1
|
Green PA. Behavior and morphology combine to influence energy dissipation in mantis shrimp (Stomatopoda). J Exp Biol 2024; 227:jeb247063. [PMID: 38722696 PMCID: PMC11128283 DOI: 10.1242/jeb.247063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/02/2024] [Indexed: 05/28/2024]
Abstract
Animals deliver and withstand physical impacts in diverse behavioral contexts, from competing rams clashing their antlers together to archerfish impacting prey with jets of water. Though the ability of animals to withstand impact has generally been studied by focusing on morphology, behaviors may also influence impact resistance. Mantis shrimp exchange high-force strikes on each other's coiled, armored telsons (tailplates) during contests over territory. Prior work has shown that telson morphology has high impact resistance. I hypothesized that the behavior of coiling the telson also contributes to impact energy dissipation. By measuring impact dynamics from high-speed videos of strikes exchanged during contests between freely moving animals, I found that approximately 20% more impact energy was dissipated by the telson as compared with findings from a prior study that focused solely on morphology. This increase is likely due to behavior: because the telson is lifted off the substrate, the entire body flexes after contact, dissipating more energy than exoskeletal morphology does on its own. While variation in the degree of telson coil did not affect energy dissipation, proportionally more energy was dissipated from higher velocity strikes and from strikes from more massive appendages. Overall, these findings show that analysis of both behavior and morphology is crucial to understanding impact resistance, and suggest future research on the evolution of structure and function under the selective pressure of biological impacts.
Collapse
Affiliation(s)
- P. A. Green
- UC Santa Barbara, Ecology, Evolution, and Marine Biology, Santa Barbara, CA 93106, USA
- Brown University, Ecology, Evolution, and Organismal Biology, Providence, RI 02912, USA
| |
Collapse
|
2
|
Dinh JP, Patek SN. Weapon performance and contest assessment strategies of the cavitating snaps in snapping shrimp. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jason P. Dinh
- Biology Department Duke University Durham North Carolina USA
| | - S. N. Patek
- Biology Department Duke University Durham North Carolina USA
| |
Collapse
|
3
|
Palaoro AV, Peixoto PEC. The hidden links between animal weapons, fighting style, and their effect on contest success: a meta‐analysis. Biol Rev Camb Philos Soc 2022; 97:1948-1966. [DOI: 10.1111/brv.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Alexandre V. Palaoro
- Programa de Pós‐Graduação em Ecologia e Evolução Universidade Federal de São Paulo Rua Prof. Artur Riedel 66 Diadema São Paulo State 99722‐270 Brazil
- Programa de Pós‐Graduação em Ecologia Universidade de São Paulo Rua do Matão Trav. 14 São Paulo São Paulo State 05508‐090 Brazil
- Department of Material Sciences and Engineering Clemson University 490 Sirrine Hall, 515 Calhoun Dr Clemson SC 29634 USA
| | - Paulo Enrique Cardoso Peixoto
- LASEXIA, Departamento de Genética, Ecologia e Evolução Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 Belo Horizonte Minas Gerais State 31270‐901 Brazil
| |
Collapse
|
4
|
Eigen L, Baum D, Dean MN, Werner D, Wölfer J, Nyakatura JA. Ontogeny of a tessellated surface: Carapace growth of the longhorn cowfish Lactoria cornuta. J Anat 2022; 241:565-580. [PMID: 35638264 PMCID: PMC9358767 DOI: 10.1111/joa.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. In contrast to artificial armors, the boxfish exoskeleton grows with the fish; the relationship between the tessellation and the gross structure of the armor is therefore critical to sustained protection throughout growth. To clarify whether or how the boxfish tessellation is maintained or altered with age, we quantify architectural aspects of the tessellated carapace of the longhorn cowfish Lactoria cornuta through ontogeny (across nearly an order of magnitude in standard length) and in a high‐throughput fashion, using high‐resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual. We show that carapace growth is canalized with little variability across individuals: rather than continually adding scutes to enlarge the carapace surface, the number of scutes is surprisingly constant, with scutes increasing in volume, thickness, and especially width with age. As cowfish and their scutes grow, scutes become comparatively thinner, with the scutes at the edges (weak points in a boxy architecture) being some of the thickest and most reinforced in younger animals and thinning most slowly across ontogeny. In contrast, smaller scutes with more variable curvature were found in the limited areas of more complex topology (e.g., around fin insertions, mouth, and anus). Measurements of Gaussian and mean curvature illustrate that cowfish are essentially tessellated boxes throughout life: predominantly zero curvature surfaces comprised of mostly flat scutes, and with scutes with sharp bends used sparingly to form box edges. Since growth of a curved, tiled surface with a fixed number of tiles would require tile restructuring to accommodate the surface's changing radius of curvature, our results therefore illustrate a previously unappreciated advantage of the odd boxfish morphology: by having predominantly flat surfaces, it is the box‐like body form that in fact permits a relatively straightforward growth system of this tessellated architecture (i.e., where material is added to scute edges). Our characterization of the ontogeny and maintenance of the carapace tessellation provides insights into the potentially conflicting mechanical, geometric, and developmental constraints of this species but also perspectives into natural strategies for constructing mutable tiled architectures. The carapace of boxfish is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. To clarify whether or how this armor is maintained or altered with age, we quantify architectural aspects of the carapace of the longhorn cowfish Lactoria cornuta through ontogeny, using high‐resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual.![]()
Collapse
Affiliation(s)
- Lennart Eigen
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Humboldt University of Berlin, Berlin, Germany
| | - Daniel Baum
- Visual and Data-Centric Computing Department, Zuse Institute Berlin, Berlin, Germany
| | - Mason N Dean
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniel Werner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jan Wölfer
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - John A Nyakatura
