1
|
Morrison PR, Bernal D, Sepulveda CA, Brauner CJ. The effect of temperature on haemoglobin-oxygen binding affinity in regionally endothermic and ectothermic sharks. J Exp Biol 2023; 226:286204. [PMID: 36576038 DOI: 10.1242/jeb.244979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Haemoglobin (Hb)-O2 binding affinity typically decreases with increasing temperature, but several species of ectothermic and regionally endothermic fishes exhibit reduced Hb thermal sensitivity. Regionally endothermic sharks, including the common thresher shark (Alopias vulpinus) and lamnid sharks such as the shortfin mako shark (Isurus oxyrinchus), can maintain select tissues and organs warmer than ambient temperature by retaining metabolic heat with vascular heat exchangers. In the ectothermic bigeye thresher shark (Alopias superciliosus), diurnal movements above and below the thermocline subject the tissues, including the blood, to a wide range of operating temperatures. Therefore, blood-O2 transport must occur across internal temperature gradients in regionally endothermic species, and over the range of environmental temperatures encountered by the ectothermic bigeye thresher shark. While previous studies have shown temperature-independent Hb-O2 affinity in lamnid sharks, including shortfin mako, the Hb-O2 affinity of the common and bigeye thresher sharks is unknown. Therefore, we examined the effect of temperature on whole-blood Hb-O2 affinity in common thresher shark and bigeye thresher shark. For comparison, analyses were also conducted on the shortfin mako shark and two ectothermic species, blue shark (Prionace glauca) and spiny dogfish (Squalus acanthias). Blood-O2 binding affinity was temperature independent for common thresher shark and shortfin mako shark, which should prevent internal temperature gradients from negatively affecting blood-O2 transport. Blue shark and spiny dogfish blood-O2 affinity decreased with increasing temperature, as expected, but bigeye thresher shark blood exhibited both a reduced temperature dependence and a high Hb-O2 affinity, which likely prevents large changes in environment temperature and low environmental oxygen from affecting O2 uptake.
Collapse
Affiliation(s)
- Phillip R Morrison
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Diego Bernal
- Department of Biology, University of Massachusetts, Dartmouth, MA 02747, USA
| | | | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
2
|
Nikinmaa M, Berenbrink M, Brauner CJ. Regulation of erythrocyte function: Multiple evolutionary solutions for respiratory gas transport and its regulation in fish. Acta Physiol (Oxf) 2019; 227:e13299. [PMID: 31102432 DOI: 10.1111/apha.13299] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
Abstract
Gas transport concepts in vertebrates have naturally been formulated based on human blood. However, the first vertebrates were aquatic, and fish and tetrapods diverged hundreds of millions years ago. Water-breathing vertebrates live in an environment with low and variable O2 levels, making environmental O2 an important evolutionary selection pressure in fishes, and various features of their gas transport differ from humans. Erythrocyte function in fish is of current interest, because current environmental changes affect gas transport, and because especially zebrafish is used as a model in biomedical studies, making it important to understand the differences in gas transport between fish and mammals to be able to carry out meaningful studies. Of the close to thirty thousand fish species, teleosts are the most species-numerous group. However, two additional radiations are discussed: agnathans and elasmobranchs. The gas transport by elasmobranchs may be closest to the ancestors of tetrapods. The major difference in their haemoglobin (Hb) function to humans is their high urea tolerance. Agnathans differ from other vertebrates by having Hbs, where cooperativity is achieved by monomer-oligomer equilibria. Their erythrocytes also lack the anion exchange pathway with profound effects on CO2 transport. Teleosts are characterized by highly pH sensitive Hbs, which can fail to become fully O2 -saturated at low pH. An adrenergically stimulated Na+ /H+ exchanger has evolved in their erythrocyte membrane, and plasma-accessible carbonic anhydrase can be differentially distributed among their tissues. Together, and differing from other vertebrates, these features can maximize O2 unloading in muscle while ensuring O2 loading in gills.
