1
|
Dalmaijer ES. Cumulative route improvements spontaneously emerge in artificial navigators even in the absence of sophisticated communication or thought. PLoS Biol 2024; 22:e3002644. [PMID: 38843108 PMCID: PMC11156315 DOI: 10.1371/journal.pbio.3002644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Homing pigeons (Columba livia) navigate by solar and magnetic compass, and fly home in idiosyncratic but stable routes when repeatedly released from the same location. However, when experienced pigeons fly alongside naive counterparts, their path is altered. Over several generations of turnover (pairs in which the most experienced individual is replaced with a naive one), pigeons show cumulative improvements in efficiency. Here, I show that such cumulative route improvements can occur in a much simpler system by using agent-based simulation. Artificial agents are in silico entities that navigate with a minimal cognitive architecture of goal-direction (they know roughly where the goal is), social proximity (they seek proximity to others and align headings), route memory (they recall landmarks with increasing precision), and continuity (they avoid erratic turns). Agents' behaviour qualitatively matched that of pigeons, and quantitatively fitted to pigeon data. My results indicate that naive agents benefitted from being paired with experienced agents by following their previously established route. Importantly, experienced agents also benefitted from being paired with naive agents due to regression to the goal: naive agents were more likely to err towards the goal from the perspective of experienced agents' memorised paths. This subtly biased pairs in the goal direction, resulting in intergenerational improvements of route efficiency. No cumulative improvements were evident in control studies in which agents' goal-direction, social proximity, or memory were lesioned. These 3 factors are thus necessary and sufficient for cumulative route improvements to emerge, even in the absence of sophisticated communication or thought.
Collapse
Affiliation(s)
- Edwin S. Dalmaijer
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Carter WA, Pagano SS, Seewagen CL. The effects of diet-shifting from invertebrates towards fruit on the condition of autumn-migrant Catharus thrushes. Oecologia 2024; 204:559-573. [PMID: 38363323 DOI: 10.1007/s00442-024-05511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Migration is an energetically challenging and risky life history stage for many animals, but could be supported by dietary choices en route, which may create opportunities to improve body and physiological condition. However, proposed benefits of diet shifts, such as between seasonally available invertebrates and fruits, have received limited investigation in free-living animals. We quantified diet composition and magnitude of autumn diet shifts over two time periods in two closely-related species of migratory songbirds on stopover in the northeastern U.S. (Swainson's thrush [Catharus ustulatus], long-distance migrant, N = 83; hermit thrush [C. guttatus], short-distance migrant, N = 79) and used piecewise structural equation models to evaluate the relationships among (1) migration timing, (2) dietary behavior, and (3) morphometric and physiological condition indices. Tissue isotope composition indicated that both species shifted towards greater fruit consumption. Larger shifts in recent weeks corresponded to higher body condition in Swainson's, but not hermit thrushes, and condition was more heavily influenced by capture date in Swainson's thrushes. Presence of "high-antioxidant" fruits in fecal samples was unrelated to condition in Swainson's thrushes and negatively related to multiple condition indices in hermit thrushes, possibly indicating the value of fruits during migration is related more to their energy and/or macronutrient content than antioxidant content. Our results suggest that increased frugivory during autumn migration can support condition, but those benefits might depend on migration strategy: a longer-distance, more capital-dependent migration strategy could require stricter regulation of body condition aided by increased fruit consumption.
Collapse
Affiliation(s)
- Wales A Carter
- Great Hollow Nature Preserve and Ecological Research Center, 225 State Route 37, New Fairfield, CT, 06812, USA.
| | - Susan Smith Pagano
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Chad L Seewagen
- Great Hollow Nature Preserve and Ecological Research Center, 225 State Route 37, New Fairfield, CT, 06812, USA
| |
Collapse
|
3
|
Jiménez T, Peña-Villalobos I, Arcila J, Del Basto F, Palma V, Sabat P. The effects of urban thermal heterogeneity and feather coloration on oxidative stress and metabolism of pigeons (Columba livia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169564. [PMID: 38142996 DOI: 10.1016/j.scitotenv.2023.169564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Urbanization stands out as a significant anthropogenic factor, exerting selective pressures on ecosystems and biotic components. A notable outcome of urbanization is thermal heterogeneity where the emergence of Urban Heat Islands is characterized by elevated air and surface temperatures compared to adjacent rural areas. Investigating the influence of thermal heterogeneity on urban animals could offer insights into how temperature variations can lead to phenotypic shifts. Urban pigeons (Columba livia) serve as an excellent model for studying urban thermal effects, given the melanism variations, which are associated with the pleiotropy of the melanocortin system. To examine the development of physiological plasticity in response to urban thermal variations, we conducted a study on pigeons in Santiago, Chile, during the rainy season. We assessed the influence of habitat on physiological traits related to metabolism and antioxidant capacities, which are theoretically affected by feather coloration. Our findings reveal that variations in melanism significantly impact pigeon physiology, affecting both antioxidant capacities and the mitochondrial activity of red blood cells. It was found that higher urban temperatures, from both the current sampling month and the prior sampling month (from CRU TS dataset), were negatively and strongly associated with lower antioxidant and metabolic activities. This suggests that elevated urban temperatures likely benefit the energetic budgets of pigeon populations and mitigate the negative effects of oxidative metabolism, with differential effects depending on feather colorations.
Collapse
Affiliation(s)
- Tomás Jiménez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Isaac Peña-Villalobos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Javiera Arcila
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Del Basto
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Verónica Palma
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi)
| |
Collapse
|
4
|
Coughlan K, Sadowska ET, Bauchinger U. Repeat Sampling of Female Passerines During Reproduction Reveals Surprising Higher Plasma Oxidative Damage During Resting Compared to Active State. Integr Comp Biol 2023; 63:1197-1208. [PMID: 37698890 PMCID: PMC10755187 DOI: 10.1093/icb/icad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Traditional models of oxidative stress predict accumulation of damage caused by reactive oxygen species (ROS) production as highly correlated with aerobic metabolism, a prediction under increasing scrutiny. Here, we repeat sampled female great tits (Parus major) at two opposite levels of energy use during the period of maximum food provisioning to nestlings, once at rest and once during activity. Our results were in contrast to the above prediction, namely significantly higher levels of oxidative damage during rest opposed to active phase. This discrepancy could not be explained neither using levels of "first line" antioxidant enzymes activity measured from erythrocytes, nor from total nonenzymatic antioxidant capacity measured from plasma, as no differences were found between states. Significantly higher levels of uric acid, a potent antioxidant, were seen in the plasma during the active phase than in rest phase, which may explain the lower levels of oxidative damage despite high levels of physical activity. Our results challenge the hypothesis that oxidative stress is elevated during times with high energy use and call for more profound understanding of potential drivers of the modulation of oxidative stress such as metabolic state of the animal, and thus also the time of sampling in general.
Collapse
Affiliation(s)
- Kyle Coughlan
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St., 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Batóg G, Dołoto A, Bąk E, Piątkowska-Chmiel I, Krawiec P, Pac-Kożuchowska E, Herbet M. The interplay of oxidative stress and immune dysfunction in Hashimoto's thyroiditis and polycystic ovary syndrome: a comprehensive review. Front Immunol 2023; 14:1211231. [PMID: 37588599 PMCID: PMC10426741 DOI: 10.3389/fimmu.2023.1211231] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
In recent years, there has been a significant increase in the concomitant incidence of Hashimoto's thyroiditis (HT) and polycystic ovary syndrome (PCOS), both in terms of incidence, etiology, and clinical consequences. PCOS patients suffering from autoimmune thyroid diseases show insulin resistance, impaired glucose tolerance, weight gain, and metabolic and reproductive complications. Studies have shown that chronic stress and its consequence, i.e. oxidative stress, play an important role in the pathomechanism of both disorders. It has also been shown that long-term exposure to stress triggers biological mechanisms, in particular related to the regulation of the inflammatory cascade, which plays a key role in autoimmune diseases. The paper is a review of the literature on the role of chronic stress, oxidative stress, and immune processes in the pathogenesis of HT and PCOS. In addition, the review is a source of knowledge about the treatment of these diseases, and in particular the use of antioxidants in therapeutic management.
Collapse
Affiliation(s)
- Gabriela Batóg
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Dołoto
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewelina Bąk
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Paulina Krawiec
- Department of Paediatrics and Gastroenterology, Medical University of Lublin, Lublin, Poland
| | | | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Sirman AE, Schmidt JE, Clark ME, Kittilson JD, Reed WL, Heidinger BJ. Compensatory Growth Is Accompanied by Changes in Insulin-Like Growth Factor 1 but Not Markers of Cellular Aging in a Long-Lived Seabird. Am Nat 2023; 202:78-91. [PMID: 37384761 DOI: 10.1086/724599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractDeveloping organisms often plastically modify growth in response to environmental circumstances, which may be adaptive but is expected to entail long-term costs. However, the mechanisms that mediate these growth adjustments and any associated costs are less well understood. In vertebrates, one mechanism that may be important in this context is the highly conserved signaling factor insulin-like growth factor 1 (IGF-1), which is frequently positively related to postnatal growth and negatively related to longevity. To test this idea, we exposed captive Franklin's gulls (Leucophaeus pipixcan) to a physiologically relevant nutritional stressor by restricting food availability during postnatal development and examined the effects on growth, IGF-1, and two potential biomarkers of cellular and organismal aging (oxidative stress and telomeres). During food restriction, experimental chicks gained body mass more slowly and had lower IGF-1 levels than controls. Following food restriction, experimental chicks underwent compensatory growth, which was accompanied by an increase in IGF-1 levels. Interestingly, however, there were no significant effects of the experimental treatment or of variation in IGF-1 levels on oxidative stress or telomeres. These findings suggest that IGF-1 is responsive to changes in resource availability but is not associated with increased markers of cellular aging during development in this relatively long-lived species.
