1
|
Shokri M, Lezzi L, Basset A. The seasonal response of metabolic rate to projected climate change scenarios in aquatic amphipods. J Therm Biol 2024; 124:103941. [PMID: 39163749 DOI: 10.1016/j.jtherbio.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
The responses of organisms to climate change are mediated primarily by its impact on their metabolic rates, which, in turn, drive various biological and ecological processes. Although there have been numerous seminal studies on the sensitivity of metabolic rate to temperature, little is empirically known about how this rate responds to seasonal temperature ranges and beyond under conservative IPCC climate change scenarios. Here, we measured the SMR of the aquatic amphipod, Gammarus insensibilis, which served as our subject species, with body masses ranging from 0.20 to 7.74 mg ash free weight. We assessed the response of the SMR across nine temperature levels ranging from 12 to 30.2 °C. These temperatures match seasonal temperature norms, with an incremental increase of 0.6-1.2 °C above each seasonal baseline, as projected for the years 2040 and 2100 under the modest climate change scenarios. Overall, our findings showed that the effect of temperature on SMR varies with body mass, as indicated by a negative size-temperature interaction, with larger conspecifics exhibiting less sensitivity to temperature changes than smaller ones. From the cold to warm season, the SMR increased by an average of 14% °C-1, with increases of 18.4% °C-1 in smaller individuals and 11.4% °C-1 in larger ones. The SMR of smaller individuals peaked at a 0.6 °C increase from the current summer baseline (15.08% °C-1, Q10 = 4.2), while in larger ones it peaked with a 1.2 °C increase beyond autumn temperatures (14.9% °C-1, Q10 = 3.9). However, at temperatures reflecting global warming that exceed summer temperatures, the SMR of larger individuals levelled off, while that of smaller ones continued to increase. Overall, our findings suggest that smaller-sized individuals have a broader thermal window for SMR performance, while the SMR of larger-sized ones will become increasingly constrained at summer temperatures as those summer temperatures become hotter.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Ludovico Lezzi
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy; CNR, National Research Council of Italy, Monterotondo Scalo, 00015, Rome, Italy
| |
Collapse
|
2
|
Malod K, Bierman A, Karsten M, Manrakhan A, Weldon CW, Terblanche JS. Evidence for transient deleterious thermal acclimation in field recapture rates of an invasive tropical species, Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2024. [PMID: 39126165 DOI: 10.1111/1744-7917.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Knowing how environmental conditions affect performance traits in pest insects is important to improve pest management strategies. It can be informative for monitoring, but also for control programs where insects are mass-reared, and field-released. Here, we investigated how adult thermal acclimation in sterile Bactrocera dorsalis affects dispersal and recapture rates in the field using a mark-release-recapture method. We also considered how current abiotic factors may affect recapture rates and interact with thermal history. We found that acclimation at 20 or 30 °C for 4 d prior to release reduced the number of recaptures in comparison with the 25 °C control group, but with no differences between groups in the willingness to disperse upon release. However, the deleterious effects of acclimation were only detectable in the first week following release, whereafter only the recent abiotic conditions explained recapture rates. In addition, we found that recent field conditions contributed more than thermal history to explain patterns of recaptures. The two most important variables affecting the number of recaptures were the maximum temperature and the average relative humidity experienced in the 24 h preceding trapping. Our results add to the handful of studies that have considered the effect of thermal acclimation on insect field performance, but notably lend support to the deleterious acclimation hypothesis among the various hypotheses that have been proposed. Finally, this study shows that there are specific abiotic conditions (cold/hot and dry) in which recaptures will be reduced, which may therefore bias estimates of wild population size.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anandi Bierman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Aruna Manrakhan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Mbombela, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Weaving H, Terblanche JS, English S. Heatwaves are detrimental to fertility in the viviparous tsetse fly. Proc Biol Sci 2024; 291:20232710. [PMID: 38471560 DOI: 10.1098/rspb.2023.2710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Heatwaves are increasing in frequency and intensity due to climate change, pushing animals beyond physiological limits. While most studies focus on survival limits, sublethal effects on fertility tend to occur below lethal thresholds, and consequently can be as important for population viability. Typically, male fertility is more heat-sensitive than female fertility, yet direct comparisons are limited. Here, we measured the effect of experimental heatwaves on tsetse flies, Glossina pallidipes, disease vectors and unusual live-bearing insects of sub-Saharan Africa. We exposed males or females to a 3-day heatwave peaking at 36, 38 or 40°C for 2 h, and a 25°C control, monitoring mortality and reproduction over six weeks. For a heatwave peaking at 40°C, mortality was 100%, while a 38°C peak resulted in only 8% acute mortality. Females exposed to the 38°C heatwave experienced a one-week delay in producing offspring, whereas no such delay occurred in males. Over six weeks, heatwaves resulted in equivalent fertility loss in both sexes. Combined with mortality, this lead to a 10% population decline over six weeks compared to the control. Furthermore, parental heatwave exposure gave rise to a female-biased offspring sex ratio. Ultimately, thermal limits of both survival and fertility should be considered when assessing climate change vulnerability.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Haskett H, Gill L, Spicer JI, Truebano M. The embryonic thermal environment has positive but weak effects on thermal tolerance later in life in the aquatic invertebrate Gammarus chevreuxi. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106350. [PMID: 38219380 DOI: 10.1016/j.marenvres.2024.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Recent evidence suggests that the adult phenotype is influenced by temperatures experienced in early life. However, our understanding of the extent to which the embryonic environment can modulate thermal tolerance later in life is limited, owing to the paucity of studies with appropriate experimental designs to test for this form of developmental plasticity. We investigated whether the thermal environment experienced during embryonic development affects thermal limits in later life. Embryos of the estuarine amphipod Gammarus chevreuxi were incubated until hatching to 15 °C, 20 °C and 25 °C, then reared under a common temperature. Using thermal ramping assays, we determined upper thermal limits in juveniles, four weeks post-hatch. Individuals exposed to higher temperatures during embryonic development displayed greater thermal tolerance as juveniles (acclimation response ratio ≈ 0.10-0.25 for upper lethal temperature). However, we suggest that the degree of developmental plasticity observed is limited, and will provide little benefit under future climate change scenarios.
Collapse
Affiliation(s)
- Honor Haskett
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Luke Gill
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
5
|
Enriquez-Urzelai U, Gvoždík L. Impacts of behaviour and acclimation of metabolic rate on energetics in sheltered ectotherms: a climate change perspective. Proc Biol Sci 2024; 291:20232152. [PMID: 38378146 PMCID: PMC10878825 DOI: 10.1098/rspb.2023.2152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Many ectothermic organisms counter harsh abiotic conditions by seeking refuge in underground retreats. Variations in soil hydrothermal properties within these retreats may impact their energy budget, survival and population dynamics. This makes retreat site choice a critical yet understudied component of their strategies for coping with climate change. We used a mechanistic modelling approach to explore the implications of behavioural adjustments and seasonal acclimation of metabolic rate on retreat depth and the energy budget of ectotherms, considering both current and future climate conditions. We used a temperate amphibian, the alpine newt (Ichthyosaura alpestris), as a model species. Our simulations predict an interactive influence of different thermo- and hydroregulatory strategies on the vertical positioning of individuals in underground refuges. The adoption of a particular strategy largely determines the impact of climate change on retreat site choice. Additionally, we found that, given the behavioural thermoregulation/hydroregulation and metabolic acclimation patterns considered, behaviour within the retreat has a greater impact on ectotherm energetics than acclimation of metabolic rate under different climate change scenarios. We conclude that further empirical research aimed at determining ectotherm behavioural strategies during both surface activity and inactivity is needed to understand their population dynamics and species viability under climate change.
