1
|
Luo T, Hu E, Gan L, Yang D, Wu J, Gao S, Tuo X, Bayin CG, Hu Z, Guo Q. Candidatus Midichloria mitochondrii can be vertically transmitted in Hyalomma anatolicum. Exp Parasitol 2024; 265:108828. [PMID: 39159853 DOI: 10.1016/j.exppara.2024.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
In this study, a tick intracellular symbiont, Candidatus Midichloria mitochondrii, was detected in Hyalomma anatolicum from Xinjiang, China. Morphological identification and cytochrome oxidase subunit I sequence alignment were used for molecular identification of the tick species. PCR detection further revealed the presence of endosymbiont C. M. mitochondrii in the tick. Specific primers were designed for Groel and 16S rRNA genes of C. M. mitochondrii for PCR amplification and phylogenetic analysis. To further investigate the vertical transmission characteristics of C. M. mitochondrii, specific primers were designed based on the FabⅠ gene fragment to detect C. M. mitochondrii in different developmental stages and organs of the tick using qPCR. Of the 336 tick specimens collected from the field, 266 samples were identified as H. anatolicum on the basis of morphological characteristics. The gene fragment alignment results of COI confirmed that these ticks were H. anatolicum. The phylogenetic analysis showed that Groel gene of C. M. mitochondrii clustered with Midichloria strains detected in Ixodes ricinus ticks from Italy and Ixodes holocyclus ticks from Australia, with 100% sequence similarity. Furthermore, the 16S rRNA gene of C. M. mitochondrii clusters with the strains isolated from Hyalomma rufipes ticks in Italy, exhibiting the highest degree of homology. qPCR results showed that C. M. mitochondrii was present at all developmental stages of H. anatolicum, with the highest relative abundance in eggs, and lower relative abundance in nymphs and unfed males. With female tick blood feeding, the relative abundance of C. M. mitochondrii increased, and a particularly high relative abundance was detected in the ovaries of engorged female ticks. This study provides information for studying the survival adaptability of H. anatolicum, and provides data for further investigation of the mechanisms regulating tick endosymbionts in ticks, enriching the reference materials for comprehensive prevention and control of tick-borne diseases.
Collapse
Affiliation(s)
- Tingxiang Luo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Ercha Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China; Xingjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Uygur Autonomous Region, 830052, China; Veterinary Medicine Postdoctoral Research Station of Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Lu Gan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Depeng Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Jun Wu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Shenghong Gao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Xiaoli Tuo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Chahan Gailike Bayin
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Zhengxiang Hu
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China.
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China.
| |
Collapse
|
2
|
Rosic N, Delamare-Deboutteville J, Dove S. Heat stress in symbiotic dinoflagellates: Implications on oxidative stress and cellular changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173916. [PMID: 38866148 DOI: 10.1016/j.scitotenv.2024.173916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Global warming has been shown to harmfully affect symbiosis between Symbiodiniaceae and other marine invertebrates. When symbiotic dinoflagellates (the genus Breviolum) were in vitro exposed to acute heat stress of +7 °C for a period of 5 days, the results revealed the negative impact on all physiological and other cellular parameters measured. Elevated temperatures resulted in a severe reduction in algal density of up to 9.5-fold, as well as pigment concentrations, indicating the status of the physiological stress and early signs of photo-bleaching. Reactive oxygen species (ROS) were increased in all heated dinoflagellate cells, while the antioxidant-reduced glutathione levels initially dropped on day one but increased under prolonged temperature stress. The cell viability parameters were reduced by 97 % over the heating period, with an increased proportion of apoptotic and necrotic cells. Autofluorescence (AF) for Cy5-PE 660-20 was reduced from 1.7-fold at day 1 to up to 50-fold drop at the end of heating time, indicating that the AF changes were highly sensitive to heat stress and that it could be an extremely sensitive tool for assessing the functionality of algal photosynthetic machinery. The addition of the drug 5-AZA-2'-deoxycytidine (5-AZA), which inhibits DNA methylation processes, was assessed in parallel and contributed to some alterations in algal cellular stress response. The presence of drug 5-AZA combined with the temperature stress had an additional impact on Symbiodiniaceae density and cell complexity, including the AF levels. These variations in cellular stress response under heat stress and compromised DNA methylation conditions may indicate the importance of this epigenetic mechanism for symbiotic dinoflagellate thermal tolerance adaptability over a longer period, which needs further exploration. Consequently, the increased ROS levels and changes in AF signals reported during ongoing heat stress in dinoflagellate cells could be used as early stress biomarkers in these microalgae and potentially other photosynthetic species.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia; Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia.
| | | | - Sophie Dove
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
3
|
Yoshioka Y, Chiu YL, Uchida T, Yamashita H, Suzuki G, Shinzato C. Genes possibly related to symbiosis in early life stages of Acropora tenuis inoculated with Symbiodinium microadriaticum. Commun Biol 2023; 6:1027. [PMID: 37853100 PMCID: PMC10584924 DOI: 10.1038/s42003-023-05350-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Due to the ecological importance of mutualism between reef-building corals and symbiotic algae (Family Symbiodiniaceae), various transcriptomic studies on coral-algal symbiosis have been performed; however, molecular mechanisms, especially genes essential to initiate and maintain these symbioses remain unknown. We investigated transcriptomic responses of Acropora tenuis to inoculation with the native algal symbiont, Symbiodinium microadriaticum, during early life stages, and identified possible symbiosis-related genes. Genes involved in immune regulation, protection against oxidative stress, and metabolic interactions between partners are particularly important for symbiosis during Acropora early life stages. In addition, molecular phylogenetic analysis revealed that some possible symbiosis-related genes originated by gene duplication in the Acropora lineage, suggesting that gene duplication may have been the driving force to establish stable mutualism in Acropora, and that symbiotic molecular mechanisms may vary among coral lineages.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan.
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| | - Yi-Ling Chiu
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
4
|
Al-Hammady MA, Silva TF, Hussein HN, Saxena G, Modolo LV, Belasy MB, Westphal H, Farag MA. How do algae endosymbionts mediate for their coral host fitness under heat stress? A comprehensive mechanistic overview. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Bashir F, Kovács S, Ábrahám Á, Nagy K, Ayaydin F, Valkony-Kelemen I, Ferenc G, Galajda P, Tóth SZ, Sass L, Kós PB, Vass I, Szabó M. Viable protoplast formation of the coral endosymbiont alga Symbiodinium spp. in a microfluidics platform. LAB ON A CHIP 2022; 22:2986-2999. [PMID: 35588270 DOI: 10.1039/d2lc00130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Symbiodiniaceae is an important dinoflagellate family which lives in endosymbiosis with reef invertebrates, including coral polyps, making them central to the holobiont. With coral reefs currently under extreme threat from climate change, there is a pressing need to improve our understanding on the stress tolerance and stress avoidance mechanisms of Symbiodinium spp. Reactive oxygen species (ROS) such as singlet oxygen are central players in mediating various stress responses; however, the detection of ROS using specific dyes is still far from definitive in intact Symbiodinium cells due to the hindrance of uptake of certain fluorescent dyes because of the presence of the cell wall. Protoplast technology provides a promising platform for studying oxidative stress with the main advantage of removed cell wall, however the preparation of viable protoplasts remains a significant challenge. Previous studies have successfully applied cellulose-based protoplast preparation in Symbiodiniaceae; however, the protoplast formation and regeneration process was found to be suboptimal. Here, we present a microfluidics-based platform which allowed protoplast isolation from individually trapped Symbiodinium cells, by using a precisely adjusted flow of cell wall digestion enzymes (cellulase and macerozyme). Trapped single cells exhibited characteristic changes in their morphology, cessation of cell division and a slight decrease in photosynthetic activity during protoplast formation. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Elevated flow rates in the microfluidic chambers resulted in somewhat faster protoplast formation; however, cell wall digestion at higher flow rates partially compromised photosynthetic activity. Physiologically competent protoplasts prepared from trapped cells in microfluidic chambers allowed for the first time the visualization of the intracellular localization of singlet oxygen (using Singlet Oxygen Sensor Green dye) in Symbiodiniaceae, potentially opening new avenues for studying oxidative stress.
Collapse
Affiliation(s)
- Faiza Bashir
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Sándor Kovács
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Ágnes Ábrahám
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Ildikó Valkony-Kelemen
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Péter Galajda
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - László Sass
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Péter B Kós
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Milán Szabó
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
- Climate Change Cluster, University of Technology Sydney, Australia
| |
Collapse
|
6
|
Impacts of ocean warming and acidification on calcifying coral reef taxa: mechanisms responsible and adaptive capacity. Emerg Top Life Sci 2022; 6:1-9. [PMID: 35157039 DOI: 10.1042/etls20210226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Ocean warming (OW) and acidification (OA) are two of the greatest global threats to the persistence of coral reefs. Calcifying reef taxa such as corals and coralline algae provide the essential substrate and habitat in tropical reefs but are at particular risk due to their susceptibility to both OW and OA. OW poses the greater threat to future reef growth and function, via its capacity to destabilise the productivity of both taxa, and to cause mass bleaching events and mortality of corals. Marine heatwaves are projected to increase in frequency, intensity, and duration over the coming decades, raising the question of whether coral reefs will be able to persist as functioning ecosystems and in what form. OA should not be overlooked, as its negative impacts on the calcification of reef-building corals and coralline algae will have consequences for global reef accretion. Given that OA can have negative impacts on the reproduction and early life stages of both coralline algae and corals, the interdependence of these taxa may result in negative feedbacks for reef replenishment. However, there is little evidence that OA causes coral bleaching or exacerbates the effects of OW on coral bleaching. Instead, there is some evidence that OA alters the photo-physiology of both taxa. Tropical coralline algal possess shorter generation times than corals, which could enable more rapid evolutionary responses. Future reefs will be dominated by taxa with shorter generation times and high plasticity, or those individuals inherently resistant and resilient to both marine heatwaves and OA.
