1
|
Domae M, Iwasaki M, Nishino H. Neurological confirmation of periplanone-D exploitation as a primary sex pheromone and counteractions of other components in the smoky brown cockroach Periplaneta fuliginosa. Cell Tissue Res 2025:10.1007/s00441-024-03935-1. [PMID: 39792244 DOI: 10.1007/s00441-024-03935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025]
Abstract
The smoky brown cockroach, Periplaneta fuliginosa, is a peridomestic pest inhabiting broad regions of the world from temperate to subtropical zones. In common with other related species such as the American cockroach, Periplaneta americana, female-emitted sex pheromone components, named periplanones, are known to be key volatiles that elicit long-range attraction and courtship rituals in males. How periplanones are processed in the nervous system has been entirely unexplored in P. fuliginosa. By using pheromone compounds, periplanones A, B, C, and D, as stimulants to the antenna, we identified four distinct types of interneurons (projection neurons) that relay pheromonal signals from a single olfactory glomerulus of the first-order olfactory center (antennal lobe) to higher-order centers in the ipsilateral hemibrain. All glomeruli innervated by pheromone-responsive projection neurons clustered near the antennal nerve entrance of the antennal lobe. The projection neuron with dendrites in the largest glomerulus was tuned specifically to periplanone-D, and adding other components to periplanone-D counteracted the excitation elicited by periplanone-D alone. Likewise, the projection neuron with dendrites in the second largest glomerulus and that with dendrites in a medium-sized glomerulus were tuned to periplanone-A and periplanone-B, respectively. Our results are, therefore, consistent with behavioral findings that periplanone-D alone acts as a primary sex attractant and that other components act as potential behavioral antagonists. Moreover, a comparison of the glomeruli in P. fuliginosa and P. americana suggested that there are differences in the sizes of homologous glomeruli, as well as in the ligands they process.
Collapse
Affiliation(s)
- Mana Domae
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masazumi Iwasaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
2
|
Ling J, Li Y, Zheng XL, Lu W, Wang XY. Electroantennographic and behavioral responses of Bactrocera dorsalis (Diptera: Tephritidae) adults to the volatiles of plum fruits. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2400-2412. [PMID: 39393005 DOI: 10.1093/jee/toae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/13/2024]
Abstract
Fruit volatiles play a crucial role in the host localization by the oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). This study focused on identifying the fruit volatiles from Sanyue plum and Sanhua plum (Prunus salicina Lindl.), which are 2 varieties of the same species, and examined their impact on the behavior of B. dorsalis by using a Y-olfactometer. A total of 35 and 54 volatiles from Sanyue plum and Sanhua plum were identified, respectively. Among these, 23 volatiles elicited electroantennographic (EAG) responses by B. dorsalis adults, showing concentration-dependent effects in males and females. Ethyl butyrate, butyl acetate, butyl hexanoate, ethyl caproate, ethyl hexanoate, and hexyl acetate significantly attracted B. dorsalis compared to liquid paraffin, while nonaldehyde was avoided. There was no significant difference in the behavioral responses of both sexes to sorbitol esters, hexyl isobutyrate, and 1-tetradecene compared with the control liquid paraffin group. Interestingly, (3Z)-C-3-hexenyl acetate significantly attracted females, but not males. The above findings suggest that plum fruit volatiles are likely to facilitate the localization of host fruit by B. dorsalis adults and may even aid in mate-finding. This study opens up new avenues for exploring novel plant-based attractants that might be of value for the integrated management of B. dorsalis.