Collapse
Affiliation(s)
| | - Michael Berenbrink
- Institute of Integrative Biology, Department of Evolution, Ecology and Behaviour University of Liverpool Liverpool UK
| | - Colin J. Brauner
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
3
|
Nelson C, Barlow SL, Berenbrink M. ATP-induced reversed thermal sensitivity of O 2 binding in both major haemoglobin polymorphs of the non-endothermic Atlantic cod, Gadus morhua. ACTA ACUST UNITED AC 2019; 222:jeb.200279. [PMID: 31160424 DOI: 10.1242/jeb.200279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022]
Abstract
Atlantic cod is a species that is affected by climate change, with some populations being exposed to higher temperatures than others. The two polymorphs of its major haemoglobin type (HbI) show an inverse change in frequency along a latitudinal temperature cline in the North East Atlantic, which has been associated with differences in population performance and behavioural traits. An earlier study at the northern distribution limit of the species reported differential temperature sensitivities of red blood cell oxygen (O2) affinity between the northern cold-water HbI-2 polymorph and its southern, warm-water HbI-1 counter-part, which has since widely been held as adaptive for the species across its distributional range. The present study critically re-examined this hypothesis by comparing the thermal sensitivity of O2 binding in both purified HbI polymorphs from the southern, high-temperature distribution limit of the species under controlled conditions of allosteric modifiers of Hb function. Contrary to the prevailing view, the O2 affinity of the major HbI polymorphs did not differ from each other under any of the tested conditions. Depending on pH and ATP concentration, the temperature-sensitive and temperature-insensitive Hb-O2 affinity phenotypes - previously exclusively ascribed to HbI-1 and HbI-2, respectively - could be induced in both HbI polymorphs. These results are the first to establish a molecular mechanism behind a reversed temperature dependence of red blood cell O2 affinity in a non-endotherm fish and lay the basis for future studies on alternative mechanisms behind the differences in distribution, performance and behavioural traits associated with the different HbI polymorphs of Atlantic cod.
Collapse
Affiliation(s)
- Charlotte Nelson
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK .,Department of Zoology, The University of British Columbia, Biological Sciences Building, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Samantha L Barlow
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Michael Berenbrink
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
van den Thillart G, Wilms I, Nieveen M, Weber RE, Witte F. Hypoxia-induced changes in hemoglobins of Lake Victoria cichlids. ACTA ACUST UNITED AC 2018; 221:jeb.177832. [PMID: 29997155 DOI: 10.1242/jeb.177832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022]
Abstract
In a previous study, broods of the Lake Victoria cichlid Haplochromis ishmaeli raised under hypoxic or normoxic conditions showed striking differences in isohemoglobin (isoHb) pattern that were not observed in two other cichlids that do not belong to the Lake Victoria species flock. We therefore hypothesized that the adaptive mechanism seen in H. ishmaeli in response to hypoxia constitutes a trait that the Lake Victoria species flock inherited from ancestors that lived in hypoxic environments. We tested this hypothesis by designing split-brood experiments with three other representative species from the same species flock: the insectivorous Haplochromis thereuterion, the mollusk-shelling Platytaeniodus degeni and the zooplanktivorous Haplochromis piceatus, while keeping H. ishmaeli as a reference. Split broods were raised, under either normoxia or hypoxia. All hypoxia-raised (HR) individuals of each of the four species exhibited a distinctly different isoHb pattern compared with their normoxia-raised (NR) siblings. The hemoglobin of HR H. thereuterion showed higher O2 affinity compared with NR siblings particularly in the presence of ATP and GTP, indicating that blood of HR juveniles has significantly improved O2-binding affinity under hypoxic conditions. We also tested the capacity to acclimate at greater age in two species by reversing the O2 condition after 7 (H. thereuterion) and 4 (H. ishmaeli) months. After reacclimation for 1 and 2 months, respectively, we found incomplete reversal with intermediate isoHb patterns. As three of the four species do not encounter hypoxic conditions in their environment, this unique trait seems to be a relic inherited from predecessors that lived in hypoxic environments.
