1
|
Schmidt C, Boissonnet T, Dohle J, Bernhardt K, Ferrando-May E, Wernet T, Nitschke R, Kunis S, Weidtkamp-Peters S. A practical guide to bioimaging research data management in core facilities. J Microsc 2024; 294:350-371. [PMID: 38752662 DOI: 10.1111/jmi.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Bioimage data are generated in diverse research fields throughout the life and biomedical sciences. Its potential for advancing scientific progress via modern, data-driven discovery approaches reaches beyond disciplinary borders. To fully exploit this potential, it is necessary to make bioimaging data, in general, multidimensional microscopy images and image series, FAIR, that is, findable, accessible, interoperable and reusable. These FAIR principles for research data management are now widely accepted in the scientific community and have been adopted by funding agencies, policymakers and publishers. To remain competitive and at the forefront of research, implementing the FAIR principles into daily routines is an essential but challenging task for researchers and research infrastructures. Imaging core facilities, well-established providers of access to imaging equipment and expertise, are in an excellent position to lead this transformation in bioimaging research data management. They are positioned at the intersection of research groups, IT infrastructure providers, the institution´s administration, and microscope vendors. In the frame of German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB), cross-institutional working groups and third-party funded projects were initiated in recent years to advance the bioimaging community's capability and capacity for FAIR bioimage data management. Here, we provide an imaging-core-facility-centric perspective outlining the experience and current strategies in Germany to facilitate the practical adoption of the FAIR principles closely aligned with the international bioimaging community. We highlight which tools and services are ready to be implemented and what the future directions for FAIR bioimage data have to offer.
Collapse
Affiliation(s)
- Christian Schmidt
- Enabling Technology Department, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tom Boissonnet
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Dohle
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | - Karen Bernhardt
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | - Elisa Ferrando-May
- Enabling Technology Department, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tobias Wernet
- Life Imaging Center, University of Freiburg, Freiburg, Germany
| | - Roland Nitschke
- Life Imaging Center, University of Freiburg, Freiburg, Germany
- CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Susanne Kunis
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | | |
Collapse
|
2
|
Imreh G, Hu J, Le Guyader S. Improving light microscopy training routines with evidence-based education. J Microsc 2024; 294:295-307. [PMID: 37534621 DOI: 10.1111/jmi.13216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
The low reproducibility of scientific data published in articles has recently become a cause of concern in many scientific fields. Data involving light microscopy is no exception. The low awareness of researchers of the technologies they use in their research has been identified as one of the main causes of the problem. Potential solutions have hinted at the need to improve technological and methodological education within research. Despite the pivotal role of microscopy core facilities in the education of researchers being well documented, facility staff (FS) often learn their trade on the job, without receiving themselves any structured education about the technology they teach others to use. Additionally, despite endorsing an important role at the highest level of education, most FS never receive any training in pedagogy, the field of research on teaching and learning methods. In this article, we argue that the low level of awareness that researchers have of microscopy stems from a knowledge gap formed between them and microscopy FS during training routines. On the one hand, FS consider that their teaching task is to explain what is needed to produce reliable data. On the other, despite understanding what is being taught, researchers fail to learn the most challenging aspects of microscopy, those involving their judgement and reasoning. We suggest that the misunderstanding between FS and researchers is due to FS not being educated in pedagogy and thus often confusing understanding and learning. To bridge this knowledge gap and improve the quality of the microscopy education available to researchers, we propose a paradigm shift where training staff at technological core facilities be acknowledged as full-fledged teachers and offered structured education not only in the technology they teach but also in pedagogy. We then suggest that training routines at facilities be upgraded to follow the principles of the Constructive Alignment pedagogical method. We give an example of how this can be applied to existing microscopy training routines. We also describe a model to define where the responsibility of FS in training researchers begins and ends. This involves a major structural change where university staff involved in teaching research technologies themselves receive appropriate education. For this to be achieved, we advocate that funding agencies, universities, microscopy and core facility organisations mobilise resources of time and funding. Such changes may involve funding the creation and development of 'Train-the-trainer' type of courses and giving incentives for FS to upgrade their technological and pedagogical knowledge, for example by including them in career paths. We believe that this paradigm shift is necessary to improve the level of microscopy education and ultimately the reproducibility of published data.
Collapse
Affiliation(s)
- Gabriela Imreh
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jianjiang Hu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sylvie Le Guyader
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
3
|
Schmied C, Nelson MS, Avilov S, Bakker GJ, Bertocchi C, Bischof J, Boehm U, Brocher J, Carvalho MT, Chiritescu C, Christopher J, Cimini BA, Conde-Sousa E, Ebner M, Ecker R, Eliceiri K, Fernandez-Rodriguez J, Gaudreault N, Gelman L, Grunwald D, Gu T, Halidi N, Hammer M, Hartley M, Held M, Jug F, Kapoor V, Koksoy AA, Lacoste J, Le Dévédec S, Le Guyader S, Liu P, Martins GG, Mathur A, Miura K, Montero Llopis P, Nitschke R, North A, Parslow AC, Payne-Dwyer A, Plantard L, Ali R, Schroth-Diez B, Schütz L, Scott RT, Seitz A, Selchow O, Sharma VP, Spitaler M, Srinivasan S, Strambio-De-Castillia C, Taatjes D, Tischer C, Jambor HK. Community-developed checklists for publishing images and image analyses. Nat Methods 2024; 21:170-181. [PMID: 37710020 PMCID: PMC10922596 DOI: 10.1038/s41592-023-01987-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.
Collapse
Affiliation(s)
- Christopher Schmied
- Fondazione Human Technopole, Milano, Italy.