Collapse
|
7
|
Eikenaar C, Ostolani A, Brust V, Karwinkel T, Schmaljohann H, Isaksson C. The oxidative balance and stopover departure decisions in a medium- and a long-distance migrant. MOVEMENT ECOLOGY 2023; 11:7. [PMID: 36747277 PMCID: PMC9903453 DOI: 10.1186/s40462-023-00372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Birds have extremely elevated metabolic rates during migratory endurance flight and consequently can become physiologically exhausted. One feature of exhaustion is oxidative damage, which occurs when the antioxidant defense system is overwhelmed by the production of damaging reactive oxygen species (ROS). Migrating birds have been shown to decrease the amount of oxidative lipid damage during stopovers, relatively stationary periods in between migratory flights. It has therefore been argued that, in addition to accumulating fuel, one of the functions of stopover is to restore the oxidative balance. If this is so, we would expect that migrating birds are unlikely to resume migration from stopover when they still have high amounts of lipid damage. METHODS To test this hypothesis, we measured parameters of the oxidative balance and related these to stopover departure decisions of song thrushes (Turdus philomelos) and northern wheatears (Oenanthe oenanthe), a medium- and long-distance songbird migrant, respectively. We measured malondialdehyde (MDA) concentration, a biomarker for oxidative lipid damage, and total non-enzymatic antioxidant capacity (AOX), an overall biomarker of protection against ROS. Stopover departure decisions were determined using a fully automated telemetry system set-up on our small island study site. RESULTS The decision to resume migration was not related with MDA concentration in either study species, also not when this was corrected for circulating fatty acid concentrations. Similarly, AOX did not affect this decision, also not when corrected for uric-acid concentration. The time within the night when birds departed also was not affected by MDA concentration or AOX. However, confirming earlier observations, we found that in both species, fat individuals were more likely to depart than lean individuals, and fat northern wheatears departed earlier within the night than lean conspecifics. Northern wheatears additionally departed earlier in spring with more southerly winds. CONCLUSIONS We found no support for the idea that stopovers departure decisions are influenced by parameters of the oxidative balance. We discuss possible reasons for this unexpected finding.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany.
| | | | - Vera Brust
- Institute of Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
| | - Thiemo Karwinkel
- Institute of Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | | |
Collapse
|
8
|
Bryla A, Zagkle E, Sadowska ET, Cichoń M, Bauchinger U. Measurements of body temperature and oxidative stress reveal differential costs associated with humoral immune function in a passerine bird. J Exp Biol 2022; 225:279339. [PMID: 36314237 DOI: 10.1242/jeb.244897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Eco-immunology considers resistance to antigens a costly trait for an organism, but actual quantification of such costs is not straightforward. Costs of the immune response are visible in impaired coloration and reduced growth or reproductive success. Activation of the humoral immune response is a slow, complex and long-lasting process, which makes the quantification of its energetic cost a potential losing game. We implemented near-continuous measurements of body temperature in zebra finches (Taeniopygia guttata) as a proxy for the energetic cost, with a particular focus during activation of the humoral immune response until the peak of antibody release several days later. At the peak of the antibody release we additionally measured oxygen consumption (open-flow respirometry) and markers of oxidative stress (dROMs, OXY). Birds with an activated immune response maintained a higher night-time body temperature during the first 4 nights after an immune challenge in comparison to controls, implying increased night-time energy use. At peak antibody production, we did not find differences in night-time body temperature and oxygen consumption but observed differentiated results for oxygen consumption during the day. Immune-challenged females had significantly higher oxygen consumption compared with other groups. Moreover, we found that activation of the humoral immune response increases oxidative damage, a potential cost of maintaining the higher night-time body temperature that is crucial at the early stage of the immune response. The costs generated by the immune system appear to consist of two components - energetic and non-energetic - and these appear to be separated in time.
Collapse
Affiliation(s)
- Amadeusz Bryla
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elisavet Zagkle
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Mariusz Cichoń
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
9
|
Maggini I, Noakes MJ, Hawkes LA, Hegemann A. Editorial: Ecophysiological adaptations associated with animal migration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1022173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Fernández-Eslava B, Cantarero A, Alonso D, Alonso-Alvarez C. Wild common crossbills produce redder body feathers when their wings are clipped. BMC ZOOL 2022; 7:47. [PMID: 37170309 PMCID: PMC10127331 DOI: 10.1186/s40850-022-00150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The animal signaling theory posits that conspicuous colorations exhibited by many animals have evolved as reliable signals of individual quality. Red carotenoid-based ornaments may depend on enzymatic transformations (oxidation) of dietary yellow carotenoids, which could occur in the inner mitochondrial membrane (IMM). Thus, carotenoid ketolation and cell respiration could share the same biochemical pathways. Accordingly, the level of trait expression (redness) would directly reveal the efficiency of individuals’ metabolism and, hence, the bearer quality in an unfalsifiable way. Different avian studies have described that the flying effort may induce oxidative stress. A redox metabolism modified during the flight could thus influence the carotenoid conversion rate and, ultimately, animal coloration. Here, we aimed to infer the link between red carotenoid-based ornament expression and flight metabolism by increasing flying effort in wild male common crossbills Loxia curvirostra (Linnaeus). In this order, 295 adult males were captured with mist nets in an Iberian population during winter. Approximately half of the birds were experimentally handicapped through wing feather clipping to increase their flying effort, the other half being used as a control group. To stimulate the plumage regrown of a small surface during a short time-lapse, we also plucked the rump feathers from all the birds.
Results
A fraction of the birds with fully grown rump feathers (34 individuals) could be recaptured during the subsequent weeks. We did not detect any significant bias in recovery rates and morphological variables in this reduced subsample. However, among recaptured birds, individuals with experimentally impaired flying capacity showed body mass loss, whereas controls showed a trend to increase their weight. Moreover, clipped males showed redder feathers in the newly regrown rump area compared to controls.
Conclusions
The results suggest that wing-clipped individuals could have endured higher energy expenditure as they lost body mass. Despite the small sample size, the difference in plumage redness between the two experimental groups would support the hypothesis that the flying metabolism may influence the redox enzymatic reactions required for converting yellow dietary carotenoids to red ketocarotenoids.
Collapse
|
11
|
Alonso-Alvarez C, Fernández-Eslava B, Alonso D, Galicia D, Arizaga J. Bigger or long-winged male common crossbills exhibit redder carotenoid-based plumage coloration. Curr Zool 2022; 69:165-172. [PMID: 37091992 PMCID: PMC10120982 DOI: 10.1093/cz/zoac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Carotenoid-based ornaments are often considered reliable (honest) individual condition signals because their expression implies physiological costs unaffordable for low-quality animals (handicap signals). Recently, it has been suggested that efficient cell respiration is mandatory for producing red ketocarotenoids from dietary yellow carotenoids. This implies that red colorations should be entirely unfalsifiable and independent of expression costs (index signals). In a precedent study, male common crossbills Loxia curvirostra showing a red plumage reported higher apparent survival than those showing yellowish-orange colors. The plumage redness in this species is due to ketocarotenoid accumulation in feathers. Here, we correlated the male plumage redness (a four-level visual score: yellow, patchy, orange and red) and the body morphology in more than 1000 adult crossbills captured in three Iberian localities to infer the mechanisms responsible for color evolution. A principal component analysis summarized morphometry of ten variables (beak, wing, tarsus length, etc.). The overall body size (PC1) and the length of flight feathers regarding body size (PC3) showed significant positive relationships with plumage redness. Plumage redness was barely correlated to bill shape measures suggesting no constraint in acquiring carotenoids from pine cones. However, large body sizes or proportionally long flying feathers could help carotenoid acquisition via social competition or increased foraging ranges. Proportionally longer flight feathers might also be associated with a specific cell respiration profile that would simultaneously favor flying capacities and enzymatic transformations needed for ketocarotenoid synthesis. Such a phenotypic profile would agree with the hypothesis of ketocarotenoid-based colors acting as individual quality index signals.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Edificio Pinar, Spain
| | - Blanca Fernández-Eslava
- Ecología Evolutiva,Universidad de Navarra. Facultad de Ciencias, C/ Irunlarrea, Pamplona, Navarra, Spain
| | - Daniel Alonso
- Ornitología,Sociedad de Ciencias de Aranzadi, Zorroagagaina, Donostia, San Sebastián, Spain
| | - David Galicia
- Biología Ambiental, Universidad de Navarra, Facultad de Ciencias, C/ Irunlarrea, Pamplona, Navarra, Spain
| | - Juan Arizaga
- Ornitología, Sociedad de Ciencias de Aranzadi, Zorroagagaina, Donostia, San Sebastián, Spain
| |
Collapse
|
12
|
Eikenaar C, Winslott E, Schmaljohann H, Wang HL, Isaksson C. Can differential fatty acid composition help migrating birds to limit oxidative lipid damage? Physiol Behav 2022; 249:113768. [PMID: 35247445 DOI: 10.1016/j.physbeh.2022.113768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 01/07/2023]
Abstract
During migratory endurance flights, which are energetically very demanding, migrants have to deal with prolonged elevated generation of reactive oxygen species (ROS). To limit the damaging actions that ROS have on lipids and proteins, migrating birds are known to upregulate their antioxidant defence system. However, there may be additional ways to limit oxidative damage incurred from flying. Migratory endurance flights are fuelled mainly with fatty acids (FAs), and the risk of their peroxidation (resulting in oxidative lipid damage) increases with the number of double bonds in a FA, with polyunsaturated FAs (2 or more double bonds, PUFAs) being most peroxidation-prone. By fuelling their flights with relatively few PUFAs, migratory birds could thus limit oxidative lipid damage. Within migratory birds, there is considerable variation in the length of their flights, with nocturnal migrants making lengthier flight bouts, thus more likely to experience lengthier periods of elevated ROS production, than diurnal migrants. However, whether migrants making lengthier flights incur more oxidative lipid damage is unknown. Neither is it known whether flight length and FA composition are associated. Therefore, we determined plasmatic malondialdehyde level, a marker of oxidative lipid damage, and FA composition of three nocturnal and two diurnal migrant species caught at an autumn stopover site. We found little inter-specific variation in malondialdehyde level, indicating that the amount of oxidative lipid damage was comparable across the species. In contrast, the species strongly differed in their plasmatic FA composition. The nocturnal migrants had significantly lower relative PUFA levels than both diurnal migrants, an effect mainly attributable to linoleic acid, an essential (strictly dietary) FA. Consequently, the susceptibility of plasmatic FAs to lipid peroxidation was significantly lower in the nocturnal than diurnal migrants. Because in birds, energy expenditure during flight decreases with the degree of FA unsaturation, we interpret our observation of lower PUFA levels in nocturnal migrants as support for the idea that utilizing PUFA-poor fuel can help migrating birds to curb oxidative lipid damage.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, Wilhelmshaven, 26386, Germany.