Collapse
Affiliation(s)
- Urtzi Enriquez-Urzelai
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60300 Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60300 Brno, Czech Republic
| |
Collapse
|
6
|
Tobias Z, Solow A, Tepolt C. Geography and developmental plasticity shape post-larval thermal tolerance in the golden star tunicate, Botryllus schlosseri. J Therm Biol 2024; 119:103763. [PMID: 38071896 DOI: 10.1016/j.jtherbio.2023.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 02/25/2024]
Abstract
Local adaptation and phenotypic plasticity play key roles in mediating organisms' ability to respond to spatiotemporal variation in temperature. These two processes often act together to generate latitudinal or elevational clines in acute temperature tolerance. Phenotypic plasticity is also subject to local adaptation, with the expectation that populations inhabiting more variable environments should exhibit greater phenotypic plasticity of thermal tolerance. Here we examine the potential for local adaptation and developmental plasticity of thermal tolerance in the widespread invasive tunicate Botryllus schlosseri. By comparing five populations across a thermal gradient spanning 4.4° of latitude in the northwest Atlantic, we demonstrate that warmer populations south of the Gulf of Maine exhibit significantly increased (∼0.2 °C) post-larval temperature tolerance relative to the colder populations within it. We also show that B. schlosseri post-larvae possess a high degree of developmental plasticity for this trait, shifting their median temperature of survival (LT50) upwards by as much as 0.18 °C per 1 °C increase in environmental temperature. Lastly, we found that populations vary in their degrees of developmental plasticity, with populations that experience more pronounced short-term temperature variability exhibiting greater developmental plasticity, suggesting the local adaptation of developmental plasticity. By comparing the thermal tolerance of populations across space and through time, we demonstrate how geography and developmental plasticity have shaped thermal tolerance in B. schlosseri. These results help inform our understanding of how species are able to adjust their thermal physiology in new environments, including those encountered during invasion and under increasingly novel climate conditions.
Collapse
Affiliation(s)
- Zachary Tobias
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Andrew Solow
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Carolyn Tepolt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
7
|
Weaving H, Terblanche JS, English S. How plastic are upper thermal limits? A comparative study in tsetse (family: Glossinidae) and wider Diptera. J Therm Biol 2023; 118:103745. [PMID: 37924664 DOI: 10.1016/j.jtherbio.2023.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Critical thermal maximum (CTmax) describes the upper thermal tolerance of an animal where biological functions start to fail. A period of acclimation can enhance CTmax through plasticity, potentially buffering animals from extreme temperatures caused by climate change. Basal and acclimated CTmax vary within and between species and may be explained by traits related to thermal physiology, such as body size and sex. Differences in CTmax have not been established among species of tsetse fly (Glossina spp.), vectors of animal and human African trypanosomiasis. Here, we investigated basal CTmax and its plasticity for five tsetse species following adult acclimation at constant 25 or 30 °C for five days. We then set our findings in context using a meta-analysis on 33 species of Diptera. We find that, of the five tsetse species considered, only Glossina palpalis gambiensis and Glossina brevipalpis exhibited plasticity of CTmax, with an increase of 0.12 °C and 0.10 °C per 1 °C acclimation respectively. Within some species, higher basal CTmax values were associated with larger body size and being female, while variation in plasticity (i.e., response to the acclimation temperature) could not be explained by sex or size. Our broader meta-analysis across Diptera revealed overall CTmax plasticity of 0.06 °C per 1 °C acclimation, versus a similar 0.05 °C mean increase in tsetse. In contrast, there was greater CTmax plasticity in males compared to females in Diptera. Our study highlights that CTmax and its plasticity varies even among closely related species. Broader patterns across groups are not always reflected at a finer resolution; we thus emphasise the need for detailed experimental studies across a wide range of insect species to capture their capacity to cope with rapidly warming temperatures.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa.
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Weaving H, Lord JS, Haines L, English S. No evidence for direct thermal carryover effects on starvation tolerance in the obligate blood-feeder, Glossina morsitans morsitans. Ecol Evol 2023; 13:e10652. [PMID: 37869424 PMCID: PMC10585125 DOI: 10.1002/ece3.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/10/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
Thermal stress during development can prime animals to cope better with similar conditions in later life. Alternatively, negative effects of thermal stress can persist across life stages and result in poorer quality adults (negative carryover effects). As mean temperatures increase due to climate change, evidence for such effects across diverse taxa is required. Using Glossina morsitans morsitans, a species of tsetse fly and vector of trypanosomiasis, we asked whether (i) adaptive developmental plasticity allows flies to survive for longer under food deprivation when pupal and adult temperatures are matched; or (ii) temperature stress during development persists into adulthood, resulting in a greater risk of death. We did not find any advantage of matched pupal and adult temperature in terms of improved starvation tolerance, and no direct negative carryover effects were observed. There was some evidence for indirect carryover effects-high pupal temperature produced flies of lower body mass, which, in turn, resulted in greater starvation risk. However, adult temperature had the largest impact on starvation tolerance by far: flies died 60% faster at 31°C than those experiencing 25°C, consequently reducing survival time from a median of 8 (interquartile range (IQR) 7-9) to 5 (IQR 5-5.25) days. This highlights differences in temperature sensitivity between life stages, as there was no direct effect of pupal temperature on starvation tolerance. Therefore, for some regions of sub-Saharan Africa, climate change may result in a higher mortality rate in emerging tsetse while they search for their first blood meal. This study reinforces existing evidence that responses to temperature are life stage specific and that plasticity may have limited capacity to buffer the effects of climate change.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological SciencesUniversity of BristolBristolUK
| | - Jennifer S. Lord
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Lee Haines
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Sinead English
- School of Biological SciencesUniversity of BristolBristolUK
| |
Collapse
|
9
|
Awde DN, Řeřicha M, Knapp M. Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds. Commun Biol 2023; 6:838. [PMID: 37573399 PMCID: PMC10423239 DOI: 10.1038/s42003-023-05196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
The environmental conditions an organism encounters during development vary in their lasting impact on adult phenotypes. In the context of ongoing climate change, it is particularly relevant to understand how high developmental temperatures can impact adult traits, and whether these effects persist or diminish during adulthood. Here, we assessed the effects of pupal temperature (17 °C - normal temperature, 26 °C - increased temperature, or 35 °C - heat wave) on adult Harmonia axyridis thermal stress tolerance, immune function, starvation resistance, and fecundity. The temperature during pupation significantly affected all investigated traits in fresh adults. Heat acclimation decreased adult haemocyte concentration, cold tolerance, and total egg production, and had a positive effect on heat tolerance and starvation resistance. The negative effects of heat acclimation on cold tolerance diminished after seven days. In contrast, heat acclimation had a lasting positive effect on adult heat tolerance. Our results provide a broad assessment of the effects of developmental thermal acclimation on H. axyridis adult phenotypes. The relative plasticity of several adult traits after thermal acclimation may be consequential for the future geographic distribution and local performance of various insect species.