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Michael S Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sergiy Avilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gert-Jan Bakker
- Medical BioSciences Department, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesions, Pontificia Universidad Católica de Chile Santiago, Santiago de Chile, Chile
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | | | | | - Jan Brocher
- Scientific Image Processing and Analysis, BioVoxxel, Ludwigshafen, Germany
| | - Mariana T Carvalho
- Nanophotonics and BioImaging Facility at INL, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | | - Jana Christopher
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beth A Cimini
- Imaging Platform, Broad Institute, Cambridge, MA, USA
| | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação e Inovação Em Saúde and INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Rupert Ecker
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- TissueGnostics GmbH, Vienna, Austria
| | - Kevin Eliceiri
- Department of Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Nadia Halidi
- Advanced Light Microscopy Unit, Centre for Genomic Regulation, Barcelona, Spain
| | - Mathias Hammer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Matthew Hartley
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Hinxton, UK
| | - Marie Held
- Centre for Cell Imaging, the University of Liverpool, Liverpool, UK
| | | | - Varun Kapoor
- Department of AI Research, Kapoor Labs, Paris, France
| | | | | | - Sylvia Le Dévédec
- Division of Drug Discovery and Safety, Cell Observatory, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Penghuan Liu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Gabriel G Martins
- Advanced Imaging Facility, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Kota Miura
- Bioimage Analysis and Research, Heidelberg, Germany
| | | | - Roland Nitschke
- Life Imaging Center, Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Alison North
- Bio-Imaging Resource Center, the Rockefeller University, New York, NY, USA
| | - Adam C Parslow
- Baker Institute Microscopy Platform, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - Laure Plantard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Britta Schroth-Diez
- Light Microscopy Facility, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Dresden, Germany
| | | | - Ryan T Scott
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Arne Seitz
- BioImaging and Optics Platform, Faculty of Life Sciences (SV), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olaf Selchow
- Microscopy and BioImaging Consulting, Image Processing and Large Data Handling, Gera, Germany
| | - Ved P Sharma
- Bio-Imaging Resource Center, the Rockefeller University, New York, NY, USA
| | | | - Sathya Srinivasan
- Imaging and Morphology Support Core, Oregon National Primate Research Center, OHSU West Campus, Beaverton, OR, USA
| | | | - Douglas Taatjes
- Department of Pathology and Laboratory Medicine, Microscopy Imaging Center, Center for Biomedical Shared Resources, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
4
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 676] [Impact Index Per Article: 676.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
5
|
Lee RM, Eisenman LR, Khuon S, Aaron JS, Chew TL. Believing is seeing - the deceptive influence of bias in quantitative microscopy. J Cell Sci 2024; 137:jcs261567. [PMID: 38197776 DOI: 10.1242/jcs.261567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
The visual allure of microscopy makes it an intuitively powerful research tool. Intuition, however, can easily obscure or distort the reality of the information contained in an image. Common cognitive biases, combined with institutional pressures that reward positive research results, can quickly skew a microscopy project towards upholding, rather than rigorously challenging, a hypothesis. The impact of these biases on a variety of research topics is well known. What might be less appreciated are the many forms in which bias can permeate a microscopy experiment. Even well-intentioned researchers are susceptible to bias, which must therefore be actively recognized to be mitigated. Importantly, although image quantification has increasingly become an expectation, ostensibly to confront subtle biases, it is not a guarantee against bias and cannot alone shield an experiment from cognitive distortions. Here, we provide illustrative examples of the insidiously pervasive nature of bias in microscopy experiments - from initial experimental design to image acquisition, analysis and data interpretation. We then provide suggestions that can serve as guard rails against bias.
Collapse
Affiliation(s)
- Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Leanna R Eisenman
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
6
|
Taatjes DJ, Koji T, Schrader M, Roth J. Editorial: Histochemistry and Cell Biology implements new submission guidelines for image presentation and image analysis. Histochem Cell Biol 2023; 160:495-497. [PMID: 37878055 DOI: 10.1007/s00418-023-02247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Takehiko Koji
- Office for Research Initiative and Development, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Michael Schrader
- Faculty of Health and Life Sciences, Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
7
|
Bianchini RM, Kurz EU. The analysis of protein recruitment to laser microirradiation-induced DNA damage in live cells: Best practices for data analysis. DNA Repair (Amst) 2023; 129:103545. [PMID: 37524003 DOI: 10.1016/j.dnarep.2023.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Laser microirradiation coupled with live-cell fluorescence microscopy is a powerful technique that has been used widely in studying the recruitment and retention of proteins at sites of DNA damage. Results obtained from this technique can be found in published works by both seasoned and infrequent users of microscopy. However, like many other microscopy-based techniques, the presentation of data from laser microirradiation experiments is inconsistent; papers report a wide assortment of analytic techniques, not all of which result in accurate and/or appropriate representation of the data. In addition to the varied methods of analysis, experimental and analytical details are commonly under-reported. Consequently, publications reporting data from laser microirradiation coupled with fluorescence microscopy experiments need to be carefully and critically assessed by readers. Here, we undertake a systematic investigation of commonly reported corrections used in the analysis of laser microirradiation data. We validate the critical need to correct data for photobleaching and we identify key experimental parameters that must be accounted for when presenting data from laser microirradiation experiments. Furthermore, we propose a straightforward, four-step analytical protocol that can readily be applied across platforms and that aims to improve the quality of data reporting in the DNA damage field.
Collapse
Affiliation(s)
- Ryan M Bianchini
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ebba U Kurz
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
8
|
Mandracchia B, Liu W, Hua X, Forghani P, Lee S, Hou J, Nie S, Xu C, Jia S. Optimal sparsity allows reliable system-aware restoration of fluorescence microscopy images. SCIENCE ADVANCES 2023; 9:eadg9245. [PMID: 37647399 PMCID: PMC10468132 DOI: 10.1126/sciadv.adg9245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Fluorescence microscopy is one of the most indispensable and informative driving forces for biological research, but the extent of observable biological phenomena is essentially determined by the content and quality of the acquired images. To address the different noise sources that can degrade these images, we introduce an algorithm for multiscale image restoration through optimally sparse representation (MIRO). MIRO is a deterministic framework that models the acquisition process and uses pixelwise noise correction to improve image quality. Our study demonstrates that this approach yields a remarkable restoration of the fluorescence signal for a wide range of microscopy systems, regardless of the detector used (e.g., electron-multiplying charge-coupled device, scientific complementary metal-oxide semiconductor, or photomultiplier tube). MIRO improves current imaging capabilities, enabling fast, low-light optical microscopy, accurate image analysis, and robust machine intelligence when integrated with deep neural networks. This expands the range of biological knowledge that can be obtained from fluorescence microscopy.