Collapse
Affiliation(s)
- Jing Ling
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuan Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Nishino H. Spatial odor map formation, development, and possible function in a nocturnal insect. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101087. [PMID: 37468043 DOI: 10.1016/j.cois.2023.101087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
An odor plume is composed of fine filamentous structures interspersed by clean air. Various animals use bilateral comparison with paired olfactory organs for detecting spatial and temporal features of the plume. American cockroaches are capable of locating a sex pheromone source with one long antenna spanning 5 cm, so-called unilateral odor sampling. This capability stems from an antennotopic map in which olfactory sensory neurons located proximo-distally in the antenna send axon terminals proximo-distally in a given glomerulus, relative to axonal entry points. Multiple output neurons (projection neurons) utilize this spatial map in the pheromone-receptive glomerulus. Here, I summarize neuronal underpinnings of receptive field formation, development, and how this intraglomerular spatial map can be utilized for odor localization.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
4
|
Talley JL, White EB, Willis MA. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments. J Exp Biol 2023; 226:281297. [PMID: 36354120 DOI: 10.1242/jeb.244254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Many animals locate food, mates and territories by following plumes of attractive odors. There are clear differences in the structure of this plume-tracking behavior depending on whether an animal is flying, swimming, walking or crawling. These differences could arise from different control rules used by the central nervous system during these different modes of locomotion or one set of rules interacting with the different environments while walking on the surface versus flying or swimming. Flow speeds and turbulence that characterize the environments where walking and flying insects track plumes may alter the structure of odor plumes in an environment-specific way that results in the same control rules generating behaviors that appear quite different. We tested these ideas by challenging walking male cockroaches, Periplaneta americana, and flying male moths, Manduca sexta, to track plumes of their species' sex pheromones in low wind speeds characteristic of cockroach experimental environments, higher wind speeds characteristic of moth experimental environments, and conditions ranging from low to high turbulence. Introducing a turbulence-generating structure into the flow significantly improved the flying plume tracker's ability to locate the odor source, and changed the structure of the behavior of both flying and walking plume trackers. Our results support the idea that plume trackers moving slowly along the substrate may use the spatial distribution of odor, while faster moving flying plume trackers may use the timing of odor encounters to steer to locate the source.
Collapse
Affiliation(s)
- Jennifer L Talley
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Air Force Research Laboratory, Eglin Air Force Base, Eglin, FL 32542, USA
| | - Edward B White
- Department of Aerospace and Mechanical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Aerospace Engineering, Texas A & M University, College Station, TX 77843, USA
| | - Mark A Willis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Ian E, Chu X, Berg BG. Brain Investigation on Sexual Dimorphism in a Gynandromorph Moth. INSECTS 2022; 13:insects13030284. [PMID: 35323582 PMCID: PMC8951615 DOI: 10.3390/insects13030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The noctuid moth, Helicoverpa armigera, is one of the globally most damaging agricultural pest insects. Generally, exploration of the male- and female-specific neural architecture underlying its reproductive behavior is crucial for developing biological and environment-friendly alternatives to the traditional pest control management. In this study, we utilized the opportunity to uncover putative sex differences in H. armigera by comparing details in the brain anatomy between the male and female hemispheres in one gynandromorphic individual. The methods included synapsin immunostaining, confocal microscopy, and the digital reconstruction of several brain areas involved in processing input about odor and vision, respectively. The results demonstrated sex-specific arrangements applying to distinct olfactory neuropils, including not only the primary olfactory center, the antennal lobe, but also higher order levels involved in odor-associated memory formation. Abstract The present study was dedicated to investigating the anatomical organization of distinct neuropils within the two brain hemispheres of a gynandromorphic moth of the species Helicoverpa armigera. High quality confocal imaging of a synapsin immuno-stained preparation combined with three-dimensional reconstructions made it possible to identify several brain structures involved in processing odor input and to measure their volumes in the male and female hemispheres. Thus, in addition to reconstructing the antennal lobes, we also made digital models of the mushroom body calyces, the pedunculus, and the vertical and medial lobes. As previously reported, prominent sexual dimorphism was demonstrated in the antennal lobes via the identification of a male-specific macroglomerular complex (MGC) and a female-specific complex (Fc) in each of the two brain hemispheres of the gynandromorph. Additionally, sex-specific differences were found in volume differences for three other neuropil structures—the calyces, pedunculus, and vertical lobe. The putative purpose of larger volumes of three mushroom body neuropils in females as compared to males is discussed.
