1
|
Ponganis PJ, Williams CL, Kendall-Bar JM. Blood oxygen transport and depletion in diving emperor penguins. J Exp Biol 2024; 227:jeb246832. [PMID: 38390686 PMCID: PMC11006389 DOI: 10.1242/jeb.246832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Oxygen store management underlies dive performance and is dependent on the slow heart rate and peripheral vasoconstriction of the dive response to control tissue blood flow and oxygen uptake. Prior research has revealed two major patterns of muscle myoglobin saturation profiles during dives of emperor penguins. In Type A profiles, myoglobin desaturated rapidly, consistent with minimal muscle blood flow and low tissue oxygen uptake. Type B profiles, with fluctuating and slower declines in myoglobin saturation, were consistent with variable tissue blood flow patterns and tissue oxygen uptake during dives. We examined arterial and venous blood oxygen profiles to evaluate blood oxygen extraction and found two primary patterns of venous hemoglobin desaturation that complemented corresponding myoglobin saturation profiles. Type A venous profiles had a hemoglobin saturation that (a) increased/plateaued for most of a dive's duration, (b) only declined during the latter stages of ascent, and (c) often became arterialized [arterio-venous (a-v) shunting]. In Type B venous profiles, variable but progressive hemoglobin desaturation profiles were interrupted by inflections in the profile that were consistent with fluctuating tissue blood flow and oxygen uptake. End-of-dive saturation of arterial and Type A venous hemoglobin saturation profiles were not significantly different, but did differ from those of Type B venous profiles. These findings provide further support that the dive response of emperor penguins is a spectrum of cardiac and vascular components (including a-v shunting) that are dependent on the nature and demands of a given dive and even of a given segment of a dive.
Collapse
Affiliation(s)
- Paul J. Ponganis
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Cassondra L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Jessica M. Kendall-Bar
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
2
|
Chen LD, Caprio MA, Chen DM, Kouba AJ, Kouba CK. Enhancing predictive performance for spectroscopic studies in wildlife science through a multi-model approach: A case study for species classification of live amphibians. PLoS Comput Biol 2024; 20:e1011876. [PMID: 38354202 PMCID: PMC10898777 DOI: 10.1371/journal.pcbi.1011876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/27/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Near infrared spectroscopy coupled with predictive modeling is a growing field of study for addressing questions in wildlife science aimed at improving management strategies and conservation outcomes for managed and threatened fauna. To date, the majority of spectroscopic studies in wildlife and fisheries applied chemometrics and predictive modeling with a single-algorithm approach. By contrast, multi-model approaches are used routinely for analyzing spectroscopic datasets across many major industries (e.g., medicine, agriculture) to maximize predictive outcomes for real-world applications. In this study, we conducted a benchmark modeling exercise to compare the performance of several machine learning algorithms in a multi-class problem utilizing a multivariate spectroscopic dataset obtained from live animals. Spectra obtained from live individuals representing eleven amphibian species were classified according to taxonomic designation. Seven modeling techniques were applied to generate prediction models, which varied significantly (p < 0.05) with regard to mean classification accuracy (e.g., support vector machine: 95.8 ± 0.8% vs. K-nearest neighbors: 89.3 ± 1.0%). Through the use of a multi-algorithm approach, candidate algorithms can be identified and applied to more effectively model complex spectroscopic data collected for wildlife sciences. Other key considerations in the predictive modeling workflow that serve to optimize spectroscopic model performance (e.g., variable selection and cross-validation procedures) are also discussed.