Collapse
Affiliation(s)
- Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Soojung Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jessica Hou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuyi Nie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
9
|
Larsen DD, Gaudreault N, Gibbs HC. Reporting reproducible imaging protocols. STAR Protoc 2023; 4:102040. [PMID: 36861824 PMCID: PMC9996438 DOI: 10.1016/j.xpro.2022.102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 03/03/2023] Open
Abstract
A reproducible imaging protocol should include four main detailed sections. The first should describe the sample preparation and include details about the tissue and/or cell culture preparation, the staining procedure, the optical grade of the coverslip, and the type of mounting media used to mount the sample. The second section should describe the configuration and components of the microscope and include the type of stand, stage, illumination, and detector, as well as the emission (EM) and excitation (EX) filters, objective, and immersion medium specifications. Specialized microscopes may have other important components in the optical path to include. The third section should describe the settings used to acquire an image like the exposure and/or dwell time, final magnification and optical resolution, the pixel and field of view (FOV) sizes, time intervals for any time lapse, total power at the objective (i.e., directed at your sample) and number of planes and step size used to collect a 3-dimensional image, and order of operations used in multi-dimensional image acquisitions. The final section should include details about the image analysis workflow such as the image processing steps, segmentation and measurement methods used to extract information from the image, data size, and necessary computing hardware and networking requirements if data sets are >1 GB, as well as citations and versions for the software and code used to perform any of these steps. Every effort should be made to make an example dataset with accurate metadata available online. Finally, specifics about the type of replicates included in the experiment and details about the statistical analysis conducted are also necessary.
Collapse
Affiliation(s)
- DeLaine D Larsen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Microscopy and Imaging Center, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Parker M, Mayes SA, Browning CM, Deal J, Gunn-Mayes S, Annamdevula NS, Rich TC, Leavesley SJ. Multifaceted mirror array illuminator for fluorescence excitation-scanning spectral imaging microscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:026502. [PMID: 36761255 PMCID: PMC9907356 DOI: 10.1117/1.jbo.28.2.026502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Hyperspectral imaging (HSI) technologies offer great potential in fluorescence microscopy for multiplexed imaging, autofluorescence removal, and analysis of autofluorescent molecules. However, there are also associated trade-offs when implementing HSI in fluorescence microscopy systems, such as decreased acquisition speed, resolution, or field-of-view due to the need to acquire spectral information in addition to spatial information. The vast majority of HSI fluorescence microscopy systems provide spectral discrimination by filtering or dispersing the fluorescence emission, which may result in loss of emitted fluorescence signal due to optical filters, dispersive optics, or supporting optics, such as slits and collimators. Technologies that scan the fluorescence excitation spectrum may offer an approach to mitigate some of these trade-offs by decreasing the complexity of the emission light path. AIM We describe the development of an optical technique for hyperspectral imaging fluorescence excitation-scanning (HIFEX) on a microscope system. APPROACH The approach is based on the design of an array of wavelength-dependent light emitting diodes (LEDs) and a unique beam combining system that uses a multifurcated mirror. The system was modeled and optimized using optical ray trace simulations, and a prototype was built and coupled to an inverted microscope platform. The prototype system was calibrated, and initial feasibility testing was performed by imaging multilabel slide preparations. RESULTS We present results from optical ray trace simulations, prototyping, calibration, and feasibility testing of the system. Results indicate that the system can discriminate between at least six fluorescent labels and autofluorescence and that the approach can provide decreased wavelength switching times, in comparison with mechanically tuned filters. CONCLUSIONS We anticipate that LED-based HIFEX microscopy may provide improved performance for time-dependent and photosensitive assays.
Collapse
Affiliation(s)
- Marina Parker
- University of South Alabama, Department of Chemical and Biomolecular Engineering, Mobile, Alabama, United States
- University of South Alabama, Systems Engineering, Mobile, Alabama, United States
| | - Samuel A. Mayes
- University of South Alabama, Department of Chemical and Biomolecular Engineering, Mobile, Alabama, United States
- University of South Alabama, Systems Engineering, Mobile, Alabama, United States
| | - Craig M. Browning
- University of South Alabama, Department of Chemical and Biomolecular Engineering, Mobile, Alabama, United States
- University of South Alabama, Systems Engineering, Mobile, Alabama, United States
| | - Joshua Deal
- University of South Alabama, Department of Pharmacology, Mobile, Alabama, United States
- University of South Alabama, Center for Lung Biology, Mobile, Alabama, United States
| | - Samantha Gunn-Mayes
- University of South Alabama, Department of Chemical and Biomolecular Engineering, Mobile, Alabama, United States
| | - Naga S. Annamdevula
- University of South Alabama, Department of Chemical and Biomolecular Engineering, Mobile, Alabama, United States
- University of South Alabama, Department of Pharmacology, Mobile, Alabama, United States
- University of South Alabama, Center for Lung Biology, Mobile, Alabama, United States
| | - Thomas C. Rich
- University of South Alabama, Department of Pharmacology, Mobile, Alabama, United States
- University of South Alabama, Center for Lung Biology, Mobile, Alabama, United States
| | - Silas J. Leavesley
- University of South Alabama, Department of Chemical and Biomolecular Engineering, Mobile, Alabama, United States
- University of South Alabama, Systems Engineering, Mobile, Alabama, United States
- University of South Alabama, Department of Pharmacology, Mobile, Alabama, United States
- University of South Alabama, Center for Lung Biology, Mobile, Alabama, United States
| |
Collapse
|
11
|
Rusakov DA. A misadventure of the correlation coefficient. Trends Neurosci 2023; 46:94-96. [PMID: 36280457 DOI: 10.1016/j.tins.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 01/25/2023]
Abstract