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Liang Y, Zhang H, Zhao Q, Lin Z, Zhang Z, Han Z, Ren L. Study on the heterogeneous material coupling connection characteristics and mechanical strength of Oratosquilla oratoria mantis shrimp saddle. Microscopy (Oxf) 2021; 70:361-367. [PMID: 33480427 DOI: 10.1093/jmicro/dfab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
The microstructure, chemical composition and mechanical strength of heterogeneous materials of mantis shrimp (Oratosquilla oratoria) saddle were studied. As the key component of the striking system, the saddle comprised two distinct layers including outer layer and inner layer. The outer layer contained blocky microtubules and exhibited compact appearance. The inner layer presented a typical periodic lamellar structure. Due to the change of the thickness of the mineralized outer layer, the organic multilamellar structure became the foundation and enhanced the connection strength (4.55 MPa) at the connect regions between the saddle and merus exoskeleton and membrane, respectively. In the process of fracture, the lamellar structure dispersed the stress effectively by the change of the crack deflection direction and the microfibrils ordered arrangement. The exploration of mantis shrimp saddle region is beneficial to understand the striking system and provided the possibility for the stable connection of heterogeneous materials in engineering fields. The microstructure, heterogeneous material connection characteristics and high mechanical strength of saddle provide bionic models for the preparation of fiber-reinforced resin composites and soft composites.
Collapse
Affiliation(s)
- Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Hao Zhang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Qian Zhao
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, Jilin, China
| | - Zhihui Zhang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| |
Collapse
|
6
|
deVries MS, Lowder KB, Taylor JRA. From Telson to Attack in Mantis Shrimp: Bridging Biomechanics and Behavior in Crustacean Contests. Integr Comp Biol 2021; 61:643-654. [PMID: 33974067 DOI: 10.1093/icb/icab064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the spirit of this symposium on the physical mechanisms of behavior, we review mantis shrimp ritualized fighting, from the telson to the attack, as an inspiring example of how the integration of biomechanics and behavioral research can yield a penetrating narrative for how animals accomplish important activities, including agonistic actions. Resolving conflicts with conspecifics over valuable resources is an essential task for animals, and this takes an unusual form in mantis shrimp due to their powerful raptorial appendages. Decades of field and laboratory research have provided key insights into the natural agonistic interactions of diverse mantis shrimp species, including how they use their raptorial weapons against one another in telson sparring matches over cavities. These insights provided the foundation for functional morphologists, biomechanists, and engineers to work through different levels of organization: from the kinematics of how the appendages move to the elastic mechanisms that power the strike, and down to the structure, composition, and material properties that transmit and protect against high-impact forces. Completing this narrative are studies on the defensive telson and how this structure is biomechanically matched to the weapon and the role it plays in ritualized fighting. The biomechanical understanding of the weapon and defense in mantis shrimp has, in turn, enabled a better understanding of whether mantis shrimp assess one another during contests and encouraged questions of evolutionary drivers on both the arsenal and behavior. Altogether, the body of research focused on mantis shrimp has presented perhaps the most comprehensive understanding of fighting, weapons, and defenses among crustaceans, from morphology and biomechanics to behavior and evolution. While this multi-level analysis of ritualized fighting in mantis shrimp is comprehensive, we implore the need to include additional levels of analysis to obtain a truly holistic understanding of this and other crustacean agonistic interactions. Specifically, both molting and environmental conditions are often missing from the narrative, yet they greatly affect crustacean weapons, defenses, and behavior. Applying this approach more broadly would generate a similarly profound understanding of how crustaceans carry out a variety of important tasks in diverse habitats.
Collapse
Affiliation(s)
- Maya S deVries
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| | | | - Jennifer R A Taylor
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Nekvapil F, Glamuzina B, Barbu-Tudoran L, Suciu M, Tămaş T, Pinzaru SC. Promoting hidden natural design templates in wasted shells of the mantis shrimp into valuable biogenic composite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119223. [PMID: 33262077 DOI: 10.1016/j.saa.2020.119223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
The mineralized cuticle of the mantis shrimps Squilla Mantis which serve as natural hammers, spears and armors, have attracted research attention from various fields due to its amazing mechanical properties which were studied from evolutionary and ecological points of view. Here we aimed to valorize the astonishing mantis shrimp shell waste resulted from fishery and seafood industry as valuable biogenic composite derived from nature, potentially re-usable for novel, smart materials or added-value by-products, aspect which was not deeply considered before. Employing multi-laser Raman spectroscopy and imaging, supported by x-ray diffraction and high-resolution electron microscopy, we discover that the peripheral segments anatomically known as claws and telson, featured completely different composition and morphology, suggesting different applicability. The claw presents a bulk Mg-CaCO3 structure reinforced with fluorapatite coating, while the carotenoid-rich telson presents a porous and anisotropic structure of an amorphous mixture of CaCO3 and CaPO4 in gradient deposition on the chitin-protein scaffold. Resonance Raman spectroscopy showed concentrated pools of astaxanthin carotenoid within the bright red spots visible on telson, Based on our findings, we discuss this material's potential for selective applicability, as a natural source of phosphate-carbonate minerals, antioxidants, biofertilizer, pollutant adsorbent, valuable material for regenerative medicine or even as a cell culture substrate. Knowledge-based approach on this bio-template is the basis for smart recycling of such fishery waste for sustainable development, by opening channels for blue bioeconomy avenue.