Collapse
|
6
|
Zjacic N, Scholz M. The role of food odor in invertebrate foraging. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12793. [PMID: 34978135 PMCID: PMC9744530 DOI: 10.1111/gbb.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Foraging for food is an integral part of animal survival. In small insects and invertebrates, multisensory information and optimized locomotion strategies are used to effectively forage in patchy and complex environments. Here, the importance of olfactory cues for effective invertebrate foraging is discussed in detail. We review how odors are used by foragers to move toward a likely food source and the recent models that describe this sensory-driven behavior. We argue that smell serves a second function by priming an organism for the efficient exploitation of food. By appraising food odors, invertebrates can establish preferences and better adapt to their ecological niches, thereby promoting survival. The smell of food pre-prepares the gastrointestinal system and primes feeding motor programs for more effective ingestion as well. Optimizing resource utilization affects longevity and reproduction as a result, leading to drastic changes in survival. We propose that models of foraging behavior should include odor priming, and illustrate this with a simple toy model based on the marginal value theorem. Lastly, we discuss the novel techniques and assays in invertebrate research that could investigate the interactions between odor sensing and food intake. Overall, the sense of smell is indispensable for efficient foraging and influences not only locomotion, but also organismal physiology, which should be reflected in behavioral modeling.
Collapse
Affiliation(s)
- Nicolina Zjacic
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| | - Monika Scholz
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| |
Collapse
|
7
|
Yamada M, Ohashi H, Hosoda K, Kurabayashi D, Shigaki S. Multisensory-motor integration in olfactory navigation of silkmoth, Bombyx mori, using virtual reality system. eLife 2021; 10:72001. [PMID: 34822323 PMCID: PMC8629422 DOI: 10.7554/elife.72001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
Most animals survive and thrive due to navigational behavior to reach their destinations. In order to navigate, it is important for animals to integrate information obtained from multisensory inputs and use that information to modulate their behavior. In this study, by using a virtual reality (VR) system for an insect, we investigated how the adult silkmoth integrates visual and wind direction information during female search behavior (olfactory behavior). According to the behavioral experiments using a VR system, the silkmoth had the highest navigational success rate when odor, vision, and wind information were correctly provided. However, the success rate of the search was reduced if the wind direction information provided was different from the direction actually detected. This indicates that it is important to acquire not only odor information but also wind direction information correctly. When the wind is received from the same direction as the odor, the silkmoth takes positive behavior; if the odor is detected but the wind direction is not in the same direction as the odor, the silkmoth behaves more carefully. This corresponds to a modulation of behavior according to the degree of complexity (turbulence) of the environment. We mathematically modeled the modulation of behavior using multisensory information and evaluated it using simulations. The mathematical model not only succeeded in reproducing the actual silkmoth search behavior but also improved the search success relative to the conventional odor-source search algorithm.
Collapse
Affiliation(s)
- Mayu Yamada
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Hirono Ohashi
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Koh Hosoda
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Daisuke Kurabayashi
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Shunsuke Shigaki
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Sammani AMP, Dissanayaka DMSK, Wijayaratne LKW, Bamunuarachchige TC, Morrison WR. Effect of Pheromones, Plant Volatiles and Spinosad on Mating, Male Attraction and Burrowing of Cadra cautella (Walk.) (Lepidoptera: Pyralidae). INSECTS 2020; 11:insects11120845. [PMID: 33260675 PMCID: PMC7760550 DOI: 10.3390/insects11120845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Mating disruption of Cadra cautella (Walk.) (Lepidoptera: Pyralidae) using its sex pheromone components, (Z, E)-9,12-tetradecadienyl acetate (ZETA) and (Z)-9-tetradecadien-1-yl acetate (ZTA), is successful in its population management. In addition, botanical oils have extensively been investigated in stored product pest management, but the effect of synthetic sex pheromones on the mating of C. cautella in the presence of plant volatiles is still unknown. Spinosad is used in food facilities as a contact insecticide but, if C. cautella larvae burrow into food, they may escape from spinosad. Importantly, the impact of spinosad on burrowing ability of C. cautella remains unknown. Therefore, the objectives of this study were to determine the effects of sex pheromone components ZETA and ZTA in the presence of botanical oils on the mating of C. cautella and the burrowing ability of C. cautella larvae in different types of flour treated with spinosad. In the first study, male and female moths were introduced into the cubicle having botanical oils and pheromone components. The mating status of female moths and male moth attraction to the trap was determined. The control experiments had only the botanical oils or pheromones. In the second study, burrowing ability of C. cautella larvae through different flour types was evaluated over 10 d. The flour was sprayed with spinosad (treatments) or water (controls). The mating success was higher with botanical oils alone but declined with exposure to pheromone either alone or combined with botanical oils. No differences in male attraction to traps were observed in botanical only, pheromone only or pheromone + botanical oil treatments. The burrowing of C. cautella larvae differed with flour type and spinosad altered burrowing ability. Thus, we conclude that the mating and burrowing of C. cautella is influenced by its pheromone and by exposure to botanicals and spinosad.