Collapse
Affiliation(s)
- Li-Dunn Chen
- Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Mississippi, United States of America
| | - Michael A. Caprio
- Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Mississippi, United States of America
| | - Devin M. Chen
- Department of Wildlife, Fisheries, & Aquaculture, Mississippi State University, Mississippi, United States of America
| | - Andrew J. Kouba
- Department of Wildlife, Fisheries, & Aquaculture, Mississippi State University, Mississippi, United States of America
| | - Carrie K. Kouba
- Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Mississippi, United States of America
| |
Collapse
|
3
|
Costa DP, Favilla AB. Field physiology in the aquatic realm: ecological energetics and diving behavior provide context for elucidating patterns and deviations. J Exp Biol 2023; 226:jeb245832. [PMID: 37843467 DOI: 10.1242/jeb.245832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Comparative physiology has developed a rich understanding of the physiological adaptations of organisms, from microbes to megafauna. Despite extreme differences in size and a diversity of habitats, general patterns are observed in their physiological adaptations. Yet, many organisms deviate from the general patterns, providing an opportunity to understand the importance of ecology in determining the evolution of unusual adaptations. Aquatic air-breathing vertebrates provide unique study systems in which the interplay between ecology, physiology and behavior is most evident. They must perform breath-hold dives to obtain food underwater, which imposes a physiological constraint on their foraging time as they must resurface to breathe. This separation of two critical resources has led researchers to investigate these organisms' physiological adaptations and trade-offs. Addressing such questions on large marine animals is best done in the field, given the difficulty of replicating the environment of these animals in the lab. This Review examines the long history of research on diving physiology and behavior. We show how innovative technology and the careful selection of research animals have provided a holistic understanding of diving mammals' physiology, behavior and ecology. We explore the role of the aerobic diving limit, body size, oxygen stores, prey distribution and metabolism. We then identify gaps in our knowledge and suggest areas for future research, pointing out how this research will help conserve these unique animals.
Collapse
Affiliation(s)
- Daniel P Costa
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Arina B Favilla
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
4
|
Grunst AS, Grunst ML, Grémillet D, Kato A, Bustamante P, Albert C, Brisson-Curadeau É, Clairbaux M, Cruz-Flores M, Gentès S, Perret S, Ste-Marie E, Wojczulanis-Jakubas K, Fort J. Mercury Contamination Challenges the Behavioral Response of a Keystone Species to Arctic Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2054-2063. [PMID: 36652233 DOI: 10.1021/acs.est.2c08893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Combined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (Alle alle), a keystone Arctic seabird. We compiled behavioral data for 44 birds across 5 years using accelerometers while also quantifying blood Hg and environmental conditions. Warm sea surface temperature (SST) and low sea ice coverage reshaped time activity budgets (TABs) and diving patterns, causing decreased resting, increased flight, and longer dives. Mercury contamination was not associated with TABs. However, highly contaminated birds lengthened interdive breaks when making long dives, suggesting Hg-induced physiological limitations. As dive durations increased with warm SST, subtle toxicological effects threaten to increasingly constrain diving and foraging efficiency as climate change progresses, with ecosystem-wide repercussions.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - David Grémillet
- CEFE, UMR 5175, CNRS─Université de Montpellier─Université Paul-Valéry Montpellier─EPHE, Montpellier 34090, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
- Institut Universitaire de France (IUF), 1 rue Descartes, Paris 75005, France
| | - Céline Albert
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Émile Brisson-Curadeau
- McGill University─Macdonald Campus, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Manon Clairbaux
- School of Biological, Environmental and Earth Sciences, University College Cork, Cork T23 N73K, Ireland
- MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork P43 C573, Ireland
| | - Marta Cruz-Flores
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Sophie Gentès
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Samuel Perret
- CEFE, UMR 5175, CNRS─Université de Montpellier─Université Paul-Valéry Montpellier─EPHE, Montpellier 34090, France
| | - Eric Ste-Marie