Collapse
|
7
|
Cotinat P, Fricano C, Toullec G, Röttinger E, Barnay-Verdier S, Furla P. Intrinsically High Capacity of Animal Cells From a Symbiotic Cnidarian to Deal With Pro-Oxidative Conditions. Front Physiol 2022; 13:819111. [PMID: 35222085 PMCID: PMC8867213 DOI: 10.3389/fphys.2022.819111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
The cnidarian-dinoflagellate symbiosis is a mutualistic intracellular association based on the photosynthetic activity of the endosymbiont. This relationship involves significant constraints and requires co-evolution processes, such as an extensive capacity of the holobiont to counteract pro-oxidative conditions induced by hyperoxia generated during photosynthesis. In this study, we analyzed the capacity of Anemonia viridis cells to deal with pro-oxidative conditions by in vivo and in vitro approaches. Whole specimens and animal primary cell cultures were submitted to 200 and 500 μM of H2O2 during 7 days. Then, we monitored global health parameters (symbiotic state, viability, and cell growth) and stress biomarkers (global antioxidant capacity, oxidative protein damages, and protein ubiquitination). In animal primary cell cultures, the intracellular reactive oxygen species (ROS) levels were also evaluated under H2O2 treatments. At the whole organism scale, both H2O2 concentrations didn’t affect the survival and animal tissues exhibited a high resistance to H2O2 treatments. Moreover, no bleaching has been observed, even at high H2O2 concentration and after long exposure (7 days). Although, the community has suggested the role of ROS as the cause of bleaching, our results indicating the absence of bleaching under high H2O2 concentration may exculpate this specific ROS from being involved in the molecular processes inducing bleaching. However, counterintuitively, the symbiont compartment appeared sensitive to an H2O2 burst as it displayed oxidative protein damages, despite an enhancement of antioxidant capacity. The in vitro assays allowed highlighting an intrinsic high capacity of isolated animal cells to deal with pro-oxidative conditions, although we observed differences on tolerance between H2O2 treatments. The 200 μM H2O2 concentration appeared to correspond to the tolerance threshold of animal cells. Indeed, no disequilibrium on redox state was observed and only a cell growth decrease was measured. Contrarily, the 500 μM H2O2 concentration induced a stress state, characterized by a cell viability decrease from 1 day and a drastic cell growth arrest after 7 days leading to an uncomplete recovery after treatment. In conclusion, this study highlights the overall high capacity of cnidarian cells to cope with H2O2 and opens new perspective to investigate the molecular mechanisms involved in this peculiar resistance.
Collapse
Affiliation(s)
- Pauline Cotinat
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
| | - Clara Fricano
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
| | - Gaëlle Toullec
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
| | - Eric Röttinger
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
| | - Stéphanie Barnay-Verdier
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
- UFR 927, Sorbonne Université, Paris, France
| | - Paola Furla
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
- *Correspondence: Paola Furla,
| |
Collapse
|
8
|
Weiner AKM, Cullison B, Date SV, Tyml T, Volland JM, Woyke T, Katz LA, Sleith RS. Examining the Relationship Between the Testate Amoeba Hyalosphenia papilio (Arcellinida, Amoebozoa) and its Associated Intracellular Microalgae Using Molecular and Microscopic Methods. Protist 2022; 173:125853. [PMID: 35030517 PMCID: PMC9148389 DOI: 10.1016/j.protis.2021.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Symbiotic relationships between heterotrophic and phototrophic partners are common in microbial eukaryotes. Among Arcellinida (Amoebozoa) several species are associated with microalgae of the genus Chlorella (Archaeplastida). So far, these symbioses were assumed to be stable and mutualistic, yet details of the interactions are limited. Here, we analyzed 22 single-cell transcriptomes and 36 partially-sequenced genomes of the Arcellinida morphospecies Hyalosphenia papilio, which contains Chlorella algae, to shed light on the amoeba-algae association. By characterizing the genetic diversity of associated Chlorella, we detected two distinct clades that can be linked to host genetic diversity, yet at the same time show a biogeographic signal across sampling sites. Fluorescence and transmission electron microscopy showed the presence of intact algae cells within the amoeba cell. Yet analysis of transcriptome data suggested that the algal nuclei are inactive, implying that instead of a stable, mutualistic relationship, the algae may be temporarily exploited for photosynthetic activity before being digested. Differences in gene expression of H. papilio and Hyalosphenia elegans demonstrated increased expression of genes related to oxidative stress. Together, our analyses increase knowledge of this host-symbiont association and reveal 1) higher diversity of associated algae than previously characterized, 2) a transient association between H. papilio and Chlorella with unclear benefits for the algae, 3) algal-induced gene expression changes in the host.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA; NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Jahnebakken 5, 5007 Bergen, Norway
| | - Billie Cullison
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
| | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, California, USA
| | - Tomáš Tyml
- Laboratory for Research in Complex Systems, Menlo Park, California, USA; DOE Joint Genome Institute, Berkeley, California, USA
| | - Jean-Marie Volland
- Laboratory for Research in Complex Systems, Menlo Park, California, USA; DOE Joint Genome Institute, Berkeley, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
| | - Laura A Katz
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA; University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Robin S Sleith
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA.
| |
Collapse
|
9
|
Decreased Photosynthetic Efficiency in Response to Site Translocation and Elevated Temperature Is Mitigated with LPS Exposure in Porites astreoides Symbionts. WATER 2022. [DOI: 10.3390/w14030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Coral reefs have been detrimentally impacted causing health issues due to elevated ocean temperatures as a result of increased greenhouse gases. Extreme temperatures have also exacerbated coral diseases in tropical reef environments. Numerous studies have outlined the impacts of thermal stress and disease on coral organisms, as well as understanding the influence of site-based characteristics on coral physiology. However, few have discussed the interaction of all three. Laboratory out-planting restoration projects have been of importance throughout impacted areas such as the Caribbean and southern Florida in order to increase coral cover in these areas. This study analyzes photosynthetic efficiency of Porites astreoides from the lower Florida Keys after a two-year reciprocal transplant study at inshore (Birthday reef) and offshore (Acer24 reef) sites to understand acclimation capacity of this species. Laboratory experiments subjected these colonies to one of three treatments: control conditions, increases in temperature, and increases in temperature plus exposure to an immune stimulant (lipopolysaccharide (LPS)) to determine their influence on photosynthetic efficiency and how stress events impact these measurements. In addition, this study is a continuation of previous studies from this group. Here, we aim to understand if these results are static or if an acclimation capacity could be found. Overall, we observed site-specific influences from the Acer24 reef site, which had significant decreases in photosynthetic efficiencies in 32 °C treatments compared to Birthday reef colonies. We suggest that high irradiance and lack of an annual recovery period from the Acer24 site exposes these colonies to significant photoinhibition. In addition, we observed significant increases in photosynthetic efficiencies from LPS exposure. We suggest host-derived antioxidants can mitigate the negative impacts of increased thermal stress. Further research is required to understand the full complexity of host immunity and symbiont photosynthetic interactions.
Collapse
|
10
|
Ferreira V, Pavlaki MD, Martins R, Monteiro MS, Maia F, Tedim J, Soares AMVM, Calado R, Loureiro S. Effects of nanostructure antifouling biocides towards a coral species in the context of global changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149324. [PMID: 34371395 DOI: 10.1016/j.scitotenv.2021.149324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Biofouling prevention is one of the biggest challenges faced by the maritime industry, but antifouling agents commonly impact marine ecosystems. Advances in antifouling technology include the use of nanomaterials. Herein we test an antifouling nano-additive based on the encapsulation of the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) in engineered silica nanocontainers (SiNC). The work aims to assess the biochemical and physiological effects on the symbiotic coral Sarcophyton cf. glaucum caused by (1) thermal stress and (2) DCOIT exposure (free or nanoencapsulated forms), in a climate change scenario. Accordingly, the following hypotheses were addressed: (H1) ocean warming can cause toxicity on S. cf. glaucum; (H2) the nanoencapsulation process decreases DCOIT toxicity towards this species; (H3) the biocide toxicity, free or encapsulated forms, can be affected by ocean warming. Coral fragments were exposed for seven days to DCOIT in both free and encapsulated forms, SiNC and negative controls, under two water temperature regimes (26 °C and 30.5 °C). Coral polyp behavior and photosynthetic efficiency were determined in the holobiont, while biochemical markers were assessed individually in the endosymbiont and coral host. Results showed transient coral polyp retraction and diminished photosynthetic efficiency in the presence of heat stress or free DCOIT, with effects being magnified in the presence of both stressors. The activity of catalase and glutathione-S-transferase were modulated by temperature in each partner of the symbiosis. The shifts in enzymatic activity were more pronounced in the presence of free DCOIT, but to a lower extent for encapsulated DCOIT. Increased levels of oxidative damage were detected under heat conditions. The findings highlight the physiological constrains elicited by the increase of seawater temperature to symbiotic corals and demonstrate that DCOIT toxicity can be minimized through encapsulation in SiNC. The presence of both stressors magnifies toxicity and confirm that ocean warming enhances the vulnerability of tropical photosynthetic corals to local stressors.
Collapse
Affiliation(s)
- Violeta Ferreira
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria D Pavlaki
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto Martins
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta S Monteiro
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frederico Maia
- Smallmatek - Small Materials and Technologies, Lda., Rua Canhas, 3810-075 Aveiro, Portugal
| | - João Tedim
- CICECO - Aveiro Institute of Materials & Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- ApplEE Research Group, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Hourdez S, Boidin-Wichlacz C, Jollivet D, Massol F, Rayol MC, Bruno R, Zeppilli D, Thomas F, Lesven L, Billon G, Duperron S, Tasiemski A. Investigation of Capitella spp. symbionts in the context of varying anthropic pressures: First occurrence of a transient advantageous epibiosis with the giant bacteria Thiomargarita sp. to survive seasonal increases of sulfides in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149149. [PMID: 34375231 DOI: 10.1016/j.scitotenv.2021.149149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Capitella spp. is considered as an important ecological indicator of eutrophication due to its high densities in organic-rich, reduced, and sometimes polluted coastal ecosystems. We investigated whether such ability to cope with adverse ecological contexts might be a response to the microorganisms these worms are associated with. In populations from the French Atlantic coast (Roscoff, Brittany), we observed an epibiotic association covering the tegument of 20-30% specimens from an anthropized site while individuals from a reference, non-anthropized site were devoid of any visible epibionts. Using RNAseq, molecular and microscopic analyses, we described and compared the microbial communities associated with the epibiotic versus the non-epibiotic specimens at both locations. Interestingly, data showed that the epibiosis is characterized by sulfur-oxidizing bacteria among which the giant bacterium Thiomargarita sp., to date only described in deep sea habitats. Survey of Capitella combined with the geochemical analysis of their sediment revealed that epibiotic specimens are always found in muds with the highest concentration of sulfides, mostly during the summer. Concomitantly, tolerance tests demonstrated that the acquisition of epibionts increased survival against toxic level of sulfides. Overall, the present data highlight for the first time a peculiar plastic adaptation to seasonal variations of the habitat based on a transcient epibiosis allowing a coastal species to survive temporary harsher conditions.
