy. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of CLOs against MRSA. The results of our study indicate that the CLO, C12-o-(BG-D)-10, had a notable impact on the biosynthesis and organization of the bacterial cell envelope. C12-o-(BG-D)-10 also inhibits arginine, histidine, central carbon metabolism, and trehalose production, adding to its antibacterial characteristics. This work illuminates the unique mechanism of action of C12-o-(BG-D)-10 and opens an avenue to design innovative antibacterial oligomers/polymers for future clinical applications.
Collapse
Affiliation(s)
- Maytham Hussein
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Muhammad Bilal Hassan Mahboob
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jessica R. Tait
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - James L. Grace
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS–Le Mans Université, Le Mans, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS–Le Mans Université, Le Mans, France
| | - John F. Quinn
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael R. Whittaker
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Li Y, Qu G, Dou G, Ren L, Dang M, Kuang H, Bao L, Ding F, Xu G, Zhang Z, Yang C, Liu S. Engineered Extracellular Vesicles Driven by Erythrocytes Ameliorate Bacterial Sepsis by Iron Recycling, Toxin Clearing and Inflammation Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306884. [PMID: 38247172 PMCID: PMC10987154 DOI: 10.1002/advs.202306884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Sepsis poses a significant challenge in clinical management. Effective strategies targeting iron restriction, toxin neutralization, and inflammation regulation are crucial in combating sepsis. However, a comprehensive approach simultaneously targeting these multiple processes has not been established. Here, an engineered apoptotic extracellular vesicles (apoEVs) derived from macrophages is developed and their potential as multifunctional agents for sepsis treatment is investigated. The extensive macrophage apoptosis in a Staphylococcus aureus-induced sepsis model is discovered, unexpectedly revealing a protective role for the host. Mechanistically, the protective effects are mediated by apoptotic macrophage-released apoEVs, which bound iron-containing proteins and neutralized α-toxin through interaction with membrane receptors (transferrin receptor and A disintegrin and metalloprotease 10). To further enhance therapeutic efficiency, apoEVs are engineered by incorporating mesoporous silica nanoparticles preloaded with anti-inflammatory agents (microRNA-146a). These engineered apoEVs can capture iron and neutralize α-toxin with their natural membrane while also regulating inflammation by releasing microRNA-146a in phagocytes. Moreover, to exploit the microcosmic movement and rotation capabilities, erythrocytes are utilized to drive the engineered apoEVs. The erythrocytes-driven engineered apoEVs demonstrate a high capacity for toxin and iron capture, ultimately providing protection against sepsis associated with high iron-loaded conditions. The findings establish a multifunctional agent that combines natural and engineered antibacterial strategies.
Collapse
Affiliation(s)
- Yan Li
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyResearch Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesDepartment of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityShanghai200011China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityShaanxi710032China
| | - Guanlin Qu
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyResearch Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesDepartment of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityShanghai200011China
| | - Geng Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityShaanxi710032China
| | - Lili Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityShaanxi710032China
| | - Ming Dang
- School of DentistryUniversity of MichiganAnn ArborMI48109USA
| | - Huijuan Kuang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityShaanxi710032China
| | - Lili Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityShaanxi710032China
| | - Feng Ding
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityShaanxi710032China
| | - Guangzhou Xu
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyResearch Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesDepartment of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityShanghai200011China
| | - Zhiyuan Zhang
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyResearch Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesDepartment of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityShanghai200011China
| | - Chi Yang
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyResearch Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesDepartment of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityShanghai200011China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityShaanxi710032China
| |
Collapse
|
6
|
White MD, Angara RK, Dias LT, Shinde DD, Thomas VC, Augusto L. Host autophagy is exploited by the intracellular parasite Toxoplasma gondii to enhance amino acids levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570852. [PMID: 38106117 PMCID: PMC10723413 DOI: 10.1101/2023.12.08.570852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistance to available drugs. For its chronic persistence in the brain, the parasite relies on host cells' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustains its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in accumulation of unfolded protein with the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Remarkably, the persistence of latent forms in cell culture as well as behavioral changes in mice caused by the latent infection could be successfully reversed by restricting the availability of various amino acids during T. gondi infection. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis. Importance Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii , a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host's autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite's chronic forms, resulting in a reduction of neurological alterations caused by chronic infection in mice. Significantly, our investigation establishes the crucial role of host ER-phagy in the parasite's persistence within the host during latent infection.