- McGill University─Macdonald Campus, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| |
Collapse
|
5
|
Houstin A, Zitterbart DP, Winterl A, Richter S, Planas-Bielsa V, Chevallier D, Ancel A, Fournier J, Fabry B, Le Bohec C. Biologging of emperor penguins-Attachment techniques and associated deployment performance. PLoS One 2022; 17:e0265849. [PMID: 35925903 PMCID: PMC9352057 DOI: 10.1371/journal.pone.0265849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
An increasing number of marine animals are equipped with biologgers, to study their physiology, behaviour and ecology, often for conservation purposes. To minimise the impacts of biologgers on the animals’ welfare, the Refinement principle from the Three Rs framework (Replacement, Reduction, Refinement) urges to continuously test and evaluate new and updated biologging protocols. Here, we propose alternative and promising techniques for emperor penguin (Aptenodytes forsteri) capture and on-site logger deployment that aim to mitigate the potential negative impacts of logger deployment on these birds. We equipped adult emperor penguins for short-term (GPS, Time-Depth Recorder (TDR)) and long-term (i.e. planned for one year) deployments (ARGOS platforms, TDR), as well as juvenile emperor penguins for long-term deployments (ARGOS platforms) in the Weddell Sea area where they had not yet been studied. We describe and qualitatively evaluate our protocols for the attachment of biologgers on-site at the colony, the capture of the animals and the recovery of the devices after deployment. We report unprecedented recaptures of long-term equipped adult emperor penguins (50% of equipped individuals recaptured after 290 days). Our data demonstrate that the traditional technique of long-term attachment by gluing the biologgers directly to the back feathers causes excessive feather breakage and the loss of the devices after a few months. We therefore propose an alternative method of attachment for back-mounted devices. This technique led to successful year-round deployments on 37.5% of the equipped juveniles. Finally, we also disclose the first deployments of leg-bracelet mounted TDRs on emperor penguins. Our findings highlight the importance of monitoring potential impacts of biologger deployments on the animals and the need to continue to improve methods to minimize disturbance and enhance performance and results.
Collapse
Affiliation(s)
- Aymeric Houstin
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Principality of Monaco
- CNRS UMR 7178, IPHC, Université de Strasbourg, Strasbourg, France
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail: (AH); (CLB)
| | - Daniel P. Zitterbart
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Applied Ocean Physics and Engineering Woods Hole, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Alexander Winterl
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Applied Ocean Physics and Engineering Woods Hole, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Sebastian Richter
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Applied Ocean Physics and Engineering Woods Hole, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Víctor Planas-Bielsa
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | | | - André Ancel
- CNRS UMR 7178, IPHC, Université de Strasbourg, Strasbourg, France
| | - Jérôme Fournier
- CNRS UMR 7204 CESCO, Station de Biologie Marine, Muséum National d’Histoire Naturelle, Concarneau, France
- Centre de Recherches sur la Biologie des Populations d’Oiseaux, Muséum National d’Histoire Naturelle, Paris, France
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Céline Le Bohec
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Principality of Monaco
- CNRS UMR 7178, IPHC, Université de Strasbourg, Strasbourg, France
- * E-mail: (AH); (CLB)
| |
Collapse
|
6
|
Ponganis PJ. A Physio-Logging Journey: Heart Rates of the Emperor Penguin and Blue Whale. Front Physiol 2021; 12:721381. [PMID: 34413792 PMCID: PMC8369151 DOI: 10.3389/fphys.2021.721381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Physio-logging has the potential to explore the processes that underlie the dive behavior and ecology of marine mammals and seabirds, as well as evaluate their adaptability to environmental change and other stressors. Regulation of heart rate lies at the core of the physiological processes that determine dive capacity and performance. The bio-logging of heart rate in unrestrained animals diving at sea was infeasible, even unimaginable in the mid-1970s. To provide a historical perspective, I review my 40-year experience in the development of heart rate physio-loggers and the evolution of a digital electrocardiogram (ECG) recorder that is still in use today. I highlight documentation of the ECG and the interpretation of heart rate profiles in the largest of avian and mammalian divers, the emperor penguin and blue whale.