The correlation coefficient gauges linear association between two variables. However, interpreting its value depends on the question at hand. This article argues that relying on the correlation coefficient may be irrelevant for many neuroscience research tasks. When the experimental dataset is contextually suitable for binning-averaging, other indicators of statistical association could prove more suitable.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
12
|
Elhessy HM, Habotta OA, Eldesoqui M, Elsaed WM, Soliman MFM, Sewilam HM, Elhassan YH, Lashine NH. Comparative neuroprotective effects of Cerebrolysin, dexamethasone, and ascorbic acid on sciatic nerve injury model: Behavioral and histopathological study. Front Neuroanat 2023; 17:1090738. [PMID: 36816518 PMCID: PMC9928760 DOI: 10.3389/fnana.2023.1090738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Background The majority of the suggested experimental modalities for peripheral nerve injury (PNI) result in varying degrees of recovery in animal models; however, there are not many reliable clinical pharmacological treatment models available. To alleviate PNI complications, research on approaches to accelerate peripheral nerve regeneration is encouraged. Cerebrolysin, dexamethasone, and ascorbic acid (vitamin C) drug models were selected in our study because of their reported curative effects of different mechanisms of action. Methodology A total of 40 adult male albino rats were used in this study. Sciatic nerve crush injury was induced in 32 rats, which were divided equally into four groups (model, Cerebrolysin, dexamethasone, and vitamin C groups) and compared to the sham group (n = 8). The sciatic nerve sensory and motor function regeneration after crushing together with gastrocnemius muscle histopathological changes were evaluated by the sciatic function index, the hot plate test, gastrocnemius muscle mass ratio, and immune expression of S100 and apoptosis cascade (BAX, BCL2, and BAX/BCL2 ratio). Results Significant improvement of the behavioral status and histopathological assessment scores occurred after the use of Cerebrolysin (as a neurotrophic factor), dexamethasone (as an anti-inflammatory), and vitamin C (as an antioxidant). Despite these seemingly concomitant, robust behavioral and pathological changes, vitamin C appeared to have the best results among the three main outcome measures. There was a positive correlation between motor and sensory improvement and also between behavioral and histopathological changes, boosting the effectiveness, and implication of the sciatic function index as a mirror for changes occurring on the tissue level. Conclusion Vitamin C is a promising therapeutic in the treatment of PNI. The sciatic function index (SFI) test is a reliable accurate method for assessing sciatic nerve integrity after both partial disruption and regrowth.
Collapse
Affiliation(s)
- Heba M. Elhessy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,*Correspondence: Heba M. Elhessy,
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mamdouh Eldesoqui
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona F. M. Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Haitham M. Sewilam
- Department of Histology and Cell Biology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Y. H. Elhassan
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Nermeen H. Lashine
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Tasma Z, Siow A, Harris PWR, Brimble MA, O’Carroll SJ, Hay DL, Walker CS. PAC 1, VPAC 1, and VPAC 2 Receptor Expression in Rat and Human Trigeminal Ganglia: Characterization of PACAP-Responsive Receptor Antibodies. Int J Mol Sci 2022; 23:ijms232213797. [PMID: 36430275 PMCID: PMC9697343 DOI: 10.3390/ijms232213797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide expressed in the trigeminal ganglia (TG). The TG conducts nociceptive signals in the head and may play roles in migraine. PACAP infusion provokes headaches in healthy individuals and migraine-like attacks in patients; however, it is not clear whether targeting this system could be therapeutically efficacious. To effectively target the PACAP system, an understanding of PACAP receptor distribution is required. Therefore, this study aimed to characterize commercially available antibodies and use these to detect PACAP-responsive receptors in the TG. Antibodies were initially validated in receptor transfected cell models and then used to explore receptor expression in rat and human TG. Antibodies were identified that could detect PACAP-responsive receptors, including the first antibody to differentiate between the PAC1n and PAC1s receptor splice variants. PAC1, VPAC1, and VPAC2 receptor-like immunoreactivity were observed in subpopulations of both neuronal and glial-like cells in the TG. In this study, PAC1, VPAC1, and VPAC2 receptors were detected in the TG, suggesting they are all potential targets to treat migraine. These antibodies may be useful tools to help elucidate PACAP-responsive receptor expression in tissues. However, most antibodies exhibited limitations, requiring the use of multiple methodologies and the careful inclusion of controls.
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Andrew Siow
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland 1023, New Zealand
| | - Debbie L. Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin 9016, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
14
|
Faklaris O, Bancel-Vallée L, Dauphin A, Monterroso B, Frère P, Geny D, Manoliu T, de Rossi S, Cordelières FP, Schapman D, Nitschke R, Cau J, Guilbert T. Quality assessment in light microscopy for routine use through simple tools and robust metrics. J Cell Biol 2022; 221:e202107093. [PMID: 36173380 PMCID: PMC9526251 DOI: 10.1083/jcb.202107093] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/04/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Although there is a need to demonstrate reproducibility in light microscopy acquisitions, the lack of standardized guidelines monitoring microscope health status over time has so far impaired the widespread use of quality control (QC) measurements. As scientists from 10 imaging core facilities who encounter various types of projects, we provide affordable hardware and open source software tools, rigorous protocols, and define reference values to assess QC metrics for the most common fluorescence light microscopy modalities. Seven protocols specify metrics on the microscope resolution, field illumination flatness, chromatic aberrations, illumination power stability, stage drift, positioning repeatability, and spatial-temporal noise of camera sensors. We designed the MetroloJ_QC ImageJ/Fiji Java plugin to incorporate the metrics and automate analysis. Measurements allow us to propose an extensive characterization of the QC procedures that can be used by any seasoned microscope user, from research biologists with a specialized interest in fluorescence light microscopy through to core facility staff, to ensure reproducible and quantifiable microscopy results.