Collapse
Affiliation(s)
- Fran Nekvapil
- Biomolecular Physics Department, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Physics of Nanostructured Systems Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania; RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, Fântânele 42, 400293 Cluj-Napoca, Romania
| | - Branko Glamuzina
- Department for Aquaculture, University of Dubrovnik, Ćira Carića 4, 20 000 Dubrovnik, Croatia
| | - Lucian Barbu-Tudoran
- Electron Microscopy Centre, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania; Advanced Research and Technology Center for Alternative Energy, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania
| | - Maria Suciu
- Electron Microscopy Centre, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania; Advanced Research and Technology Center for Alternative Energy, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania
| | - Tudor Tămaş
- Department of Geology, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Simona Cintă Pinzaru
- Biomolecular Physics Department, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania; RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, Fântânele 42, 400293 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Jorge JF, Bergbreiter S, Patek SN. Pendulum-based measurements reveal impact dynamics at the scale of a trap-jaw ant. J Exp Biol 2021; 224:jeb.232157. [PMID: 33504588 DOI: 10.1242/jeb.232157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Small organisms can produce powerful, sub-millisecond impacts by moving tiny structures at high accelerations. We developed and validated a pendulum device to measure the impact energetics of microgram-sized trap-jaw ant mandibles accelerated against targets at 105 m s-2 Trap-jaw ants (Odontomachus brunneus; 19 individuals, 212 strikes) were suspended on one pendulum and struck swappable targets that were either attached to an opposing pendulum or fixed in place. Mean post-impact kinetic energy (energy from a strike converted to pendulum motion) was higher with a stiff target (21.0-21.5 µJ) than with a compliant target (6.4-6.5 µJ). Target mobility had relatively little influence on energy transfer. Mean contact duration of strikes against stiff targets was shorter (3.9-4.5 ms) than against compliant targets (6.2-7.9 ms). Shorter contact duration was correlated with higher post-impact kinetic energy. These findings contextualize and provide an energetic explanation for the diverse, natural uses of trap-jaw ant strikes such as impaling prey, launching away threats and performing mandible-powered jumps. The strong effect of target material on energetic exchange suggests material interactions as an avenue for tuning performance of small, high acceleration impacts. Our device offers a foundation for novel research into the ecomechanics and evolution of tiny biological impacts and their application in synthetic systems.
Collapse
Affiliation(s)
- Justin F Jorge
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - S N Patek
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
Zhang Y, Garrevoet J, Wang Y, Roeh JT, Terrill NJ, Falkenberg G, Dong Y, Gupta HS. Molecular to Macroscale Energy Absorption Mechanisms in Biological Body Armour Illuminated by Scanning X-ray Diffraction with In Situ Compression. ACS NANO 2020; 14:16535-16546. [PMID: 33034451 DOI: 10.1021/acsnano.0c02879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Determining multiscale, concurrent strain, and deformation mechanisms in hierarchical biological materials is a crucial engineering goal, to understand structural optimization strategies in Nature. However, experimentally characterizing complex strain and displacement fields within a 3D hierarchical composite, in a multiscale full-field manner, is challenging. Here, we determined the in situ strains at the macro-, meso-, and molecular-levels in stomatopod cuticle simultaneously, by exploiting the anisotropy of the 3D fiber diffraction coupled with sample rotation. The results demonstrate the method, using the mineralized 3D α-chitin fiber networks as strain sensors, can capture submicrometer deformation of a single lamella (mesoscale), can extract strain information on multiple constituents concurrently, and shows that α-chitin fiber networks deform elastically while the surrounding matrix deforms plastically before systematic failure under compression. Further, the results demonstrate a molecular-level prestrain gradient in chitin fibers, resulting from different mineralization degrees in the exo- and endo cuticle.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of High Energy Physics, Chinese Academy of Science, 100049 Beijing, China
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Yanhong Wang
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, E1 4NS London, U.K
| | - Jan Torben Roeh
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Nicholas J Terrill
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Harwell, U.K
| | | | - Yuhui Dong
- Institute of High Energy Physics, Chinese Academy of Science, 100049 Beijing, China
| | - Himadri S Gupta
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, E1 4NS London, U.K
| |
Collapse
|
10
|
Affiliation(s)
- Zachary Emberts
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
| |
Collapse
|
11
|
Green P, Harrison J. Quadratic resource value assessment during mantis shrimp (Stomatopoda) contests. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Sahay R, Agarwal K, Subramani A, Raghavan N, Budiman AS, Baji A. Helicoidally Arranged Polyacrylonitrile Fiber-Reinforced Strong and Impact-Resistant Thin Polyvinyl Alcohol Film Enabled by Electrospinning-Based Additive Manufacturing. Polymers (Basel) 2020; 12:polym12102376. [PMID: 33076527 PMCID: PMC7602797 DOI: 10.3390/polym12102376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