Collapse
Affiliation(s)
- Abeysinghe M. P. Sammani
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Anuradhapura 50000, Sri Lanka; (A.M.P.S.); (D.M.S.K.D.)
| | - Dissanayaka M. S. K. Dissanayaka
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Anuradhapura 50000, Sri Lanka; (A.M.P.S.); (D.M.S.K.D.)
| | - Leanage K. W. Wijayaratne
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Anuradhapura 50000, Sri Lanka; (A.M.P.S.); (D.M.S.K.D.)
- Correspondence:
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Anuradhapura 50000, Sri Lanka;
| | - William R. Morrison
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66052, USA;
| |
Collapse
|
9
|
Chu X, Heinze S, Ian E, Berg BG. A Novel Major Output Target for Pheromone-Sensitive Projection Neurons in Male Moths. Front Cell Neurosci 2020; 14:147. [PMID: 32581719 PMCID: PMC7294775 DOI: 10.3389/fncel.2020.00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023] Open
Abstract
Even though insects have comparably small brains, they achieve astoundingly complex behaviors. One example is flying moths tracking minute amounts of pheromones using olfactory circuits. The tracking distance can be up to 1 km, which makes it essential that male moths respond efficiently and reliably to very few pheromone molecules. The male-specific macroglomerular complex (MGC) in the moth antennal lobe contains circuitry dedicated to pheromone processing. Output neurons from this region project along three parallel pathways, the medial, mediolateral, and lateral tracts. The MGC-neurons of the lateral tract are least described and their functional significance is mainly unknown. We used mass staining, calcium imaging, and intracellular recording/staining to characterize the morphological and physiological properties of these neurons in the noctuid moth, Helicoverpa armigera. All lateral-tract MGC neurons targeted the column, a small region within the superior intermediate neuropil. We identified this region as a unique converging site for MGC lateral-tract neurons responsive to pheromones, as well as a dense congregating site for plant odor information since a substantial number of lateral-tract neurons from ordinary glomeruli (OG) also terminates in this region. The lateral-tract MGC-neurons responded with a shorter peak latency than the well-described neurons in the medial tract. Different from the medial-tract MGC neurons encoding odor quality important for species-specific signal identification, those in the lateral tract convey a more robust and rapid signal-potentially important for fast control of hard-wired behavior.
Collapse
Affiliation(s)
- Xi Chu
- Chemosensory Laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Elena Ian
- Chemosensory Laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente G. Berg
- Chemosensory Laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Multimodal interactions in insect navigation. Anim Cogn 2020; 23:1129-1141. [PMID: 32323027 PMCID: PMC7700066 DOI: 10.1007/s10071-020-01383-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
Collapse
|
11
|
Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the Investigation of Volatile Semiochemicals on Insects: From Sampling to Statistical Analysis. INSECTS 2019; 10:insects10080241. [PMID: 31390759 PMCID: PMC6723273 DOI: 10.3390/insects10080241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
The recognition of volatile organic compounds (VOCs) involved in insect interactions with plants or other organisms is essential for constructing a holistic comprehension of their role in ecology, from which the implementation of new strategies for pest and disease vector control as well as the systematic exploitation of pollinators and natural enemies can be developed. In the present paper, some of the general methods employed in this field are examined, focusing on their available technologies. An important part of the investigations conducted in this context begin with VOC collection directly from host organisms, using classical extraction methods, by the employment of adsorption materials used in solid-phase micro extraction (SPME) and direct-contact sorptive extraction (DCSE) and, subsequently, analysis through instrumental analysis techniques such as gas chromatography (GC), nuclear magnetic resonance (NMR) and mass spectrometry (MS), which provide crucial information for determining the chemical identity of volatile metabolites. Behavioral experiments, electroantennography (EAG), and biosensors are then carried out to define the semiochemicals with the best potential for performing relevant functions in ecological relationships. Chemical synthesis of biologically-active VOCs is alternatively performed to scale up the amount to be used in different purposes such as laboratory or field evaluations. Finally, the application of statistical analysis provides tools for drawing conclusions about the type of correlations existing between the diverse experimental variables and data matrices, thus generating models that simplify the interpretation of the biological roles of VOCs.