| | - Erica Winslott
- Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Heiko Schmaljohann
- Institute of Avian Research, Wilhelmshaven, 26386, Germany; Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg,Oldenburg, 26129, Germany
| | - Hong-Lei Wang
- Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | | |
Collapse
|
13
|
Schmaljohann H, Eikenaar C, Sapir N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol Rev Camb Philos Soc 2022; 97:1231-1252. [PMID: 35137518 DOI: 10.1111/brv.12839] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
Global movement patterns of migratory birds illustrate their fascinating physical and physiological abilities to cross continents and oceans. During their voyages, most birds land multiple times to make so-called 'stopovers'. Our current knowledge on the functions of stopover is mainly based on the proximate study of departure decisions. However, such studies are insufficient to gauge fully the ecological and evolutionary functions of stopover. If we study how a focal trait, e.g. changes in energy stores, affects the decision to depart from a stopover without considering the trait(s) that actually caused the bird to land, e.g. unfavourable environmental conditions for flight, we misinterpret the function of the stopover. It is thus important to realise and acknowledge that stopovers have many different functions, and that not every migrant has the same (set of) reasons to stop-over. Additionally, we may obtain contradictory results because the significance of different traits to a migrant is context dependent. For instance, late spring migrants may be more prone to risk-taking and depart from a stopover with lower energy stores than early spring migrants. Thus, we neglect that departure decisions are subject to selection to minimise immediate (mortality risk) and/or delayed (low future reproductive output) fitness costs. To alleviate these issues, we first define stopover as an interruption of migratory endurance flight to minimise immediate and/or delayed fitness costs. Second, we review all probable functions of stopover, which include accumulating energy, various forms of physiological recovery and avoiding adverse environmental conditions for flight, and list potential other functions that are less well studied, such as minimising predation, recovery from physical exhaustion and spatiotemporal adjustments to migration. Third, derived from these aspects, we argue for a paradigm shift in stopover ecology research. This includes focusing on why an individual interrupts its migratory flight, which is more likely to identify the individual-specific function(s) of the stopover correctly than departure-decision studies. Moreover, we highlight that the selective forces acting on stopover decisions are context dependent and are expected to differ between, e.g. K-/r-selected species, the sexes and migration strategies. For example, all else being equal, r-selected species (low survival rate, high reproductive rate) should have a stronger urge to continue the migratory endurance flight or resume migration from a stopover because the potential increase in immediate fitness costs suffered from a flight is offset by the expected higher reproductive success in the subsequent breeding season. Finally, we propose to focus less on proximate mechanisms controlling landing and departure decisions, and more on ultimate mechanisms to identify the selective forces shaping stopover decisions. Our ideas are not limited to birds but can be applied to any migratory species. Our revised definition of stopover and the proposed paradigm shift has the potential to stimulate a fruitful discussion towards a better evolutionary ecological understanding of the functions of stopover. Furthermore, identifying the functions of stopover will support targeted measures to conserve and restore the functionality of stopover sites threatened by anthropogenic environmental changes. This is especially important for long-distance migrants, which currently are in alarming decline.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, 26129, Germany.,Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Haifa, 3498838, Israel
| |
Collapse
|
14
|
Padda SS, Stahlschmidt ZR. Evaluating the effects of water and food limitation on the life history of an insect using a multiple-stressor framework. Oecologia 2022; 198:519-530. [PMID: 35067802 DOI: 10.1007/s00442-022-05115-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Many environmental stressors naturally covary, and the frequency and duration of stressors such as heat waves and droughts are increasing globally with climate change. Multiple stressors may have additive or non-additive effects on fitness-related traits, such as locomotion, reproduction, and somatic growth. Despite its importance to terrestrial animals, water availability is rarely incorporated into multiple-stressor frameworks. Water limitation often occurs concurrently with food limitation (e.g., droughts can trigger famines), and the acquisition of water and food can be linked because water is necessary for digestion and metabolism. Thus, we investigated the independent and interactive effects of water and food limitation on life-history traits using female crickets (Gryllus firmus), which exhibit a wing dimorphism mediating a life-history trade-off between flight and fecundity. Our results indicate that traits vary in their sensitivities to environmental factors and factor-factor interactions. For example, neither environmental factor affected flight musculature, only water limitation affected survival, and food and water availability non-additively (i.e., interactively) influenced body and ovary mass. Water availability had a larger effect on traits than food availability, affected more traits than food availability, and mediated the effects of food availability. Further, life-history strategy influenced the costs of multiple stressors because females investing in flight capacity exhibited greater reductions in body and ovary mass during stress relative to females lacking flight capacity. Therefore, water is important in the multiple-stressor framework, and understanding the dynamics of covarying environmental factors and life history may be critical in the context of climate change characterized by concurrent environmental stressors.
Collapse
Affiliation(s)
- Sugjit S Padda
- University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA.,Department of Ecosystem Science and Management, Pennsylvania State University, State College, PA, 16801, USA
| | | |
Collapse
|
15
|
Degut A, Fischer K, Quque M, Criscuolo F, Michalik P, Beaulieu M. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. J Exp Biol 2022; 225:273908. [PMID: 34989809 DOI: 10.1242/jeb.243724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
Within populations, phenotypic plasticity may allow adaptive phenotypic variation in response to selection generated by environmental heterogeneity. For instance, in multivoltine species, seasonal changes between and within generations may trigger morphological and physiological variation enhancing fitness under different environmental conditions. These seasonal changes may irreversibly affect adult phenotypes when experienced during development. Yet, the irreversible effects of developmental plasticity on adult morphology have rarely been linked to life-history traits even though they may affect different fitness components such as reproduction, mobility and self-maintenance. To address this issue, we raised larvae of Pieris napi butterflies under warm or cool conditions to subsequently compare adult performance in terms of reproduction performance (as assessed through fecundity), displacement capacity (as assessed through flight propensity and endurance) and self-maintenance (as assessed through the measurement of oxidative markers). As expected in ectotherms, individuals developed faster under warm conditions and were smaller than individuals developing under cool conditions. They also had more slender wings and showed a higher wing surface ratio. These morphological differences were associated with changes in the reproductive and flight performances of adults, as individuals developing under warm conditions laid fewer eggs and flew larger distances. Accordingly, the examination of their oxidative status suggested that individuals developing under warm conditions invested more strongly into self-maintenance than individuals developing under cool conditions (possibly at the expense of reproduction). Overall, our results indicate that developmental conditions have long-term consequences on several adult traits in butterflies. This plasticity likely acts on life history strategies for each generation to keep pace with seasonal variations and may facilitate acclimation processes in the context of climate change.
Collapse
Affiliation(s)
- Anaïs Degut
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.,Institute for Integrated Sciences, University of Koblenz-Landau, Universität Str. 1, 56070 Koblenz, Germany
| | - Martin Quque
- Institut Pluridisciplinaire Hubert Curien
- IPHC · Department of Ecology, Physiology and Ethology, Strasbourg, France
| | - François Criscuolo
- Institut Pluridisciplinaire Hubert Curien
- IPHC · Department of Ecology, Physiology and Ethology, Strasbourg, France
| | - Peter Michalik
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Michaël Beaulieu
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.,German Oceanographic Museum, Katharinenberg 14-20, 18439 Stralsund, Germany
| |
Collapse
|
16
|
Frawley AE, DeMoranville KJ, Carbeck KM, Trost L, Bryła A, Działo M, Sadowska ET, Bauchinger U, Pierce BJ, McWilliams SR. Flight training and dietary antioxidants have mixed effects on the oxidative status of multiple tissues in a female migratory songbird. J Exp Biol 2021; 224:272431. [PMID: 34632505 DOI: 10.1242/jeb.243158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Birds, like other vertebrates, rely on a robust antioxidant system to protect themselves against oxidative imbalance caused by energy-intensive activities such as flying. Such oxidative challenges may be especially acute for females during spring migration, as they must pay the oxidative costs of flight while preparing for reproduction; however, little previous work has examined how the antioxidant system of female spring migrants responds to dietary antioxidants and the oxidative challenges of regular flying. We fed two diets to female European starlings, one supplemented with a dietary antioxidant and one without, and then flew them daily in a windtunnel for 2 weeks during the autumn and spring migration periods. We measured the activity of enzymatic antioxidants (glutathione peroxidase, superoxide dismutase and catalase), non-enzymatic antioxidant capacity (ORAC) and markers of oxidative damage (protein carbonyls and lipid hydroperoxides) in four tissues: pectoralis, leg muscle, liver and heart. Dietary antioxidants affected enzymatic antioxidant activity and lipid damage in the heart, non-enzymatic antioxidant capacity in the pectoralis, and protein damage in leg muscle. In general, birds not fed the antioxidant supplement appeared to incur increased oxidative damage while upregulating non-enzymatic and enzymatic antioxidant activity, though these effects were strongly tissue specific. We also found trends for diet×training interactions for enzymatic antioxidant activity in the heart and leg muscle. Flight training may condition the antioxidant system of females to dynamically respond to oxidative challenges, and females during spring migration may shift antioxidant allocation to reduce oxidative damage.