Collapse
Affiliation(s)
- Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Williams CL, Ponganis PJ. Diving physiology of marine mammals and birds: the development of biologging techniques. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200211. [PMID: 34121464 PMCID: PMC8200650 DOI: 10.1098/rstb.2020.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 11/12/2022] Open
Abstract
In the 1940s, Scholander and Irving revealed fundamental physiological responses to forced diving of marine mammals and birds, setting the stage for the study of diving physiology. Since then, diving physiology research has moved from the laboratory to the field. Modern biologging, with the development of microprocessor technology, recorder memory capacity and battery life, has advanced and expanded investigations of the diving physiology of marine mammals and birds. This review describes a brief history of the start of field diving physiology investigations, including the invention of the time depth recorder, and then tracks the use of biologging studies in four key diving physiology topics: heart rate, blood flow, body temperature and oxygen store management. Investigations of diving heart rates in cetaceans and O2 store management in diving emperor penguins are highlighted to emphasize the value of diving physiology biologging research. The review concludes with current challenges, remaining diving physiology questions and what technologies are needed to advance the field. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Cassondra L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | - Paul J. Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
8
|
Williams CL, Hindle AG. Field Physiology: Studying Organismal Function in the Natural Environment. Compr Physiol 2021; 11:1979-2015. [PMID: 34190338 DOI: 10.1002/cphy.c200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Continuous physiological measurements collected in field settings are essential to understand baseline, free-ranging physiology, physiological range and variability, and the physiological responses of organisms to disturbances. This article presents a current summary of the available technologies to continuously measure the direct physiological parameters in the field at high-resolution/instantaneous timescales from freely behaving animals. There is a particular focus on advantages versus disadvantages of available methods as well as emerging technologies "on the horizon" that may have been validated in captive or laboratory-based scenarios but have yet to be applied in the wild. Systems to record physiological variables from free-ranging animals are reviewed, including radio (VHF/UFH) telemetry, acoustic telemetry, and dataloggers. Physiological parameters that have been continuously measured in the field are addressed in seven sections including heart rate and electrocardiography (ECG); electromyography (EMG); electroencephalography (EEG); body temperature; respiratory, blood, and muscle oxygen; gastric pH and motility; and blood pressure and flow. The primary focal sections are heart rate and temperature as these can be, and have been, extensively studied in free-ranging organisms. Predicted aspects of future innovation in physiological monitoring are also discussed. The article concludes with an overview of best practices and points to consider regarding experimental designs, cautions, and effects on animals. © 2021 American Physiological Society. Compr Physiol 11:1979-2015, 2021.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, San Diego, California, USA.,Department of Ecology and Evolutionary Biology, School of Biological Science, University of California Irvine, Irvine, California, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
9
|
McKnight JC, Mulder E, Ruesch A, Kainerstorfer JM, Wu J, Hakimi N, Balfour S, Bronkhorst M, Horschig JM, Pernett F, Sato K, Hastie GD, Tyack P, Schagatay E. When the human brain goes diving: using near-infrared spectroscopy to measure cerebral and systemic cardiovascular responses to deep, breath-hold diving in elite freedivers. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200349. [PMID: 34176327 DOI: 10.1098/rstb.2020.0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Continuous measurements of haemodynamic and oxygenation changes in free living animals remain elusive. However, developments in biomedical technologies may help to fill this knowledge gap. One such technology is continuous-wave near-infrared spectroscopy (CW-NIRS)-a wearable and non-invasive optical technology. Here, we develop a marinized CW-NIRS system and deploy it on elite competition freedivers to test its capacity to function during deep freediving to 107 m depth. We use the oxyhaemoglobin and deoxyhaemoglobin concentration changes measured with CW-NIRS to monitor cerebral haemodynamic changes and oxygenation, arterial saturation and heart rate. Furthermore, using concentration changes in oxyhaemoglobin engendered by cardiac pulsation, we demonstrate the ability to conduct additional feature exploration of cardiac-dependent haemodynamic changes. Freedivers showed cerebral haemodynamic changes characteristic of apnoeic diving, while some divers also showed considerable elevations in venous blood volumes close to the end of diving. Some freedivers also showed pronounced arterial deoxygenation, the most extreme of which resulted in an arterial saturation of 25%. Freedivers also displayed heart rate changes that were comparable to diving mammals both in magnitude and patterns of change. Finally, changes in cardiac waveform associated with heart rates less than 40 bpm were associated with changes indicative of a reduction in vascular compliance. The success here of CW-NIRS to non-invasively measure a suite of physiological phenomenon in a deep-diving mammal highlights its efficacy as a future physiological monitoring tool for human freedivers as well as free living animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- J Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.,Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Eric Mulder