Collapse
Affiliation(s)
- David N Awde
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
- Department of Biology, Faculty of Science, Mount Saint Vincent University, Halifax, NS, Canada
| | - Michal Řeřicha
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Michal Knapp
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
| |
Collapse
|
10
|
Shen Y, Gan Y, Xiao Q, Huang Z, Liu J, Gong S, Wang Y, Yu W, Luo X, Ke C, You W. Divergent Carry-Over Effects of Hypoxia during the Early Development of Abalone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17836-17848. [PMID: 36479946 DOI: 10.1021/acs.est.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
After being exposed to environmental stimuli during early developmental stages, some organisms may gain or weaken physiological regulating abilities, which would have long-lasting effects on their performance. Environmental hypoxia events can have significant effects on marine organisms, but for breeding programs and other practical applications, it is important to further explore the long-term physiological effects of early hypoxia exposure in economically significant species. In this study, the Pacific abalone Haliotis discus hannai was exposed to moderate hypoxia (∼4 mg/L) from zygote to trochophora, and the assessments of hypoxia tolerance were conducted on the grow-out stage. The results revealed that juvenile abalones exposed to hypoxia at the early development stages were more hypoxia-tolerant but with slower weight growth, a phenomenon called the trade-off between growth and survival. These phenotypic effects driven by the hypoxia exposure were explained by strong selection of genes involved in signal transduction, autophagy, apoptosis, and hormone regulation. Moreover, long non-coding RNA regulation plays an important role modulating carry-over effects by controlling DNA replication and repair, signal transduction, myocardial activity, and hormone regulation. This study revealed that the ability to create favorable phenotypic differentiation through genetic selection and/or epigenetic regulation is important for the survival and development of aquatic animals in the face of rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
- Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen361102, China
| | - Yang Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Qizhen Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Junyu Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Shihai Gong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Yi Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
- Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen361102, China
| |
Collapse
|
11
|
Chown SL, Janion-Scheepers C, Marshall A, Aitkenhead IJ, Hallas R, Amy Liu WP, Phillips LM. Indigenous and introduced Collembola differ in desiccation resistance but not its plasticity in response to temperature. CURRENT RESEARCH IN INSECT SCIENCE 2022; 3:100051. [PMID: 36591563 PMCID: PMC9800180 DOI: 10.1016/j.cris.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Biological invasions have significant ecological and economic impacts. Much attention is therefore focussed on predicting establishment and invasion success. Trait-based approaches are showing much promise, but are mostly restricted to investigations of plants. Although the application of these approaches to animals is growing rapidly, it is rare for arthropods and restricted mostly to investigations of thermal tolerance. Here we study the extent to which desiccation tolerance and its phenotypic plasticity differ between introduced (nine species) and indigenous (seven species) Collembola, specifically testing predictions of the 'ideal weed' and 'phenotypic plasticity' hypotheses of invasion biology. We do so on the F2 generation of adults in a full factorial design across two temperatures, to elicit desiccation responses, for the phenotypic plasticity trials. We also determine whether basal desiccation resistance responds to thermal laboratory natural selection. We first show experimentally that acclimation to different temperatures elicits changes to cuticular structure and function that are typically associated with water balance, justifying our experimental approach. Our main findings reveal that basal desiccation resistance differs, on average, between the indigenous and introduced species, but that this difference is weaker at higher temperatures, and is driven by particular taxa, as revealed by phylogenetic generalised least squares approaches. By contrast, the extent or form of phenotypic plasticity does not differ between the two groups, with a 'hotter is better' response being most common. Beneficial acclimation is characteristic of only a single species. Laboratory natural selection had little influence on desiccation resistance over 8-12 generations, suggesting that environmental filtering rather than adaptation to new environments may be an important factor influencing Collembola invasions.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| | - Charlene Janion-Scheepers
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Angus Marshall
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Ian J Aitkenhead
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Rebecca Hallas
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| | - WP Amy Liu
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Laura M Phillips
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| |
Collapse
|
12
|
Shokri M, Cozzoli F, Vignes F, Bertoli M, Pizzul E, Basset A. Metabolic rate and climate change across latitudes: evidence of mass-dependent responses in aquatic amphipods. J Exp Biol 2022; 225:280993. [PMID: 36337048 PMCID: PMC9720750 DOI: 10.1242/jeb.244842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Predictions of individual responses to climate change are often based on the assumption that temperature affects the metabolism of individuals independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual standard metabolic rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC RCP2.6. As a model organism, we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species' distributional range, with individuals varying in body mass (0.4-13.57 mg). Overall, we found that the effect of temperature on SMR is mass dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old individuals (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the mass-specific SMR of large individuals responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) owing to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Research Institute on Terrestrial Ecosystems (IRET–URT Lecce), National Research Council of Italy (CNR), Campus Ecotekne, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Marco Bertoli
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
13
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Massey MD, Fredericks MK, Malloy D, Arif S, Hutchings JA. Differential reproductive plasticity under thermal variability in a freshwater fish ( Danio rerio). Proc Biol Sci 2022; 289:20220751. [PMID: 36069011 PMCID: PMC9449469 DOI: 10.1098/rspb.2022.0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human-driven increases in global mean temperatures are associated with concomitant increases in thermal variability. Yet, few studies have explored the impacts of thermal variability on fitness-related traits, limiting our ability to predict how organisms will respond to dynamic thermal changes. Among the myriad organismal responses to thermal variability, one of the most proximate to fitness—and, thus, a population's ability to persist—is reproduction. Here, we examine how a model freshwater fish (Danio rerio) responds to diel thermal fluctuations that span the species's viable developmental range of temperatures. We specifically investigate reproductive performance metrics including spawning success, fecundity, egg provisioning and sperm concentration. Notably, we apply thermal variability treatments during two ontogenetic timepoints to disentangle the relative effects of developmental plasticity and reversible acclimation. We found evidence of direct, negative effects of thermal variability during later ontogenetic stages on reproductive performance metrics. We also found complex interactive effects of early and late-life exposure to thermal variability, with evidence of beneficial acclimation of spawning success and modification of the relationship between fecundity and egg provisioning. Our findings illuminate the plastic life-history modifications that fish may undergo as their thermal environments become increasingly variable.
Collapse
Affiliation(s)
- Melanie D Massey
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2
| | - M Kate Fredericks
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2
| | - David Malloy
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2.,Zebrafish Core Facility, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suchinta Arif
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2
| | - Jeffrey A Hutchings
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2.,Flødevigen Marine Research Station, Institute of Marine Research, Bergen, Norway.,Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
15
|
Thermal fitness costs and benefits of developmental acclimation in fall armyworm. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Noer NK, Ørsted M, Schiffer M, Hoffmann AA, Bahrndorff S, Kristensen TN. Into the wild-a field study on the evolutionary and ecological importance of thermal plasticity in ectotherms across temperate and tropical regions. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210004. [PMID: 35067088 PMCID: PMC8784925 DOI: 10.1098/rstb.2021.0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding how environmental factors affect the thermal tolerance of species is crucial for predicting the impact of thermal stress on species abundance and distribution. To date, species' responses to thermal stress are typically assessed on laboratory-reared individuals and using coarse, low-resolution, climate data that may not reflect microhabitat dynamics at a relevant scale. Here, we examine the daily temporal variation in heat tolerance in a range of species in their natural environments across temperate and tropical Australia. Individuals were collected in their habitats throughout the day and tested for heat tolerance immediately thereafter, while local microclimates were recorded at the collection sites. We found high levels of plasticity in heat tolerance across all the tested species. Both short- and long-term variability of temperature and humidity affected plastic adjustments of heat tolerance within and across days, but with species differences. Our results reveal that plastic changes in heat tolerance occur rapidly at a daily scale and that environmental factors on a relatively short timescale are important drivers of the observed variation in thermal tolerance. Ignoring such fine-scale physiological processes in distribution models might obscure conclusions about species' range shifts with global climate change. This article is part of the theme issue 'Species' ranges in the face of changing environments (part 1)'.
Collapse
Affiliation(s)
- Natasja K Noer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E 9220, Denmark
| | - Michael Ørsted
- Zoophysiology, Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| | - Michele Schiffer
- Daintree Rainforest Observatory, James Cook University, Cape Tribulation, Douglas, Queensland 4873, Australia
| | - Ary A Hoffmann
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E 9220, Denmark.,School of BioSciences, Bio21 Institute, the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E 9220, Denmark
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E 9220, Denmark
| |
Collapse
|
17
|
Jerbi-Elayed M, Tougeron K, Grissa-Lebdi K, Hance T. Effect of developmental temperatures on Aphidius colemani host-foraging behavior at high temperature. J Therm Biol 2022; 103:103140. [PMID: 35027198 DOI: 10.1016/j.jtherbio.2021.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
Temperatures experienced by insects during their adult life often differ from developmental temperatures. Yet, developmental thermal acclimation can play an important role in shaping physiological, morphological, and behavioral traits at the adult stage. We explored how three rearing temperatures (10, 20, and 28 °C) affected host-foraging behaviors and associated traits under warm conditions in the parasitoid Aphidius colemani, a key model in behavioral ecology and an important natural enemy of aphids. Developmental time was longer at lower temperatures, resulting in bigger emerging parasitoids, with higher egg-loads. Parasitism rates, emergence rates, and parasitoid survival (once placed at high temperature) were the highest for parasitoids developed at 20 °C. When exposed to 28 °C, the expression of all behavioral items (time spent walking searching for hosts, number of antennal and ovipositor contacts with hosts) was higher for parasitoids reared at 20 °C, followed by those reared at 10 °C, then those reared at 28 °C. Finally, we showed that parasitoid residence time on aphid patches was determined by both developmental temperatures and the number of host encounter without oviposition, representative of the resource quality. We revealed that developing at 28 °C did not lead to increased adult performance at this temperature, probably because of complex interactions and trade-offs between developmental costs at high temperature and optimal foraging behaviors (e.g., parasitoid size and host-handling capacities). Our results strengthen the idea that thermal developmental plasticity may play an important role in insect behavioral responses to varying temperatures, and is important to consider in the context of climate change.
Collapse
Affiliation(s)
- Mey Jerbi-Elayed
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Louvain-la-Neuve, Belgium; UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, France
| | - Kaouthar Grissa-Lebdi
- Department of Plant Protection, Institut Agronomique de Tunisie, Université de Carthage, Carthage, Tunisia
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Rebolledo AP, Sgrò CM, Monro K. Thermal Performance Curves Are Shaped by Prior Thermal Environment in Early Life. Front Physiol 2021; 12:738338. [PMID: 34744779 PMCID: PMC8564010 DOI: 10.3389/fphys.2021.738338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding links between thermal performance and environmental variation is necessary to predict organismal responses to climate change, and remains an ongoing challenge for ectotherms with complex life cycles. Distinct life stages can differ in thermal sensitivity, experience different environmental conditions as development unfolds, and, because stages are by nature interdependent, environmental effects can carry over from one stage to affect performance at others. Thermal performance may therefore respond to carryover effects of prior thermal environments, yet detailed insights into the nature, strength, and direction of those responses are still lacking. Here, in an aquatic ectotherm whose early planktonic stages (gametes, embryos, and larvae) govern adult abundances and dynamics, we explore the effects of prior thermal environments at fertilization and embryogenesis on thermal performance curves at the end of planktonic development. We factorially manipulate temperatures at fertilization and embryogenesis, then, for each combination of prior temperatures, measure thermal performance curves for survival of planktonic development (end of the larval stage) throughout the performance range. By combining generalized linear mixed modeling with parametric bootstrapping, we formally estimate and compare curve descriptors (thermal optima, limits, and breadth) among prior environments, and reveal carryover effects of temperature at embryogenesis, but not fertilization, on thermal optima at completion of development. Specifically, thermal optima shifted to track temperature during embryogenesis, while thermal limits and breadth remained unchanged. Our results argue that key aspects of thermal performance are shaped by prior thermal environment in early life, warranting further investigation of the possible mechanisms underpinning that response, and closer consideration of thermal carryover effects when predicting organismal responses to climate change.