Collapse
Affiliation(s)
- Abigail E Frawley
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Kristen J DeMoranville
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Katherine M Carbeck
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T1Z4
| | - Lisa Trost
- Department for Behavioural Neurobiology, Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany
| | - Amadeusz Bryła
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Maciej Działo
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland.,Nencki Institute of Experimental Biology PAS, 02-093 Warszawa, Poland
| | - Barbara J Pierce
- Department of Biology, Sacred Heart University, Fairfield, CT 06825, USA
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
17
|
McWilliams S, Carter W, Cooper-Mullin C, DeMoranville K, Frawley A, Pierce B, Skrip M. How Birds During Migration Maintain (Oxidative) Balance. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Animals dynamically adjust their physiology and behavior to survive in changing environments, and seasonal migration is one life stage that demonstrates these dynamic adjustments. As birds migrate between breeding and wintering areas, they incur physiological demands that challenge their antioxidant system. Migrating birds presumably respond to these oxidative challenges by up-regulating protective endogenous systems or accumulating dietary antioxidants at stopover sites, although our understanding of the pre-migration preparations and mid-migration responses of birds to such oxidative challenges is as yet incomplete. Here we review evidence from field and captive-bird studies that address the following questions: (1) Do migratory birds build antioxidant capacity as they build fat stores in preparation for long flights? (2) Is oxidative damage an inevitable consequence of oxidative challenges such as flight, and, if so, how is the extent of damage affected by factors such as the response of the antioxidant system, the level of energetic challenge, and the availability of dietary antioxidants? (3) Do migratory birds ‘recover’ from the oxidative damage accrued during long-duration flights, and, if so, does the pace of this rebalancing of oxidative status depend on the quality of the stopover site? The answer to all these questions is a qualified ‘yes’ although ecological factors (e.g., diet and habitat quality, geographic barriers to migration, and weather) affect how the antioxidant system responds. Furthermore, the pace of this dynamic physiological response remains an open question, despite its potential importance for shaping outcomes on timescales ranging from single flights to migratory journeys. In sum, the antioxidant system of birds during migration is impressively dynamic and responsive to environmental conditions, and thus provides ample opportunities to study how the physiology of migratory birds responds to a changing and challenging world.
Collapse
|
18
|
Colominas-Ciuró R, Cianchetti-Benedetti M, Michel L, Dell'Omo G, Quillfeldt P. Foraging strategies and physiological status of a marine top predator differ during breeding stages. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111094. [PMID: 34653609 DOI: 10.1016/j.cbpa.2021.111094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Habitat characteristics determine the presence and distribution of trophic resources shaping seabirds' behavioural responses which may result in physiological consequences. Such physiological consequences in relation to foraging strategies of different life-history stages have been little studied in the wild. Thus, we aim to assess differences in oxidative status, condition (fat stores, i.e. triglyceride levels, TRI), stress (Heterophil/Lymphocyte (H/L) ratio), and leukocyte profiles between incubation and chick rearing highlighting the role of foraging strategies in a seabird (Calonectris diomedea). Chick rearing was more energetically demanding and stressful than incubation as demonstrated by high stress levels (H/L ratio and leukocytes) and lower body stores (assessed by TRI and the increment of weight) due to the high energy requirements of rearing chicks. Also, our results make reconsider the simplistic trade-off model where reproduction increases metabolism and consequently the rate of oxidative stress. In fact, high energy expenditure (VeDBA) during chick rearing was correlated with low levels of oxidative damage likely due to mechanisms at the level of mitochondrial inner membranes (uncoupling proteins or low levels of oxygen partial pressure). Further (more distant) and longer (more days) foraging trips were performed during incubation, when antioxidants showed low levels compared to chick rearing due to incubation fasting, a change in diet, or a combination of these factors; but unlikely because of oxidative shielding since no relation was found between oxidative damage and antioxidant capacity. Males showed higher numbers of monocytes which were positively correlated with antioxidant capacity compared to females, suggesting sexual differences in immune profiles. Species-specific costs and energetic demands of different breeding phases trigger behavioural and physiological adjustments.
Collapse
Affiliation(s)
- R Colominas-Ciuró
- Dept. Evolutionary Ecology, Museo Nacional de Ciencias Naturales, 28006 Madrid, Spain; Dept. Ecology, Physiology & Ethology. CNRS, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France..
| | - M Cianchetti-Benedetti
- Behavioural Ecology & Ecophysiology Group, Department of Animal Ecology & Systematics, Justus-Liebig University Giessen, D-35392 Giessen, Germany; Ornis Italica, 00199 Rome, Italy
| | - L Michel
- Behavioural Ecology & Ecophysiology Group, Department of Animal Ecology & Systematics, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | | | - P Quillfeldt
- Behavioural Ecology & Ecophysiology Group, Department of Animal Ecology & Systematics, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
19
|
Photoperiodically driven transcriptome-wide changes in the hypothalamus reveal transcriptional differences between physiologically contrasting seasonal life-history states in migratory songbirds. Sci Rep 2021; 11:12823. [PMID: 34140553 PMCID: PMC8211672 DOI: 10.1038/s41598-021-91951-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
We investigated time course of photoperiodically driven transcriptional responses in physiologically contrasting seasonal life-history states in migratory blackheaded buntings. Birds exhibiting unstimulated winter phenotype (photosensitive state; responsive to photostimulation) under 6-h short days, and regressed summer phenotype (photorefractory state; unresponsiveness to photostimulation) under 16-h long days, were released into an extended light period up to 22 h of the day. Increased tshβ and dio2, and decreased dio3 mRNA levels in hypothalamus, and low prdx4 and high il1β mRNA levels in blood confirmed photoperiodic induction by hour 18 in photosensitive birds. Further, at hours 10, 14, 18 and 22 of light exposure, the comparison of hypothalamus RNA-Seq results revealed transcriptional differences within and between states. Particularly, we found reduced expression at hour 14 of transthyretin and proopiomelanocortin receptor, and increased expression at hour 18 of apolipoprotein A1 and carbon metabolism related genes in the photosensitive state. Similarly, valine, leucine and isoleucine degradation pathway genes and superoxide dismutase 1 were upregulated, and cocaine- and amphetamine-regulated transcript and gastrin-releasing peptide were downregulated in the photosensitive state. These results show life-history-dependent activation of hypothalamic molecular pathways involved in initiation and maintenance of key biological processes as early as on the first long day.
Collapse
|
20
|
Koyama S, Mizutani Y, Yoda K. Exhausted with foraging: Foraging behavior is related to oxidative stress in chick-rearing seabirds. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110984. [PMID: 34004319 DOI: 10.1016/j.cbpa.2021.110984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
To understand foraging strategies and behavioral flexibility in wild animals, it is important to evaluate the physiological costs imposed by foraging efforts and how these costs affect foraging and provisioning behavior. Oxidative stress is a possible physiological indicator associated with foraging behavior in wild seabirds, and may also affect their reproductive performance. However, no previous study has simultaneously recorded foraging behavior and the associated oxidative stress in wild seabirds. Using an integrative approach based on oxidative stress measurements and bio-logging techniques (i.e., the use of animal-borne sensors), we determined the relationships between foraging behavior and oxidative stress in chick-rearing streaked shearwaters Calonectris leucomelas in 2018 and 2019. To quantify their oxidative stress, we measured reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) in their plasma. We found that the d-ROMs levels were positively related to the maximum distance from the colony and the number of takeoffs, especially in 2019 when shearwaters flew further to forage. In 2018, when they flew relatively short distances, the BAP levels were positively related to the levels of their physical activity (overall dynamic body acceleration; ODBA). We conclude that longer and less successful foraging may lead to increase oxidative stress, while successful foraging may mitigate the oxidative stress of foraging by providing dietary antioxidants. Our results highlight that the combined data from bio-logging and oxidative stress measurements aid in evaluating the underlying physiological costs of foraging behavior in wild animals.