Collapse
|
7
|
Rana S, Singh SK. Insights into the genomic architecture of a newly discovered endophytic Fusarium species belonging to the Fusarium concolor complex from India. Front Microbiol 2023; 14:1266620. [PMID: 38088969 PMCID: PMC10712836 DOI: 10.3389/fmicb.2023.1266620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 10/16/2024] Open
Abstract
In this study, a new species Fusarium indicum belonging to the Fusarium concolor species complex is established to accommodate an endophytic fungus isolated from Bambusa sp. and collected from Himachal Pradesh. The identity of this isolate was confirmed based on the asexual morphs, its cultural characteristics, and phylogenetic analyses. This isolate revealed out to be distinct by showing less similarity with described species in the genus Fusarium based on molecular sequence data, approximately 93.9% similarity based on translation elongation factor 1-alpha, and 94.2% similarity based on RNA polymerase II subunit. Furthermore, to increase knowledge about this novel species, whole-genome sequencing was carried out. The results displayed that Fusarium indicum NFCCI 5145 possesses a 40.2 Mb genome and 48.39% of GC content. Approximately 12,963 functional protein-coding genes were carefully predicted and annotated using different BLAST databases, such as Uniprot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), Pathogen Host Interactions (PHI), Clusters of Orthologous Groups (COG), and Carbohydrate-Active enzymes (CAZy). The orthologous proteins were identified using OrthoFinder and used for the phylogenetic analysis. ANIb confirmed that the isolate is closely related to the F. concolor species complex. It is known that Fusarium strains can produce a wide range of bioactive secondary metabolites. Therefore, in-depth mining for biosynthetic gene clusters for secondary metabolite biosynthesis of Fusarium indicum NFCCI 5145 was investigated using Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) annotation. AntiSMASH results displayed that this isolate possesses 45 secondary metabolites of biosynthetic gene clusters (BGCs). These findings significantly improved our understanding of the strain Fusarium indicum NFCCI 5145 and its possible applications in different sectors including industry for the secondary metabolites and enzymes it can produce.
Collapse
Affiliation(s)
| | - Sanjay K. Singh
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS' Agharkar Research Institute, Pune, India
| |
Collapse
|
8
|
Yang B, Mukherjee T, Radhakrishnan R, Paidipally P, Ansari D, John S, Vankayalapati R, Tripathi D, Yi G. HIV-Differentiated Metabolite N-Acetyl-L-Alanine Dysregulates Human Natural Killer Cell Responses to Mycobacterium tuberculosis Infection. Int J Mol Sci 2023; 24:7267. [PMID: 37108430 PMCID: PMC10138430 DOI: 10.3390/ijms24087267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has latently infected over two billion people worldwide (LTBI) and caused ~1.6 million deaths in 2021. Human immunodeficiency virus (HIV) co-infection with Mtb will affect the Mtb progression and increase the risk of developing active tuberculosis by 10-20 times compared with HIV- LTBI+ patients. It is crucial to understand how HIV can dysregulate immune responses in LTBI+ individuals. Plasma samples collected from healthy and HIV-infected individuals were investigated using liquid chromatography-mass spectrometry (LC-MS), and the metabolic data were analyzed using the online platform Metabo-Analyst. ELISA, surface and intracellular staining, flow cytometry, and quantitative reverse-transcription PCR (qRT-PCR) were performed using standard procedures to determine the surface markers, cytokines, and other signaling molecule expressions. Seahorse extra-cellular flux assays were used to measure mitochondrial oxidative phosphorylation and glycolysis. Six metabolites were significantly less abundant, and two were significantly higher in abundance in HIV+ individuals compared with healthy donors. One of the HIV-upregulated metabolites, N-acetyl-L-alanine (ALA), inhibits pro-inflammatory cytokine IFN-γ production by the NK cells of LTBI+ individuals. ALA inhibits the glycolysis of LTBI+ individuals' NK cells in response to Mtb. Our findings demonstrate that HIV infection enhances plasma ALA levels to inhibit NK-cell-mediated immune responses to Mtb infection, offering a new understanding of the HIV-Mtb interaction and providing insights into the implication of nutrition intervention and therapy for HIV-Mtb co-infected patients.