Collapse
|
19
|
Ben-Yosef M, Verykouki E, Altman Y, Nemni-Lavi E, Papadopoulos NT, Nestel D. Effects of Thermal Acclimation on the Tolerance of Bactrocera zonata (Diptera: Tephritidae) to Hydric Stress. Front Physiol 2021; 12:686424. [PMID: 34539427 PMCID: PMC8446596 DOI: 10.3389/fphys.2021.686424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Insects, similarly to other small terrestrial invertebrates, are particularly susceptible to climatic stress. Physiological adjustments to cope with the environment (i.e., acclimation) together with genetic makeup eventually determine the tolerance of a species to climatic extremes, and constrain its distribution. Temperature and desiccation resistance in insects are both conditioned by acclimation and may be interconnected, particularly for species inhabiting xeric environments. We determined the effect of temperature acclimation on desiccation resistance of the peach fruit fly (Bactrocera zonata, Tephritidae) – an invasive, polyphagous pest, currently spreading through both xeric and mesic environments in Africa and the Eurasian continent. Following acclimation at three constant temperatures (20, 25, and 30°C), the survival of adult flies deprived of food and water was monitored in extreme dry and humid conditions (<10 and >90% relative humidity, respectively). We found that flies acclimated at higher temperatures were significantly heavier, and contained more lipids and protein. Acclimation temperature significantly and similarly affected the survival of males and females at both high and low humidity conditions. In both cases, flies maintained at 30°C survived longer compared to 20 and 25°C – habituated counterparts. Regardless of the effect of acclimation temperature on survival, overall life expectancy was significantly shortened when flies were assayed under desiccating conditions. Additionally, our experiments indicate no significant difference in survival patterns between males and females, and that acclimation temperature had similar effects after both short (5–10 days) and long (11–20 days) acclimation periods. We conclude that acclimation at 30°C prolongs the survival of B. zonata, regardless of ambient humidity levels. Temperature probably affected survival through modulating feeding and metabolism, allowing for accumulation of larger energetic reserves, which in turn, promoted a greater ability to resist starvation, and possibly desiccation as well. Our study set the grounds for understanding the phenotypic plasticity of B. zonata from the hydric perspective, and for further evaluating the invasion potential of this pest.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Eleni Verykouki
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Yam Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Esther Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
20
|
Cvetanovska E, Castañeda R, Hendry A, Conn D, Ricciardi A. Cold tolerance varies among invasive populations of the Asian clam (Corbicula fluminea). CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of the subtropical Asian clam (Corbicula fluminea (O.F. Müller, 1774)), one of the world’s most invasive freshwater molluscs, is reportedly constrained by a lower thermal tolerance limit of 2 °C. Although its occurrence in north temperate regions is typically restricted to artificially heated waterbodies, the species has been found to overwinter in unheated lakes and rivers. In laboratory experiments, we compared the cold tolerance of populations from several geographically distinct sites spanning 35°N to 46°N in eastern North America. Each population contained individuals that fully recovered from 2 months of continuous exposure to near-freezing (1 °C) conditions, contrary to published accounts of C. fluminea’s thermal ecology. Survivorship increased with body size and was enhanced by prior acclimation to a low temperature (10 °C) compared with a higher one (18 °C). When acclimated to 10 °C, clams from northern populations exhibited greater survivorship (55.0% ± 16.1%) than those from southern populations (26.7% ± 19.2%). However, one southern population demonstrated survivorship as great as that of the most tolerant northern population, suggesting that its clams could overwinter in unheated northern waterbodies. Differences among populations indicate either that contemporary evolution has occurred or that developmental plasticity shapes future acclimation responses.
Collapse
Affiliation(s)
- E. Cvetanovska
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montréal, QC H3A 0C4, Canada
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, QC H3A 1B1, Canada
| | - R.A. Castañeda
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - A.P. Hendry
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montréal, QC H3A 0C4, Canada
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, QC H3A 1B1, Canada
| | - D.B. Conn
- Berry College, 2277 Martha Berry Hwy NW, Mt Berry, GA 30149, USA
| | - A. Ricciardi
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montréal, QC H3A 0C4, Canada
| |
Collapse
|
21
|
Constant and fluctuating temperature acclimations have similar effects on phenotypic plasticity in springtails. J Therm Biol 2020; 93:102690. [DOI: 10.1016/j.jtherbio.2020.102690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 11/21/2022]
|
22
|
Temporal variation in thermal plasticity in a free-ranging subalpine lizard. J Therm Biol 2020; 91:102623. [PMID: 32716872 DOI: 10.1016/j.jtherbio.2020.102623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
Abstract
Thermally variable environments are particularly challenging for ectotherms as physiological functions are thermo-dependent. As a consequence, ectotherms in highly seasonal environments are predicted to have greater thermal plasticity. However, much of our understanding of thermal plasticity comes from controlled experiments in a laboratory setting. Relatively fewer studies investigate thermal plasticity in free-ranging animals living in their natural environment. We investigated the presence of thermal plasticity within a single activity season in adult males of a natural high elevation population of White's skink (Liopholis whitii) in south-eastern Australia. This species lives in a permanent home site (rock crevice and/or burrow), facilitating the repeated capture of the same individuals across the activity season. We monitored the thermal variation across the field site and over the activity season, and tested thermal tolerances and performance of male L. whitii on three occasions across their activity season. Maximum and average temperatures varied across the field site, and temperatures gradually increased across the study period. Evidence of temporal plasticity was identified in the critical thermal minimum and thermal tolerance breadth, but not in the critical thermal maximum. Thermal performance was also found to be plastic, but no temporal patterns were evident. Our temporal plasticity results are consistent which much of the previous literature, but this is one of the first studies to identify these patterns in a free-ranging population. In addition, our results indicate that performance may be more plastic than previous literature suggests. Overall, our study highlights the need to pair laboratory and field studies in order to understand thermal plasticity in an ecologically relevant context.
Collapse
|
23
|
Shinner R, Terblanche JS, Clusella-Trullas S. Across-stage consequences of thermal stress have trait-specific effects and limited fitness costs in the harlequin ladybird, Harmonia axyridis. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10045-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Leonard AM, Lancaster LT. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift. BMC Evol Biol 2020; 20:47. [PMID: 32326878 PMCID: PMC7181507 DOI: 10.1186/s12862-020-1589-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022] Open
Abstract
Background Many organisms are responding to climate change with dramatic range shifts, involving plastic and genetic changes to cope with novel climate regimes found at higher latitudes. Using experimental lineages of the seed beetle Callosobruchus maculatus, we simulated the initial phase of colonisation to progressively cooler and/or more variable conditions, to investigate how adaptation and phenotypic plasticity contribute to shifts in thermal tolerance during colonisation of novel climates. Results We show that heat and cold tolerance rapidly evolve during the initial stages of adaptation to progressively cooler and more variable climates. The evolved shift in cold tolerance is, however, associated with maladaptive plasticity under the novel conditions, resulting in a pattern of countergradient variation between the ancestral and novel, fluctuating thermal environment. In contrast, lineages exposed to progressively cooler, but constant, temperatures over several generations expressed only beneficial plasticity in cold tolerances and no evolved response. Conclusions We propose that thermal adaptation during a range expansion to novel, more variable climates found at high latitudes and elevations may typically involve genetic compensation arising from maladaptive plasticity in the initial stages of adaptation, and that this form of (countergradient) thermal adaptation may represent an opportunity for more rapid and labile evolutionary change in thermal tolerances than via classic genetic assimilation models for thermal tolerance evolution (i.e., selection on existing reaction norms). Moreover, countergradient variation in thermal tolerances may typically mask cryptic genetic variability for these traits, resulting in apparent evolutionary stasis in thermal traits.