Collapse
Affiliation(s)
- Stéphane Hourdez
- Observatoire Océanologique de Banyuls-sur-Mer, UMR 8222 CNRS-SU, avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Didier Jollivet
- Sorbonne Université, CNRS UMR 7144 'Adaptation et Diversité en Milieux Marins' (AD2M), Team 'Dynamique de la Diversité Marine' (DyDiv), Station biologique de Roscoff, Place G. Teissier, 29680 Roscoff, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Maria Claudia Rayol
- Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Daniela Zeppilli
- IFREMER, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France
| | - Frédéric Thomas
- CREEC/CREES, UMR IRD-Université de Montpellier, Montpellier, France
| | - Ludovic Lesven
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, CNRS UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005 Paris, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| |
Collapse
|
12
|
Sikorskaya TV, Ermolenko EV, Boroda AV, Ginanova TT. Physiological processes and lipidome dynamics in the soft coral Sinularia heterospiculata under experimental bleaching. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110609. [PMID: 33957260 DOI: 10.1016/j.cbpb.2021.110609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Coral polyps host intracellular symbiotic dinoflagellates (SD). The loss of SD (referred as bleaching) under stressful environmental conditions is the main reason of coral reef destruction, and therefore, intensively studied over the world. Lipids are the structural base of biomembranes and energy reserve of corals and are directly involved in the coral bleaching. In order to establish a relationship between coral tissue morphology, physiological processes and lipidome dynamics during bleaching, the soft coral Sinularia heterospiculata was exposed to experimental heat stress (33 °C) for 72 h. A chlorophyll content, structure of cells, the level of reactive oxygen species (ROS), and molecular species of storage and structural lipids were analyzed. After 24 h of heat exposure, the level of ROS-positive SD cells did not increase, but the host tissues lost a significant part of SD. The removal of SD cells by exocytosis were suggested. Exocytosis was presumed to prevail at earlier stages of the soft coral bleaching. Symbiophagosomes with degenerative SD were observed in the stressed coral host cells. After 24 h, the content of phosphatidylinositols, which involved in apoptosis and autophagy, was significantly decreased. The innate immune response was triggered, and SD were digested by the coral host. After 48 h, a degradation of SD chloroplasts and a decrease in the specific monogalactosyldiacylglycerol molecular species were detected that confirmed a disruption of lipid biosynthesis in chloroplasts. At the end of coral bleaching, the appearance of oxidized phosphatidylethanolamines, indicating damage to the host membranes, and the degradation of the coral tissues were simultaneously observed. Thus, a switch between dominant mechanisms of the SD loss during bleaching of S. heterospiculata was found and proved by certain variations of the lipidomic profile. Lipidomic parameters may become indicators of physiological processes occurring in the symbiotic coral organism and may be used for assessing anthropogenic or natural destructive effects on coral reefs.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Andrey V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Taliya T Ginanova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|
13
|
Hall C, Camilli S, Dwaah H, Kornegay B, Lacy C, Hill MS, Hill AL. Freshwater sponge hosts and their green algae symbionts: a tractable model to understand intracellular symbiosis. PeerJ 2021; 9:e10654. [PMID: 33614268 PMCID: PMC7882143 DOI: 10.7717/peerj.10654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
In many freshwater habitats, green algae form intracellular symbioses with a variety of heterotrophic host taxa including several species of freshwater sponge. These sponges perform important ecological roles in their habitats, and the poriferan:green algae partnerships offers unique opportunities to study the evolutionary origins and ecological persistence of endosymbioses. We examined the association between Ephydatia muelleri and its chlorophyte partner to identify features of host cellular and genetic responses to the presence of intracellular algal partners. Chlorella-like green algal symbionts were isolated from field-collected adult E. muelleri tissue harboring algae. The sponge-derived algae were successfully cultured and subsequently used to reinfect aposymbiotic E. muelleri tissue. We used confocal microscopy to follow the fate of the sponge-derived algae after inoculating algae-free E. muelleri grown from gemmules to show temporal patterns of symbiont location within host tissue. We also infected aposymbiotic E. muelleri with sponge-derived algae, and performed RNASeq to study differential expression patterns in the host relative to symbiotic states. We compare and contrast our findings with work in other systems (e.g., endosymbiotic Hydra) to explore possible conserved evolutionary pathways that may lead to stable mutualistic endosymbioses. Our work demonstrates that freshwater sponges offer many tractable qualities to study features of intracellular occupancy and thus meet criteria desired for a model system.
Collapse
Affiliation(s)
- Chelsea Hall
- Biology, University of Richmond, Richmond, VA, United States of America.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sara Camilli
- Biology, University of Richmond, Richmond, VA, United States of America.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States of America
| | - Henry Dwaah
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Benjamin Kornegay
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Christie Lacy
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Malcolm S Hill
- Biology, University of Richmond, Richmond, VA, United States of America.,Biology, Bates College, Lewiston, ME, United States of America
| | - April L Hill
- Biology, University of Richmond, Richmond, VA, United States of America.,Biology, Bates College, Lewiston, ME, United States of America
| |
Collapse
|
14
|
Porro B, Zamoum T, Mallien C, Hume BCC, Voolstra CR, Röttinger E, Furla P, Forcioli D. Horizontal acquisition of Symbiodiniaceae in the Anemonia viridis (Cnidaria, Anthozoa) species complex. Mol Ecol 2020; 30:391-405. [PMID: 33249664 DOI: 10.1111/mec.15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 12/01/2022]
Abstract
All metazoans are in fact holobionts, resulting from the association of several organisms, and organismal adaptation is then due to the composite response of this association to the environment. Deciphering the mechanisms of symbiont acquisition in a holobiont is therefore essential to understanding the extent of its adaptive capacities. In cnidarians, some species acquire their photosynthetic symbionts directly from their parents (vertical transmission) but may also acquire symbionts from the environment (horizontal acquisition) at the adult stage. The Mediterranean snakelocks sea anemone, Anemonia viridis (Forskål, 1775), passes down symbionts from one generation to the next by vertical transmission, but the capacity for such horizontal acquisition is still unexplored. To unravel the flexibility of the association between the different host lineages identified in A. viridis and its Symbiodiniaceae, we genotyped both the animal hosts and their symbiont communities in members of host clones in five different locations in the North Western Mediterranean Sea. The composition of within-host-symbiont populations was more dependent on the geographical origin of the hosts than their membership to a given lineage or even to a given clone. Additionally, similarities in host-symbiont communities were greater among genets (i.e. among different clones) than among ramets (i.e. among members of the same given clonal genotype). Taken together, our results demonstrate that A. viridis may form associations with a range of symbiotic dinoflagellates and suggest a capacity for horizontal acquisition. A mixed-mode transmission strategy in A. viridis, as we posit here, may help explain the large phenotypic plasticity that characterizes this anemone.
Collapse
Affiliation(s)
- Barbara Porro
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
| | - Thamilla Zamoum
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
| | - Cédric Mallien
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
| | - Benjamin C C Hume
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Eric Röttinger
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
| | - Paola Furla
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
| | - Didier Forcioli
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
| |
Collapse
|
15
|
Ottaviani A, Eid R, Zoccola D, Pousse M, Dubal JM, Barajas E, Jamet K, Lebrigand K, Lapébie P, Baudoin C, Giraud-Panis MJ, Rouan A, Beauchef G, Guéré C, Vié K, Barbry P, Tambutté S, Gilson E, Allemand D. Longevity strategies in response to light in the reef coral Stylophora pistillata. Sci Rep 2020; 10:19937. [PMID: 33203910 PMCID: PMC7673115 DOI: 10.1038/s41598-020-76925-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is a multifactorial process that results in progressive loss of regenerative capacity and tissue function while simultaneously favoring the development of a large array of age-related diseases. Evidence suggests that the accumulation of senescent cells in tissue promotes both normal and pathological aging. Oxic stress is a key driver of cellular senescence. Because symbiotic long-lived reef corals experience daily hyperoxic and hypoxic transitions, we hypothesized that these long-lived animals have developed specific longevity strategies in response to light. We analyzed transcriptome variation in the reef coral Stylophora pistillata during the day-night cycle and revealed a signature of the FoxO longevity pathway. We confirmed this pathway by immunofluorescence using antibodies against coral FoxO to demonstrate its nuclear translocation. Through qPCR analysis of nycthemeral variations of candidate genes under different light regimens, we found that, among genes that were specifically up- or downregulated upon exposure to light, human orthologs of two "light-up" genes (HEY1 and LONF3) exhibited anti-senescence properties in primary human fibroblasts. Therefore, these genes are interesting candidates for counteracting skin aging. We propose a large screen for other light-up genes and an investigation of the biological response of reef corals to light (e.g., metabolic switching) to elucidate these processes and identify effective interventions for promoting healthy aging in humans.