Collapse
Affiliation(s)
- Baojun Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Rajesh Radhakrishnan
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Padmaja Paidipally
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Sahana John
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Ramakrishna Vankayalapati
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Deepak Tripathi
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| |
Collapse
|
9
|
Yang B, Mukherjee T, Radhakrishnan R, Paidipally P, Ansari D, John S, Vankayalapati R, Tripathi D, Yi G. HIV-differentiated metabolite N-Acetyl-L-Alanine dysregulates human natural killer cell responses to Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530445. [PMID: 36909560 PMCID: PMC10002710 DOI: 10.1101/2023.02.28.530445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Background Mycobacterium tuberculosis ( Mtb ) has latently infected over two billion people worldwide (LTBI) and causes 1.8 million deaths each year. Human immunodeficiency virus (HIV) co-infection with Mtb will affect the Mtb progression and increase the risk of developing active tuberculosis by 10-20 times compared to the HIV-LTBI+ patients. It is crucial to understand how HIV can dysregulate immune responses in LTBI+ individuals. Methods Plasma samples collected from healthy and HIV-infected individuals were investigated by liquid chromatography-mass spectrometry (LC-MS), and the metabolic data were analyzed using an online platform Metabo-Analyst. ELISA, surface and intracellular staining, flow cytometry, quantitative reverse transcription PCR (qRT-PCR) were performed by standard procedure to determine the surface markers, cytokines and other signaling molecule expression. Seahorse extra cellular flux assays were used to measure the mitochondrial oxidative phosphorylation and glycolysis. Results Six metabolites were significantly less abundant, and two were significantly higher in abundance in HIV+ individuals compared to healthy donors. One of the HIV-upregulated metabolites, N-Acetyl-L-Alanine (ALA), inhibits pro-inflammatory cytokine IFN-□ production by NK cells of LTBI+ individuals. ALA inhibits glycolysis of LTBI+ individuals' NK cells in response to Mtb . Conclusions Our findings demonstrate that HIV infection enhances plasma ALA levels to inhibit NK cell-mediated immune responses to Mtb infection, offering a new understanding of the HIV- Mtb interaction and providing the implication of nutrition intervention and therapy for HIV- Mtb co-infected patients.
Collapse
|
10
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
11
|
Fraschilla I, Evavold CL. Biting the hand that feeds: Metabolic determinants of cell fate during infection. Front Immunol 2022; 13:923024. [PMID: 36311735 PMCID: PMC9614662 DOI: 10.3389/fimmu.2022.923024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/14/2022] [Indexed: 09/07/2024] Open
Abstract
Metabolic shifts can occur in cells of the innate immune system in response to microbial infection. Whether these metabolic shifts benefit host defense and propagation of an immune response appears to be context dependent. In an arms race, host-adapted microbes and mammalian cells vie for control of biosynthetic machinery, organelles, and metabolites. Herein, we discuss the intersection of host metabolism and cell-intrinsic immunity with implications for cell fate during infection. Sensation of microbial ligands in isolation results in host metabolic shifts that imbues normal innate immune function, such as cytokine secretion. However, living microbes have an arsenal of effectors and strategies to subvert cell-intrinsic immune responses by manipulating host metabolism. Consequently, host metabolism is monitored as an indicator of invasion or manipulation by a pathogen, primarily through the actions of guard proteins and inflammasome pathways. In this review, we frame initiation of cell-intrinsic immunity in the context of host metabolism to include a physiologic "Goldilocks zone" of allowable shifts with guard circuits monitoring wide perturbations away from this zone for the initiation of innate immune responses. Through comparison of studies with purified microbial ligands, dead microbes, and live pathogens we may begin to understand how shifts in metabolism determine the outcome of host-pathogen interactions.
Collapse
|
12
|
Pagán AJ, Lee LJ, Edwards-Hicks J, Moens CB, Tobin DM, Busch-Nentwich EM, Pearce EL, Ramakrishnan L. mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity. Cell 2022; 185:3720-3738.e13. [PMID: 36103894 PMCID: PMC9596383 DOI: 10.1016/j.cell.2022.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023]
Abstract
Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity's most lethal pathogen, is successful in only a minority of infected individuals.
Collapse
Affiliation(s)
- Antonio J. Pagán
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Department of Microbiology, University of Washington, Seattle, WA 98195, USA,Corresponding author
| | - Lauren J. Lee
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Cecilia B. Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M. Tobin
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth M. Busch-Nentwich
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Erika L. Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Department of Microbiology, University of Washington, Seattle, WA 98195, USA,Corresponding author
| |
Collapse
|
13
|
Metabolomics insights into the interaction between Pseudomonas plecoglossicida and Epinephelus coioides. Sci Rep 2022; 12:13309. [PMID: 35922642 PMCID: PMC9349296 DOI: 10.1038/s41598-022-17387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
As a highly infectious epidemic in aquaculture, Pseudomonas plecoglossicida infection results in high mortality of teleosts and serious economic losses. Host–pathogen interactions shape the outcome of an infection, yet we still understand little about the molecular mechanism of these pathogen-mediated processes. Here, a P. plecoglossicida strain (NZBD9) and Epinephelus coioides were investigated as a model system to characterize pathogen-induced host metabolic remodeling over the course of infection. We present a non-targeted metabolomics profiling of E. coioides spleens from uninfected E. coioides and those infected with wild-type and clpV-RNA interference (RNAi) strains. The most significant changes of E. coioides upon infection were associated with amino acids, lysophospatidylcholines, and unsaturated fatty acids, involving disturbances in host nutritional utilization and immune responses. Dihydrosphingosine and fatty acid 16:2 were screened as potential biomarkers for assessing P. plecoglossicida infection. The silencing of the P. plecoglossicida clpV gene significantly recovered the lipid metabolism of infected E. coioides. This comprehensive metabolomics study provides novel insights into how P. plecoglossicida shape host metabolism to support their survival and replication and highlights the potential of the virulence gene clpV in the treatment of P. plecoglossicida infection in aquaculture.