Collapse
Affiliation(s)
- Shiho Koyama
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Yuichi Mizutani
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
21
|
Yap KN, Powers DR, Vermette ML, Tsai OHI, Williams TD. Physiological adjustments to high foraging effort negatively affect fecundity but not final reproductive output in captive zebra finches. J Exp Biol 2021; 224:jeb.235820. [PMID: 33737390 DOI: 10.1242/jeb.235820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Foraging at elevated rates to provision offspring is thought to be an energetically costly activity and it has been suggested that there are physiological costs associated with the high workload involved. However, for the most part, evidence for costs of increased foraging and/or reproductive effort is weak. Furthermore, despite some experimental evidence demonstrating negative effects of increased foraging and parental effort, the physiological mechanisms underlying costs associated with high workload remain poorly understood. To examine how high workload affects haematology, oxidative stress and reproductive output, we experimentally manipulated foraging effort in captive zebra finches, Taeniopygia guttata, using a previously described technique, and allowed individuals to breed first in low foraging effort conditions and then in high foraging effort conditions. We found that birds upregulated haematocrit and haemoglobin concentration in response to training. Birds subjected to increased workload during reproduction had lower fecundity, although final reproductive output was not significantly different than that of controls. Offspring of parents subjected to high workload during reproduction also had higher oxidative stress when they were 90 days of age. Total antioxidant capacity and reactive oxygen metabolites of birds responded differently in the two breeding attempts, but we did detect an overall increase in oxidative stress in response to training in either attempt, which could explain the lower fecundity observed in birds subjected to increased workload during reproduction.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Donald R Powers
- Department of Biology, George Fox University, 414 N. Meridian Street, Newberg, OR 97132, USA
| | - Melissa L Vermette
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Olivia Hsin-I Tsai
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
22
|
Marasco V, Sebastiano M, Costantini D, Pola G, Fusani L. Controlled expression of the migratory phenotype affects oxidative status in birds. J Exp Biol 2021; 224:jeb233486. [PMID: 33536304 DOI: 10.1242/jeb.233486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
High caloric intake can increase production of reactive oxygen and nitrogen species. We examined whether the emergence of the migratory phenotype, primarily signalled by increased food intake and fuelling, is accompanied by changes in oxidative status. We induced autumn migration followed by a non-migratory wintering phase in common quails (Coturnix coturnix). We compared three markers of oxidative status - oxidative damage to lipids expressed as thiobarbituric acid reactive substances (TBARS); superoxide dismutase (SOD); and glutathione peroxidase (GPx) - between birds sampled during the migratory and non-migratory phase. We found that the emergence of the migratory phenotype was associated with: (i) higher levels of TBARS in the liver; (ii) lower levels of SOD in red blood cells and, marginally, in the liver; (iii) higher levels of GPx in the pectoral muscle; and (iv) sex-specific changes in red blood cells and liver. We found no link between food intake and variation in markers of oxidative status in any of the tissues examined, despite food intake being higher in the migratory birds. However, the increase in body mass was positively correlated with muscle GPx activity as birds entered the pre-migratory fattening phase, while the amount of decrease in body mass was negatively correlated with muscle GPx as birds transitioned to the non-migratory phase. Such correlations were absent in red blood cells and liver. Our work suggests that during the emergence of the migratory phenotype, birds might strategically displace oxidative costs on the liver in order to safeguard the pectoral muscles, which have a fundamental role in successfully completing the migratory flight.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160 Vienna, Austria
| | - Manrico Sebastiano
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ, La Rochelle, France
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, CNRS; CP32, 57 rue Cuvier 75005, Paris, France
| | - Gianni Pola
- Istituto Sperimentale Zootecnico per la Sicilia, via Roccazzo 85, 90135, Palermo, Italia
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160 Vienna, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
23
|
McWilliams S, Pierce B, Wittenzellner A, Langlois L, Engel S, Speakman JR, Fatica O, DeMoranville K, Goymann W, Trost L, Bryla A, Dzialo M, Sadowska E, Bauchinger U. The energy savings-oxidative cost trade-off for migratory birds during endurance flight. eLife 2020; 9:60626. [PMID: 33306947 PMCID: PMC7733536 DOI: 10.7554/elife.60626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Elite human and animal athletes must acquire the fuels necessary for extreme feats, but also contend with the oxidative damage associated with peak metabolic performance. Here, we show that a migratory bird with fuel stores composed of more omega-6 polyunsaturated fats (PUFA) expended 11% less energy during long-duration (6 hr) flights with no change in oxidative costs; however, this short-term energy savings came at the long-term cost of higher oxidative damage in the omega-6 PUFA-fed birds. Given that fatty acids are primary fuels, key signaling molecules, the building blocks of cell membranes, and that oxidative damage has long-term consequences for health and ageing, the energy savings-oxidative cost trade-off demonstrated here may be fundamentally important for a wide diversity of organisms on earth.
Collapse
Affiliation(s)
- Scott McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, United States
| | - Barbara Pierce
- Department of Biology, Sacred Heart University, Fairfield, United States
| | | | - Lillie Langlois
- Department of Natural Resources Science, University of Rhode Island, Kingston, United States
| | - Sophia Engel
- Max Planck Institute for Ornithology, Starnberg, Germany
| | - John R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, United Kingdom
| | - Olivia Fatica
- Department of Biology, Sacred Heart University, Fairfield, United States
| | - Kristen DeMoranville
- Department of Natural Resources Science, University of Rhode Island, Kingston, United States
| | | | - Lisa Trost
- Max Planck Institute for Ornithology, Starnberg, Germany
| | - Amadeusz Bryla
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Maciej Dzialo
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Edyta Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland.,Nencki Institute of Experimental Biology PAS, Warszawa, Poland
| | - Ulf Bauchinger
- Nencki Institute of Experimental Biology PAS, Warszawa, Poland
| |
Collapse
|
24
|
The immune response of bats differs between pre-migration and migration seasons. Sci Rep 2020; 10:17384. [PMID: 33060711 PMCID: PMC7562910 DOI: 10.1038/s41598-020-74473-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Maintaining a competent immune system is energetically costly and thus immunity may be traded against other costly traits such as seasonal migration. Here, we tested in long-distance migratory Nathusius’ pipistrelles (Pipistrellus nathusii), if selected branches of immunity are expressed differently in response to the energy demands and oxidative stress of aerial migration. During the migration period, we observed higher baseline lymphocyte and lower neutrophil levels than during the pre-migration period, but no stronger response of cellular effectors to an antigen challenge. Baseline plasma haptoglobin, as a component of the humoral innate immunity, remained similar during both seasons, yet baseline plasma haptoglobin levels increased by a factor of 7.8 in migratory bats during an immune challenge, whereas they did not change during the pre-migration period. Oxidative stress was higher during migration than during pre-migration, yet there was no association between blood oxidative status and immune parameters, and immune challenge did not trigger any changes in oxidative stress, irrespective of season. Our findings suggest that humoral effectors of the acute phase response may play a stronger role in the first-line defense against infections for migrating bats compared to non-migrating bats. We conclude that Nathusius’ pipistrelles allocate resources differently into the branches of their immune system, most likely following current demands resulting from tight energy budgets during migration.
Collapse
|
25
|
Beaulieu M, Touzalin F, Dool SE, Teeling EC, Puechmaille SJ. Timescale and colony-dependent relationships between environmental conditions and plasma oxidative markers in a long-lived bat species. CONSERVATION PHYSIOLOGY 2020; 8:coaa083. [PMID: 33173584 PMCID: PMC7605240 DOI: 10.1093/conphys/coaa083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/04/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
To increase the applicability and success of physiological approaches in conservation plans, conservation physiology should be based on ecologically relevant relationships between physiological markers and environmental variation that can only be obtained from wild populations. Given their integrative and multifaceted aspects, markers of oxidative status have recently been considered in conservation physiology, but still need to be validated across environmental conditions and locations. Here, we examined whether inter-annual variation in two oxidative markers, plasma antioxidant capacity and plasma hydroperoxides, followed inter-annual variation in temperature anomalies and associated vegetation changes in four colonies of long-lived greater mouse-eared bats (Myotis myotis) monitored over five consecutive years. We found that the plasma antioxidant capacity of bats decreased while plasma hydroperoxide concentrations increased with increasing temperature anomalies occurring in the two weeks before blood sampling. Moreover, the antioxidant defences of these bats reflected vegetation indices, which themselves reflected the thermal conditions experienced by bats in their foraging habitat. Variation in oxidative markers therefore appears to be due to variation in thermoregulatory costs and to indirect changes in foraging costs. Overall, these results validate the use of markers of oxidative status in conservation physiology to monitor thermal perturbations recently experienced by animals in their natural habitat. However, even though oxidative markers varied in the same direction in all four bat colonies across years, the amplitude of their response differed. If these different physiological responses reflect different performances (e.g. productivity, survival rate) between colonies, this implies that, if necessary, conservation measures may need to be applied at the local scale.
Collapse
Affiliation(s)
- Michaël Beaulieu
- Corresponding author: Zoological Institute & Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany. Tel. (49)3831 2650 303.
| | - Frédéric Touzalin
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Serena E Dool
- Zoological Institute & Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma C Teeling
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sébastien J Puechmaille
- Zoological Institute & Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
26
|
Sur S, Sharma A, Bhardwaj SK, Kumar V. Involvement of steroid and antioxidant pathways in spleen-mediated immunity in migratory birds. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110790. [PMID: 32800933 DOI: 10.1016/j.cbpa.2020.110790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The molecular underpinnings of the spleen-mediated immune functions during the period of heightened energetic needs in the year are not known in avian migrants. We investigated this, in Palearctic-Indian migratory male redheaded buntings, which exhibited vernal (spring) premigratory / early testicular maturation states under artificial long days. This was evidenced by increased dio2 and decreased dio3 mRNA expression in the hypothalamus, elevated levels of circulating corticosterone and testosterone, and enlarged testes in long-day-photostimulated birds, as compared to unstimulated controls under short days. The concomitant decrease in both mass and volume of the spleen, and increase in the heterophil/ lymphocyte ratio suggested the parallel innate immunity effects in photostimulated buntings. Importantly, we found increased mRNA expression of genes coding for the cytokines (il15 and il34), steroid receptors (nr3c2) and oxidative stress marker enzymes (gpx1 and sod1) in the spleen, suggesting the activation of both immune and antioxidant molecular pathways during the early photostimulated state. However, the splenic expressions of il1β, il6, tgfβ, ar and nos2 genes were not significantly different between long-day stimulated and short-day unstimulated birds. The negative correlation of plasma corticosterone levels with spleen mass further indicated a role of corticosterone in the modulation of the spleen function, probably via nr3c2 gene encoded mineralocorticoid receptors. These results suggest the activation of the spleen-mediated innate immunity in anticipation of the heightened energetic stress state of the photostimulated spring migratory/breeding period in migratory songbirds.