Collapse
Affiliation(s)
- Orestis Faklaris
- Montpellier Ressources Imagerie, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Leslie Bancel-Vallée
- Montpellier Ressources Imagerie, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Aurélien Dauphin
- Unite Genetique et Biologie du Développement U934, PICT-IBiSA, Institut Curie, INSERM, CNRS, PSL Research University, Paris, France
| | - Baptiste Monterroso
- Prism, Institut de Biologie Valrose, CNRS UMR 7277, INSERM 1091, University of Nice Sophia Antipolis – Parc Valrose, Nice, France
| | - Perrine Frère
- Plate-forme d'Imagerie de Tenon, UMR_S 1155, Hôpital Tenon, Paris, France
| | - David Geny
- Institut de Psychiatrie Et Neurosciences de Paris, INSERM U1266, Paris, France
| | - Tudor Manoliu
- Gustave Roussy, Université Paris-Saclay, Plate-forme Imagerie et Cytométrie, UMS AMMICa. Villejuif, France
| | - Sylvain de Rossi
- Montpellier Ressources Imagerie, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Fabrice P. Cordelières
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, UMS 3420, US 4, Bordeaux, France
| | - Damien Schapman
- Université of Rouen Normandie, INSERM, Plate-Forme de Recherche en Imagerie Cellulaire de Normandie, Rouen, France
| | - Roland Nitschke
- Life Imaging Center and Signalling Research Centres CIBSS and BIOSS, University Freiburg, Freiburg, Germany
| | - Julien Cau
- Montpellier Ressources Imagerie, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Thomas Guilbert
- Institut Cochin, INSERM (U1016), CNRS (UMR 8104), Universite de Paris (UMR-S1016), Paris, France
| |
Collapse
|
15
|
Ni S, Chen F, Chen G, Yang Y. Mathematical model and genomics construction of developmental biology patterns using digital image technology. Front Genet 2022; 13:956415. [PMID: 36035113 PMCID: PMC9399364 DOI: 10.3389/fgene.2022.956415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Biological pattern formation ensures that tissues and organs develop in the correct place and orientation within the body. A great deal has been learned about cell and tissue staining techniques, and today’s microscopes can capture digital images. A light microscope is an essential tool in biology and medicine. Analyzing the generated images will involve the creation of unique analytical techniques. Digital images of the material before and after deformation can be compared to assess how much strain and displacement the material responds. Furthermore, this article proposes Development Biology Patterns using Digital Image Technology (DBP-DIT) to cell image data in 2D, 3D, and time sequences. Engineered materials with high stiffness may now be characterized via digital image correlation. The proposed method of analyzing the mechanical characteristics of skin under various situations, such as one direction of stress and temperatures in the hundreds of degrees Celsius, is achievable using digital image correlation. A DBP-DIT approach to biological tissue modeling is based on digital image correlation (DIC) measurements to forecast the displacement field under unknown loading scenarios without presupposing a particular constitutive model form or owning knowledge of the material microstructure. A data-driven approach to modeling biological materials can be more successful than classical constitutive modeling if adequate data coverage and advice from partial physics constraints are available. The proposed procedures include a wide range of biological objectives, experimental designs, and laboratory preferences. The experimental results show that the proposed DBP-DIT achieves a high accuracy ratio of 99,3%, a sensitivity ratio of 98.7%, a specificity ratio of 98.6%, a probability index of 97.8%, a balanced classification ratio of 97.5%, and a low error rate of 38.6%.
Collapse
Affiliation(s)
- Shiwei Ni
- Institute of Life Sciences, FuZhou University, FuZhou, Fujian, China
| | - Fei Chen
- Institute of Life Sciences, FuZhou University, FuZhou, Fujian, China
| | - Guolong Chen
- School of Mathematics and Statistics, FuZhou University, FuZhou, Fujian, China
| | - Yufeng Yang
- Institute of Life Sciences, FuZhou University, FuZhou, Fujian, China
- *Correspondence: Yufeng Yang,
| |
Collapse
|
16
|
Reproductive Apparatus, Gonadic Maturation, and Allometry of Cyclocephala barrerai Martínez (Coleoptera: Melolonthidae: Dynastinae). INSECTS 2022; 13:insects13070638. [PMID: 35886814 PMCID: PMC9320705 DOI: 10.3390/insects13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Cyclocephala barrerai larvae feed on the roots of ornamental and commercial grasses. Most of their biology is still unknown, and there are no tools to manage their populations. The objective of this work was to study the reproductive system, gonadic maturation, and allometry of C. barrerai. This is the first report into the Melolonthidae family that characterizes the reproductive apparatus, gonadic maturation of both sexes, and allometric relationships of virgin F1 specimens. Adults do not feed, so gonadic maturation depends on larvae reserves. Females present sclerotized accessory glands and a genital chamber with muscular fibers and bacteria. The morphology of the parameres and the antennae are under sexual selection. This is the first report of two main differences among sexes: females are heavier while males have longer antennae. Males and females exhibit allometric relationships that can be used to predict the bodyweight of field-collected specimens. Abstract The Order Coleoptera provides good examples of morphological specializations in the reproductive apparatus, gonadic maturation, and allometry differing between the sexes. The female and male reproductive apparatus has been modified to ensure reproduction between individuals of the same species. The genus Cyclocephala has more than 500 species distributed in America, and Cyclocephala barrerai Martínez is an economically important species in the central part of Mexico. The objective of this work was to study the reproductive system, gonadic maturation, and allometry of C. barrerai. We used light, scanning electron, and laser scanning confocal microscopy to describe the reproductive apparatus and gonadic maturation of females and males. The relationship between adult weight and different parts of the body was established by linear regression. Regardless, the reproductive apparatuses of C. barrerai are like those of other Melolonthidae: the genital chamber, the type II accessory glands, and the ventral plaques of the female and the ejaculator bulb and genital capsule of the males are specific to C. barrerai. The gonads are fully developed when 18 d old. The weight of adult C. barrerai has a positive linear relationship with distinct parts of its body, while the antennae of males are larger than those of the females.
Collapse
|
17
|
Cuny AP, Schlottmann FP, Ewald JC, Pelet S, Schmoller KM. Live cell microscopy: From image to insight. BIOPHYSICS REVIEWS 2022; 3:021302. [PMID: 38505412 PMCID: PMC10903399 DOI: 10.1063/5.0082799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/18/2022] [Indexed: 03/21/2024]
Abstract
Live-cell microscopy is a powerful tool that can reveal cellular behavior as well as the underlying molecular processes. A key advantage of microscopy is that by visualizing biological processes, it can provide direct insights. Nevertheless, live-cell imaging can be technically challenging and prone to artifacts. For a successful experiment, many careful decisions are required at all steps from hardware selection to downstream image analysis. Facing these questions can be particularly intimidating due to the requirement for expertise in multiple disciplines, ranging from optics, biophysics, and programming to cell biology. In this review, we aim to summarize the key points that need to be considered when setting up and analyzing a live-cell imaging experiment. While we put a particular focus on yeast, many of the concepts discussed are applicable also to other organisms. In addition, we discuss reporting and data sharing strategies that we think are critical to improve reproducibility in the field.