Collapse
Affiliation(s)
- Ricardo Barbosa-Cornelio
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Fernando Cantor
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| | - Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| |
Collapse
|
12
|
Abstract
Animals can follow olfactory traces to find food, detect a sexual mate, or avoid predators. A new study reveals that pheromone-specific projection neurons in the cockroach have a spatially tuned receptive field, and allow encoding spatial information of an odorant.
Collapse
Affiliation(s)
- C Giovanni Galizia
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
13
|
Bilgera C, Yamamoto A, Sawano M, Matsukura H, Ishida H. Application of Convolutional Long Short-Term Memory Neural Networks to Signals Collected from a Sensor Network for Autonomous Gas Source Localization in Outdoor Environments. SENSORS 2018; 18:s18124484. [PMID: 30567386 PMCID: PMC6308690 DOI: 10.3390/s18124484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022]
Abstract
Convolutional Long Short-Term Memory Neural Networks (CNN-LSTM) are a variant of recurrent neural networks (RNN) that can extract spatial features in addition to classifying or making predictions from sequential data. In this paper, we analyzed the use of CNN-LSTM for gas source localization (GSL) in outdoor environments using time series data from a gas sensor network and anemometer. CNN-LSTM is used to estimate the location of a gas source despite the challenges created from inconsistent airflow and gas distribution in outdoor environments. To train CNN-LSTM for GSL, we used temporal data taken from a 5 × 6 metal oxide semiconductor (MOX) gas sensor array, spaced 1.5 m apart, and an anemometer placed in the center of the sensor array in an open area outdoors. The output of the CNN-LSTM is one of thirty cells approximating the location of a gas source. We show that by using CNN-LSTM, we were able to determine the location of a gas source from sequential data. In addition, we compared several artificial neural network (ANN) architectures as well as trained them without wind vector data to estimate the complexity of the task. We found that ANN is a promising prospect for GSL tasks.
Collapse
Affiliation(s)
- Christian Bilgera
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Akifumi Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Maki Sawano
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Haruka Matsukura
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan.
| | - Hiroshi Ishida
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
14
|
Copley S, Parthasarathy K, Willis MA. Optomotor steering and flight control requires a specific sub-section of the compound eye in the hawkmoth, Manduca sexta. ACTA ACUST UNITED AC 2018; 221:jeb.178210. [PMID: 29967220 DOI: 10.1242/jeb.178210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022]
Abstract
While tracking odor plumes, male hawkmoths use optic flow cues to stabilize their flight movements with respect to their environment. We studied the responses of freely flying moths tracking odor plumes in a laboratory wind tunnel and tethered moths in an optomotor flight simulator to determine the locations on the compound eye on which critical optic flow cues are detected. In these behavioral experiments, we occluded specific regions of the compound eye and systematically examined the moths' behavior for specific deficits in optic flow processing. Freely flying moths with the dorsal half of the compound eye painted were unable to maintain stable flight and track the wind-borne odor plume. However, the plume tracking performance of moths with the ventral half of their compound eyes painted was the same as unpainted controls. In a matched set of experiments, we presented tethered moths with moving vertically oriented sinusoidal gratings and found that individuals with their eyes unpainted, ventrally painted and medially painted all responded by attempting optomotor-driven turns in the same proportion. In contrast, individuals with their compound eyes dorsally painted, laterally painted and completely painted showed no optomotor turning response. We decreased the contrast of the visual stimulus and found that this relationship was consistent down to a contrast level of 2.5%. We conclude that visual input from the dorso-lateral region of the moth's visual world is critical for successful maintenance of flight stability and that this species' visual environment must meet or exceed a contrast ratio of 2.5% to support visual flight control.