Collapse
Affiliation(s)
- Guido van den Thillart
- Institute of Biology Leiden, Department of Molecular Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Inger Wilms
- Institute of Biology Leiden, Department of Molecular Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Maaike Nieveen
- Institute of Biology Leiden, Department of Molecular Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roy E Weber
- Zoophysiology, Department of Biological Sciences, Aarhus University, C. F. Møllers Allé 1131, DK 8000 Aarhus, Denmark
| | - Frans Witte
- Institute of Biology Leiden, Department of Molecular Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
5
|
Barlow SL, Metcalfe J, Righton DA, Berenbrink M. Life on the edge: O2 binding in Atlantic cod red blood cells near their southern distribution limit is not sensitive to temperature or haemoglobin genotype. ACTA ACUST UNITED AC 2017; 220:414-424. [PMID: 28148818 PMCID: PMC5312735 DOI: 10.1242/jeb.141044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023]
Abstract
Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O2 saturation difference, Sa–vO2, another major determinant of circulatory O2 supply rate. The results showed statistically indistinguishable red blood cell O2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O2 binding (Bohr and Root effects). Modelling of Sa–vO2 at physiological pH, temperature and O2 partial pressures revealed a substantial capacity for increases in Sa–vO2 to meet rising tissue O2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa–vO2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O2 supply to tissue demand. Highlighted Article: Red blood cell oxygen binding affinity in Atlantic cod near their southern, warmer limit of distribution is largely temperature independent and not affected by functional differences between their major haemoglobin genotypes.
Collapse
Affiliation(s)
- Samantha L Barlow
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Julian Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - David A Righton
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - Michael Berenbrink
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
6
|
Harter TS, Brauner CJ. The O 2 and CO 2 Transport System in Teleosts and the Specialized Mechanisms That Enhance Hb–O 2 Unloading to Tissues. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Val AL, Paula-Silva MDN, Almeida-Val VMF, Wood CM. In vitro effects of increased temperature and decreased pH on blood oxygen affinity of 10 fish species of the Amazon. JOURNAL OF FISH BIOLOGY 2016; 89:264-279. [PMID: 27264614 DOI: 10.1111/jfb.13009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Blood-O2 affinities (P50 ) were measured over a physiologically relevant pH range at 31 (highest temperature average of Rio Negro over the last 8 years), 33 and 35° C for 10 species of the Rio Negro, aiming to test the acute effects of temperature foreseen by the IPCC (Intergovernmental Panel on Climate Change) for coming years. The animals were collected during an expedition to the Anavilhanas Islands of the Rio Negro, 110 km upstream from Manaus (2° 23' 41″ S; 60° 55' 14″ W). Hoplias malabaricus showed higher blood-O2 sensitivity to pH changes (Bohr effect, Φ = Δlog10 P50 ΔpH(-1) ) at both 31° C (Φ = -0·44) and 35° C (Φ = -0·26) compared to Osteoglossum bicirrhosum (Φ = -0·54 at 31° C and Φ = -0·58 at 35° C), but lower P50 under most conditions, and a greater sensitivity of P50 to temperature. Two out of the 10 analysed species had significant increases of P50 (lower blood-O2 affinity) at the highest temperature throughout the pH range tested. For all other species, a minor increase of P50 over the assay-tested temperatures was observed, although all presented a normal Bohr effect. Overall, a diversity of intensities of pH and temperature effects on blood-O2 affinities was observed, which seems to be connected to the biological characteristics of the analysed species. Thermal disturbances in their habitats, likely to occur due to the global warming, would impair blood-O2 binding and unloading in some of the analysed fish species. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
| | - M de N Paula-Silva
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
| | - V M F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
| | - C M Wood
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
8
|
Storz JF, Natarajan C, Moriyama H, Hoffmann FG, Wang T, Fago A, Malte H, Overgaard J, Weber RE. Oxygenation properties and isoform diversity of snake hemoglobins. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1178-91. [PMID: 26354849 DOI: 10.1152/ajpregu.00327.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | | | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi; and
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Damsgaard C, Phuong LM, Huong DTT, Jensen FB, Wang T, Bayley M. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction. Am J Physiol Regul Integr Comp Physiol 2015; 308:R907-15. [PMID: 25810388 DOI: 10.1152/ajpregu.00470.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/23/2015] [Indexed: 01/19/2023]
Abstract
Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors, such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl(-). Whole blood had a high O2 affinity (O2 tension at half saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔH(app) = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl(-) binding to Hb, which, in part, explains the high O2 affinity and high temperature sensitivity of blood O2 binding. This study demonstrates how a potent mechanism for increasing O2 affinity is linked to increased temperature sensitivity of O2 transport and provides a basic framework for a better understanding of how hypoxia-adapted species will react to increasing temperatures.