Collapse
Affiliation(s)
- Alexandre Ottaviani
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France.
| | - Rita Eid
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | - Mélanie Pousse
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Jean-Marc Dubal
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | - Karine Jamet
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, 06560, Sophia Antipolis, France
| | - Pascal Lapébie
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Christian Baudoin
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | - Alice Rouan
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Gallic Beauchef
- Laboratoires Clarins, 12 avenue de la porte des Ternes, 75017, Paris, France
| | - Christelle Guéré
- Laboratoires Clarins, 12 avenue de la porte des Ternes, 75017, Paris, France
| | - Katell Vié
- Laboratoires Clarins, 12 avenue de la porte des Ternes, 75017, Paris, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, 06560, Sophia Antipolis, France
| | | | - Eric Gilson
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France. .,Department of Genetics, CHU, Nice, France.
| | | |
Collapse
|
16
|
Cleves PA, Krediet CJ, Lehnert EM, Onishi M, Pringle JR. Insights into coral bleaching under heat stress from analysis of gene expression in a sea anemone model system. Proc Natl Acad Sci U S A 2020; 117:28906-28917. [PMID: 33168733 PMCID: PMC7682557 DOI: 10.1073/pnas.2015737117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Loss of endosymbiotic algae ("bleaching") under heat stress has become a major problem for reef-building corals worldwide. To identify genes that might be involved in triggering or executing bleaching, or in protecting corals from it, we used RNAseq to analyze gene-expression changes during heat stress in a coral relative, the sea anemone Aiptasia. We identified >500 genes that showed rapid and extensive up-regulation upon temperature increase. These genes fell into two clusters. In both clusters, most genes showed similar expression patterns in symbiotic and aposymbiotic anemones, suggesting that this early stress response is largely independent of the symbiosis. Cluster I was highly enriched for genes involved in innate immunity and apoptosis, and most transcript levels returned to baseline many hours before bleaching was first detected, raising doubts about their possible roles in this process. Cluster II was highly enriched for genes involved in protein folding, and most transcript levels returned more slowly to baseline, so that roles in either promoting or preventing bleaching seem plausible. Many of the genes in clusters I and II appear to be targets of the transcription factors NFκB and HSF1, respectively. We also examined the behavior of 337 genes whose much higher levels of expression in symbiotic than aposymbiotic anemones in the absence of stress suggest that they are important for the symbiosis. Unexpectedly, in many cases, these expression levels declined precipitously long before bleaching itself was evident, suggesting that loss of expression of symbiosis-supporting genes may be involved in triggering bleaching.
Collapse
Affiliation(s)
- Phillip A Cleves
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Cory J Krediet
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Department of Marine Science, Eckerd College, St. Petersburg, FL 33711
| | - Erik M Lehnert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
17
|
D’Errico M, Kennedy C, Hale RE. Egg mass polymorphism in Ambystoma maculatum is not associated with larval performance or survival, or with cell density of the algal symbiont Oophila amblystomatis. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10083-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Differential Dynamics of the Ruminal Microbiome of Jersey Cows in a Heat Stress Environment. Animals (Basel) 2020; 10:ani10071127. [PMID: 32630754 PMCID: PMC7401637 DOI: 10.3390/ani10071127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Recently, it has become apparent that the microbiome is essential to health and affects practically every aspect of physiology. The rumen contains highly dense and diverse microbial communities, which can impact health through their composition, diversity, and assembly. Nevertheless, the diversity and function of rumen microbes have not been fully described. Therefore, this study aims to identify differences in the functional attributes and metabolites of rumen microbiota to heat stress by metagenomics and metabolomics analyses. We observed differences in biological changes, as well as changes in rumen metabolites and metabolic pathways depending on the breed of cow. In addition, significant changes in rumen bacterial taxa and functional gene abundance were observed. Overall, the findings of this study improve our understanding of heat-vulnerable ruminal bacteria and related genes. Abstract The microbial community within the rumen can be changed and shaped by heat stress. Accumulating data have suggested that different breeds of dairy cows have differential heat stress resistance; however, the underlying mechanism by which nonanimal factors contribute to heat stress are yet to be understood. This study is designed to determine changes in the rumen microbiome of Holstein and Jersey cows to normal and heat stress conditions. Under heat stress conditions, Holstein cows had a significantly higher respiration rate than Jersey cows. Heat stress increased the rectal temperature of Holstein but not Jersey cows. In the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, Jersey cows had a significantly higher proportion of genes associated with energy metabolism in the normal condition than that with other treatments. Linear discriminant analysis effect size (LEfSe) results identified six taxa as distinguishing taxa between normal and heat stress conditions in Holstein cows; in Jersey cows, 29 such taxa were identified. Changes in the rumen bacterial taxa were more sensitive to heat stress in Jersey cows than in Holstein cows, suggesting that the rumen mechanism is different in both breeds in adapting to heat stress. Collectively, distinct changes in rumen bacterial taxa and functional gene abundance in Jersey cows may be associated with better adaptation ability to heat stress.
Collapse
|
19
|
Krueger T, Horwitz N, Bodin J, Giovani ME, Escrig S, Fine M, Meibom A. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc Biol Sci 2020; 287:20200049. [PMID: 32126963 PMCID: PMC7126079 DOI: 10.1098/rspb.2020.0049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The density of dinoflagellate microalgae in the tissue of symbiotic corals is an important determinant for health and productivity of the coral animal. Yet, the specific mechanism for their regulation and the consequence for coral nutrition are insufficiently understood due to past methodological limitations to resolve the fine-scale metabolic consequences of fluctuating densities. Here, we characterized the physiological and nutritional consequences of symbiont density variations on the colony and tissue level in Stylophora pistillata from the Red Sea. Alterations in symbiont photophysiology maintained coral productivity and host nutrition across a broad range of symbiont densities. However, we demonstrate that density-dependent nutrient competition between individual symbiont cells, manifested as reduced nitrogen assimilation and cell biomass, probably creates the negative feedback mechanism for symbiont population growth that ultimately defines the steady-state density. Despite fundamental changes in symbiont nitrogen assimilation, we found no density-related metabolic optimum beyond which host nutrient assimilation or tissue biomass declined, indicating that host nutrient demand is sufficiently met across the typically observed range of symbiont densities under ambient conditions.
Collapse
Affiliation(s)
- Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Noa Horwitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.,The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
| | - Julia Bodin
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maria-Evangelia Giovani
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.,The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Miniaturized Platform for Individual Coral Polyps Culture and Monitoring. MICROMACHINES 2020; 11:mi11020127. [PMID: 31979337 PMCID: PMC7074014 DOI: 10.3390/mi11020127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
Methodologies for coral polyps culture and real-time monitoring are important in investigating the effects of the global environmental changes on coral reefs and marine biology. However, the traditional cultivation method is limited in its ability to provide a rapid and dynamic microenvironment to effectively exchange the chemical substances and simulate the natural environment change. Here, an integrated microdevice with continuous perfusion and temperature-control in the microenvironment was fabricated for dynamic individual coral polyps culture. For a realistic mimicry of the marine ecological environment, we constructed the micro-well based microfluidics platform that created a fluid flow environment with a low shear rate and high substance transfer, and developed a sensitive temperature control system for the long-term culture of individual coral polyps. This miniaturized platform was applied to study the individual coral polyps in response to the temperature change for evaluating the coral death caused by El Nino. The experimental results demonstrated that the microfluidics platform could provide the necessary growth environment for coral polyps as expected so that in turn the biological activity of individual coral polyps can quickly be recovered. The separation between the algae and host polyp cells were observed in the high culture temperature range and the coral polyp metabolism was negatively affected. We believe that our culture platform for individual coral polyps can provide a reliable analytical approach for model and mechanism investigations of coral bleaching and reef conservation.
Collapse
|
21
|
Dias M, Ferreira A, Gouveia R, Madeira C, Jogee N, Cabral H, Diniz M, Vinagre C. Long-term exposure to increasing temperatures on scleractinian coral fragments reveals oxidative stress. MARINE ENVIRONMENTAL RESEARCH 2019; 150:104758. [PMID: 31301459 DOI: 10.1016/j.marenvres.2019.104758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/16/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Global warming is leading to increases in tropical storms' frequency and intensity, allowing fragmentation of reef-forming coral species, but also to coral bleaching and mortality. The first level of organism's response to an environmental perturbation occurs at the cellular level. This study investigated the long-term oxidative stress on fragments of nine Indo-Pacific reef-forming coral species exposed for 60 days to increasing temperatures (30 °C and 32 °C) and compared results with control temperature (26 °C). Coral overall condition (appearance), lipid peroxidation (LPO), catalase activity (CAT), and glutathione S-transferase (GST) were assessed. The species Turbinaria reniformis, Galaxea fascicularis, and Psammocora contigua were the most resistant to heat stress, presenting no oxidative damage at 30 °C. Unlike G. fasciularis, both T. reniformis and P. contigua showed no evidence of oxidative damage at 32 °C. All remaining species' fragments died at 32 °C. Stylophora pistillata and Pocillopora damicornis were the most susceptible species to heat stress, not resisting at 30 °C.
Collapse
Affiliation(s)
- Marta Dias
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Ana Ferreira
- Oceanário de Lisboa, Esplanada D. Carlos I, 1990-005, Lisboa, Portugal
| | - Raúl Gouveia
- Oceanário de Lisboa, Esplanada D. Carlos I, 1990-005, Lisboa, Portugal
| | - Carolina Madeira
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Nadia Jogee
- The School of Geosciences, The University of Edinburgh, The Grant Institute, James Hutton Road, King's Buildings, Edinburgh, EH9 3FE, UK
| | - Henrique Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Irstea, UR EABX, 50, Avenue de Verdun, 33612, Cestas, France
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
22
|
Cziesielski MJ, Schmidt‐Roach S, Aranda M. The past, present, and future of coral heat stress studies. Ecol Evol 2019; 9:10055-10066. [PMID: 31534713 PMCID: PMC6745681 DOI: 10.1002/ece3.5576] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
The global loss and degradation of coral reefs, as a result of intensified frequency and severity of bleaching events, is a major concern. Evidence of heat stress affecting corals through loss of symbionts and consequent coral bleaching was first reported in the 1930s. However, it was not until the 1998 major global bleaching event that the urgency for heat stress studies became internationally recognized. Current efforts focus not only on examining the consequences of heat stress on corals but also on finding strategies to potentially improve thermal tolerance and aid coral reefs survival in future climate scenarios. Although initial studies were limited in comparison with modern technological tools, they provided the foundation for many of today's research methods and hypotheses. Technological advancements are providing new research prospects at a rapid pace. Understanding how coral heat stress studies have evolved is important for the critical assessment of their progress. This review summarizes the development of the field to date and assesses avenues for future research.