Collapse
Affiliation(s)
- Sean Copley
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Mark A Willis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Kalyanasundaram P, Willis MA. Parameters of motion vision in low-light in the hawkmoth, Manduca sexta. J Exp Biol 2018; 221:jeb.173344. [DOI: 10.1242/jeb.173344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/28/2018] [Indexed: 11/20/2022]
Abstract
The hawkmoth Manduca sexta, is nocturnally active, beginning its flight activity at sunset, and executing rapid controlled maneuvers to search for food and mates in dim light conditions. This moth's visual system has been shown to trade off spatial and temporal resolution for increased sensitivity in these conditions. The study presented here uses tethered flying moths to characterize the flight performance envelope of M. sexta's wide-field-motion-triggered steering response in low light conditions by measuring attempted turning in response to wide-field visual motion. Moths were challenged with a horizontally oscillating sinusoidal grating at a range of luminance, from daylight to starlight conditions. The impact of luminance on response to a range of temporal frequencies and spatial wavelengths was assessed across a range of pattern contrasts. The optomotor response decreased as a function of decreasing luminance, and the lower limit of the moth's contrast sensitivity was found to be between 1% to 5%. The preferred spatial frequency for M. sexta increased from 0.06 to 0.3 cycles/degree as the luminance decreased, but the preferred temporal frequency remained stable at 4.5 Hz across all conditions. The relationship between the optomotor response time to the temporal frequency of the pattern movement did not vary significantly with luminance levels. Taken together, these results suggest that the behavioral response to wide-field visual input in M. sexta is adapted to operate during crepuscular to nocturnal luminance levels, and the decreasing light levels experienced during that period changes visual acuity and does not affect their response time significantly.
Collapse
Affiliation(s)
- P. Kalyanasundaram
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - M. A. Willis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| |
Collapse
|
16
|
Arnold SEJ, Stevenson PC, Belmain SR. Shades of yellow: interactive effects of visual and odour cues in a pest beetle. PeerJ 2016; 4:e2219. [PMID: 27478707 PMCID: PMC4950555 DOI: 10.7717/peerj.2219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/15/2016] [Indexed: 11/29/2022] Open
Abstract
Background: The visual ecology of pest insects is poorly studied compared to the role of odour cues in determining their behaviour. Furthermore, the combined effects of both odour and vision on insect orientation are frequently ignored, but could impact behavioural responses. Methods: A locomotion compensator was used to evaluate use of different visual stimuli by a major coleopteran pest of stored grains (Sitophilus zeamais), with and without the presence of host odours (known to be attractive to this species), in an open-loop setup. Results: Some visual stimuli—in particular, one shade of yellow, solid black and high-contrast black-against-white stimuli—elicited positive orientation behaviour from the beetles in the absence of odour stimuli. When host odours were also present, at 90° to the source of the visual stimulus, the beetles presented with yellow and vertical black-on-white grating patterns changed their walking course and typically adopted a path intermediate between the two stimuli. The beetles presented with a solid black-on-white target continued to orient more strongly towards the visual than the odour stimulus. Discussion: Visual stimuli can strongly influence orientation behaviour, even in species where use of visual cues is sometimes assumed to be unimportant, while the outcomes from exposure to multimodal stimuli are unpredictable and need to be determined under differing conditions. The importance of the two modalities of stimulus (visual and olfactory) in food location is likely to depend upon relative stimulus intensity and motivational state of the insect.
Collapse
Affiliation(s)
- Sarah E J Arnold
- Natural Resources Institute, University of Greenwich , Chatham Maritime, Kent , United Kingdom
| | - Philip C Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom; Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Steven R Belmain
- Natural Resources Institute, University of Greenwich , Chatham Maritime, Kent , United Kingdom
| |
Collapse
|
17
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
18
|
Sponberg S, Dyhr JP, Hall RW, Daniel TL. INSECT FLIGHT. Luminance-dependent visual processing enables moth flight in low light. Science 2015; 348:1245-8. [PMID: 26068850 DOI: 10.1126/science.aaa3042] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/29/2015] [Indexed: 11/02/2022]
Abstract
Animals must operate under an enormous range of light intensities. Nocturnal and twilight flying insects are hypothesized to compensate for dim conditions by integrating light over longer times. This slowing of visual processing would increase light sensitivity but should also reduce movement response times. Using freely hovering moths tracking robotic moving flowers, we showed that the moth's visual processing does slow in dim light. These longer response times are consistent with models of how visual neurons enhance sensitivity at low light intensities, but they could pose a challenge for moths feeding from swaying flowers. Dusk-foraging moths avoid this sensorimotor tradeoff; their nervous systems slow down but not so much as to interfere with their ability to track the movements of real wind-blown flowers.