Collapse
Affiliation(s)
- Sayantan Sur
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
27
|
Casagrande S, DeMoranville KJ, Trost L, Pierce B, Bryła A, Dzialo M, Sadowska ET, Bauchinger U, McWilliams SR. Dietary antioxidants attenuate the endocrine stress response during long-duration flight of a migratory bird. Proc Biol Sci 2020; 287:20200744. [PMID: 32546088 PMCID: PMC7329026 DOI: 10.1098/rspb.2020.0744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are metabolic hormones that promote catabolic processes, which release stored energy and support high metabolic demands such as during prolonged flights of migrating birds. Dietary antioxidants (e.g. anthocyanins) support metabolism by quenching excess reactive oxygen species produced during aerobic metabolism and also by activating specific metabolic pathways. For example, similar to GCs' function, anthocyanins promote the release of stored energy, although the extent of complementarity between GCs and dietary antioxidants is not well known. If anthocyanins complement GCs functions, birds consuming anthocyanin-rich food can be expected to limit the secretion of GCs when coping with a metabolically challenging activity, avoiding the exposure to potential hormonal detrimental effects. We tested this hypothesis in European starlings (Sturnus vulgaris) flying in a wind tunnel. We compared levels of corticosterone, the main avian GC, immediately after a sustained flight and at rest for birds that were fed diets with or without an anthocyanin supplement. As predicted, we found (i) higher corticosterone after flight than at rest in both diet groups and (ii) anthocyanin-supplemented birds had less elevated corticosterone after flight than unsupplemented control birds. This provides novel evidence that dietary antioxidants attenuate the activation of the HPA axis (i.e. increased secretion of corticosterone) during long-duration flight.
Collapse
Affiliation(s)
- Stefania Casagrande
- Evolutionary Physiology Research Group, Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany
| | - Kristen J DeMoranville
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Lisa Trost
- Department for Behavioral Neurobiology, Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany
| | - Barbara Pierce
- Department of Biology, Sacred Heart University, Fairfield, CT 06825, USA
| | - Amadeusz Bryła
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Maciej Dzialo
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
28
|
Blood antioxidant status of Stercorarius maccormicki and Stercorarius antarcticus from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Polar Biol 2020. [DOI: 10.1007/s00300-020-02676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Ferretti A, McWilliams SR, Rattenborg NC, Maggini I, Cardinale M, Fusani L. Energy Stores, Oxidative Balance, and Sleep in Migratory Garden Warblers ( Sylvia borin) and Whitethroats ( Sylvia communis) at a Spring Stopover Site. Integr Org Biol 2020; 2:obaa010. [PMID: 33791554 PMCID: PMC7671129 DOI: 10.1093/iob/obaa010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about how songbirds modulate sleep during migratory periods. Due to the alternation of nocturnal endurance flights and diurnal refueling stopovers, sleep is likely to be a major constraint for many migratory passerine species. Sleep may help to increase the endogenous antioxidant capacity that counteracts free radicals produced during endurance flight and reduces energy expenditure. Here, we investigated the relationship between sleep behavior, food intake, and two markers of physiological condition-the amount of energy reserves and oxidative status-in two migratory songbird species, the garden warbler (Sylvia borin) and the whitethroat (Sylvia communis). In garden warblers, birds with high energy stores were more prone to sleep during the day, while this condition-dependent sleep pattern was not present in whitethroats. In both species, birds with low energy stores were more likely to sleep with their head tucked in the feathers during nocturnal sleep. Moreover, we found a positive correlation between food intake and the extent of energy reserves in garden warblers, but not in whitethroats. Finally, we did not find significant correlations between oxidative status and sleep, or oxidative status and energy stores. Despite our study was not comparative, it suggests that different species might use different strategies to manage their energy during stopover and, additionally, it raises the possibility that migrants have evolved physiological adaptations to deal with oxidative damage produced during migration.
Collapse
Affiliation(s)
- Andrea Ferretti
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstraße 14 (UZA1), Wien 1090, Austria
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 8231, Germany
| | - Ivan Maggini
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| | - Massimiliano Cardinale
- Marine Research Institute, Swedish University of Agricultural Sciences, Turistgatan 5, Lysekil SE-453 30, Sweden
| | - Leonida Fusani
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstraße 14 (UZA1), Wien 1090, Austria
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| |
Collapse
|
30
|
Eikenaar C, Winslott E, Hessler S, Isaksson C. Oxidative damage to lipids is rapidly reduced during migratory stopovers. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13540] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research Wilhelmshaven Germany
| | | | - Sven Hessler
- Institute of Avian Research Wilhelmshaven Germany
| | | |
Collapse
|
31
|
Stahlschmidt ZR, Jeong N, Johnson D, Meckfessel N. From phenoloxidase to fecundity: food availability does not influence the costs of oxidative challenge in a wing-dimorphic cricket. J Comp Physiol B 2019; 190:17-26. [PMID: 31720761 DOI: 10.1007/s00360-019-01244-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Stressed animals often struggle to maintain optimal investment into a number of fitness-related traits, which can result in some traits being more adversely affected than others. Variation in stress-related costs may also depend on the environment-costs can be facultative and only occur when resources are limited, or they may be obligate and occur regardless of resource availability. Dynamics of oxidative stress may be important in life-history evolution given their role in a range of biological processes-from reproduction to immunity to locomotion. Thus, we examined how resource (food) availability influences the costs of oxidative challenge to fitness-related traits spanning several levels of biological organization. We manipulated food availability and oxidative status in females of the wing-dimorphic sand field cricket (Gryllus firmus) during early adulthood. We then determined investment into several traits: reproduction (ovary mass), soma (body mass and flight musculature), and immune function (total phenoloxidase activity). Oxidative challenge (paraquat exposure) obligated costs to somatic tissue and a parameter of immune function regardless of food availability, but it did not affect reproduction. We show that the costs of oxidative challenge are trait-specific, but we did not detect a facultative (food-dependent) cost of oxidative challenge to any trait measured. Although the dynamics of oxidative stress are complex, our study is an important step toward a more complete understanding of the roles that resource availability and redox systems play in mediating life histories.
Collapse
Affiliation(s)
| | - N Jeong
- University of the Pacific, Stockton, CA, 95211, USA
| | - D Johnson
- University of the Pacific, Stockton, CA, 95211, USA
| | - N Meckfessel
- University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
32
|
Eikenaar C, Hegemann A, Packmor F, Kleudgen I, Isaksson C. Not just fuel: energy stores are correlated with immune function and oxidative damage in a long-distance migrant. Curr Zool 2019; 66:21-28. [PMID: 32467701 PMCID: PMC7245008 DOI: 10.1093/cz/zoz009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/25/2019] [Indexed: 02/04/2023] Open
Abstract
In many animals, catabolic and anabolic periods are temporally separated. Migratory birds alternate energy expenditure during flight with energy accumulation during stopover. The size of the energy stores at stopover affects the decision to resume migration and thus the temporal organization of migration. We now provide data suggesting that it is not only the size of the energy stores per se that may influence migration scheduling, but also the physiological consequences of flying. In two subspecies of the northern wheatear Oenanthe oenanthe, a long-distance migrant, estimated energy stores at a stopover during autumn migration were positively related with both constitutive innate and acquired immune function, and negatively related with oxidative damage to lipids. In other words, migrants' physiological condition was associated with their energetic condition. Although time spent at stopover before sampling may have contributed to this relationship, our results suggest that migrants have to trade-off the depletion of energy stores during flight with incurring physiological costs. This will affect migrants' decisions when to start and when to terminate a migratory flight. The physiological costs associated with the depletion of energy stores may also help explaining why migrants often arrive at and depart from stopover sites with larger energy stores than expected. We propose that studies on the role of energy stores as drivers of the temporal organization of (avian) migration need to consider physiological condition, such as immunological and oxidative states.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, 26386 Wilhelmshaven, Germany
| | - Arne Hegemann
- Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Florian Packmor
- Institute of Avian Research, 26386 Wilhelmshaven, Germany.,School of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2DG, UK
| | - Iris Kleudgen
- Institute of Avian Research, 26386 Wilhelmshaven, Germany
| | | |
Collapse
|
33
|
Antioxidant capacity is repeatable across years but does not consistently correlate with a marker of peroxidation in a free-living passerine bird. J Comp Physiol B 2019; 189:283-298. [DOI: 10.1007/s00360-019-01211-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
|
34
|
Dick MF, Guglielmo CG. Flight muscle protein damage during endurance flight is related to energy expenditure but not dietary polyunsaturated fatty acids in a migratory bird. ACTA ACUST UNITED AC 2019; 222:222/5/jeb187708. [PMID: 30824569 DOI: 10.1242/jeb.187708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Migration poses many physiological challenges for birds, including sustaining high intensity aerobic exercise for hours or days. A consequence of endurance flight is the production of reactive oxygen species (ROS). ROS production may be influenced by dietary polyunsaturated fatty acids (PUFA), which, although prone to oxidative damage, may limit mitochondrial ROS production and increase antioxidant capacity. We examined how flight muscles manage oxidative stress during flight, and whether dietary long-chain PUFA influence ROS management or damage. Yellow-rumped warblers were fed diets low in PUFA, or high in long-chain n-3 or n-6 PUFA. Flight muscle was sampled from birds in each diet treatment at rest or immediately after flying for up to a maximum of 360 min in a wind tunnel. Flight increased flight muscle superoxide dismutase activity but had no effect on catalase activity. The ratio of glutathione to glutathione disulphide decreased during flight. Oxidative protein damage, indicated by protein carbonyls, increased with flight duration (Pearson r=0.4). Further examination of just individuals that flew for 360 min (N=15) indicates that oxidative damage was related more to total energy expenditure (Pearson r=0.86) than to flight duration itself. This suggests that high quality individuals with higher flight efficiency have not only lower energy costs but also potentially less oxidative damage to repair after arrival at the destination. No significant effects of dietary long-chain PUFA were observed on antioxidants or damage. Overall, flight results in oxidative stress and the degree of damage is likely driven more by energy costs than fatty acid nutrition.