In this study, we demonstrate the use of parallel plate far field electrospinning (pp-FFES) based manufacturing system for the fabrication of polyacrylonitrile (PAN) fiber reinforced polyvinyl alcohol (PVA) strong polymer thin films (PVA SPTF). Parallel plate far field electrospinning (also known as the gap electrospinning) is generally used to produce uniaxially aligned fibers between the two parallel collector plates. In the first step, a disc containing PVA/H2O solution/bath (matrix material) was placed in between the two parallel plate collectors. Next, a layer of uniaxially aligned sub-micron PAN fibers (filler material) produced by pp-FFES was directly collected/embedded in the PVA/H2O solution by bringing the fibers in contact with the matrix. Next, the disc containing the matrix solution was rotated at 45° angular offset and then the next layer of the uniaxial fibers was collected/stacked on top of the previous layer with now 45° rotation between the two layers. This process was continued progressively by stacking the layers of uniaxially aligned arrays of fibers at 45° angular offsets, until a periodic pattern was achieved. In total, 13 such layers were laid within the matrix solution to make a helicoidal geometry with three pitches. The results demonstrate that embedding the helicoidal PAN fibers within the PVA enables efficient load transfer during high rate loading such as impact. The fabricated PVA strong polymer thin films with helicoidally arranged PAN fiber reinforcement (PVA SPTF-HA) show specific tensile strength 5 MPa·cm3·g−1 and can sustain specific impact energy (8 ± 0.9) mJ·cm3·g−1, which is superior to that of the pure PVA thin film (PVA TF) and PVA SPTF with randomly oriented PAN fiber reinforcement (PVA SPTF-RO). The novel fabrication methodology enables the further capability to produce even further smaller fibers (sub-micron down to even nanometer scales) and by the virtue of its layer-by-layer processing (in the manner of an additive manufacturing methodology) allowing further modulation of interfacial and inter-fiber adherence with the matrix materials. These parameters allow greater control and tunability of impact performances of the synthetic materials for various applications from army combat wear to sports and biomedical/wearable applications.
Collapse
Affiliation(s)
- Rahul Sahay
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore; (R.S.); (K.A.); (A.S.); (N.R.)
| | - Komal Agarwal
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore; (R.S.); (K.A.); (A.S.); (N.R.)
| | - Anbazhagan Subramani
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore; (R.S.); (K.A.); (A.S.); (N.R.)
| | - Nagarajan Raghavan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore; (R.S.); (K.A.); (A.S.); (N.R.)
| | - Arief S. Budiman
- Industrial Engineering Department, BINUS Graduate Program—Master of Industrial Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
- Correspondence: (A.S.B.); (A.B.)
| | - Avinash Baji
- Department of Engineering, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence: (A.S.B.); (A.B.)
| |
Collapse
|
13
|
Kruppert S, Chu F, Stewart MC, Schmitz L, Summers AP. Ontogeny and potential function of poacher armor (Actinopterygii: Agonidae). J Morphol 2020; 281:1018-1028. [PMID: 32621639 DOI: 10.1002/jmor.21223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/11/2022]
Abstract
Many vertebrates are armored over all or part of their body. The armor may serve several functional roles including defense, offense, visual display, and signal of experience/capability. Different roles imply different tradeoffs; for example, defensive armor usually trades resistance to attack for maneuverability. The poachers (Agonidae), 47 species of scorpaeniform fishes, are a useful system for understanding the evolution and function of armor due to their variety and extent of armoring. Using publically available CT-scan data from 27 species in 16 of 21 genera of poachers we compared the armor to axial skeletal in the mid body region. The ratio of average armor density to average skeleton density ranged from 0.77 to 1.17. From a defensive point of view, the total investment in mineralization (volume * average density) is more interesting. There was 10 times the material invested in the armor as in the endoskeleton in some small, smooth plated species, like Aspidophoroides olrikii. At the low end, some visually arresting species like Percis japonica, had ratios as low as 2:1. We categorized the extent and type (impact vs. abrasion) in 34 Agonopsis vulsa across all 35+ plates in the eight rows along the body. The ventral rows show abrasive damage along the entire length of the fish that gets worse with age. Impact damage to head and tail plates gets more severe and occurs at higher rates with age. The observed damage rates and the large investment in mineralization of the armor suggest that it is not just for show, but is a functional defensive structure. We cannot say what the armor is defense against, but the abrasive damage on the ventrum implies their benthic lifestyle involves rubbing on the substrate. The impact damage could result from predatory attacks or from intraspecific combat.
Collapse
Affiliation(s)
- Sebastian Kruppert
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
| | - Fabien Chu
- University of Washington, Seattle, Washington, USA
| | - Morgan C Stewart
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA.,W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont McKenna, California, USA
| | - Lars Schmitz
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont McKenna, California, USA
| | - Adam P Summers
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
| |
Collapse
|
14
|
Patek SN. The Power of Mantis Shrimp Strikes: Interdisciplinary Impacts of an Extreme Cascade of Energy Release. Integr Comp Biol 2020; 59:1573-1585. [PMID: 31304967 DOI: 10.1093/icb/icz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the course of a single raptorial strike by a mantis shrimp (Stomatopoda), the stages of energy release span six to seven orders of magnitude of duration. To achieve their mechanical feats of striking at the outer limits of speeds, accelerations, and impacts among organisms, they use a mechanism that exemplifies a cascade of energy release-beginning with a slow and forceful, spring-loading muscle contraction that lasts for hundreds of milliseconds and ending with implosions of cavitation bubbles that occur in nanoseconds. Mantis shrimp use an elastic mechanism built of exoskeleton and controlled with a latching mechanism. Inspired by both their mechanical capabilities and evolutionary diversity, research on mantis shrimp strikes has provided interdisciplinary and fundamental insights to the fields of elastic mechanisms, fluid dynamics, evolutionary dynamics, contest dynamics, the physics of fast, small systems, and the rapidly-expanding field of bioinspired materials science. Even with these myriad connections, numerous discoveries await, especially in the arena of energy flow through materials actuating and controlling fast, impact fracture resistant systems.