Collapse
Affiliation(s)
| | - Fabian P. Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Jennifer C. Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
18
|
Reiche MA, Aaron JS, Boehm U, DeSantis MC, Hobson CM, Khuon S, Lee RM, Chew TL. When light meets biology - how the specimen affects quantitative microscopy. J Cell Sci 2022; 135:274812. [PMID: 35319069 DOI: 10.1242/jcs.259656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fluorescence microscopy images should not be treated as perfect representations of biology. Many factors within the biospecimen itself can drastically affect quantitative microscopy data. Whereas some sample-specific considerations, such as photobleaching and autofluorescence, are more commonly discussed, a holistic discussion of sample-related issues (which includes less-routine topics such as quenching, scattering and biological anisotropy) is required to appropriately guide life scientists through the subtleties inherent to bioimaging. Here, we consider how the interplay between light and a sample can cause common experimental pitfalls and unanticipated errors when drawing biological conclusions. Although some of these discrepancies can be minimized or controlled for, others require more pragmatic considerations when interpreting image data. Ultimately, the power lies in the hands of the experimenter. The goal of this Review is therefore to survey how biological samples can skew quantification and interpretation of microscopy data. Furthermore, we offer a perspective on how to manage many of these potential pitfalls.
Collapse
Affiliation(s)
- Michael A Reiche
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Ulrike Boehm
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Michael C DeSantis
- Light Microscopy Facility, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147,USA
| | - Chad M Hobson
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA.,Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA.,Light Microscopy Facility, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147,USA
| |
Collapse
|
19
|
Martinez AL, Shannon MJ, Eisman SE, Hegewisch-Solloa E, Asif AN, Ebrahim TAM, Mace EM. Quantifying Human Natural Killer Cell Migration by Imaging and Image Analysis. Methods Mol Biol 2022; 2463:129-151. [PMID: 35344172 PMCID: PMC9159076 DOI: 10.1007/978-1-0716-2160-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migration is an important function for natural killer cells. Cell motility has implications in development, tissue infiltration, and cytotoxicity, and measuring the properties of natural killer (NK) cell migration using in vitro assays can be highly informative. Many researchers have an interest in studying properties of NK cell migration in the context of genetic mutation, disease, or in specific tissues and microenvironments. Motility assays can also provide information on the localization of proteins during different phases of cell migration. These assays can be performed on different surfaces for migration or coupled with chemoattractants and/or target cells to test functional outcomes or characterize cell migration speeds and phenotypes. NK cells undergo migration during differentiation in tissue, and these conditions can be modeled by culturing NK cells on a confluent bed of stromal cells on glass and imaging cell migration. Alternatively, fibronectin- or ICAM-1-coated surfaces promote NK cell migration and can be used as substrates. Here, we will describe techniques for the experimental setup and analysis of NK cell motility assays by confocal microscopy or in-incubator imaging using commercially available systems. Finally, we describe open-source software for analyzing cell migration using manual tracking or automated approaches and discuss considerations for the implementation of each of these methods.
Collapse
Affiliation(s)
- Amera L Martinez
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael J Shannon
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Shira E Eisman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Aneeza N Asif
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biology, Barnard College, New York, NY, USA
| | - Tasneem A M Ebrahim
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Parker M, Mayes SA, Browning CM, Deal J, Gunn-Mayes S, Rich TC, Leavesley SJ. Validation of Excitation-Scan Hyperspectral Multi-faceted Mirror Array Prototype System Advancements to Hyperspectral Imaging Applications. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11966:1196606. [PMID: 35756692 PMCID: PMC9215169 DOI: 10.1117/12.2607659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Hyperspectral imaging technologies (HSI) have undergone rapid development since their beginning stages. While original applications were in remote sensing, other uses include agriculture, food safety and medicine. HSI has shown great utility in fluorescence microscopy for detecting signatures from many fluorescent molecules; however, acquisitions speeds have been slow due to light losses associated with spectral filtering. Therefore, we designed a novel light emitting diode (LED)-based rapid excitation scanning hyperspectral imaging platform allowing users to obtain simultaneous measurements of fluorescent labels without compromising acquisition speeds. Previously, we reported our results of the optical ray trace simulations and the geometrical capability of designing a multifaceted mirror imaging system as an initial approach to combine light at many wavelengths. The design utilized LEDs and a multifaceted mirror array to combine light sources into a liquid light guide. The computational model was constructed using Monte Carlo optical ray software (TracePro, Lambda Research Corp.). Recent prototype validation results show that when compared to a commercial emission scanning spectral confocal microscope (Zeiss-LSM-980), the novel LED-based excitation scanning HSI prototype successfully detected and separated six fluorescent labels from a custom 6-label African green monkey kidney epithelial cells. We report on the prototype's ability to overcome limitations of acquisition speeds, sensitivity, and specificity present in conventional systems. Future work will evaluate prototype's light losses to determine latent design modifications needed to demonstrate the system's feasibility as a promising solution for overcoming HSI acquisition speeds. This work was supported by NSF award MRI1725937.