Collapse
Affiliation(s)
- Christian Damsgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark;
| | - Le My Phuong
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark; and
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Lilly LE, Bonaventura J, Lipnick MS, Block BA. Effect of temperature acclimation on red blood cell oxygen affinity in Pacific bluefin tuna (Thunnus orientalis) and yellowfin tuna (Thunnus albacares). Comp Biochem Physiol A Mol Integr Physiol 2015; 181:36-44. [DOI: 10.1016/j.cbpa.2014.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
|
11
|
Feng JB, Liu SK, Wang RJ, Zhang JR, Wang XL, Kaltenboeck L, Li JL, Liu ZJ. Molecular characterization, phylogenetic analysis and expression profiling of myoglobin and cytoglobin genes in response to heat stress in channel catfish Ictalurus punctatus. JOURNAL OF FISH BIOLOGY 2015; 86:592-604. [PMID: 25604925 DOI: 10.1111/jfb.12584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
To understand the function of myoglobin (Mb) and cytoglobin (Cygb) in channel catfish Ictalurus punctatus in response to heat stress, mb and cygb genes were identified and characterized in this study. These genes were widely expressed in all the tested tissues, but strong tissue preferences were observed, with the mb gene being expressed most highly in the heart, cygb1 most highly expressed in the intestine and cygb2 most highly expressed in the brain. After heat-stress challenge, mb and cygb genes were up-regulated in almost all tested tissues. In general, such up-regulation was more dramatic in the tolerant group than in the intolerant group, suggesting that higher expression of mb and cygb genes contributed to greater tolerance of I. punctatus to heat stress.
Collapse
Affiliation(s)
- J B Feng
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - S K Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - R J Wang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - J R Zhang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - X L Wang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - L Kaltenboeck
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - J L Li
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Z J Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
12
|
Malte CL, Jakobsen SL, Wang T. A critical evaluation of automated blood gas measurements in comparative respiratory physiology. Comp Biochem Physiol A Mol Integr Physiol 2014; 178:7-17. [DOI: 10.1016/j.cbpa.2014.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
|
13
|
Weber RE, Fago A, Campbell KL. Enthalpic partitioning of the reduced temperature sensitivity of O2 binding in bovine hemoglobin. Comp Biochem Physiol A Mol Integr Physiol 2014; 176:20-5. [PMID: 24983927 DOI: 10.1016/j.cbpa.2014.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/09/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022]
Abstract
The oxygenation enthalpy of the heme groups of hemoglobin (Hb) is inherently exothermic, resulting in decreased Hb-O2 affinity with rising temperature. However, oxygenation is coupled with endothermic dissociation of allosteric effectors (e.g. protons, chloride ions and organic phosphates) from the protein, which reduces the overall oxygenation enthalpy. The evolution of Hbs with reduced temperature sensitivity ostensibly safeguards O2 unloading in cold extremities of regionally-heterothermic vertebrates permitting energy-saving reductions in heat loss. Ungulate (e.g. bovine) Hbs have long served as a model system in this regard in that they exhibit numerically low oxygenation enthalpies that are thought to correlate with the presence of an additional Cl(-) binding site (compared to human Hb) comprised of three cationic residues at positions 8, 76 and 77 of the β-chains of Hb. However, ungulate Hbs also exhibit distinctive amino acid exchanges at the N-termini of the β-chains that stabilize the low-affinity deoxystructure of the Hb, mimicking the action of organic phosphates. In order to assess the relative contributions from these two effects, we measured the temperature sensitivity of Hb-O2 affinity in bovine and human Hbs in the absence and presence of Cl(-) ions under strictly controlled pH conditions. The data indicate that Cl(-)-binding accounts for a minority (~30%) of the total reduction in the oxygenation enthalpy manifested in bovine compared to human Hb, whereas the majority of this reduction is ascribable to structural differences, including increased β-chain hydrophobicity that would increase the heat of oxygenation-linked conformational change in bovine Hb.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, DK 8000 Aarhus C, Denmark.