Collapse
Affiliation(s)
- S N Patek
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Connors M, Yang T, Hosny A, Deng Z, Yazdandoost F, Massaadi H, Eernisse D, Mirzaeifar R, Dean MN, Weaver JC, Ortiz C, Li L. Bioinspired design of flexible armor based on chiton scales. Nat Commun 2019; 10:5413. [PMID: 31822663 PMCID: PMC6904579 DOI: 10.1038/s41467-019-13215-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Man-made armors often rely on rigid structures for mechanical protection, which typically results in a trade-off with flexibility and maneuverability. Chitons, a group of marine mollusks, evolved scaled armors that address similar challenges. Many chiton species possess hundreds of small, mineralized scales arrayed on the soft girdle that surrounds their overlapping shell plates. Ensuring both flexibility for locomotion and protection of the underlying soft body, the scaled girdle is an excellent model for multifunctional armor design. Here we conduct a systematic study of the material composition, nanomechanical properties, three-dimensional geometry, and interspecific structural diversity of chiton girdle scales. Moreover, inspired by the tessellated organization of chiton scales, we fabricate a synthetic flexible scaled armor analogue using parametric computational modeling and multi-material 3D printing. This approach allows us to conduct a quantitative evaluation of our chiton-inspired armor to assess its orientation-dependent flexibility and protection capabilities.
Collapse
Affiliation(s)
- Matthew Connors
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Ting Yang
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Ahmed Hosny
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Fatemeh Yazdandoost
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Hajar Massaadi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Douglas Eernisse
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92834, USA
| | - Reza Mirzaeifar
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Mason N Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424, Potsdam, Germany
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Christine Ortiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
| |
Collapse
|
16
|
Matrix-induced pre-strain and mineralization-dependent interfibrillar shear transfer enable 3D fibrillar deformation in a biogenic armour. Acta Biomater 2019; 100:18-28. [PMID: 31563691 DOI: 10.1016/j.actbio.2019.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
The cuticle of stomatopod is an example of a natural mineralized biomaterial, consisting of chitin, amorphous calcium carbonate and protein components with a multiscale hierarchical structure, and forms a protective shell with high impact resistance. At the ultrastructural level, cuticle mechanical functionality is enabled by the nanoscale architecture, wherein chitin fibrils are in intimate association with enveloping mineral and proteins. However, the interactions between these ultrastructural building blocks, and their coupled response to applied load, remain unclear. Here, we elucidate these interactions via synchrotron microbeam wide-angle X-ray diffraction combined with in situ tensile loading, to quantify the chitin crystallite structure of native cuticle - and after demineralization and deproteinization - as well as time-resolved changes in chitin fibril strain on macroscopic loading. We demonstrate chitin crystallite stabilization by mineral, seen via a compressive pre-strain of approximately 0.10% (chitin/protein fibre pre-stress of ∼20 MPa), which is lost on demineralization. Clear reductions of stiffness at the fibrillar-level following matrix digestion are linked to the change in the protein/matrix mechanical properties. Furthermore, both demineralization and deproteinization alter the 3D-pattern of deformation of the fibrillar network, with a non-symmetrical angular fibril strain induced by the chemical modifications, associated with loss of the load-transferring interfibrillar matrix. Our results demonstrate and quantify the critical role of interactions at the nanoscale (between chitin-protein and chitin-mineral) in enabling the molecular conformation and outstanding mechanical properties of cuticle, which will inform future design of hierarchical bioinspired composites. STATEMENT OF SIGNIFICANCE: Chitinous biomaterials (e.g. arthropod cuticle) are widespread in nature and attracting attention for bioinspired design due to high impact resistance coupled with light weight. However, how the nanoscale interactions of the molecular building blocks - alpha-chitin, protein and calcium carbonate mineral - lead to these material properties is not clear. Here we used X-ray scattering to determine the cooperative interactions between chitin fibrils, protein matrix and biominerals, during tissue loading. We find that the chitin crystallite structure is stabilized by mineral nanoparticles, the protein phase prestresses chitin fibrils, and that chemical modification of the interfibrillar matrix significantly disrupts 2D mechanics of the microfibrillar chitin plywood network. These results will aid rational design of advanced chitin-based biomaterials with high impact resistance.
Collapse
|
17
|
Taylor JRA, Scott NI, Rouse GW. Evolution of mantis shrimp telson armour and its role in ritualized fighting. J R Soc Interface 2019; 16:20190203. [PMID: 31455162 PMCID: PMC6731505 DOI: 10.1098/rsif.2019.0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/26/2019] [Indexed: 11/12/2022] Open
Abstract
Mantis shrimp possess both formidable weapons and impact-resistant armour that clash during ritualized combat. The telson is one of few biological structures known to withstand the repeated high impact forces of smashing mantis shrimp strikes, and it is hypothesized that this pairing of armour and weapon is associated with the evolution of telson sparring. We carried out a comparative analysis of telson impact mechanics across 15 mantis shrimp species to assess if the telsons of sparring species (i) are consistently specialized for impact-resistance, (ii) are more impact-resistant than those of non-sparring species, and (iii) have impact parameters that correlate with body size, and thereby useful for assessment. Our data from ball drop tests show that the telsons of all species function like a stiff spring that dissipates most of the impact energy, but none of the measured impact parameters are correlated with the occurrence of sparring behaviour. Impact parameters were correlated with body mass for only some species, suggesting that it is not broadly useful for size assessment during ritualized fighting. Contrary to expectation, sparring mantis shrimp do not appear to have coevolved telson armour that is more robust to impact than non-sparring species. Rather, telson structure is inherently impact-resistant.