Collapse
Affiliation(s)
- Morag F Dick
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
35
|
Podofillini S, Cecere JG, Griggio M, Corti M, De Capua EL, Parolini M, Saino N, Serra L, Rubolini D. Benefits of extra food to reproduction depend on maternal condition. OIKOS 2019. [DOI: 10.1111/oik.06067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Stefano Podofillini
- Dipto di Scienze e Politiche Ambientali, Univ. degli Studi di Milano via Celoria 26, IT‐20133 Milano Italy
| | - Jacopo G. Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) Ozzano Emilia (BO) Italy
| | - Matteo Griggio
- Dipto di Biologia, Univ. degli Studi di Padova Padova Italy
| | - Margherita Corti
- Dipto di Scienze e Politiche Ambientali, Univ. degli Studi di Milano via Celoria 26, IT‐20133 Milano Italy
| | | | - Marco Parolini
- Dipto di Scienze e Politiche Ambientali, Univ. degli Studi di Milano via Celoria 26, IT‐20133 Milano Italy
| | - Nicola Saino
- Dipto di Scienze e Politiche Ambientali, Univ. degli Studi di Milano via Celoria 26, IT‐20133 Milano Italy
| | - Lorenzo Serra
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) Ozzano Emilia (BO) Italy
| | - Diego Rubolini
- Dipto di Scienze e Politiche Ambientali, Univ. degli Studi di Milano via Celoria 26, IT‐20133 Milano Italy
| |
Collapse
|
36
|
Halsey LG, Green JA, Twiss SD, Arnold W, Burthe SJ, Butler PJ, Cooke SJ, Grémillet D, Ruf T, Hicks O, Minta KJ, Prystay TS, Wascher CAF, Careau V. Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long‐term heart rate measurements. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13264] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lewis G. Halsey
- Department of Life SciencesUniversity of Roehampton London UK
| | - Jonathan A. Green
- School of Environmental SciencesUniversity of Liverpool Liverpool UK
| | - Sean D. Twiss
- Department of BiosciencesDurham University Durham UK
| | - Walter Arnold
- Department of Integrative Biology and Evolution, Research Institute of Wildlife EcologyUniversity of Veterinary Medicine Vienna Austria
| | - Sarah J. Burthe
- Centre for Ecology & HydrologyBush Estate Penicuik Midlothian UK
| | | | | | - David Grémillet
- CEFE UMR 5175CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE Montpellier France
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife EcologyUniversity of Veterinary Medicine Vienna Austria
| | - Olivia Hicks
- School of Environmental SciencesUniversity of Liverpool Liverpool UK
| | | | | | | | - Vincent Careau
- Department of BiologyUniversity of Ottawa Ottawa ON Canada
| |
Collapse
|
37
|
|
38
|
Yap KN, Dick MF, Guglielmo CG, Williams TD. Effects of experimental manipulation of hematocrit on avian flight performance in high- and low-altitude conditions. ACTA ACUST UNITED AC 2018; 221:jeb.191056. [PMID: 30266786 DOI: 10.1242/jeb.191056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
Despite widely held assumptions that hematocrit (Hct) is a key determinant of aerobic capacity and exercise performance, this relationship has not often been tested rigorously in birds and results to date are mixed. Migration in birds involves high-intensity exercise for long durations at various altitudes. Therefore, it provides a good model system to examine the effect of Hct on flight performance and physiological responses of exercise at high altitude. We treated yellow-rumped warblers (Setophaga coronata) with avian erythropoietin (EPO) and anti-EPO to experimentally manipulate Hct and assessed flight performance at low and high altitudes using a hypobaric wind tunnel. We showed that anti-EPO-treated birds had lower Hct than vehicle- and EPO--treated birds post-treatment. Anti-EPO-treated birds also had marginally lower exercise performance at low altitude, committing a higher number of strikes (mistakes) in the first 30 min of flight. However, anti-EPO-treated birds performed significantly better at high altitude, attaining a higher altitude in a ramped altitude challenge to 3000 m equivalent altitude, and with a longer duration of flight at high altitude. Birds exercising at high altitude showed decreased Hct, increased glucose mobilization and decreased antioxidant capacity, regardless of treatment. In summary, we provide experimental evidence that the relationship between Hct and exercise performance is dependent on altitude. Future studies should investigate whether free-living birds adaptively modulate their Hct, potentially through a combination of erythropoiesis and plasma volume regulation (i.e. hemodilution), based on the altitude they fly at during migratory flight.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Morag F Dick
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, 1393 Western Road, London, ON, N6G 1G9, Canada
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, 1393 Western Road, London, ON, N6G 1G9, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
39
|
Silva LR, Lardy S, Ferreira AC, Rey B, Doutrelant C, Covas R. Females pay the oxidative cost of dominance in a highly social bird. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
The oxidative costs of parental care in cooperative and pair-breeding African starlings. Oecologia 2018; 188:53-63. [PMID: 29858694 DOI: 10.1007/s00442-018-4178-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
The cost of parental care has long been thought to favor the evolution of cooperative breeding, because breeders can provide reduced parental care when aided by alloparents. Oxidative stress-the imbalance between reactive oxygen species and neutralizing antioxidants-has been proposed to mediate the cost of parental care, though results from empirical studies remain equivocal. We measured changes in oxidative status during reproduction in cooperatively breeding superb starlings (Lamprotornis superbus) to gain insight into the relationships among breeding status, parental care, and oxidative stress. We also compared the oxidative cost of reproduction in the cooperatively breeding superb starling to that in a sympatric non-cooperatively breeding species, the greater blue-eared glossy starling (L. chalybaeus), to determine whether cooperatively breeding individuals face reduced oxidative costs of parental care relative to non-cooperatively breeding individuals. Breeders and alloparents of the cooperative species did not differ in oxidative status throughout a breeding attempt. However, individuals of the non-cooperative species incurred an increase in reactive oxygen metabolites proportionally to an individual's workload during offspring care. These findings suggest that non-cooperative starlings experience an oxidative cost of parental care, whereas cooperatively breeding starlings do not. It is possible that high nest predation risk and multi-brooding in the cooperatively breeding species may have favored reduced physiological costs of parental care more strongly compared to pair-breeding starlings. Reduced physiological costs of caring for young may thus represent a direct benefit that promotes cooperative breeding.
Collapse
|
41
|
Immune challenges decrease biliverdin concentration in the spleen of northern Bobwhite quail, Colinus virginianus. J Comp Physiol B 2018; 188:505-515. [DOI: 10.1007/s00360-018-1146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
42
|
Guindre-Parker S, Rubenstein DR. No short-term physiological costs of offspring care in a cooperatively breeding bird. J Exp Biol 2018; 221:jeb.186569. [DOI: 10.1242/jeb.186569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022]
Abstract
The cost of reproduction results in a life-history trade-off where investment in current reproduction via costly parental care decreases subsequent fitness. Although this trade-off is thought to occur ubiquitously across animals, there is equivocal evidence that parental care behaviours are costly. A major challenge of studying the cost of parental care has been a lack of consensus over which physiological mechanisms underlie this trade-off. Here we compare four traits believed to mediate the cost of parental care by examining whether glucocorticoids, oxidative stress, immune function, or body condition represent a cost of performing offspring care and shape subsequent fitness. We use a 4-year dataset collected in free-living cooperatively breeding superb starlings (Lamprotornis superbus), a species in which parental and alloparental care effort varies widely among individuals and across years. Our results showed that within-individual change in physiology was unrelated to investment in offspring care, and physiological state during chick-rearing did not predict the likelihood that an individual would breeding in subsequent seasons. Instead, individuals that had elevated baseline corticosterone during incubation performed more nest guarding, suggesting that this hormone may play a preparatory role for investing in offspring care. Together, our results indicate that superb starlings modify their investment in offspring care according to their physiological state during incubation, despite no evidence of a short-term physiological cost of parental or alloparental care. Thus, breeding cooperatively appears to provide individuals with the flexibility to adjust their investment in offspring care and overcome any potential costs of reproduction.