Collapse
Affiliation(s)
- Maha J. Cziesielski
- Red Sea Research CenterDivision of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Sebastian Schmidt‐Roach
- Red Sea Research CenterDivision of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Manuel Aranda
- Red Sea Research CenterDivision of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
23
|
Olivieri E, Epis S, Castelli M, Varotto Boccazzi I, Romeo C, Desirò A, Bazzocchi C, Bandi C, Sassera D. Tissue tropism and metabolic pathways of Midichloria mitochondrii suggest tissue-specific functions in the symbiosis with Ixodes ricinus. Ticks Tick Borne Dis 2019; 10:1070-1077. [PMID: 31176662 DOI: 10.1016/j.ttbdis.2019.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/09/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
A wide range of arthropod species harbour bacterial endosymbionts in various tissues, many of them playing important roles in the fitness and biology of their hosts. In several cases, many different symbionts have been reported to coexist simultaneously within the same host and synergistic or antagonistic interactions can occur between them. While the associations with endosymbiotic bacteria have been widely studied in many insect species, in ticks such interactions are less investigated. The females and immatures of Ixodes ricinus (Ixodidae), the most common hard tick in Europe, harbour the intracellular endosymbiont "Candidatus Midichloria mitochondrii" with a prevalence up to 100%, suggesting a mutualistic relationship. Considering that the tissue distribution of a symbiont might be indicative of its functional role in the physiology of the host, we investigated M. mitochondrii specific localization pattern and the corresponding abundance in selected organs of I. ricinus females. We paired these experiments with in silico analysis of the metabolic pathways of M. mitochondrii, inferred from the available genome sequence, and additionally compared the presence of these pathways in seven other symbionts commonly harboured by ticks to try to obtain a comparative understanding of their biological effects on the tick hosts. M. mitochondrii was found to be abundant in ovaries and tracheae of unfed I. ricinus, and in ovaries, Malpighian tubules and salivary glands of semi-engorged females. These results, together with the in silico metabolic reconstruction allow to hypothesize that the bacterium could play multiple tissue-specific roles in the host, both enhancing the host fitness (supplying essential nutrients, enhancing the reproductive fitness, helping in the anti-oxidative defence, in the energy production and in the maintenance of homeostasis and water balance) and/or for ensuring its presence in the host population (nutrients acquisition, vertical and horizontal transmission). The ability of M. mitochondrii to colonize different tissues allows to speculate that distinctive sub-populations may display different specializations in accordance with tissue tropism. Our hypotheses should be corroborated with future nutritional and physiological experiments for a better understanding of the mechanisms underlying this symbiotic interaction.
Collapse
Affiliation(s)
- Emanuela Olivieri
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Sara Epis
- Department of Biosciences University of Milan, Milan, Italy; Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Michele Castelli
- Department of Biosciences University of Milan, Milan, Italy; Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Ilaria Varotto Boccazzi
- Department of Biosciences University of Milan, Milan, Italy; Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Claudia Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133, Milano, Italy
| | - Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Chiara Bazzocchi
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy; Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133, Milano, Italy; Coordinated Research Center "EpiSoMI", University of Milan, 20133, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences University of Milan, Milan, Italy; Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
24
|
Urbarova I, Forêt S, Dahl M, Emblem Å, Milazzo M, Hall-Spencer JM, Johansen SD. Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viridis. PLoS One 2019; 14:e0210358. [PMID: 31067218 PMCID: PMC6505742 DOI: 10.1371/journal.pone.0210358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms. We found that about 1.4% of the anemone transcripts, but only ~0.5% of the Symbiodinium sp. transcripts were differentially expressed. Processes enriched at high seawater CO2 were mainly linked to cellular stress, including significant up-regulation of protective cellular functions and deregulation of metabolic pathways. Transposable elements were differentially expressed at high seawater CO2, with an extreme up-regulation (> 100-fold) of the BEL-family of long terminal repeat retrotransposons. Seawater acidified by CO2 generated a significant stress reaction in A. viridis, but no bleaching was observed and Symbiodinium sp. appeared to be less affected. These observed changes indicate the mechanisms by which A. viridis acclimate to survive chronic exposure to ocean acidification conditions. We conclude that many organisms that are common in acidified conditions may nevertheless incur costs due to hypercapnia and/or lowered carbonate saturation states.
Collapse
Affiliation(s)
- Ilona Urbarova
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- * E-mail: (IU); (SDJ)
| | - Sylvain Forêt
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Mikael Dahl
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Åse Emblem
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Marco Milazzo
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| | - Jason M. Hall-Spencer
- School of Biological and Marine Science, University of Plymouth, Plymouth, United Kingdom
- Shimoda Marine Research Center, University of Tsukuba, Shimoda City, Shizuoka, Japan
| | - Steinar D. Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Genomics Research Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- * E-mail: (IU); (SDJ)
| |
Collapse
|
25
|
Rodriguez‐Casariego JA, Ladd MC, Shantz AA, Lopes C, Cheema MS, Kim B, Roberts SB, Fourqurean JW, Ausio J, Burkepile DE, Eirin‐Lopez JM. Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis. Ecol Evol 2018; 8:12193-12207. [PMID: 30598811 PMCID: PMC6303763 DOI: 10.1002/ece3.4678] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during acclimatory and adaptive responses remains unknown. The present work aims to address that gap by monitoring two types of epigenetic mechanisms, namely histone modifications and DNA methylation, during a 7-week-long experiment in which staghorn coral fragments (Acropora cervicornis) were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of thermal stress. The major conclusion of this experiment can be summarized by two main results: First, coral holobiont responses to the combined effects of nutrient enrichment and thermal stress involve the post-translational phosphorylation of the histone variant H2A.X (involved in responses to DNA damage), as well as nonsignificant modifications in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the subsequent potential impairment of DNA repair mechanisms) observed after prolonged coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont-driven phosphorus limitation previously observed in corals subject to nitrogen enrichment. The alteration of this epigenetic mechanism could help to explain the synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased bleaching and mortality) while supporting the positive effect of phosphorus addition to improving coral resilience to thermal stress. Overall, this work provides new insights into the role of epigenetic mechanisms during coral responses to global change, discussing future research directions and the potential benefits for improving restoration, management and conservation of coral reef ecosystems worldwide.
Collapse
Affiliation(s)
- Javier A. Rodriguez‐Casariego
- Environmental Epigenetics Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Mark C. Ladd
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Andrew A. Shantz
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Christian Lopes
- Seagrass Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Manjinder S. Cheema
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Bohyun Kim
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Steven B. Roberts
- School of Aquatic and Fishery ScienceUniversity of WashingtonSeattleWashington
| | - James W. Fourqurean
- Seagrass Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Juan Ausio
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Deron E. Burkepile
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Jose M. Eirin‐Lopez
- Environmental Epigenetics Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| |
Collapse
|
26
|
Matthews JL, Oakley CA, Lutz A, Hillyer KE, Roessner U, Grossman AR, Weis VM, Davy SK. Partner switching and metabolic flux in a model cnidarian-dinoflagellate symbiosis. Proc Biol Sci 2018; 285:20182336. [PMID: 30487315 PMCID: PMC6283946 DOI: 10.1098/rspb.2018.2336] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 11/12/2022] Open
Abstract
Metabolite exchange is fundamental to the viability of the cnidarian-Symbiodiniaceae symbiosis and survival of coral reefs. Coral holobiont tolerance to environmental change might be achieved through changes in Symbiodiniaceae species composition, but differences in the metabolites supplied by different Symbiodiniaceae species could influence holobiont fitness. Using 13C stable-isotope labelling coupled to gas chromatography-mass spectrometry, we characterized newly fixed carbon fate in the model cnidarian Exaiptasia pallida (Aiptasia) when experimentally colonized with either native Breviolum minutum or non-native Durusdinium trenchii Relative to anemones containing B. minutum, D. trenchii-colonized hosts exhibited a 4.5-fold reduction in 13C-labelled glucose and reduced abundance and diversity of 13C-labelled carbohydrates and lipogenesis precursors, indicating symbiont species-specific modifications to carbohydrate availability and lipid storage. Mapping carbon fate also revealed significant alterations to host molecular signalling pathways. In particular, D. trenchii-colonized hosts exhibited a 40-fold reduction in 13C-labelled scyllo-inositol, a potential interpartner signalling molecule in symbiosis specificity. 13C-labelling also highlighted differential antioxidant- and ammonium-producing pathway activities, suggesting physiological responses to different symbiont species. Such differences in symbiont metabolite contribution and host utilization may limit the proliferation of stress-driven symbioses; this contributes valuable information towards future scenarios that select in favour of less-competent symbionts in response to environmental change.
Collapse
Affiliation(s)
- Jennifer L Matthews
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Adrian Lutz
- Metabolomics Australia, School of Botany, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Katie E Hillyer
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Ute Roessner
- Metabolomics Australia, School of Botany, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
27
|
Abstract
Unprecedented mass coral bleaching events due to global warming and overall seawater pollution have been observed worldwide over the last decades. Although metals are often considered as toxic substances for corals, some are essential at nanomolar concentrations for physiological processes such as photosynthesis and antioxidant defenses. This study was designed to elucidate, the individual and combined effects of nanomolar seawater enrichment in manganese (Mn) and iron (Fe), on the main physiological traits of Stylophora pistillata, maintained under normal growth and thermal stress conditions. We provide, for the first time, evidence that Mn is a key trace element for coral symbionts, enhancing cellular chlorophyll concentrations, photosynthetic efficiency and gross photosynthetic rates at ambient temperature. Our experiment also highlights the key role of Mn in increasing coral resistance to heat stress-induced bleaching. While Mn-enriched corals did not bleach and did not reduce their rates of photosynthesis and calcification, control corals experienced significant bleaching. On the contrary to Mn, Fe enrichment not only impaired calcification but induced significant bleaching. Such information is an important step towards a better understanding of the response of corals to seawater enrichment in metals. It can also explain, to some extent, species susceptibility to environmental stress.