Collapse
Affiliation(s)
- Jennifer R. A. Taylor
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
18
|
Optimization of bio-inspired bi-directionally corrugated panel impact-resistance structures: Numerical simulation and selective laser melting process. J Mech Behav Biomed Mater 2019; 91:59-67. [DOI: 10.1016/j.jmbbm.2018.11.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022]
|
19
|
Green PA, Patek SN. Mutual assessment during ritualized fighting in mantis shrimp (Stomatopoda). Proc Biol Sci 2019; 285:rspb.2017.2542. [PMID: 29343603 DOI: 10.1098/rspb.2017.2542] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022] Open
Abstract
Safe and effective conflict resolution is critical for survival and reproduction. Theoretical models describe how animals resolve conflict by assessing their own and/or their opponent's ability (resource holding potential, RHP), yet experimental tests of these models are often inconclusive. Recent reviews have suggested this uncertainty could be alleviated by using multiple approaches to test assessment models. The mantis shrimp Neogonodactylus bredini presents visual displays and ritualistically exchanges high-force strikes during territorial contests. We tested how N. bredini contest dynamics were explained by any of three assessment models-pure self-assessment, cumulative assessment and mutual assessment-using correlations and a novel, network analysis-based sequential behavioural analysis. We staged dyadic contests over burrow access between competitors matched either randomly or based on body size. In both randomly and size-matched contests, the best metric of RHP was body mass. Burrow residency interacted with mass to predict outcome. Correlations between contest costs and RHP rejected pure self-assessment, but could not fully differentiate between cumulative and mutual assessment. The sequential behavioural analysis ruled out cumulative assessment and supported mutual assessment. Our results demonstrate how multiple analyses provide strong inference to tests of assessment models and illuminate how individual behaviours constitute an assessment strategy.
Collapse
Affiliation(s)
- P A Green
- Biology Department, Duke University, Durham, NC, USA
| | - S N Patek
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Green PA, McHenry MJ, Patek SN. Context-dependent scaling of kinematics and energetics during contests and feeding in mantis shrimp. J Exp Biol 2019; 222:jeb.198085. [DOI: 10.1242/jeb.198085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Measurements of energy use, and its scaling with size, are critical to understanding how organisms accomplish myriad tasks. For example, energy budgets are central to game theory models of assessment during contests and underlie patterns of feeding behavior. Clear tests connecting energy to behavioral theory require measurements of the energy use of single individuals for particular behaviors. Many species of mantis shrimp (Stomatopoda: Crustacea) use elastic energy storage to power high-speed strikes that they deliver to opponents during territorial contests and to hard-shelled prey while feeding. We compared the scaling of strike kinematics and energetics between feeding and contests in the mantis shrimp Neogonodactylus bredini. We filmed strikes with high-speed video, measured strike velocity, and used a mathematical model to calculate strike energy. During contests, strike velocity did not scale with body size but strike energy scaled positively with size. Conversely, while feeding, strike velocity decreased with increasing size and strike energy did not vary according to body size. Individuals most likely achieved this strike variation through differential compression of their exoskeletal spring prior to the strike. Post-hoc analyses found that N. bredini used greater velocity and energy when striking larger opponents, yet variation in prey size was not accompanied by varying strike velocity or energetics. Our estimates of energetics inform prior tests of contest and feeding behavior in this species. More broadly, our findings elucidate the role behavioral context plays in measurements of animal performance.
Collapse
Affiliation(s)
- P. A. Green
- Biology Department, Duke University, Durham, NC 27708, USA
| | - M. J. McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - S. N. Patek
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
21
|
Solano-Brenes D, García-Hernández S, Machado G. All the better to bite you with! Striking intrasexual differences in cheliceral size define two male morphs in an Amazonian arachnid. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Diego Solano-Brenes
- Universidad de Costa Rica, Sede Rodrigo Facio, San Pedro de Montes de Oca, San José, Costa Rica
| | - Solimary García-Hernández
- Programa de Pós-graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Glauco Machado
- LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Zhang X, Cai ZB, Li W, Zhu MH. Understanding hydration effects on mechanical and impacting properties of turtle shell. J Mech Behav Biomed Mater 2017; 78:116-123. [PMID: 29156290 DOI: 10.1016/j.jmbbm.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/06/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
Study of the properties of natural biomaterials provides a reliable experimental basis for the design of biomimetic materials. The mechanical properties and impact wear behaviors of turtle shell with different soaking time were investigated on a micro-amplitude impact wear tester. The damage behavior of turtle shells with different soaking time and impact cycles were systematically analyzed, also the impact dynamics behavior was inspected during the impact wear progress. The results showed that the energy absorption and impact contact force were significantly different with varied soaking time. Under different impact cycles, the peak contact force of shell samples with same soaking time were approximate to each other in value and the values of impact contact time change in a small range. However, the damage extent of shells were distinct with varied impact cycles. It was found that impact worn scars of shells increase with impact cycles increasing. However, under the same impact cycles, energy absorption and contact time increased with the extending of soaking time, but the peak contact force decrease. Especially shell without soaking, the absorption rate is the lowest.