Collapse
Affiliation(s)
- Aoife M Leonard
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Lesley T Lancaster
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
25
|
Nguyen AD, Brown M, Zitnay J, Cahan SH, Gotelli NJ, Arnett A, Ellison AM. Trade-Offs in Cold Resistance at the Northern Range Edge of the Common Woodland Ant Aphaenogaster picea (Formicidae). Am Nat 2019; 194:E151-E163. [PMID: 31738107 DOI: 10.1086/705939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Geographic variation in low temperatures at poleward range margins of terrestrial species often mirrors population variation in cold resistance, suggesting that range boundaries may be set by evolutionary constraints on cold physiology. The northeastern woodland ant Aphaenogaster picea occurs up to approximately 45°N in central Maine. We combined presence/absence surveys with classification tree analysis to characterize its northern range limit and assayed two measures of cold resistance operating on different timescales to determine whether and how marginal populations adapt to environmental extremes. The range boundary of A. picea was predicted primarily by temperature, but low winter temperatures did not emerge as the primary correlate of species occurrence. Low summer temperatures and high seasonal variability predicted absence above the boundary, whereas high mean annual temperature (MAT) predicted presence in southern Maine. In contrast, assays of cold resistance across multiple sites were consistent with the hypothesis of local cold adaptation at the range edge: among populations, there was a 4-min reduction in chill coma recovery time across a 2° reduction in MAT. Baseline resistance and capacity for additional plastic cold hardening shifted in opposite directions, with hardening capacity approaching zero at the coldest sites. This trade-off between baseline resistance and cold-hardening capacity suggests that populations at range edges may adapt to colder temperatures through genetic assimilation of plastic responses, potentially constraining further adaptation and range expansion.
Collapse
|
26
|
Linking thermo-tolerances of the highly invasive ant, Wasmannia auropunctata, to its current and potential distribution. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02063-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. J Therm Biol 2019; 81:103-109. [PMID: 30975406 DOI: 10.1016/j.jtherbio.2019.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022]
Abstract
Physiological response and acclimation to thermal stress is a key strategy of insects to cope with changing climate. The underlying mechanism of heat acclimation in insects is still unclear. Here, the heat selection and transcript level response in the larvae of the rice leaf folder Cnaphalocrocis medinalis Güenée, a serious pest of rice in summer, were studied. The survival and fecundity of larvae during multigenerational heat selection at 39 °C were examined, and heat tolerance and mRNA expression of heat shock protein 70 (Hsp70) and 90 (Hsp90) were examined under heat stress. The results showed that survival and fecundity of larvae increased notably and then kept constant after two or three generations of heat selection. Heat selection improved thermal tolerance of larvae. The Hsp70 mRNA expression of the 3rd-instar larvae increased in all five generations of heat selection, but Hsp90 increased only in the first two generations. The response of Hsp70 to 39 °C heat treatment in the larvae kept at 27 °C was different from the larvae exposed to the conditioning heat treatments, but the response of Hsp 90 was similar. Moreover, the Hsp70 and Hsp90 mRNA expression levels were significantly higher in the heat-acclimated larvae than that in the unacclimated larvae at a comparable duration of exposure to 37 and 41 °C. Selection at a high temperature across multiple generations led larvae to heat acclimation, and Hsp70 and Hsp90 were involved in this acclimation process.
Collapse
|
28
|
Bai CM, Ma G, Cai WZ, Ma CS. Independent and combined effects of daytime heat stress and night-time recovery determine thermal performance. Biol Open 2019; 8:bio.038141. [PMID: 30837225 PMCID: PMC6451327 DOI: 10.1242/bio.038141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Organisms often experience adverse high temperatures during the daytime, but they may also recover or repair themselves during the night-time when temperatures are more moderate. Thermal effects of daily fluctuating temperatures may thus be divided into two opposite processes (i.e. negative effects of daytime heat stress and positive effects of night-time recovery). Despite recent progress on the consequences of increased daily temperature variability, the independent and combined effects of daytime and night-time temperatures on organism performance remain unclear. By independently manipulating daily maximum and minimum temperatures, we tested how changes in daytime heat stress and night-time recovery affect development, survival and heat tolerance of the lady beetle species Propylea japonica Thermal effects on development and survival differed between daytime and night-time. Daytime high temperatures had negative effects whereas night-time mild temperatures had positive effects. The extent of daytime heat stress and night-time recovery also affected development and critical thermal maximum, which indicates that there were both independent and combined effects of daytime and night-time temperatures on thermal performances. Our findings provide insight into the thermal effect of day-to-night temperature variability and have important implications for predicting the impacts of diel asymmetric warming under climate change.
Collapse
Affiliation(s)
- Chun-Ming Bai
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China.,Department of Entomology, College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wan-Zhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
29
|
Gleason LU, Strand EL, Hizon BJ, Dowd WW. Plasticity of thermal tolerance and its relationship with growth rate in juvenile mussels ( Mytilus californianus). Proc Biol Sci 2019; 285:rspb.2017.2617. [PMID: 29669896 DOI: 10.1098/rspb.2017.2617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/23/2018] [Indexed: 12/29/2022] Open
Abstract
Complex life cycles characterized by uncertainty at transitions between larval/juvenile and adult environments could favour irreversible physiological plasticity at such transitions. To assess whether thermal tolerance of intertidal mussels (Mytilus californianus) adjusts to post-settlement environmental conditions, we collected juveniles from their thermally buffered microhabitat from high- and low-shore locations at cool (wave-exposed) and warm (wave-protected) sites. Juveniles were transplanted to unsheltered cages at the two low sites or placed in a common garden. Juveniles transplanted to the warm site for one month in summer had higher thermal tolerance, regardless of origin site. By contrast, common-garden juveniles from all sites had lower tolerance indistinguishable from exposed site transplants. After six months in the field plus a common garden period, there was a trend for higher thermal tolerance at the protected site, while reduced thermal tolerance at both sites indicated seasonal acclimatization. Thermal tolerance and growth rate were inversely related after one but not six months; protected-site transplants were more tolerant but grew more slowly. In contrast to juveniles, adults from low-shore exposed and protected sites retained differences in thermal tolerance after common garden treatment in summer. Both irreversible and reversible forms of plasticity must be considered in organismal responses to changing environments.
Collapse
Affiliation(s)
- Lani U Gleason
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA .,Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| | - Emma L Strand
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA
| | - Brian J Hizon
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA
| | - W Wesley Dowd
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA.,School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| |
Collapse
|
30
|
Enriquez-Urzelai U, Sacco M, Palacio AS, Pintanel P, Tejedo M, Nicieza AG. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 2019; 189:385-394. [DOI: 10.1007/s00442-019-04342-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/21/2019] [Indexed: 11/28/2022]
|
31
|
Franke K, Karl I, Centeno TP, Feldmeyer B, Lassek C, Oostra V, Riedel K, Stanke M, Wheat CW, Fischer K. Effects of adult temperature on gene expression in a butterfly: identifying pathways associated with thermal acclimation. BMC Evol Biol 2019; 19:32. [PMID: 30674272 PMCID: PMC6345059 DOI: 10.1186/s12862-019-1362-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Phenotypic plasticity is a pervasive property of all organisms and considered to be of key importance for dealing with environmental variation. Plastic responses to temperature, which is one of the most important ecological factors, have received much attention over recent decades. A recurrent pattern of temperature-induced adaptive plasticity includes increased heat tolerance after exposure to warmer temperatures and increased cold tolerance after exposure to cooler temperatures. However, the mechanisms underlying these plastic responses are hitherto not well understood. Therefore, we here investigate effects of adult acclimation on gene expression in the tropical butterfly Bicyclus anynana, using an RNAseq approach. RESULTS We show that several antioxidant markers (e.g. peroxidase, cytochrome P450) were up-regulated at a higher temperature compared with a lower adult temperature, which might play an important role in the acclamatory responses subsequently providing increased heat tolerance. Furthermore, several metabolic pathways were up-regulated at the higher temperature, likely reflecting increased metabolic rates. In contrast, we found no evidence for a decisive role of the heat shock response. CONCLUSIONS Although the important role of antioxidant defence mechanisms in alleviating detrimental effects of oxidative stress is firmly established, we speculate that its potentially important role in mediating heat tolerance and survival under stress has been underestimated thus far and thus deserves more attention.