Collapse
Affiliation(s)
- Marina Parker
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688,Department of Systems Engineering, University of South Alabama, AL 36688
| | - Sam A. Mayes
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688,Department of Systems Engineering, University of South Alabama, AL 36688
| | - Craig M. Browning
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688,Department of Systems Engineering, University of South Alabama, AL 36688
| | - Joshua Deal
- Pharmacology, University of South Alabama, AL 36688,Center for Lung Biology, University of South Alabama, AL 36688
| | - Samantha Gunn-Mayes
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688
| | - Thomas C. Rich
- Pharmacology, University of South Alabama, AL 36688,Center for Lung Biology, University of South Alabama, AL 36688
| | - Silas J. Leavesley
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688,Pharmacology, University of South Alabama, AL 36688,Center for Lung Biology, University of South Alabama, AL 36688,Department of Systems Engineering, University of South Alabama, AL 36688
| |
Collapse
|
21
|
Sanchez-Arias JC, Carrier M, Frederiksen SD, Shevtsova O, McKee C, van der Slagt E, Gonçalves de Andrade E, Nguyen HL, Young PA, Tremblay MÈ, Swayne LA. A Systematic, Open-Science Framework for Quantification of Cell-Types in Mouse Brain Sections Using Fluorescence Microscopy. Front Neuroanat 2021; 15:722443. [PMID: 34949993 PMCID: PMC8691181 DOI: 10.3389/fnana.2021.722443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
The ever-expanding availability and evolution of microscopy tools has enabled ground-breaking discoveries in neurobiology, particularly with respect to the analysis of cell-type density and distribution. Widespread implementation of many of the elegant image processing tools available continues to be impeded by the lack of complete workflows that span from experimental design, labeling techniques, and analysis workflows, to statistical methods and data presentation. Additionally, it is important to consider open science principles (e.g., open-source software and tools, user-friendliness, simplicity, and accessibility). In the present methodological article, we provide a compendium of resources and a FIJI-ImageJ-based workflow aimed at improving the quantification of cell density in mouse brain samples using semi-automated open-science-based methods. Our proposed framework spans from principles and best practices of experimental design, histological and immunofluorescence staining, and microscopy imaging to recommendations for statistical analysis and data presentation. To validate our approach, we quantified neuronal density in the mouse barrel cortex using antibodies against pan-neuronal and interneuron markers. This framework is intended to be simple and yet flexible, such that it can be adapted to suit distinct project needs. The guidelines, tips, and proposed methodology outlined here, will support researchers of wide-ranging experience levels and areas of focus in neuroscience research.
Collapse
Affiliation(s)
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Olga Shevtsova
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma van der Slagt
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Hai Lam Nguyen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Penelope A Young
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
22
|
Ryan J, Pengo T, Rigano A, Llopis PM, Itano MS, Cameron LA, Marqués G, Strambio-De-Castillia C, Sanders MA, Brown CM. MethodsJ2: a software tool to capture metadata and generate comprehensive microscopy methods text. Nat Methods 2021; 18:1414-1416. [PMID: 34654919 PMCID: PMC9488561 DOI: 10.1038/s41592-021-01290-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel Ryan
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Alex Rigano
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Michelle S Itano
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa A Cameron
- Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | - Guillermo Marqués
- University Imaging Centers, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark A Sanders
- University Imaging Centers, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada.
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Montero Llopis P, Senft RA, Ross-Elliott TJ, Stephansky R, Keeley DP, Koshar P, Marqués G, Gao YS, Carlson BR, Pengo T, Sanders MA, Cameron LA, Itano MS. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat Methods 2021; 18:1463-1476. [PMID: 34099930 DOI: 10.1038/s41592-021-01156-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
Although fluorescence microscopy is ubiquitous in biomedical research, microscopy methods reporting is inconsistent and perhaps undervalued. We emphasize the importance of appropriate microscopy methods reporting and seek to educate researchers about how microscopy metadata impact data interpretation. We provide comprehensive guidelines and resources to enable accurate reporting for the most common fluorescence light microscopy modalities. We aim to improve microscopy reporting, thus improving the quality, rigor and reproducibility of image-based science.
Collapse
Affiliation(s)
| | - Rebecca A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Daniel P Keeley
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| | - Preman Koshar
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermo Marqués
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Ya-Sheng Gao
- Duke Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | | | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mark A Sanders
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Lisa A Cameron
- Duke Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | - Michelle S Itano
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Hammer M, Huisman M, Rigano A, Boehm U, Chambers JJ, Gaudreault N, North AJ, Pimentel JA, Sudar D, Bajcsy P, Brown CM, Corbett AD, Faklaris O, Lacoste J, Laude A, Nelson G, Nitschke R, Farzam F, Smith CS, Grunwald D, Strambio-De-Castillia C. Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model. Nat Methods 2021; 18:1427-1440. [PMID: 34862501 PMCID: PMC9271325 DOI: 10.1038/s41592-021-01327-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rigorous record-keeping and quality control are required to ensure the quality, reproducibility and value of imaging data. The 4DN Initiative and BINA here propose light Microscopy Metadata specifications that extend the OME data model, scale with experimental intent and complexity, and make it possible for scientists to create comprehensive records of imaging experiments.