Collapse
Affiliation(s)
- Xu Zhang
- Tribology Research Institute, Key Laboratory of Advanced Materials Technology, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhen-Bing Cai
- Tribology Research Institute, Key Laboratory of Advanced Materials Technology, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wei Li
- Tribology Research Institute, Key Laboratory of Advanced Materials Technology, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Min-Hao Zhu
- Tribology Research Institute, Key Laboratory of Advanced Materials Technology, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
23
|
Kruppert S, Horstmann M, Weiss LC, Witzel U, Schaber CF, Gorb SN, Tollrian R. Biomechanical properties of predator-induced body armour in the freshwater crustacean Daphnia. Sci Rep 2017; 7:9750. [PMID: 28851950 PMCID: PMC5575280 DOI: 10.1038/s41598-017-09649-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
The freshwater crustacean Daphnia is known for its ability to develop inducible morphological defences that thwart predators. These defences are developed only in the presence of predators and are realized as morphological shape alterations e.g. 'neckteeth' in D. pulex and 'crests' in D. longicephala. Both are discussed to hamper capture, handling or consumption by interfering with the predator's prey capture devices. Additionally, D. pulex and some other daphniids were found to armour-up and develop structural alterations resulting in increased carapace stiffness. We used scanning transmission electron microscopy (STEM) and confocal laser scanning microscopy (CLSM) to identify predator-induced structural and shape alterations. We found species specific structural changes accompanying the known shape alterations. The cuticle becomes highly laminated (i.e. an increased number of layers) in both species during predator exposure. Using nano- and micro-indentation as well as finite element analysis (FEA) we determined both: the structure's and shape's contribution to the carapace's mechanical resistance. From our results we conclude that only structural alterations are responsible for increased carapace stiffness, whereas shape alterations appear to pose handling difficulties during prey capture. Therefore, these defences act independently at different stages during predation.
Collapse
Affiliation(s)
- Sebastian Kruppert
- Department of Animal Ecology, Evolution and Biodiversity; Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Martin Horstmann
- Department of Animal Ecology, Evolution and Biodiversity; Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Linda C Weiss
- Department of Animal Ecology, Evolution and Biodiversity; Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Ulrich Witzel
- Institute for Product and Service Engineering, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Clemens F Schaber
- Department of Functional Morphology and Biomechanics; Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics; Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity; Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
24
|
Zhang Y, De Falco P, Wang Y, Barbieri E, Paris O, Terrill NJ, Falkenberg G, Pugno NM, Gupta HS. Towards in situ determination of 3D strain and reorientation in the interpenetrating nanofibre networks of cuticle. NANOSCALE 2017; 9:11249-11260. [PMID: 28753215 DOI: 10.1039/c7nr02139a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Determining the in situ 3D nano- and microscale strain and reorientation fields in hierarchical nanocomposite materials is technically very challenging. Such a determination is important to understand the mechanisms enabling their functional optimization. An example of functional specialization to high dynamic mechanical resistance is the crustacean stomatopod cuticle. Here we develop a new 3D X-ray nanostrain reconstruction method combining analytical modelling of the diffraction signal, fibre-composite theory and in situ deformation, to determine the hitherto unknown nano- and microscale deformation mechanisms in stomatopod tergite cuticle. Stomatopod cuticle at the nanoscale consists of mineralized chitin fibres and calcified protein matrix, which form (at the microscale) plywood (Bouligand) layers with interpenetrating pore-canal fibres. We uncover anisotropic deformation patterns inside Bouligand lamellae, accompanied by load-induced fibre reorientation and pore-canal fibre compression. Lamination theory was used to decouple in-plane fibre reorientation from diffraction intensity changes induced by 3D lamellae tilting. Our method enables separation of deformation dynamics at multiple hierarchical levels, a critical consideration in the cooperative mechanics characteristic of biological and bioinspired materials. The nanostrain reconstruction technique is general, depending only on molecular-level fibre symmetry and can be applied to the in situ dynamics of advanced nanostructured materials with 3D hierarchical design.
Collapse
Affiliation(s)
- Y Zhang
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK. and Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - P De Falco
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK.
| | - Y Wang
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK.
| | - E Barbieri
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK.
| | - O Paris
- Institute of Physics, Montanuniversitaet Leoben, Leoben, Austria
| | - N J Terrill
- Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
| | - G Falkenberg
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - N M Pugno
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy and Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK. and Ket Lab, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico snc, 00133, Rome, Italy
| | - H S Gupta
- Queen Mary University of London, Institute of Bioengineering and School of Engineering and Material Science, London, E1 4NS, UK.
| |
Collapse
|
25
|
Yaraghi NA, Guarín-Zapata N, Grunenfelder LK, Hintsala E, Bhowmick S, Hiller JM, Betts M, Principe EL, Jung JY, Sheppard L, Wuhrer R, McKittrick J, Zavattieri PD, Kisailus D. A Sinusoidally Architected Helicoidal Biocomposite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6835-44. [PMID: 27238289 DOI: 10.1002/adma.201600786] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/03/2016] [Indexed: 05/21/2023]
Abstract
A fibrous herringbone-modified helicoidal architecture is identified within the exocuticle of an impact-resistant crustacean appendage. This previously unreported composite microstructure, which features highly textured apatite mineral templated by an alpha-chitin matrix, provides enhanced stress redistribution and energy absorption over the traditional helicoidal design under compressive loading. Nanoscale toughening mechanisms are also identified using high-load nanoindentation and in situ transmission electron microscopy picoindentation.