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, DK 8000 Aarhus C, Denmark.
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada.
| |
Collapse
|
14
|
Enthalpic consequences of reduced chloride binding in Andean frog (Telmatobius peruvianus) hemoglobin. J Comp Physiol B 2014; 184:613-21. [DOI: 10.1007/s00360-014-0823-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
15
|
Oellermann M, Pörtner HO, Mark FC. Simultaneous high-resolution pH and spectrophotometric recordings of oxygen binding in blood microvolumes. ACTA ACUST UNITED AC 2014; 217:1430-6. [PMID: 24436387 DOI: 10.1242/jeb.092726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxygen equilibrium curves have been widely used to understand oxygen transport in numerous organisms. A major challenge has been to monitor oxygen binding characteristics and concomitant pH changes as they occur in vivo, in limited sample volumes. Here we report a technique allowing highly resolved and simultaneous monitoring of pH and blood pigment saturation in minute blood volumes. We equipped a gas diffusion chamber with a broad-range fibre-optic spectrophotometer and a micro-pH optode and recorded changes of pigment oxygenation along oxygen partial pressure (PO2) and pH gradients to test the setup. Oxygen binding parameters derived from measurements in only 15 μl of haemolymph from the cephalopod Octopus vulgaris showed low instrumental error (0.93%) and good agreement with published data. Broad-range spectra, each resolving 2048 data points, provided detailed insight into the complex absorbance characteristics of diverse blood types. After consideration of photobleaching and intrinsic fluorescence, pH optodes yielded accurate recordings and resolved a sigmoidal shift of 0.03 pH units in response to changing PO2 from 0 to 21 kPa. Highly resolved continuous recordings along pH gradients conformed to stepwise measurements at low rates of pH changes. In this study we showed that a diffusion chamber upgraded with a broad-range spectrophotometer and an optical pH sensor accurately characterizes oxygen binding with minimal sample consumption and manipulation. We conclude that the modified diffusion chamber is highly suitable for experimental biologists who demand high flexibility, detailed insight into oxygen binding as well as experimental and biological accuracy combined in a single setup.
Collapse
Affiliation(s)
- Michael Oellermann
- Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany
| | | | | |
Collapse
|
16
|
Weber RE, Fago A, Malte H, Storz JF, Gorr TA. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin. Am J Physiol Regul Integr Comp Physiol 2013; 305:R300-12. [PMID: 23720132 PMCID: PMC3743003 DOI: 10.1152/ajpregu.00014.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/22/2013] [Indexed: 11/22/2022]
Abstract
In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3(-)), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3(-) levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3(-) binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
17
|
Coppola D, Abbruzzetti S, Nicoletti F, Merlino A, Gambacurta A, Giordano D, Howes BD, De Sanctis G, Vitagliano L, Bruno S, di Prisco G, Mazzarella L, Smulevich G, Coletta M, Viappiani C, Vergara A, Verde C. ATP regulation of the ligand-binding properties in temperate and cold-adapted haemoglobins. X-ray structure and ligand-binding kinetics in the sub-Antarctic fish Eleginops maclovinus. MOLECULAR BIOSYSTEMS 2013; 8:3295-304. [PMID: 23086282 DOI: 10.1039/c2mb25210d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major haemoglobin of the sub-Antarctic fish Eleginops maclovinus was structurally and functionally characterised with the aim to compare molecular environmental adaptations in the O(2)-transport system of sub-Antarctic fishes of the suborder Notothenioidei with those of their high-latitude relatives. Ligand-binding kinetics of the major haemoglobin of E. maclovinus indicated strong stabilisation of the liganded quaternary T state, enhanced in the presence of the physiological allosteric effector ATP, compared to that of high-Antarctic Trematomus bernacchii. The activation enthalpy for O(2) dissociation was dramatically lower than that in T. bernacchii haemoglobin, suggesting remarkable differences in temperature sensitivity and structural changes associated with O(2) release and exit from the protein. The haemoglobin functional properties, together with the X-ray structure of the CO form at 1.49 Å resolution, the first of a temperate notothenioid, strongly support the hypothesis that in E. maclovinus, whose life-style varies according to changes in habitat, the mechanisms that regulate O(2) affinity and the ATP-induced Root effect differ from those of high-Antarctic Notothenioids.