Collapse
Affiliation(s)
- Kristin Franke
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany
| | - Isabell Karl
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany
| | - Tonatiuh Pena Centeno
- Institute for Mathematics and Computer Science, University of Greifswald, D-17487, Greifswald, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology Group, D-60325, Frankfurt am Main, Germany
| | - Christian Lassek
- Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, London, UK
| | - Katharina Riedel
- Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany
| | - Mario Stanke
- Institute for Mathematics and Computer Science, University of Greifswald, D-17487, Greifswald, Germany
| | | | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany. .,Present address: Institute for Integrated Natural Sciences, University Koblenz-Landau, Universitätsstraße 1, D-56070, Koblenz, Germany.
| |
Collapse
|
32
|
Enriquez T, Renault D, Charrier M, Colinet H. Cold Acclimation Favors Metabolic Stability in Drosophila suzukii. Front Physiol 2018; 9:1506. [PMID: 30443218 PMCID: PMC6221910 DOI: 10.3389/fphys.2018.01506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/08/2018] [Indexed: 11/25/2022] Open
Abstract
The invasive fruit fly pest, Drosophila suzukii, is a chill susceptible species, yet it is capable of overwintering in rather cold climates, such as North America and North Europe, probably thanks to a high cold tolerance plasticity. Little is known about the mechanisms underlying cold tolerance acquisition in D. suzukii. In this study, we compared the effect of different forms of cold acclimation (at juvenile or at adult stage) on subsequent cold tolerance. Combining developmental and adult cold acclimation resulted in a particularly high expression of cold tolerance. As found in other species, we expected that cold-acclimated flies would accumulate cryoprotectants and would be able to maintain metabolic homeostasis following cold stress. We used quantitative target GC-MS profiling to explore metabolic changes in four different phenotypes: control, cold acclimated during development or at adult stage or during both phases. We also performed a time-series GC-MS analysis to monitor metabolic homeostasis status during stress and recovery. The different thermal treatments resulted in highly distinct metabolic phenotypes. Flies submitted to both developmental and adult acclimation were characterized by accumulation of cryoprotectants (carbohydrates and amino acids), although concentrations changes remained of low magnitude. After cold shock, non-acclimated chill-susceptible phenotype displayed a symptomatic loss of metabolic homeostasis, correlated with erratic changes in the amino acids pool. On the other hand, the most cold-tolerant phenotype was able to maintain metabolic homeostasis after cold stress. These results indicate that cold tolerance acquisition of D. suzukii depends on physiological strategies similar to other drosophilids: moderate changes in cryoprotective substances and metabolic robustness. In addition, the results add to the body of evidence supporting that mechanisms underlying the different forms of acclimation are distinct.
Collapse
Affiliation(s)
- Thomas Enriquez
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| | - David Renault
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France.,Institut Universitaire de France, Paris, France
| | | | - Hervé Colinet
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| |
Collapse
|
33
|
Studies on chill coma recovery in the ladybird, Harmonia axyridis: Ontogenetic profile, effect of repeated cold exposures, and capacity to predict winter survival. J Therm Biol 2018; 74:275-280. [DOI: 10.1016/j.jtherbio.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
34
|
de Jong MA, Saastamoinen M. Environmental and genetic control of cold tolerance in the Glanville fritillary butterfly. J Evol Biol 2018; 31:636-645. [PMID: 29424462 PMCID: PMC5969317 DOI: 10.1111/jeb.13247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 02/05/2023]
Abstract
Thermal tolerance has a major effect on individual fitness and species distributions and can be determined by genetic variation and phenotypic plasticity. We investigate the effects of developmental and adult thermal conditions on cold tolerance, measured as chill coma recovery (CCR) time, during the early and late adult stage in the Glanville fritillary butterfly. We also investigate the genetic basis of cold tolerance by associating CCR variation with polymorphisms in candidate genes that have a known role in insect physiology. Our results demonstrate that a cooler developmental temperature leads to reduced cold tolerance in the early adult stage, whereas cooler conditions during the adult stage lead to increased cold tolerance. This suggests that adult acclimation, but not developmental plasticity, of adult cold tolerance is adaptive. This could be explained by the ecological conditions the Glanville fritillary experiences in the field, where temperature during early summer, but not spring, is predictive of thermal conditions during the butterfly's flight season. In addition, an amino acid polymorphism (Ala-Glu) in the gene flightin, which has a known function in insect flight and locomotion, was associated with CCR. These amino acids have distinct biochemical properties and may thus affect protein function and/or structure. To our knowledge, our study is the first to link genetic variation in flightin to cold tolerance, or thermal adaptation in general.
Collapse
Affiliation(s)
- M. A. de Jong
- School of Biological SciencesUniversity of BristolBristolUK
| | - M. Saastamoinen
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
35
|
Markle TM, Kozak KH. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change. Ecol Evol 2018; 8:4644-4656. [PMID: 29760904 PMCID: PMC5938462 DOI: 10.1002/ece3.4006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 01/20/2023] Open
Abstract
Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further, given that narrow-ranging salamanders are found to have both poor acclimation ability and lower tolerance to warm temperatures, they are likely to be more susceptible to environmental warming associated with anthropogenic climate change.
Collapse
Affiliation(s)
- Tricia M. Markle
- Department of Fisheries, Wildlife, & Conservation BiologyBell Museum of Natural HistoryUniversity of MinnesotaSt PaulMNUSA
| | - Kenneth H. Kozak
- Department of Fisheries, Wildlife, & Conservation BiologyBell Museum of Natural HistoryUniversity of MinnesotaSt PaulMNUSA
| |
Collapse
|
36
|
Rolandi C, Schilman PE. The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus. J Therm Biol 2018; 74:92-99. [PMID: 29801656 DOI: 10.1016/j.jtherbio.2018.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/21/2018] [Accepted: 03/18/2018] [Indexed: 11/25/2022]
Abstract
Environmental temperature is an abiotic factor with great influence on biological processes of living beings. Jensen's inequality states that for non-lineal processes, such as most biological phenomena, the effects of thermal fluctuations cannot be predicted from mean constant temperatures. We studied the effect of daily temperature fluctuation (DTF) on Rhodnius prolixus, a model organism in insect physiology, and an important vector of Chagas disease. We measured development time from egg to adult, fecundity, fertility, body mass reduction rate (indirect measurement of nutrient consumption rates) and survival after a single blood meal. Insects were reared at constant temperature (24 °C), or with a DTF (17-32 °C; mean = 24 °C). Taking into account Jensen's inequality as well as the species tropical distribution, we predict that living in a variable thermal environment will have higher costs than inhabiting a stable one. Development time and fertility were not affected by DTF. However, fecundity was lower in females reared at DTF than at constant temperature, and males had higher body mass reduction rate and lower survival in the DTF regime, suggesting higher costs associated to fluctuating thermal environments. At a population and epidemiological level, higher energetic costs would imply an increase in nutrient consumption rate, biting frequency, and, consequently increasing disease transmission from infected insects. On the contrary, lower fecundity could be associated with a decrease in population growth. This knowledge will not only provide basic information to the field of insect ecophysiology, but also could be a useful background to develop population and disease transmission models.
Collapse
Affiliation(s)
- Carmen Rolandi
- Laboratorio de Eco-fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Argentina
| | - Pablo E Schilman
- Laboratorio de Eco-fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Argentina.
| |
Collapse
|
37
|
Kellermann V, van Heerwaarden B, Sgrò CM. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc Biol Sci 2018; 284:rspb.2017.0447. [PMID: 28539515 DOI: 10.1098/rspb.2017.0447] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/27/2017] [Indexed: 11/12/2022] Open
Abstract
A common practice in thermal biology is to take individuals directly from the field and estimate a range of thermal traits. These estimates are then used in studies aiming to understand broad scale distributional patterns, understanding and predicting the evolution of phenotypic plasticity, and generating predictions for climate change risk. However, the use of field-caught individuals in such studies ignores the fact that many traits are phenotypically plastic and will be influenced by the thermal history of the focal individuals. The current study aims to determine the extent to which estimates of upper thermal limits (CTmax), a frequently used measure for climate change risk, are sensitive to developmental and adult acclimation temperatures and whether these two forms of plasticity are reversible. Examining a temperate and tropical population of Drosophila melanogaster we show that developmental acclimation has a larger and more lasting effect on CTmax than adult acclimation. We also find evidence for an interaction between developmental and adult acclimation, particularly when flies are acclimated for a longer period, and that these effects can be population specific. These results suggest that thermal history can have lasting effects on estimates of CTmax. In addition, we provide evidence that developmental and/or adult acclimation are unlikely to contribute to substantial shifts in CTmax and that acclimation capacity may be constrained at higher temperatures.