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Alexander Ruesch
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.,Neuroscience Institute, Carnegie Mellon University, 4400 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Jingyi Wu
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Naser Hakimi
- Artinis Medical Systems BV, Einsteinweg 17, 6662 PW Elst, The Netherlands
| | - Steve Balfour
- Sea Mammal Research Unit Instrumentation Group, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Mathijs Bronkhorst
- Artinis Medical Systems BV, Einsteinweg 17, 6662 PW Elst, The Netherlands
| | - Jörn M Horschig
- Artinis Medical Systems BV, Einsteinweg 17, 6662 PW Elst, The Netherlands
| | - Frank Pernett
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Gordon D Hastie
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Peter Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Erika Schagatay
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Swedish Winter Sport Research Center (SWSRC), Mid Sweden University, Östersund, Sweden
| |
Collapse
|
10
|
Williams CL, Czapanskiy MF, John JS, St Leger J, Scadeng M, Ponganis PJ. Cervical air sac oxygen profiles in diving emperor penguins: parabronchial ventilation and the respiratory oxygen store. J Exp Biol 2021; 224:jeb230219. [PMID: 33257430 DOI: 10.1242/jeb.230219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Some marine birds and mammals can perform dives of extraordinary duration and depth. Such dive performance is dependent on many factors, including total body oxygen (O2) stores. For diving penguins, the respiratory system (air sacs and lungs) constitutes 30-50% of the total body O2 store. To better understand the role and mechanism of parabronchial ventilation and O2 utilization in penguins both on the surface and during the dive, we examined air sac partial pressures of O2 (PO2 ) in emperor penguins (Aptenodytes forsteri) equipped with backpack PO2 recorders. Cervical air sac PO2 values at rest were lower than in other birds, while the cervical air sac to posterior thoracic air sac PO2 difference was larger. Pre-dive cervical air sac PO2 values were often greater than those at rest, but had a wide range and were not significantly different from those at rest. The maximum respiratory O2 store and total body O2 stores calculated with representative anterior and posterior air sac PO2 data did not differ from prior estimates. The mean calculated anterior air sac O2 depletion rate for dives up to 11 min was approximately one-tenth that of the posterior air sacs. Low cervical air sac PO2 values at rest may be secondary to a low ratio of parabronchial ventilation to parabronchial blood O2 extraction. During dives, overlap of simultaneously recorded cervical and posterior thoracic air sac PO2 profiles supported the concept of maintenance of parabronchial ventilation during a dive by air movement through the lungs.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, 2240 Shelter Island Dr. #200, San Diego, CA 92106, USA
| | - Max F Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Jason S John
- Center for Ocean Health, Long Marine Laboratory, University of California, Santa Cruz, 115 McAlister Way, Santa Cruz, CA 95060, USA
| | - Judy St Leger
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging, Faculty of Health and Medical Sciences, University of Auckland, Auckland 1142, New Zealand
- Center for Functional Magnetic Resonance Imaging, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul J Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
11
|
Kooyman GL, McDonald BI, Williams CL, Meir JU, Ponganis PJ. The aerobic dive limit: After 40 years, still rarely measured but commonly used. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110841. [PMID: 33186706 DOI: 10.1016/j.cbpa.2020.110841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 11/15/2022]
Abstract
The aerobic dive limit (ADL) and the hypothesis that most dives are aerobic in nature have become fundamental to the understanding of diving physiology and to the interpretation of diving behavior and foraging ecology of marine mammals and seabirds. An ADL, the dive duration associated with the onset of post-dive blood lactate accumulation, has only been documented with blood lactate analyses in five species. Applications to other species have involved behavioral estimates or use of an oxygen store / metabolic rate formula. Both approaches have limitations, but have proved useful to the evaluation of the dive behavior and ecology of many species.