Collapse
Affiliation(s)
- Nicholas A Yaraghi
- Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
| | - Nicolás Guarín-Zapata
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Lessa K Grunenfelder
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Eric Hintsala
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | | | - Mark Betts
- TESCAN USA Inc, Pleasanton, CA, 94588, USA
| | | | - Jae-Young Jung
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Leigh Sheppard
- Advanced Materials Characterization Facility, Office of the Deputy Vice-Chancellor (R&D) Western Sydney University, Penrith, NSW, 2751, Australia
| | - Richard Wuhrer
- Advanced Materials Characterization Facility, Office of the Deputy Vice-Chancellor (R&D) Western Sydney University, Penrith, NSW, 2751, Australia
| | - Joanna McKittrick
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pablo D Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - David Kisailus
- Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
26
|
Green PA, Patek SN. Contests with deadly weapons: telson sparring in mantis shrimp (Stomatopoda). Biol Lett 2016; 11:20150558. [PMID: 26399976 DOI: 10.1098/rsbl.2015.0558] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mantis shrimp strike with extreme impact forces that are deadly to prey. They also strike conspecifics during territorial contests, yet theoretical and empirical findings in aggressive behaviour research suggest competitors should resolve conflicts using signals before escalating to dangerous combat. We tested how Neogonodactylus bredini uses two ritualized behaviours to resolve size-matched contests: meral spread visual displays and telson (tailplate) strikes. We predicted that (i) most contests would be resolved by meral spreads, (ii) meral spreads would reliably signal strike force and (iii) strike force would predict contest success. The results were unexpected for each prediction. Contests were not resolved by meral spreads, instead escalating to striking in 33 of 34 experiments. The size of meral spread components did not strongly correlate with strike force. Strike force did not predict contest success; instead, winners delivered more strikes. Size-matched N. bredini avoid deadly combat not by visual displays, but by ritualistically and repeatedly striking each other's telsons until the loser retreats. We term this behaviour 'telson sparring', analogous to sparring in other weapon systems. We present an alternative framework for mantis shrimp contests in which the fight itself is the signal, serving as a non-lethal indicator of aggressive persistence or endurance.
Collapse
|
27
|
Zhang Y, Paris O, Terrill NJ, Gupta HS. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour. Sci Rep 2016; 6:26249. [PMID: 27211574 PMCID: PMC4876318 DOI: 10.1038/srep26249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/27/2016] [Indexed: 11/26/2022] Open
Abstract
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.
Collapse
Affiliation(s)
- Y. Zhang
- Queen Mary University of London, School of Engineering and Material Science, London, E1 4NS, UK
| | - O. Paris
- Institute of Physics, Montanuniversitaet Leoben, Leoben, Austria
| | - N. J. Terrill
- Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
| | - H. S. Gupta
- Queen Mary University of London, School of Engineering and Material Science, London, E1 4NS, UK
| |
Collapse
|
28
|
Achrai B, Daniel Wagner H. The red-eared slider turtle carapace under fatigue loading: The effect of rib–suture arrangement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:128-33. [DOI: 10.1016/j.msec.2015.04.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/26/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
|
29
|
Achrai B, Bar-On B, Wagner HD. Biological armors under impact--effect of keratin coating, and synthetic bio-inspired analogues. BIOINSPIRATION & BIOMIMETICS 2015; 10:016009. [PMID: 25599251 DOI: 10.1088/1748-3190/10/1/016009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures.
Collapse
Affiliation(s)
- B Achrai
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
30
|
Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon WJ, Swanson B, Zavattieri P, DiMasi E, Kisailus D. The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer. Science 2012; 336:1275-80. [DOI: 10.1126/science.1218764] [Citation(s) in RCA: 521] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
Patek SN, Dudek DM, Rosario MV. From bouncy legs to poisoned arrows: elastic movements in invertebrates. J Exp Biol 2011; 214:1973-80. [DOI: 10.1242/jeb.038596] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Summary
Elastic mechanisms in the invertebrates are fantastically diverse, yet much of this diversity can be captured by examining just a few fundamental physical principles. Our goals for this commentary are threefold. First, we aim to synthesize and simplify the fundamental principles underlying elastic mechanisms and show how different configurations of basic building blocks can be used for different functions. Second, we compare single rapid movements and rhythmic movements across six invertebrate examples – ranging from poisonous cnidarians to high-jumping froghoppers – and identify remarkable functional properties arising from their underlying elastic systems. Finally, we look to the future of this field and find two prime areas for exciting new discoveries – the evolutionary dynamics of elastic mechanisms and biomimicry of invertebrate elastic materials and mechanics.
Collapse
Affiliation(s)
- S. N. Patek
- Department of Biology, University of Massachusetts Amherst, MA 01003, USA
| | - D. M. Dudek
- Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - M. V. Rosario
- Department of Biology, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
32
|
MANTIS SHRIMP TELSONS WITHSTAND BLOWS LIKE HUMAN BODY ARMOUR. J Exp Biol 2010. [DOI: 10.1242/jeb.051748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|