Collapse
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
38
|
Metabolic response to hypoxia in European sea bass ( Dicentrarchus labrax ) displays developmental plasticity. Comp Biochem Physiol B Biochem Mol Biol 2018; 215:1-9. [DOI: 10.1016/j.cbpb.2017.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 11/17/2022]
|
39
|
Shah AA, Funk WC, Ghalambor CK. Thermal Acclimation Ability Varies in Temperate and Tropical Aquatic Insects from Different Elevations. Integr Comp Biol 2017; 57:977-987. [DOI: 10.1093/icb/icx101] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Cavieres G, Nuñez-Villegas M, Bozinovic F, Sabat P. Early life experience drives short-term acclimation of metabolic and osmoregulatory traits in the leaf-eared mouse. ACTA ACUST UNITED AC 2017; 220:2626-2634. [PMID: 28495870 DOI: 10.1242/jeb.149997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
We studied the putative effect of early life experience on the physiological flexibility of metabolic and osmoregulatory traits in the leaf-eared mouse, Phyllotis darwini, an altricial rodent inhabiting seasonal Mediterranean environments. Adult individuals were collected in central Chile and maintained in breeding pairs. Pups were isolated after weaning and acclimated to different temperatures (cold or warm) and water availability (unrestricted and restricted) until adulthood. Subsequently, individuals were re-acclimated to the opposite treatment. Rodents reared in the warm and subjected to water restriction had lower basal metabolic rate (BMR), total evaporative water loss (TEWL) and body mass (Mb) compared with those developing in the cold treatment; nevertheless, individuals subjected to warm temperatures had greater relative medullary thickness (RMT) and urine concentrating ability (UCA). Cold-reared rodents re-acclimated to warm conditions exhibited physiological flexibility of metabolic traits; however, their osmoregulatory attributes did not vary. Conversely, warm-reared rodents re-acclimated to cold had reduced RMT and UCA, but the metabolic traits of these individuals did not change. These results suggest a trade-off between metabolic performance and renal capabilities that might hinder physiological acclimation. Our results support the hypothesis of ontogenetic dependence of short-term acclimation in osmoregulatory and metabolic traits in P. darwini.
Collapse
Affiliation(s)
- Grisel Cavieres
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile
| | - Monica Nuñez-Villegas
- Departamento de Ciencias Ecológicas Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Francisco Bozinovic
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| |
Collapse
|
41
|
Kalra B, Tamang AM, Parkash R. Cross-tolerance effects due to adult heat hardening, desiccation and starvation acclimation of tropical drosophilid-Zaprionus indianus. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:65-73. [PMID: 28454925 DOI: 10.1016/j.cbpa.2017.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/02/2023]
Abstract
Some insect taxa from polar or temperate habitats have shown cross-tolerance for multiple stressors but tropical insect taxa have received less attention. Accordingly, we considered adult flies of a tropical drosophilid-Zaprionus indianus for testing direct as well as cross-tolerance effects of rapid heat hardening (HH), desiccation acclimation (DA) and starvation acclimation (SA) after rearing under warmer and drier season specific simulated conditions. We observed significant direct acclimation effects of HH, DA and SA; and four cases of cross-tolerance effects but no cross-tolerance between desiccation and starvation. Cross-tolerance due to heat hardening on desiccation showed 20% higher effect than its reciprocal effect. There is greater reduction of water loss in heat hardened flies (due to increase in amount of cuticular lipids) as compared with desiccation acclimated flies. However, cross-tolerance effect of SA on heat knockdown was two times higher than its reciprocal. Heat hardened and desiccation acclimated adult flies showed substantial increase in the level of trehalose and proline while body lipids increased due to heat hardening or starvation acclimation. However, maximum increase in energy metabolites was stressor specific i.e. trehalose due to DA; proline due to HH and total body lipids due to SA. Rapid changes in energy metabolites due to heat hardening seem compensatory for possible depletion of trehalose and proline due to desiccation stress; and body lipids due to starvation stress. Thus, observed cross-tolerance effects in Z. indianus represent physiological changes to cope with multiple stressors related to warmer and drier subtropical habitats.
Collapse
Affiliation(s)
- Bhawna Kalra
- Department of Genetics, M. D. University, Rohtak 124001, India
| | | | - Ravi Parkash
- Department of Genetics, M. D. University, Rohtak 124001, India.
| |
Collapse
|
42
|
Gibson DJ, Sylvester EVA, Turko AJ, Tattersall GJ, Wright PA. Out of the frying pan into the air--emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus). Biol Lett 2016; 11:rsbl.2015.0689. [PMID: 26490418 DOI: 10.1098/rsbl.2015.0689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min(-1)) than those in a high humidity environment (1.6°C min(-1)). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change.
Collapse
Affiliation(s)
- Daniel J Gibson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emma V A Sylvester
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
43
|
Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature. Sci Rep 2016; 6:30975. [PMID: 27487917 PMCID: PMC4973280 DOI: 10.1038/srep30975] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023] Open
Abstract
Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates.
Collapse
|
44
|
Bilton DT, Foster GN. Observed shifts in the contact zone between two forms of the diving beetle Hydroporus memnonius are consistent with predictions from sexual conflict. PeerJ 2016; 4:e2089. [PMID: 27326372 PMCID: PMC4911956 DOI: 10.7717/peerj.2089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/07/2016] [Indexed: 12/01/2022] Open
Abstract
Sexual conflict drives both inter- and intrasexual dimorphisms in many diving beetles, where male persistence and female resistance traits co-evolve in an antagonistic manner. To date most studies have focussed on species where rough and smooth females and their associated males typically co-occur within populations, where phenotype matching between morphs may maintain forms as stable polymorphisms. The Palaearctic diving beetle Hydroporus memnonius is characterised by having dimorphic (rough var. castaneus and smooth, shining) females and associated males which differ in persistence traits; the two forms being largely distributed parapatrically. In this species, instead of mating trade-offs between morphs, males associated with castaneus females should have a mating advantage with both this form and shining females, due to their increased persistence abilities on either cuticular surface. This may be expected to lead to the replacement of the shining form with castaneus in areas where the two come into contact. Using data collected over a thirty year period, we show that this process of population replacement is indeed occurring, castaneus having expanded significantly at the expense of the shining female form. Whilst populations of both forms close to the contact zone appear to differ in their thermal physiology, these differences are minor and suggest that the expansion of castaneus is not linked to climatic warming in recent decades. Instead we argue that the observed spread of castaneus and its associated male may result from the dynamics of sexually antagonistic coevolution in this beetle.
Collapse
Affiliation(s)
- David T Bilton
- Marine Biology & Ecology Research Centre, University of Plymouth, United Kingdom
| | - Garth N Foster
- Aquatic Coleoptera Conservation Trust, Ayr, Scotland, United Kingdom
| |
Collapse
|
45
|
Slotsbo S, Schou MF, Kristensen TN, Loeschcke V, Sørensen JG. Reversibility of developmental heat and cold plasticity is asymmetric and has long lasting consequences for adult thermal tolerance. J Exp Biol 2016; 219:2726-32. [DOI: 10.1242/jeb.143750] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022]
Abstract
The ability of insects to cope with stressful temperatures through adaptive plasticity has allowed them to thrive under a wide range of thermal conditions. Developmental plasticity is generally considered as non-reversible phenotypic changes, e.g. in morphological traits, while adult acclimation responses are often considered to be reversible physiological responses. However, physiologically mediated thermal acclimation might not follow this general prediction. We investigated the magnitude and rate of reversibility of developmental thermal plasticity responses in heat and cold tolerance of adult flies, using a full factorial design with two developmental and two adult temperatures (15°C and 25°C). We show that cold tolerance attained during development is readily adjusted to the prevailing conditions during adult acclimation with a symmetric rate of decrease or increase. In contrast, heat tolerance is only partly reversible during acclimation and thus constrained by the temperature during development. The effect of adult acclimation on heat tolerance was asymmetrical, with a general loss of heat tolerance with age. Surprisingly, the decline in adult heat tolerance at 25°C was decelerated in flies developed at low temperatures. This result was supported by correlated responses in two senescence associated traits and in accordance with a lower rate of ageing after low temperature development, suggesting that physiological age is not reset at eclosion. The results have profound ecological consequences for populations, as optimal developmental temperatures will be dependent on the thermal conditions faced in the adult stage and the age at which they occur.