Collapse
|
28
|
Bielmyer-Fraser GK, Patel P, Capo T, Grosell M. Physiological responses of corals to ocean acidification and copper exposure. MARINE POLLUTION BULLETIN 2018; 133:781-790. [PMID: 30041377 DOI: 10.1016/j.marpolbul.2018.06.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Acidification and land-based sources of pollution have been linked to widespread declines of coral cover in coastal reef ecosystems. In this study, two coral species, Acropora cervicornis and Pocillopora damicornis were exposed to increased copper at two CO2 levels for 96 h. Copper accumulation and anti-oxidant enzyme activities were measured. Copper accumulation only increased in A. cervicornis zooxanthellae and corresponded with photosynthetic toxicity. Enzyme activities in both coral species were affected; however, A. cervicornis was more sensitive than P. damicornis, and zooxanthellae were more affected than animal fractions of holobionts. Generally, activities of all anti-oxidant enzymes increased, with copper exposure in corals; whereas, activities of glutathione reductase and to some degree glutathione peroxidase were observed due to increasing CO2 exposure alone. Exposure to copper in combination with higher CO2 resulted in a synergistic response in some cases. These results provide insight into mechanisms of copper and CO2 impacts in corals.
Collapse
Affiliation(s)
| | | | - Tom Capo
- University of Miami, United States of America
| | | |
Collapse
|
29
|
Ferrier-Pagès C, Sauzéat L, Balter V. Coral bleaching is linked to the capacity of the animal host to supply essential metals to the symbionts. GLOBAL CHANGE BIOLOGY 2018; 24:3145-3157. [PMID: 29569807 DOI: 10.1111/gcb.14141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 05/26/2023]
Abstract
Massive coral bleaching events result in extensive coral loss throughout the world. These events are mainly caused by seawater warming, but are exacerbated by the subsequent decrease in nutrient availability in surface waters. It has therefore been shown that nitrogen, phosphorus or iron limitation contribute to the underlying conditions by which thermal stress induces coral bleaching. Generally, information on the trophic ecology of trace elements (micronutrients) in corals, and on how they modulate the coral response to thermal stress is lacking. Here, we demonstrate for the first time that heterotrophic feeding (i.e. the capture of zooplankton prey by the coral host) and thermal stress induce significant changes in micro element concentrations and isotopic signatures of the scleractinian coral Stylophora pistillata. The results obtained first reveal that coral symbionts are the major sink for the heterotrophically acquired micronutrients and accumulate manganese, magnesium and iron from the food. These metals are involved in photosynthesis and antioxidant protection. In addition, we show that fed corals can maintain high micronutrient concentrations in the host tissue during thermal stress and do not bleach, whereas unfed corals experience a significant decrease in copper, zinc, boron, calcium and magnesium in the host tissue and bleach. In addition, the significant increase in δ65 Cu and δ66 Zn signature of symbionts and host tissue at high temperature suggests that these isotopic compositions are good proxy for stress in corals. Overall, present findings highlight a new way in which coral heterotrophy and micronutrient availability contribute to coral resistance to global warming and bleaching.
Collapse
Affiliation(s)
| | - Lucie Sauzéat
- CNRS UMR 5276 "Laboratoire de Géologie de Lyon", Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France
| | - Vincent Balter
- CNRS UMR 5276 "Laboratoire de Géologie de Lyon", Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France
| |
Collapse
|
30
|
Hamada M, Schröder K, Bathia J, Kürn U, Fraune S, Khalturina M, Khalturin K, Shinzato C, Satoh N, Bosch TC. Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis. eLife 2018; 7:35122. [PMID: 29848439 PMCID: PMC6019070 DOI: 10.7554/elife.35122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/26/2018] [Indexed: 11/13/2022] Open
Abstract
Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Ushimado Marine Institute, Okayama University, Okayama, Japan
| | - Katja Schröder
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Jay Bathia
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Ulrich Kürn
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Sebastian Fraune
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Mariia Khalturina
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Konstantin Khalturin
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Thomas Cg Bosch
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| |
Collapse
|
31
|
Ventura P, Toullec G, Fricano C, Chapron L, Meunier V, Röttinger E, Furla P, Barnay-Verdier S. Cnidarian Primary Cell Culture as a Tool to Investigate the Effect of Thermal Stress at Cellular Level. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:144-154. [PMID: 29313151 DOI: 10.1007/s10126-017-9791-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
In the context of global change, symbiotic cnidarians are largely affected by seawater temperature elevation leading to symbiosis breakdown. This process, also called bleaching, is triggered by the dysfunction of the symbiont photosystems causing an oxidative stress and cell death to both symbiont and host cells. In our study, we wanted to elucidate the intrinsic capacity of isolated animal cells to deal with thermal stress in the absence of symbiont. In that aim, we have characterized an animal primary cell culture form regenerating tentacles of the temperate sea anemone Anemonia viridis. We first compared the potential of whole tissue tentacle or separated epidermal or gastrodermal monolayers as tissue sources to settle animal cell cultures. Interestingly, only isolated cells extracted from whole tentacles allowed establishing a viable and proliferative primary cell culture throughout 31 days. The analysis of the expression of tissue-specific and pluripotency markers defined cultivated cells as differentiated cells with gastrodermal origin. The characterization of the animal primary cell culture allowed us to submit the obtained gastrodermal cells to hyperthermal stress (+ 5 and + 8 °C) during 1 and 7 days. Though cell viability was not affected at both hyperthermal stress conditions, cell growth drastically decreased. In addition, only a + 8 °C hyperthermia induced a transient increase of antioxidant defences at 1 day but no ubiquitin or carbonylation protein damages. These results demonstrated an intrinsic resistance of cnidarian gastrodermal cells to hyperthermal stress and then confirmed the role of symbionts in the hyperthermia sensitivity leading to bleaching.
Collapse
Affiliation(s)
- P Ventura
- Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France
| | - G Toullec
- Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France
| | - C Fricano
- Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France
| | - L Chapron
- Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB, Observatoire Océanologique, Banyuls/Mer, France
| | - V Meunier
- Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France
| | - E Röttinger
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
| | - P Furla
- Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France
| | - S Barnay-Verdier
- Sorbonne Universités, UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS), Paris, France.
- UMR 7138 "Evolution Paris Seine", Symbiose Marine Team, Paris, France.
| |
Collapse
|
32
|
Ma L, Calfee BC, Morris JJ, Johnson ZI, Zinser ER. Degradation of hydrogen peroxide at the ocean's surface: the influence of the microbial community on the realized thermal niche of Prochlorococcus. THE ISME JOURNAL 2018; 12:473-484. [PMID: 29087377 PMCID: PMC5776462 DOI: 10.1038/ismej.2017.182] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
Abstract
Prochlorococcus, the smallest and most abundant phytoplankter in the ocean, is highly sensitive to hydrogen peroxide (HOOH), and co-occurring heterotrophs such as Alteromonas facilitate the growth of Prochlorococcus by scavenging HOOH. Temperature is also a major influence on Prochlorococcus abundance and distribution in the ocean, and studies in other photosynthetic organisms have shown that HOOH and temperature extremes can act together as synergistic stressors. To address potential synergistic effects of temperature and HOOH on Prochlorococcus growth, high- and low-temperature-adapted representative strains were cultured at ecologically relevant concentrations under a range of HOOH concentrations and temperatures. Higher concentrations of HOOH severely diminished the permissive temperature range for growth of both Prochlorococcus strains. At the permissive temperatures, the growth rates of both Prochlorococcus strains decreased as a function of HOOH, and cold temperature increased susceptibility of photosystem II to HOOH-mediated damage. Serving as a proxy for the natural community, co-cultured heterotrophic bacteria increased the Prochlorococcus growth rate under these temperatures, and expanded the permissive range of temperature for growth. These studies indicate that in the ocean, the cross-protective function of the microbial community may confer a fitness increase for Prochlorococcus at its temperature extremes, especially near the ocean surface where oxidative stress is highest. This interaction may play a substantial role in defining the realized thermal niche and habitat range of Prochlorococcus with respect to latitude.
Collapse
Affiliation(s)
- Lanying Ma
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Benjamin C Calfee
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - J Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zackary I Johnson
- Nicholas School of the Environment and Biology Department, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
33
|
|
34
|
Mallien C, Porro B, Zamoum T, Olivier C, Wiedenmann J, Furla P, Forcioli D. Conspicuous morphological differentiation without speciation in Anemonia viridis (Cnidaria, Actiniaria). SYST BIODIVERS 2017. [DOI: 10.1080/14772000.2017.1383948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Cédric Mallien
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Barbara Porro
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Thamilla Zamoum
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Caroline Olivier
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Jörg Wiedenmann
- Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Paola Furla
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Didier Forcioli
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| |
Collapse
|
35
|
Structural and functional analysis of coral Hypoxia Inducible Factor. PLoS One 2017; 12:e0186262. [PMID: 29117182 PMCID: PMC5695583 DOI: 10.1371/journal.pone.0186262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022] Open
Abstract
Tissues of symbiotic Cnidarians are exposed to wide, rapid and daily variations of oxygen concentration. Indeed, during daytime, intracellular O2 concentration increases due to symbiont photosynthesis, while during night, respiration of both host cells and symbionts leads to intra-tissue hypoxia. The Hypoxia Inducible Factor 1 (HIF-1) is a heterodimeric transcription factor used for maintenance of oxygen homeostasis and adaptation to hypoxia. Here, we carried out a mechanistic study of the response to variations of O2 concentrations of the coral model Stylophora pistillata. In silico analysis showed that homologs of HIF-1 α (SpiHIF-1α) and HIF-1β (SpiHIF-1β) exist in coral. A specific SpiHIF-1 DNA binding on mammalian Hypoxia Response Element (HRE) sequences was shown in extracts from coral exposed to dark conditions. Then, we cloned the coral HIF-1α and β genes and determined their expression and transcriptional activity. Although HIF-1α has an incomplete Oxygen-dependent Degradation Domain (ODD) relative to its human homolog, its protein level is increased under hypoxia when tested in mammalian cells. Moreover, co-transfection of SpiHIF-1α and β in mammalian cells stimulated an artificial promoter containing HRE only in hypoxic conditions. This study shows the strong conservation of molecular mechanisms involved in adaptation to O2 concentration between Cnidarians and Mammals whose ancestors diverged about 1,200-1,500 million years ago.