Collapse
Affiliation(s)
- Daniela Coppola
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Manconi B, Pellegrini M, Messana I, Sanna MT, Castagnola M, Iavarone F, Coluccia E, Giardina B, Olianas A. The hemoglobin system of the serpent eel Ophisurus serpens: structural and functional characterization. J Comp Physiol B 2013; 183:905-19. [PMID: 23632627 DOI: 10.1007/s00360-013-0759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 11/27/2022]
Abstract
The hemoglobin system of the serpent eel Ophisurus serpens was structurally and functionally characterized with the aim of comparing it to the hemoglobin system of other fish species, as oxygen loading under the severe habitat conditions experienced by O. serpens could have necessitated specific adaptation mechanisms during evolution. The hemoglobin system of O. serpens includes one cathodic and four anodic components. The molecular mass of the α and β chains of the cathodic component as well as the 2 α and 4 β of the anodic components were determined. Analysis of the intact α and β chains from cathodic hemoglobin and their proteolytic digestion products by high-resolution MS and MS/MS experiments resulted in 92 and 95 % sequence coverage of the α and β globins, respectively. The oxygen binding properties of both hemoglobin components were analyzed with respect to their interactions with their physiological effectors. Stripped cathodic hemoglobin displayed the highest oxygen affinity among Anguilliformes with no significant effect of pH on O2-affinity. In the presence of both chloride and organic phosphates, O2-affinity was strongly reduced, and cooperativity was enhanced; moreover, cathodic hemoglobin contains two indistinguishable GTP-binding sites. Stripped anodic hemoglobins exhibited both low O2-affinity and low cooperativity and a larger Bohr effect than cathodic hemoglobin. The cathodic hemoglobin of O. serpens and the corresponding component of Conger conger share the greatest structural and functional similarity among hemoglobin systems of Anguilliformes studied to date, consistent with their phylogenetic relationship.
Collapse
Affiliation(s)
- Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nikinmaa M. Climate change and ocean acidification-interactions with aquatic toxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:365-72. [PMID: 23063067 DOI: 10.1016/j.aquatox.2012.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 05/16/2023]
Abstract
The possibilities for interactions between toxicants and ocean acidification are reviewed from two angles. First, it is considered how toxicant responses may affect ocean acidification by influencing the carbon dioxide balance. Second, it is introduced, how the possible changes in environmental conditions (temperature, pH and oxygenation), expected to be associated with climate change and ocean acidification, may interact with the toxicant responses of organisms, especially fish. One significant weakness in available data is that toxicological research has seldom been connected with ecological and physiological/biochemical research evaluating the responses of organisms to temperature, pH or oxygenation changes occurring in the natural environment. As a result, although there are significant potential interactions between toxicants and natural environmental responses pertaining to climate change and ocean acidification, it is very poorly known if such interactions actually occur, and can be behind the observed disturbances in the function and distribution of organisms in our seas.