Collapse
|
14
|
Evavold CL, Kagan JC. Diverse Control Mechanisms of the Interleukin-1 Cytokine Family. Front Cell Dev Biol 2022; 10:910983. [PMID: 35832789 PMCID: PMC9272893 DOI: 10.3389/fcell.2022.910983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
The majority of interleukin-1 (IL-1) family cytokines lack amino terminal secretion signals or transmembrane domains for secretion along the conventional biosynthetic pathway. Yet, these factors must be translocated from the cytoplasm across the plasma membrane into the extracellular space in order to regulate inflammation. Recent work has identified an array of mechanisms by which IL-1 family cytokines can be released into the extracellular space, with supramolecular organizing centers known as inflammasomes serving as dominant drivers of this process. In this review, we discuss current knowledge of the mechanisms of IL-1 family cytokine synthesis, processing, and release from cells. Using this knowledge, we propose a model whereby host metabolic state dictates the route of IL-1β secretion, with implications for microbial infection and sterile inflammation.
Collapse
Affiliation(s)
- Charles L. Evavold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| |
Collapse
|
15
|
Genome Features and AntiSMASH Analysis of an Endophytic Strain Fusarium sp. R1. Metabolites 2022; 12:metabo12060521. [PMID: 35736454 PMCID: PMC9229708 DOI: 10.3390/metabo12060521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Endophytic fungi are one of the most prolific sources of functional biomolecules with therapeutic potential. Besides playing an important role in serious plant diseases, Fusarium strains possess the powerful capability to produce a diverse array of bioactive secondary metabolites (SMs). In order to in-depth mine gene clusters for SM biosynthesis of the genus Fusarium, an endophytic strain Fusarium sp. R1 isolated from Rumex madaio Makino was extensively investigated by whole-genome sequencing and in-depth bioinformatic analysis, as well as antiSMASH annotation. The results displayed that strain R1 harbors a total of 51.8 Mb genome, which consists of 542 contigs with an N50 scaffold length of 3.21 Mb and 50.4% GC content. Meanwhile, 19,333 functional protein-coding genes, 338 tRNA and 111 rRNA were comprehensively predicted and highly annotated using various BLAST databases including non-redundant (Nr) protein sequence, nucleotide (Nt) sequence, Swiss-Prot, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG), as well as Pathogen Host Interactions (PHI) and Carbohydrate-Active enzymes (CAZy) databases. Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) results showed that strain R1 has 37 SM biosynthetic gene clusters (BGCs), including 17 nonribosomal peptide synthetases (NRPSs), 13 polyketide synthetases (PKSs), 3 terpene synthases (Ts), 3 hybrid NRPS + PKS and 1 hybrid indole + NRPS. These findings improve our knowledge of the molecular biology of the genus Fusarium and would promote the discovery of new bioactive SMs from strain R1 using gene mining strategies including gene knockout and heteroexpression.
Collapse
|
16
|
Li X, Straub J, Medeiros TC, Mehra C, den Brave F, Peker E, Atanassov I, Stillger K, Michaelis JB, Burbridge E, Adrain C, Münch C, Riemer J, Becker T, Pernas LF. Mitochondria shed their outer membrane in response to infection-induced stress. Science 2022; 375:eabi4343. [PMID: 35025629 DOI: 10.1126/science.abi4343] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xianhe Li
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julian Straub
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Chahat Mehra
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Esra Peker
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ilian Atanassov
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Jonas Benjamin Michaelis
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Emma Burbridge
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Colin Adrain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Jan Riemer
- Institute of Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lena F Pernas
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Sampani K. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021; 193:114809. [PMID: 34673016 DOI: 10.1016/j.bcp.2021.114809] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|