Collapse
|
36
|
Seveso D, Montano S, Reggente MAL, Maggioni D, Orlandi I, Galli P, Vai M. The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease. Cell Stress Chaperones 2017; 22:225-236. [PMID: 27988888 PMCID: PMC5352596 DOI: 10.1007/s12192-016-0756-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Black band disease (BBD) is a widespread coral pathology caused by a microbial consortium dominated by cyanobacteria, which is significantly contributing to the loss of coral cover and diversity worldwide. Since the effects of the BBD pathogens on the physiology and cellular stress response of coral polyps appear almost unknown, the expression of some molecular biomarkers, such as Hsp70, Hsp60, HO-1, and MnSOD, was analyzed in the apparently healthy tissues of Goniopora columna located at different distances from the infection and during two disease development stages. All the biomarkers displayed different levels of expression between healthy and diseased colonies. In the healthy corals, low basal levels were found stable over time in different parts of the same colony. On the contrary, in the diseased colonies, a strong up-regulation of all the biomarkers was observed in all the tissues surrounding the infection, which suffered an oxidative stress probably generated by the alternation, at the progression front of the disease, of conditions of oxygen supersaturation and hypoxia/anoxia, and by the production of the cyanotoxin microcystin by the BBD cyanobacteria. Furthermore, in the infected colonies, the expression of all the biomarkers appeared significantly affected by the development stage of the disease. In conclusion, our approach may constitute a useful diagnostic tool, since the cellular stress response of corals is activated before the pathogens colonize the tissues, and expands the current knowledge of the mechanisms controlling the host responses to infection in corals.
Collapse
Affiliation(s)
- Davide Seveso
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives.
| | - Simone Montano
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Melissa Amanda Ljubica Reggente
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Davide Maggioni
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Ivan Orlandi
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Paolo Galli
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Marina Vai
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
37
|
Pey A, Zamoum T, Christen R, Merle PL, Furla P. Characterization of glutathione peroxidase diversity in the symbiotic sea anemone Anemonia viridis. Biochimie 2017; 132:94-101. [DOI: 10.1016/j.biochi.2016.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/20/2016] [Indexed: 02/01/2023]
|
38
|
Louis YD, Bhagooli R, Kenkel CD, Baker AC, Dyall SD. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:63-77. [PMID: 27585119 DOI: 10.1016/j.cbpc.2016.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Gene expression biomarkers (GEBs) are emerging as powerful diagnostic tools for identifying and characterizing coral stress. Their capacity to detect sublethal stress prior to the onset of signs at the organismal level that might already indicate significant damage makes them more precise and proactive compared to traditional monitoring techniques. A high number of candidate GEBs, including certain heat shock protein genes, metabolic genes, oxidative stress genes, immune response genes, ion transport genes, and structural genes have been investigated, and some genes, including hsp16, Cacna1, MnSOD, SLC26, and Nf-kB, are already showing excellent potential as reliable indicators of thermal stress in corals. In this mini-review, we synthesize the current state of knowledge of scleractinian coral GEBs and highlight gaps in our understanding that identify directions for future work. We also address the underlying sources of variation that have sometimes led to contrasting results between studies, such as differences in experimental set-up and approach, intrinsic variation in the expression profiles of different experimental organisms (such as between different colonies or their algal symbionts), diel cycles, varying thermal history, and different expression thresholds. Despite advances in our understanding there is still no universally accepted biomarker of thermal stress, the molecular response of corals to heat stress is still unclear, and biomarker research in Symbiodinium still lags behind that of the host. These gaps should be addressed in future work.
Collapse
Affiliation(s)
- Yohan D Louis
- Department of Biosciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Ranjeet Bhagooli
- Department of Marine & Ocean Science, Fisheries & Mariculture, Faculty of Ocean Studies, University of Mauritius, Réduit 80837, Mauritius.
| | - Carly D Kenkel
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, QLD 4810, Australia
| | - Andrew C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL, USA
| | - Sabrina D Dyall
- Department of Biosciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
39
|
Hawkins TD, Warner ME. Warm preconditioning protects against acute heat-induced respiratory dysfunction and delays bleaching in a symbiotic sea anemone. ACTA ACUST UNITED AC 2016; 220:969-983. [PMID: 27980125 DOI: 10.1242/jeb.150391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022]
Abstract
Preconditioning to non-stressful warming can protect some symbiotic cnidarians against the high temperature-induced collapse of their mutualistic endosymbiosis with photosynthetic dinoflagellates (Symbiodinium spp.), a process known as bleaching. Here, we sought to determine whether such preconditioning is underpinned by differential regulation of aerobic respiration. We quantified in vivo metabolism and mitochondrial respiratory enzyme activity in the naturally symbiotic sea anemone Exaiptasia pallida preconditioned to 30°C for >7 weeks as well as anemones kept at 26°C. Preconditioning resulted in increased Symbiodinium photosynthetic activity and holobiont (host+symbiont) respiration rates. Biomass-normalised activities of host respiratory enzymes [citrate synthase and the mitochondrial electron transport chain (mETC) complexes I and IV] were higher in preconditioned animals, suggesting that increased holobiont respiration may have been due to host mitochondrial biogenesis and/or enlargement. Subsequent acute heating of preconditioned and 'thermally naive' animals to 33°C induced dramatic increases in host mETC complex I and Symbiodinium mETC complex II activities only in thermally naive E. pallida These changes were not reflected in the activities of other respiratory enzymes. Furthermore, bleaching in preconditioned E. pallida (defined as the significant loss of symbionts) was delayed by several days relative to the thermally naive group. These findings suggest that changes to mitochondrial biogenesis and/or function in symbiotic cnidarians during warm preconditioning might play a protective role during periods of exposure to stressful heating.
Collapse
Affiliation(s)
- Thomas D Hawkins
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | - Mark E Warner
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| |
Collapse
|
40
|
Roberty S, Furla P, Plumier JC. Differential antioxidant response between two Symbiodinium species from contrasting environments. PLANT, CELL & ENVIRONMENT 2016; 39:2713-2724. [PMID: 27577027 DOI: 10.1111/pce.12825] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
High sea surface temperature accompanied by high levels of solar irradiance is responsible for the disruption of the symbiosis between cnidarians and their symbiotic dinoflagellates from the genus Symbiodinium. This phenomenon, known as coral bleaching, is one of the major threats affecting coral reefs around the world. Because an important molecular trigger to bleaching appears related to the production of reactive oxygen species (ROS), it is critical to understand the function of the antioxidant network of Symbiodinium species. In this study we investigated the response of two Symbiodinium species, from contrasting environments, to a chemically induced oxidative stress. ROS produced during this oxidative burst reduced photosynthesis by 30 to 50% and significantly decreased the activity of superoxide dismutase. Lipid peroxidation levels and carotenoid concentrations, especially diatoxanthin, confirm that these molecules act as antioxidants and contribute to the stabilization of membrane lipids. The comparative analysis between the two Symbiodinium species allowed us to highlight that Symbiodinium sp. clade A temperate was more tolerant to oxidative stress than the tropical S. kawagutii clade F. These differences are very likely a consequence of adaptation to their natural environment, with the temperate species experiencing conditions of temperature and irradiance much more variable and extreme.
Collapse
Affiliation(s)
- S Roberty
- Université de Liège, InBioS - Animal Physiology, Département de Biologie, Ecologie et Evolution, 4 Chemin de la Vallée, B-4000, Liège, Belgium
| | - P Furla
- Université Nice Sophia Antipolis, UMR 7138'Evolution Paris Seine', équipe 'Symbiose marine', 06108, Nice Cedex 02, France
- Université Pierre-et-Marie-Curie, UMR 7138 'Evolution Paris Seine', 7, quai Saint-Bernard, 75252, Paris cedex 05, France
- CNRS, UMR 7138 'Evolution Paris Seine', 7, quai Saint-Bernard, 75252, Paris cedex 05, France
| | - J-C Plumier
- Université de Liège, InBioS - Animal Physiology, Département de Biologie, Ecologie et Evolution, 4 Chemin de la Vallée, B-4000, Liège, Belgium
| |
Collapse
|
41
|
Rehman AU, Szabó M, Deák Z, Sass L, Larkum A, Ralph P, Vass I. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. THE NEW PHYTOLOGIST 2016; 212:472-484. [PMID: 27321415 DOI: 10.1111/nph.14056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/08/2016] [Indexed: 06/06/2023]
Abstract
Coral bleaching is an important environmental phenomenon, whose mechanism has not yet been clarified. The involvement of reactive oxygen species (ROS) has been implicated, but direct evidence of what species are involved, their location and their mechanisms of production remains unknown. Histidine-mediated chemical trapping and singlet oxygen sensor green (SOSG) were used to detect intra- and extracellular singlet oxygen ((1) O2 ) in Symbiodinium cultures. Inhibition of the Calvin-Benson cycle by thermal stress or high light promotes intracellular (1) O2 formation. Histidine addition, which decreases the amount of intracellular (1) O2 , provides partial protection against photosystem II photoinactivation and chlorophyll (Chl) bleaching. (1) O2 production also occurs in cell-free medium of Symbiodinium cultures, an effect that is enhanced under heat and light stress and can be attributed to the excretion of (1) O2 -sensitizing metabolites from the cells. Confocal microscopy imaging using SOSG showed most extracellular (1) O2 around the cell surface, but it is also produced across the medium distant from the cells. We demonstrate, for the first time, both intra- and extracellular (1) O2 production in Symbiodinium cultures. Intracellular (1) O2 is associated with photosystem II photodamage and pigment bleaching, whereas extracellular (1) O2 has the potential to mediate the breakdown of symbiotic interaction between zooxanthellae and their animal host during coral bleaching.