Collapse
|
20
|
|
21
|
Yuan Y, Shen TJ, Gupta P, Ho NT, Simplaceanu V, Tam TCS, Hofreiter M, Cooper A, Campbell KL, Ho C. A biochemical--biophysical study of hemoglobins from woolly mammoth, Asian elephant, and humans. Biochemistry 2011; 50:7350-60. [PMID: 21806075 DOI: 10.1021/bi200777j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study is aimed at investigating the molecular basis of environmental adaptation of woolly mammoth hemoglobin (Hb) to the harsh thermal conditions of the Pleistocene ice ages. To this end, we have carried out a comparative biochemical-biophysical characterization of the structural and functional properties of recombinant hemoglobins (rHb) from woolly mammoth (rHb WM) and Asian elephant (rHb AE) in relation to human hemoglobins Hb A and Hb A(2) (a minor component of human blood). We have obtained oxygen equilibrium curves and calculated O(2) affinities, Bohr effects, and the apparent heat of oxygenation (ΔH) in the presence and absence of allosteric effectors [inorganic phosphate and inositol hexaphosphate (IHP)]. Here, we show that the four Hbs exhibit distinct structural properties and respond differently to allosteric effectors. In addition, the apparent heat of oxygenation (ΔH) for rHb WM is less negative than that of rHb AE, especially in phosphate buffer and the presence of IHP, suggesting that the oxygen affinity of mammoth blood was also less sensitive to temperature change. Finally, (1)H NMR spectroscopy data indicates that both α(1)(β/δ)(1) and α(1)(β/δ)(2) interfaces in rHb WM and rHb AE are perturbed, whereas only the α(1)δ(1) interface in Hb A(2) is perturbed compared to that in Hb A. The distinct structural and functional features of rHb WM presumably facilitated woolly mammoth survival in the Arctic environment.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Weber RE, Campbell KL. Temperature dependence of haemoglobin-oxygen affinity in heterothermic vertebrates: mechanisms and biological significance. Acta Physiol (Oxf) 2011; 202:549-62. [PMID: 20958923 DOI: 10.1111/j.1748-1716.2010.02204.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As demonstrated by August Krogh et al. a century ago, the oxygen-binding reaction of vertebrate haemoglobin is cooperative (described by sigmoid O(2) equilibrium curves) and modulated by CO(2) and protons (lowered pH) that - in conjunction with later discovered allosteric effectors (chloride, lactate and organic phosphate anions) - enhance O(2) unloading from blood in relatively acidic and oxygen-poor tissues. Based on the exothermic nature of the oxygenation of the haem groups, haemoglobin-O(2) affinity also decreases with rising temperature. This thermal sensitivity favours oxygen unloading in warm working muscles, but may become detrimental in regionally heterothermic animals, for example in cold-tolerant birds and mammals and warm-bodied fish, where it may perturb the balance between O(2) unloading and O(2) requirement in organs with substantially different temperatures than at the respiratory organs and thus commonly is reduced or obliterated. Given that the oxygenation of haemoglobin is linked with the endothermic release of allosteric effectors, increased effector interaction is an effective strategy that is widely exploited to achieve adaptive reductions in the temperature dependence of blood-O(2) affinity. The molecular mechanisms implicated in heterothermic vertebrates from different taxonomic groups reveal remarkable variability, both as regards the effectors implicated (protons in tunas, organic phosphates in sharks and billfish, chloride ions in ruminants and chloride and phosphate anions in the extinct woolly mammoth, etc.) and binding sites for the same effectors, indicating multiple evolutionary origins, but convergent physiological functionality (reductions in temperature dependence of O(2) -binding affinity that safeguard tissue O(2) supply).
Collapse
Affiliation(s)
- R E Weber
- Zoophysiology, Institute of Biological Sciences, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
23
|
Martínez-Fábregas J, Rubio S, Díaz-Quintana A, Díaz-Moreno I, De la Rosa MÁ. Proteomic tools for the analysis of transient interactions between metalloproteins. FEBS J 2011; 278:1401-10. [PMID: 21352492 DOI: 10.1111/j.1742-4658.2011.08061.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metalloproteins play major roles in cell metabolism and signalling pathways. In many cases, they show moonlighting behaviour, acting in different processes, depending on the physiological state of the cell. To understand these multitasking proteins, we need to discover the partners with which they carry out such novel functions. Although many technological and methodological tools have recently been reported for the detection of protein interactions, specific approaches to studying the interactions involving metalloproteins are not yet well developed. The task is even more challenging for metalloproteins, because they often form short-lived complexes that are difficult to detect. In this review, we gather the different proteomic techniques and biointeractomic tools reported in the literature. All of them have shown their applicability to the study of transient and weak protein-protein interactions, and are therefore suitable for metalloprotein interactions.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Centro de Investigaciones Científicas Isla de la Cartuja, Sevilla, Spain
| | | | | | | | | |
Collapse
|