Collapse
Affiliation(s)
- Simon Sponberg
- Department of Biology, University of Washington, Seattle, WA 98195, USA. School of Physics and School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Jonathan P Dyhr
- Department of Biology, University of Washington, Seattle, WA 98195, USA. Department of Biology, Northwest University, Kirkland, WA 98033, USA
| | - Robert W Hall
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Lockey JK, Willis MA. One antenna, two antennae, big antennae, small: total antennae length, not bilateral symmetry, predicts odor-tracking performance in the American cockroach Periplaneta americana. ACTA ACUST UNITED AC 2015; 218:2156-65. [PMID: 25987729 DOI: 10.1242/jeb.117721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/29/2015] [Indexed: 11/20/2022]
Abstract
Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed.
Collapse
Affiliation(s)
- Jacob K Lockey
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark A Willis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Pansopha P, Ando N, Kanzaki R. Dynamic use of optic flow during pheromone tracking by the male silkmoth, Bombyx mori. J Exp Biol 2014; 217:1811-20. [DOI: 10.1242/jeb.090266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several insects require both olfactory and visual cues during odour-source localisation to successfully locate an odour source. In the male silkmoth, Bombyx mori, detection of the female sex pheromone triggers a programmed walking pattern, starting from a surge (straight-line walking) followed by zigzag walking. Although pheromone-triggered behaviour in silkmoths is well understood, the role of visual cues remains obscure. To address this question, we performed behavioural experiments on tethered-walking moths by recording their locomotion during stimulation with a pheromone and a visual motion pattern (optic flow). The experiments were conducted under open- and closed-loop visual stimuli. We found that the use of optic flow input was determined by the behavioural state of surge and zigzagging. Silkmoths exhibited an optomotor response, which is a behavioural visual response, by turning towards the same direction as optic flow stimuli only during surge, but not during zigzagging. In addition, modulation of the zigzag walking pattern was observed when the moths were presented with biased closed-loop visual stimuli (visual feedback with biased constant optic flow); however, the directional preference mechanism was different from that of the optomotor response. Based on these findings, we suggest that the optomotor response is utilised for course control during straight-line walking, whereas the absence of optomotor response during zigzagging is used to effectively perform the programmed walking pattern. Considering the neural basis of programmed behaviour, we speculate that at least two visual pathways are involved in the state-dependent use of optic flow during odour tracking behaviour in silkmoths.
Collapse
Affiliation(s)
- Poonsup Pansopha
- Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8654, Japan
| | - Noriyasu Ando
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Ryohei Kanzaki
- Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
21
|
Roth E, Sponberg S, Cowan NJ. A comparative approach to closed-loop computation. Curr Opin Neurobiol 2014; 25:54-62. [DOI: 10.1016/j.conb.2013.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/02/2013] [Accepted: 11/18/2013] [Indexed: 01/08/2023]
|
22
|
Abstract
Various insects and small animals can navigate in turbulent streams to find their mates (or food) from sparse pheromone (odor) detections. Their access to internal space perception and use of cognitive maps still are heavily debated, but for some of them, limited space perception seems to be the rule. However, this poor space perception does not prevent them from impressive search capacities. Here, as an attempt to model these behaviors, we propose a scheme that can perform, even without a detailed internal space map, searches in turbulent streams. The algorithm is based on a standardized projection of the probability of the source position to remove space perception and on the evaluation of a free energy, whose minimization along the path gives direction to the searcher. An internal "temperature" allows active control of the exploration/exploitation balance during the search. We demonstrate the efficiency of the scheme numerically, with a computational model of odor plume propagation, and experimentally, with robotic searches of thermal sources in turbulent streams. In addition to being a model to describe animals' searches, this scheme may be applied to robotic searches in complex varying media without odometry error corrections and in problems in which active control of the exploration/exploitation balance is profitable.