Collapse
Affiliation(s)
- Ateeq Ur Rehman
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - Milán Szabó
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Zsuzsanna Deák
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - László Sass
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - Anthony Larkum
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Peter Ralph
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary.
| |
Collapse
|
42
|
Wani ZA, Mirza DN, Arora P, Riyaz-Ul-Hassan S. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn. Fungal Biol 2016; 120:1509-1524. [PMID: 27890087 DOI: 10.1016/j.funbio.2016.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023]
Abstract
A total of 294 fungal endophytes were isolated from the corms of Crocus sativus at two stages of crocus life cycle collected from 14 different saffron growing sites in Jammu and Kashmir (J & K) State, India. Molecular phylogeny assigned them into 36 distinct internal transcribed spacer (ITS) genotypes which spread over 19 genera. The diversity of endophytes was higher at the dormant than at the vegetative stage. The Saffron microbiome was dominated by Phialophora mustea and Cadophora malorum, both are dark septate endophytes (DSEs). Some endophytes were found to possess antimicrobial properties that could be helpful for the host in evading the pathogens. These endophytes generally produced significant quantities of indole acetic acid (IAA) as well. However, thirteen of the endophytic taxa were found to cause corm rot in the host with different levels of severity under in vitro as well as in vivo conditions. This is the first report of community structure and biological properties of fungal endophytes associated with C. sativus, which may eventually help us to develop agro-technologies, based on plant-endophyte interactions for sustainable cultivation of saffron. The endophytes preserved ex situ, in this study, may also yield bioactive natural products for pharmacological and industrial applications.
Collapse
Affiliation(s)
- Zahoor Ahmed Wani
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
| | - Dania Nazir Mirza
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
| | - Palak Arora
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
| | - Syed Riyaz-Ul-Hassan
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India.
| |
Collapse
|
43
|
Mohamed AR, Cumbo V, Harii S, Shinzato C, Chan CX, Ragan MA, Bourne DG, Willis BL, Ball EE, Satoh N, Miller DJ. The transcriptomic response of the coral
Acropora digitifera
to a competent
Symbiodinium
strain: the symbiosome as an arrested early phagosome. Mol Ecol 2016; 25:3127-41. [DOI: 10.1111/mec.13659] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/04/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Affiliation(s)
- A. R. Mohamed
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- Comparative Genomics Centre and Department of Molecular and Cell Biology James Cook University Townsville Qld 4811 Australia
- Zoology Department Faculty of Science Benha University Benha 13518 Egypt
- AIMS@JCU Department of Molecular and Cell Biology Australian Institute of Marine Science James Cook University Townsville Qld 4811 Australia
| | - V. Cumbo
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
| | - S. Harii
- Sesoko Station Tropical Biosphere Research Center University of the Ryukyus 3422 Sesoko Motobu Okinawa 905‐0227 Japan
| | - C. Shinzato
- Marine Genomics Unit Okinawa Institute of Science and Technology Promotion Corporation Onna Okinawa 904‐0412 Japan
| | - C. X. Chan
- ARC Centre of Excellence in Bioinformatics and Institute for Molecular Bioscience The University of Queensland Brisbane Qld 4072 Australia
| | - M. A. Ragan
- ARC Centre of Excellence in Bioinformatics and Institute for Molecular Bioscience The University of Queensland Brisbane Qld 4072 Australia
| | - D. G. Bourne
- Australian Institute for Marine Science PMB 3 Townsville Qld 4811 Australia
| | - B. L. Willis
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- Department of Marine Ecosystems and Impacts James Cook University Townsville Qld 4811 Australia
| | - E. E. Ball
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- Evolution, Ecology and Genetics Research School of Biology Australian National University Canberra ACT 0200 Australia
| | - N. Satoh
- Marine Genomics Unit Okinawa Institute of Science and Technology Promotion Corporation Onna Okinawa 904‐0412 Japan
| | - D. J. Miller
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- Comparative Genomics Centre and Department of Molecular and Cell Biology James Cook University Townsville Qld 4811 Australia
| |
Collapse
|
44
|
Krueger T, Hawkins TD, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK. Differential coral bleaching—Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 2015; 190:15-25. [DOI: 10.1016/j.cbpa.2015.08.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
|
45
|
Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral. Front Physiol 2015; 6:317. [PMID: 26582993 PMCID: PMC4631832 DOI: 10.3389/fphys.2015.00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.
Collapse
|
46
|
Revel J, Massi L, Mehiri M, Boutoute M, Mayzaud P, Capron L, Sabourault C. Differential distribution of lipids in epidermis, gastrodermis and hosted Symbiodinium in the sea anemone Anemonia viridis. Comp Biochem Physiol A Mol Integr Physiol 2015; 191:140-151. [PMID: 26478191 DOI: 10.1016/j.cbpa.2015.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/22/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022]
Abstract
Cnidarian-dinoflagellate symbiosis mainly relies on nutrient recycling, thus providing both partners with a competitive advantage in nutrient-poor waters. Essential processes related to lipid metabolism can be influenced by various factors, including hyperthermal stress. This can affect the lipid content and distribution in both partners, while contributing to symbiosis disruption and bleaching. In order to gain further insight into the role and distribution of lipids in the cnidarian metabolism, we investigated the lipid composition of the sea anemone Anemonia viridis and its photosynthetic dinoflagellate endosymbionts (Symbiodinium). We compared the lipid content and fatty acid profiles of the host cellular layers, non-symbiotic epidermal and symbiont-containing gastrodermal cells, and those of Symbiodinium, in a mass spectrometry-based assessment. Lipids were more concentrated in Symbiodinium cells, and the lipid class distribution was dominated by polar lipids in all tissues. The fatty acid distribution between host cell layers and Symbiodinium cells suggested potential lipid transfers between the partners. The lipid composition and distribution was modified during short-term hyperthermal stress, mainly in Symbiodinium cells and gastrodermis. Exposure to elevated temperature rapidly caused a decrease in polar lipid C18 unsaturated fatty acids and a strong and rapid decrease in the abundance of polar lipid fatty acids relative to sterols. These lipid indicators could therefore be used as sensitive biomarkers to assess the physiology of symbiotic cnidarians, especially the effect of thermal stress at the onset of cnidarian bleaching. Overall, the findings of this study provide some insight on key lipids that may regulate maintenance of the symbiotic interaction.
Collapse
Affiliation(s)
- Johana Revel
- Université Nice Sophia Antipolis, UMR7138, Equipe Symbiose Marine, F-06000 Nice, France; Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine, UMR7138, F-75005 Paris, France; Centre National de la Recherche Scientifique, F-75005 Paris, France
| | - Lionel Massi
- Université Nice Sophia Antipolis, Institut de Chimie de Nice, UMR7272, F-06000 Nice, France; Centre National de la Recherche Scientifique, F-75005 Paris, France
| | - Mohamed Mehiri
- Université Nice Sophia Antipolis, Institut de Chimie de Nice, UMR7272, F-06000 Nice, France; Centre National de la Recherche Scientifique, F-75005 Paris, France
| | - Marc Boutoute
- Sorbonne Universités, UPMC Université Paris 06, Laboratoire Océanologique de Villefranche sur Mer, UMR 7093, F-06320 Villefranche-sur-Mer, France; Centre National de la Recherche Scientifique, F-75005 Paris, France
| | - Patrick Mayzaud
- Sorbonne Universités, UPMC Université Paris 06, Laboratoire Océanologique de Villefranche sur Mer, UMR 7093, F-06320 Villefranche-sur-Mer, France; Centre National de la Recherche Scientifique, F-75005 Paris, France
| | - Laure Capron
- Université Nice Sophia Antipolis, Institut de Chimie de Nice, UMR7272, F-06000 Nice, France; Centre National de la Recherche Scientifique, F-75005 Paris, France
| | - Cécile Sabourault
- Université Nice Sophia Antipolis, UMR7138, Equipe Symbiose Marine, F-06000 Nice, France; Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine, UMR7138, F-75005 Paris, France; Centre National de la Recherche Scientifique, F-75005 Paris, France.
| |
Collapse
|
47
|
Lutz A, Raina JB, Motti CA, Miller DJ, van Oppen MJH. Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora. PLoS One 2015; 10:e0139290. [PMID: 26426118 PMCID: PMC4591267 DOI: 10.1371/journal.pone.0139290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction.
Collapse
Affiliation(s)
- Adrian Lutz
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Jean-Baptiste Raina
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David J. Miller
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Li B, He X, He C, Chen Y, Wang X. Spatial dynamics of dark septate endophytes and soil factors in the rhizosphere of Ammopiptanthus mongolicus in Inner Mongolia, China. Symbiosis 2015. [DOI: 10.1007/s13199-015-0322-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Siddiqui S, Goddard RH, Bielmyer-Fraser GK. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:205-13. [PMID: 25661886 DOI: 10.1016/j.aquatox.2015.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 05/26/2023]
Abstract
Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl2), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl2 accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl2, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl2. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic organisms to NP in the environment.
Collapse
|
50
|
Patel PP, Bielmyer-Fraser GK. The influence of salinity and copper exposure on copper accumulation and physiological impairment in the sea anemone, Exaiptasia pallida. Comp Biochem Physiol C Toxicol Pharmacol 2015; 168:39-47. [PMID: 25451077 DOI: 10.1016/j.cbpc.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Copper is a common pollutant in many aquatic environments, particularly those surrounding densely populated areas with substantial anthropogenic inputs. These same areas may also experience changes in salinity due to freshwater discharge and tidal influence. Biota that inhabit near-shore coastal environments may be susceptible to both stressors. Although copper is a noted concern in marine environments, effects of copper and varying salinity on symbiotic cnidarians are only scarcely studied. The sea anemone, Exaiptasia pallida, was used to investigate effects of copper on physiological impairment (i.e. activities of anti-oxidant enzymes) at two different salinities (20 and 25ppt). E. pallida was exposed to a control and three elevated copper concentrations for up to 21d, and copper accumulation and activity of the enzymes: catalase, glutathione reductase, glutathione peroxidase, and carbonic anhydrase were measured in the anemones. Photosynthetic parameters in E. pallida's symbiotic dinoflagellate algae were also quantified. Over the course of the exposure, E. pallida accumulated copper in a concentration-dependent manner. Higher tissue copper concentrations were observed in anemones exposed to the lower salinity water (20ppt), and physiological impairment was observed as a consequence of both increased copper exposure and decreased salinity; however, changes in salinity caused a greater response than copper exposure, at the levels tested. In general, antioxidant enzyme activity increased as a consequence of decreased salinity and/or increased copper exposure. These results clearly demonstrated the influence of two local stressors, at environmentally realistic concentrations, on a sensitive cnidarian, and highlight the importance of characterizing combined exposure scenarios.
Collapse
|