Collapse
Affiliation(s)
- Mathias Hammer
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Alessandro Rigano
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Ulrike Boehm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | - Jaime A Pimentel
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Damir Sudar
- Quantitative Imaging Systems LLC, Portland, OR, USA
| | - Peter Bajcsy
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
| | | | - Orestis Faklaris
- MRI, BCM, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Alex Laude
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Glyn Nelson
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Roland Nitschke
- Life Imaging Center and Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Farzin Farzam
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | - Carlas S Smith
- Delft Center for Systems and Control and Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - David Grunwald
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | | |
Collapse
|
25
|
Restivo L, Gerlach B, Tsoory M, Bikovski L, Badurek S, Pitzer C, Kos-Braun IC, Mausset-Bonnefont ALM, Ward J, Schunn M, Noldus LP, Bespalov A, Voikar V. Towards best practices in research: Role of academic core facilities. EMBO Rep 2021; 22:e53824. [PMID: 34734666 PMCID: PMC8647140 DOI: 10.15252/embr.202153824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Leonardo Restivo
- Neuro-BAU, Department of Fundamental Neuroscience, Faculty of Biology & Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Michael Tsoory
- Behavioral and Physiological Phenotyping Unit, Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| | - Sylvia Badurek
- Preclinical Phenotyping Facility at Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Vienna, Austria
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, University of Heidelberg, Heidelberg, Germany
| | - Isabelle C Kos-Braun
- Interdisciplinary Neurobehavioral Core, University of Heidelberg, Heidelberg, Germany
| | | | | | - Michael Schunn
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Lucas Pjj Noldus
- Noldus Information Technology BV, Wageningen, The Netherlands.,Department of Biophysics, Radboud University, Nijmegen, The Netherlands
| | | | - Vootele Voikar
- Neuroscience Center and Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Laine RF, Arganda-Carreras I, Henriques R, Jacquemet G. Avoiding a replication crisis in deep-learning-based bioimage analysis. Nat Methods 2021; 18:1136-1144. [PMID: 34608322 PMCID: PMC7611896 DOI: 10.1038/s41592-021-01284-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deep learning algorithms are powerful tools to analyse, restore and transform bioimaging data, increasingly used in life sciences research. These approaches now outperform most other algorithms for a broad range of image analysis tasks. In particular, one of the promises of deep learning is the possibility to provide parameter-free, one-click data analysis achieving expert-level performances in a fraction of the time previously required. However, as with most new and upcoming technologies, the potential for inappropriate use is raising concerns among the biomedical research community. This perspective aims to provide a short overview of key concepts that we believe are important for researchers to consider when using deep learning for their microscopy studies. These comments are based on our own experience gained while optimising various deep learning tools for bioimage analysis and discussions with colleagues from both the developer and user community. In particular, we focus on describing how results obtained using deep learning can be validated and discuss what should, in our views, be considered when choosing a suitable tool. We also suggest what aspects of a deep learning analysis would need to be reported in publications to describe the use of such tools to guarantee that the work can be reproduced. We hope this perspective will foster further discussion between developers, image analysis specialists, users and journal editors to define adequate guidelines and ensure that this transformative technology is used appropriately.
Collapse
Affiliation(s)
- Romain F Laine
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Micrographia Bio, Translation and Innovation Hub, London, UK
| | - Ignacio Arganda-Carreras
- Computer Science and Artificial Intelligence Department, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland.
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
27
|
Hmeljak J, Agullo-Pascual E. Celebrating FocalPlane and microscopy in Disease Models & Mechanisms. Dis Model Mech 2021; 14:270975. [PMID: 34279567 DOI: 10.1242/dmm.049183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Aaron J, Chew TL. A guide to accurate reporting in digital image processing - can anyone reproduce your quantitative analysis? J Cell Sci 2021; 134:134/6/jcs254151. [PMID: 33785609 DOI: 10.1242/jcs.254151] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Considerable attention has been recently paid to improving replicability and reproducibility in life science research. This has resulted in commendable efforts to standardize a variety of reagents, assays, cell lines and other resources. However, given that microscopy is a dominant tool for biologists, comparatively little discussion has been offered regarding how the proper reporting and documentation of microscopy relevant details should be handled. Image processing is a critical step of almost any microscopy-based experiment; however, improper, or incomplete reporting of its use in the literature is pervasive. The chosen details of an image processing workflow can dramatically determine the outcome of subsequent analyses, and indeed, the overall conclusions of a study. This Review aims to illustrate how proper reporting of image processing methodology improves scientific reproducibility and strengthens the biological conclusions derived from the results.
Collapse
Affiliation(s)
- Jesse Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
29
|
Rigano A, Ehmsen S, Öztürk SU, Ryan J, Balashov A, Hammer M, Kirli K, Boehm U, Brown CM, Bellve K, Chambers JJ, Cosolo A, Coleman RA, Faklaris O, Fogarty KE, Guilbert T, Hamacher AB, Itano MS, Keeley DP, Kunis S, Lacoste J, Laude A, Ma WY, Marcello M, Montero-Llopis P, Nelson G, Nitschke R, Pimentel JA, Weidtkamp-Peters S, Park PJ, Alver BH, Grunwald D, Strambio-De-Castillia C. Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications. Nat Methods 2021; 18:1489-1495. [PMID: 34862503 PMCID: PMC8648560 DOI: 10.1038/s41592-021-01315-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.
Collapse
Affiliation(s)
- Alessandro Rigano
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - Shannon Ehmsen
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Serkan Utku Öztürk
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Joel Ryan
- grid.14709.3b0000 0004 1936 8649Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec Canada
| | - Alexander Balashov
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Mathias Hammer
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA USA
| | - Koray Kirli
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Ulrike Boehm
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Claire M. Brown
- grid.14709.3b0000 0004 1936 8649Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec Canada
| | - Karl Bellve
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - James J. Chambers
- grid.266683.f0000 0001 2166 5835Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA USA
| | - Andrea Cosolo
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Robert A. Coleman
- grid.251993.50000000121791997Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - Orestis Faklaris
- grid.121334.60000 0001 2097 0141BioCampus Montpellier (BCM), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kevin E. Fogarty
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - Thomas Guilbert
- grid.508487.60000 0004 7885 7602Institut Cochin, Inserm U1016-CNRS UMR8104-Université de Paris, Paris, France
| | - Anna B. Hamacher
- grid.411327.20000 0001 2176 9917Center for Advanced Imaging, Heinrich-Heine University Duesseldorf, Düsseldorf, Germany
| | - Michelle S. Itano
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Daniel P. Keeley
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Susanne Kunis
- grid.10854.380000 0001 0672 4366Department of Biology/Chemistry and Center for Cellular Nanoanalytics, University Osnabrück, Osnabrück, Germany
| | | | - Alex Laude
- grid.1006.70000 0001 0462 7212Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Willa Y. Ma
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Marco Marcello
- grid.10025.360000 0004 1936 8470Center for Cell Imaging, University of Liverpool, Liverpool, UK
| | - Paula Montero-Llopis
- grid.38142.3c000000041936754XMicroscopy Resources of the North Quad, University of Harvard Medical School, Boston, MA USA
| | - Glyn Nelson
- grid.1006.70000 0001 0462 7212Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Roland Nitschke
- grid.5963.9Life Imaging Center and Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Jaime A. Pimentel
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Stefanie Weidtkamp-Peters
- grid.411327.20000 0001 2176 9917Center for Advanced Imaging, Heinrich-Heine University Duesseldorf, Düsseldorf, Germany
| | - Peter J. Park
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Burak H. Alver
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - David Grunwald
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA USA
| | | |
Collapse
|