Collapse
|
23
|
Sommer S, Weibel D, Blaser N, Furrer A, Wenzler NE, Rössler W, Wehner R. Group recruitment in a thermophilic desert ant, Ocymyrmex robustior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:711-22. [PMID: 23749328 DOI: 10.1007/s00359-013-0830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 11/27/2022]
Abstract
Thermophilic desert ants-Cataglyphis, Ocymyrmex, and Melophorus species inhabiting the arid zones of the Palaearctic region, southern Africa and central Australia, respectively-are solitary foragers, which have been considered to lack any kind of chemical recruitment. Here we show that besides mainly employing the solitary mode of food retrieval Ocymyrmex robustior regularly exhibits group recruitment to food patches that cannot be exploited individually. Running at high speed to recruitment sites that may be more than 60 m apart from the nest a leading ant, the recruiter, is followed by a loose and often quite dispersed group of usually 2-7 recruits, which often overtake the leader, or may lose contact, fall back and return to the nest. As video recordings show the leader, while continually keeping her gaster in a downward position, intermittently touches the surface of the ground with the tip of the gaster most likely depositing a volatile pheromone signal. These recruitment events occur during the entire diurnal activity period of the Ocymyrmex foragers, that is, even at surface temperatures of more than 60 °C. They may provide promising experimental paradigms for studying the interplay of orientation by chemical signals and path integration as well as other visual guidance routines.
Collapse
Affiliation(s)
- Stefan Sommer
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Ando N, Emoto S, Kanzaki R. Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay. BIOINSPIRATION & BIOMIMETICS 2013; 8:016008. [PMID: 23385386 DOI: 10.1088/1748-3182/8/1/016008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The reconstruction of mechanisms behind odour-tracking behaviours of animals is expected to enable the development of biomimetic robots capable of adaptive behaviour and effectively locating odour sources. However, because the behavioural mechanisms of animals have not been extensively studied, their behavioural capabilities cannot be verified. In this study, we have employed a mobile robot driven by a genuine insect (insect-controlled robot) to evaluate the behavioural capabilities of a biological system implemented in an artificial system. We used a male silkmoth as the 'driver' and investigated its behavioural capabilities to imposed perturbations during odour tracking. When we manipulated the robot to induce the turning bias, it located the odour source by compensatory turning of the on-board moth. Shifting of the orientation paths to the odour plume boundaries and decreased orientation ability caused by covering the visual field suggested that the moth steered with bilateral olfaction and vision to overcome the bias. An evaluation of the time delays of the moth and robot movements suggested an acceptable range for sensory-motor processing when the insect system was directly applied to artificial systems. Further evaluations of the insect-controlled robot will provide a 'blueprint' for biomimetic robots and strongly promote the field of biomimetics.
Collapse
Affiliation(s)
- N Ando
- Research Center for Advanced Science and Technology, The University of Tokyo, Japan.
| | | | | |
Collapse
|
25
|
Party V, Hanot C, Büsser DS, Rochat D, Renou M. Changes in odor background affect the locomotory response to pheromone in moths. PLoS One 2013; 8:e52897. [PMID: 23301000 PMCID: PMC3534683 DOI: 10.1371/journal.pone.0052897] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/22/2012] [Indexed: 11/30/2022] Open
Abstract
Many animals rely on chemical cues to recognize and locate a resource, and they must extract the relevant information from a complex and changing odor environment. For example, in moths, finding a mate is mediated by a sex pheromone, which is detected in a rich environment of volatile plant compounds. Here, we investigated the effects of a volatile plant background on the walking response of male Spodoptera littoralis to the female pheromone. Males were stimulated by combining pheromone with one of three plant compounds, and their walking paths were recorded with a locomotion compensator and analyzed. We found that the addition of certain volatile plant compounds disturbed the orientation toward the sex pheromone. The effect on locomotion was correlated with the capacity of the plant compound to antagonize pheromone detection by olfactory receptor neurons, suggesting a masking effect of the background over the pheromone signal. Moths were more sensitive to changes in background compared to a constant background, suggesting that a background odor also acts as a distracting stimulus. Our experiments show that the effects of odorant background on insect responses to chemical signals are complex and cannot be explained by a single mechanism.
Collapse
Affiliation(s)
- Virginie Party
- UMR 1272 Physiologie de l'Insecte Signalisation et Communication, INRA, Versailles, France.
| | | | | | | | | |
Collapse
|