Collapse
Affiliation(s)
- Stine Slotsbo
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark
| | - Mads F. Schou
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark
| | - Torsten N. Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark
| | - Jesper G. Sørensen
- Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark
| |
Collapse
|
46
|
Sgrò CM, Terblanche JS, Hoffmann AA. What Can Plasticity Contribute to Insect Responses to Climate Change? ANNUAL REVIEW OF ENTOMOLOGY 2015; 61:433-51. [PMID: 26667379 DOI: 10.1146/annurev-ento-010715-023859] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plastic responses figure prominently in discussions on insect adaptation to climate change. Here we review the different types of plastic responses and whether they contribute much to adaptation. Under climate change, plastic responses involving diapause are often critical for population persistence, but key diapause responses under dry and hot conditions remain poorly understood. Climate variability can impose large fitness costs on insects showing diapause and other life cycle responses, threatening population persistence. In response to stressful climatic conditions, insects also undergo ontogenetic changes including hardening and acclimation. Environmental conditions experienced across developmental stages or by prior generations can influence hardening and acclimation, although evidence for the latter remains weak. Costs and constraints influence patterns of plasticity across insect clades, but they are poorly understood within field contexts. Plastic responses and their evolution should be considered when predicting vulnerability to climate change-but meaningful empirical data lag behind theory.
Collapse
Affiliation(s)
- Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland 7602, South Africa;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010, Australia;
| |
Collapse
|
47
|
Maysov A. Chill coma temperatures appear similar along a latitudinal gradient, in contrast to divergent chill coma recovery times, in two widespread ant species. ACTA ACUST UNITED AC 2015; 217:2650-8. [PMID: 25079891 DOI: 10.1242/jeb.096958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Populations of widely distributed ectotherms demonstrate different cold resistance corresponding to the local climate. However, efficiently thermoregulating ectotherms could avoid divergence in cold resistance. Two species of ants, previously shown to even out latitudinal differences of mean summer temperatures in their nests, were used to test this hypothesis by comparing the temperature dependence of cold resistance in three distant populations (from 50°, 60° and 67°N). The species differ in habitat preferences, one (Myrmica rubra) being less stenotopic than the other (M. ruginodis). Therefore, three different predictions were made about their cold resistance: along the latitudinal gradient, it might be similar within the two species (because of thermoregulation within nests/habitats) or similar only in M. rubra (as a result of thermoregulation among habitats), or divergent at least in M. rubra (no effect of thermoregulation). Among populations of both species, neither differences nor latitudinal trends in chill coma temperature were statistically significant after 11 months of standard conditions, with or without cold hardening. In contrast, recovery time significantly differed among populations in both species, although its latitudinal trends were strongly curvilinear: in M. rubra, the intermediate population tended towards the slowest recovery, and in M. ruginodis, it tended towards the fastest. After 22 months, the patterns remained the same, except that M. ruginodis showed a significant linear latitudinal trend in chill coma temperature (with no significant populational differences). Hence, thermoregulation, both within and among habitats, apparently does keep chill coma temperatures similar. Recovery rate demonstrates divergence, but its curvilinear trends suggest a connection with climates experienced by ancestral populations.
Collapse
Affiliation(s)
- Andrey Maysov
- Department of Entomology, Biology and Soil Science Faculty, St Petersburg State University, Universitetskaya emb. 7/9, St Petersburg 199034, Russia
| |
Collapse
|
48
|
Scharf I, Braf H, Ifrach N, Rosenstein S, Subach A. The Effects of Temperature and Diet during Development, Adulthood, and Mating on Reproduction in the Red Flour Beetle. PLoS One 2015; 10:e0136924. [PMID: 26348929 PMCID: PMC4562705 DOI: 10.1371/journal.pone.0136924] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/10/2015] [Indexed: 12/01/2022] Open
Abstract
The effects of different temperatures and diets experienced during distinct life stages are not necessarily similar. The silver-spoon hypothesis predicts that developing under favorable conditions will always lead to better performing adults under all adult conditions. The environment-matching hypothesis suggests that a match between developmental and adult conditions will lead to the best performing adults. Similar to the latter hypothesis, the beneficial-acclimation hypothesis suggests that either developing or acclimating as adults to the test temperature will improve later performance under such temperature. We disentangled here between the effect of growth, adult, and mating conditions (temperature and diet) on reproduction in the red flour beetle (Tribolium castaneum), in reference to the reproduction success rate, the number of viable offspring produced, and the mean offspring mass 13 days after mating. The most influential stage affecting reproduction differed between the diet and temperature experiments: adult temperature vs. parental growth diet. Generally, a yeast-rich diet or warmer temperature improved reproduction, supporting the silver-spoon hypothesis. However, interactions between life stages made the results more complex, also fitting the environment-matching hypothesis. Warm growth temperature positively affected reproduction success, but only when adults were kept under the same warm temperature. When the parental growth and adult diets matched, the mean offspring mass was greater than in a mismatch between the two. Additionally, a match between warm adult temperature and warm offspring growth temperature led to the largest offspring mass. These findings support the environment-matching hypothesis. Our results provide evidence for all these hypotheses and demonstrate that parental effects and plasticity may be induced by temperature and diet.
Collapse
Affiliation(s)
- Inon Scharf
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Hila Braf
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naama Ifrach
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Rosenstein
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aziz Subach
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Dowd WW, King FA, Denny MW. Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol 2015; 218:1956-67. [DOI: 10.1242/jeb.114926] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
In this review we consider how small-scale temporal and spatial variation in body temperature, and biochemical/physiological variation among individuals, affect the prediction of organisms' performance in nature. For ‘normal’ body temperatures – benign temperatures near the species' mean – thermal biology traditionally uses performance curves to describe how physiological capabilities vary with temperature. However, these curves, which are typically measured under static laboratory conditions, can yield incomplete or inaccurate predictions of how organisms respond to natural patterns of temperature variation. For example, scale transition theory predicts that, in a variable environment, peak average performance is lower and occurs at a lower mean temperature than the peak of statically measured performance. We also demonstrate that temporal variation in performance is minimized near this new ‘optimal’ temperature. These factors add complexity to predictions of the consequences of climate change. We then move beyond the performance curve approach to consider the effects of rare, extreme temperatures. A statistical procedure (the environmental bootstrap) allows for long-term simulations that capture the temporal pattern of extremes (a Poisson interval distribution), which is characterized by clusters of events interspersed with long intervals of benign conditions. The bootstrap can be combined with biophysical models to incorporate temporal, spatial and physiological variation into evolutionary models of thermal tolerance. We conclude with several challenges that must be overcome to more fully develop our understanding of thermal performance in the context of a changing climate by explicitly considering different forms of small-scale variation. These challenges highlight the need to empirically and rigorously test existing theories.
Collapse
Affiliation(s)
- W. Wesley Dowd
- Loyola Marymount University, Department of Biology, Los Angeles, CA 90045, USA
| | - Felicia A. King
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Mark W. Denny
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
50
|
Halsey LG, Matthews PGD, Rezende EL, Chauvaud L, Robson AA. The interactions between temperature and activity levels in driving metabolic rate: theory, with empirical validation from contrasting ectotherms. Oecologia 2015; 177:1117-29. [PMID: 25575673 DOI: 10.1007/s00442-014-3190-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/10/2014] [Indexed: 11/27/2022]
Abstract
The rate of change in resting metabolic rate (RMR) as a result of a temperature increase of 10 °C is termed the temperature coefficient (Q10), which is often used to predict how an organism's total MR will change with temperature. However, this method neglects a potentially key component of MR; changes in activity level (and thus activity MR; AMR) with temperature may significantly alter the relationship between MR and temperature. The present study seeks to describe how thermal effects on total MR estimated from RMR-temperature measurements can be misleading when the contribution of activity to total MR is neglected. A simple conceptual framework illustrates that since the relationship between activity levels and temperature can be different to the relationship between RMR and temperature, a consistent relationship between RMR and total MR cannot be assumed. Thus the thermal effect on total MR can be considerably different to the thermal effect on RMR. Simultaneously measured MR and activity from three ectotherm species with differing behavioural and physiological ecologies were used to empirically examine how changes in temperature drive changes in RMR, activity level, AMR and the Q10 of MR. These species exhibited varied activity- and MR-temperature relationships, underlining the difficulty in predicting thermal influences on activity levels and total MR. These data support a model showing that thermal effects on total MR will deviate from predictions based solely on RMR; this deviation will depend upon the difference in Q10 between AMR and RMR, and the relative contribution of AMR to total MR. To develop mechanistic, predictive models for species' metabolic responses to temperature changes, empirical information about the relationships between activity levels, MR and temperature, such as reported here, is required. This will supersede predictions based on RMR alone.
Collapse
Affiliation(s)
- L G Halsey
- Department of Life Sciences, Centre for Research in Ecology, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK,
| | | | | | | | | |
Collapse
|