Collapse
Affiliation(s)
- Sarah Guindre-Parker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
- Department of Ornithology, National Museums of Kenya, Nairobi
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
- Department of Ornithology, National Museums of Kenya, Nairobi
- Center for Integrative Animal Behavior, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Pritsos KL, Perez CR, Muthumalage T, Dean KM, Cacela D, Hanson-Dorr K, Cunningham F, Bursian SJ, Link JE, Shriner S, Horak K, Pritsos CA. Dietary intake of Deepwater Horizon oil-injected live food fish by double-crested cormorants resulted in oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 146:62-67. [PMID: 28688517 DOI: 10.1016/j.ecoenv.2017.06.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The Deepwater Horizon oil spill released 134 million gallons of crude oil into the Gulf of Mexico making it the largest oil spill in US history and exposing fish, birds, and marine mammals throughout the Gulf of Mexico to its toxicity. Fish eating waterbirds such as the double-crested cormorant (Phalacrocorax auritus) were exposed to the oil both by direct contact with the oil and orally through preening and the ingestion of contaminated fish. This study investigated the effects of orally ingestedMC252 oil-contaminated live fish food by double-crested cormorants on oxidative stress. Total, reduced, and oxidized glutathione levels, superoxide dismutase and glutathione peroxidase activities, total antioxidant capacity and lipid peroxidation were assessed in the liver tissues of control and treated cormorants. The results suggest that ingestion of the oil-contaminated fish resulted in significant increase in oxidative stress in the liver tissues of these birds. The oil-induced increase in oxidative stress could have detrimental impacts on the bird's life-history.
Collapse
Affiliation(s)
- Karen L Pritsos
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States
| | - Cristina R Perez
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States
| | - Thivanka Muthumalage
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States
| | | | | | - Katie Hanson-Dorr
- US Department of Agriculture, APHIS/Wildlife Services' National Wildlife Research Center, MS, United States
| | - Fred Cunningham
- US Department of Agriculture, APHIS/Wildlife Services' National Wildlife Research Center, MS, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Susan Shriner
- US Department of Agriculture, APHIS/Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| | - Katherine Horak
- US Department of Agriculture, APHIS/Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| | - Chris A Pritsos
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States.
| |
Collapse
|
44
|
Birnie-Gauvin K, Peiman KS, Larsen MH, Baktoft H, Aarestrup K, Willmore WG, Cooke SJ. Oxidative stress and partial migration in brown trout (Salmo trutta). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During migration, animals are typically limited by their endogenous energetic resources that must be allocated to the physiological costs associated with locomotion, as well as avoiding and (or) compensating for oxidative stress. To date, there have been few attempts to understand the role of oxidative status in migration biology, particularly in fish. Semi-anadromous brown trout (Salmo trutta L., 1758) exhibit partial migration, where some individuals smoltify and migrate to sea, and others become stream residents, providing us with an excellent model to investigate the link between oxidative stress and migration. Using the brown trout, we obtained blood samples from juveniles from a coastal stream in Denmark in the fall prior to peak seaward migration that occurs in the spring, and assayed for antioxidant capacity (oxygen radical absorbance capacity) and oxidative stress levels (ratio of oxidized to reduced glutathione). We found that individuals that migrated had higher antioxidant capacity than residents and that future migration date was negatively correlated with both antioxidant capacity and body length in the fall. This study provides the first evidence that oxidative status is associated with migration strategy and timing, months in advance of the actual migration, and provides insight into the role of oxidative status in animal migration.
Collapse
Affiliation(s)
- Kim Birnie-Gauvin
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Kathryn S. Peiman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Martin H. Larsen
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
- Danish Centre for Wild Salmon, Brusgårdsvej 15, 8960 Randers, Denmark
| | - Henrik Baktoft
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Kim Aarestrup
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - William G. Willmore
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
45
|
Cooper-Mullin C, McWilliams SR. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds. ACTA ACUST UNITED AC 2017; 219:3684-3695. [PMID: 27903627 DOI: 10.1242/jeb.123992] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - Scott R McWilliams
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
46
|
Ruuskanen S, Morosinotto C, Thomson RL, Ratnayake CP, Korpimäki E. Food supplementation, but not predation risk, alters female antioxidant status during breeding. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2299-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Stanton R, Clark RG, Morrissey CA. Intensive agriculture and insect prey availability influence oxidative status and return rates of an aerial insectivore. Ecosphere 2017. [DOI: 10.1002/ecs2.1746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Rebecca Stanton
- Department of Biology; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C8 Canada
| | - Robert G. Clark
- Department of Biology; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C8 Canada
- Environment and Climate Change Canada; Prairie and Northern Wildlife Research Centre; Saskatoon Saskatchewan S7N 0X4 Canada
| | - Christy A. Morrissey
- Department of Biology; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C8 Canada
- School of Environment and Sustainability; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C8 Canada
| |
Collapse
|
48
|
Birnie-Gauvin K, Peiman KS, Larsen MH, Aarestrup K, Willmore WG, Cooke SJ. Short-term and long-term effects of transient exogenous cortisol manipulation on oxidative stress in juvenile brown trout. J Exp Biol 2017; 220:1693-1700. [DOI: 10.1242/jeb.155465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
In the wild, animals are exposed to a growing number of stressors with increasing frequency and intensity, as a result of human activities and human-induced environmental change. To fully understand how wild organisms are affected by stressors, it is crucial to understand the physiology that underlies an organism’s response to a stressor. Prolonged levels of elevated glucocorticoids are associated with a state of chronic stress and decreased fitness. Exogenous glucocorticoid manipulation reduces an individual’s ability to forage, avoid predators and grow, thereby limiting the resources available for physiological functions like the defence against oxidative stress. Using the brown trout (Salmo trutta), we evaluated the short-term (2 weeks) and long-term (4 months over winter) effects of exogenous cortisol manipulations (as well as relevant shams and controls) on the oxidative status of wild juveniles. Cortisol caused an increase in glutathione over a two-week period and appeared to reduce glutathione over winter. Cortisol treatment did not affect oxidative stress levels or low-molecular weight antioxidants. Cortisol caused a significant decrease in growth rates but did not affect predation risk. Over winter survival in the stream was associated with low levels of oxidative stress and glutathione. Thus, oxidative stress may be a mechanism by which elevated cortisol causes negative physiological consequences.
Collapse
Affiliation(s)
- Kim Birnie-Gauvin
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Kathryn S. Peiman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Martin H. Larsen
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
- Danish Centre for Wild Salmon, Brusgårdsvej 15, 8960 Randers, Denmark
| | - Kim Aarestrup
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - William G. Willmore
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
49
|
Yap KN, Kim OR, Harris KC, Williams TD. Physiological effects of increased foraging effort in a small passerine. J Exp Biol 2017; 220:4282-4291. [DOI: 10.1242/jeb.160812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/21/2017] [Indexed: 01/04/2023]
Abstract
Foraging to obtain food, either for self-maintenance or at presumably elevated rates to provision offspring, is thought to be an energetically demanding activity but one that is essential for fitness (higher reproductive success and survival). Nevertheless, the physiological mechanisms that allow some individuals to support higher foraging performance, and the mechanisms underlying costs of high workload, remain poorly understood. We experimentally manipulated foraging behaviour in zebra finches (Taeniopygia guttata) using the technique described by Koetsier and Verhulst (2011). Birds in the “high foraging effort” (HF) group had to obtain food either while flying/hovering or by making repeated hops or jumps from the ground up to the feeder, behaviour typical of the extremely energetically-expensive foraging mode observed in many free-living small passerines. HF birds made significantly more trips to the feeder per 10min whereas control birds spent more time (perched) at the feeder. Despite this marked change in foraging behaviour we documented few short- or long-term effects of “training” (3 days and 90 days of “training” respectively) and some of these effects were sex-specific. There were no effects of treatment on BMR, hematocrit, hemoglobin, or plasma glycerol, triglyceride, glucose levels, and masses of kidney, crop, large intestine, small intestine, gizzard and liver. HF females had higher masses of flight muscle, leg muscle, heart and lung compared to controls. In contrast, HF males had lower heart mass than controls and there were no differences for other organs. When both sexes were pooled, there were no effects of treatment on body composition. Finally, birds in the HF treatment had higher levels of reactive oxygen metabolites (dROMs) and, consequently, although treatment did not affect total antioxidant capacity (OXY), birds in the HF treatment had higher oxidative stress.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Oh Run Kim
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Karilyn C. Harris
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
50
|
Vargová V, Zigo F, Chripková M, Toropilová D, Tomko M. Influence of Peroral Supplementation of Selenium and Vitamin E on the Antioxidant Status of Racing Pigeons. FOLIA VETERINARIA 2016. [DOI: 10.1515/fv-2016-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The racing season is considered a critical period for racing pigeons due to the susceptibility to stress and weakening of the birds. One of the ways how to support their health and avoid problems involves supplementation of mineral-vitamin preparations based on selenium and vitamin E, which act as important antioxidants and protect cells against damage. This study investigated the influence of peroral supplementation of selenium at a dose of 0.3 mg Se.kg−1 feed dry matter (DM) in the form of Na2SeO3 and vitamin E 300 mg.ml−1 added to water at a rate of 4 ml.l−1 during 60 days. The supplemented group comprised 14 pigeons and their results were compared with a control group of 14 pigeons fed non-supplemented commercial feed. Blood samples were collected and examined at the beginning of the supplementation period, one day before a 300 km race and after the race. Pigeons from the supplemented group exhibited increased plasma levels of Se and vitamin E, as well as the activity of glutathione peroxidase (GSH-Px) before and after the 300 km race in comparison with the controls. Comparison of the activity of the enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (ASP), alkaline phosphatase (ALP), and creatinine kinase (CK) at the beginning of the supplementation and one day before the race showed no changes. A significant (P < 0.05) increase in the activity of all investigated enzymes were observed after the race in both groups.
Collapse
Affiliation(s)
- V. Vargová
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| | - F. Zigo
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| | - M. Chripková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, The Slovakia Republic
| | - D. Toropilová
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| | - M. Tomko
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| |
Collapse
|