Collapse
Affiliation(s)
- Gerald L Kooyman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Birgitte I McDonald
- Moss Landing Marine Laboratories, California State University, 8272 Moss Landing Road, Moss Landing, CA 95039, USA
| | - Cassondra L Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, CA 92106, USA
| | | | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Roussel D, Le Coadic M, Rouanet JL, Duchamp C. Skeletal muscle metabolism in sea-acclimatized king penguins. I. Thermogenic mechanisms. J Exp Biol 2020; 223:jeb233668. [PMID: 32968000 DOI: 10.1242/jeb.233668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
At fledging, king penguin juveniles undergo a major energetic challenge to overcome the intense and prolonged energy demands for thermoregulation and locomotion imposed by life in cold seas. Among other responses, sea acclimatization triggers fuel selection in skeletal muscle metabolism towards lipid oxidation in vitro, which is reflected by a drastic increase in lipid-induced thermogenesis in vivo However, the exact nature of skeletal muscle thermogenic mechanisms (shivering and/or non-shivering thermogenesis) remains undefined. The aim of the present study was to determine in vivo whether the capacity for non-shivering thermogenesis was enhanced by sea acclimatization. We measured body temperature, metabolic rate, heart rate and shivering activity in fully immersed king penguins (Aptenodytes patagonicus) exposed to water temperatures ranging from 12 to 29°C. Results from terrestrial pre-fledging juveniles were compared with those from sea-acclimatized immature penguins (hereafter 'immatures'). The capacity for thermogenesis in water was as effective in juveniles as in immatures, while the capacity for non-shivering thermogenesis was not reinforced by sea acclimatization. This result suggests that king penguins mainly rely on skeletal muscle contraction (shivering or locomotor activity) to maintain endothermy at sea. Sea-acclimatized immature penguins also exhibited higher shivering efficiency and oxygen pulse (amount of oxygen consumed or energy expended per heartbeat) than pre-fledging juvenile birds. Such increase in shivering and cardiovascular efficiency may favor a more efficient activity-thermoregulatory heat substitution providing penguins with the aptitude to survive the tremendous energetic challenge imposed by marine life in cold circumpolar oceans.
Collapse
Affiliation(s)
- Damien Roussel
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Marion Le Coadic
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Jean-Louis Rouanet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Claude Duchamp
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
13
|
Roussel D, Marmillot V, Monternier PA, Bourguignon A, Toullec G, Romestaing C, Duchamp C. Skeletal muscle metabolism in sea-acclimatized king penguins. II. Improved efficiency of mitochondrial bioenergetics. J Exp Biol 2020; 223:jeb233684. [PMID: 32967994 DOI: 10.1242/jeb.233684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 08/25/2023]
Abstract
At fledging, juvenile king penguins (Aptenodytes patagonicus) must overcome the tremendous energetic constraints imposed by their marine habitat, including during sustained extensive swimming activity and deep dives in cold seawater. Both endurance swimming and skeletal muscle thermogenesis require high mitochondrial respiratory capacity while the submerged part of dive cycles repeatedly and greatly reduces oxygen availability, imposing a need for solutions to conserve oxygen. The aim of the present study was to determine in vitro whether skeletal muscle mitochondria become more 'thermogenic' to sustain heat production or more 'economical' to conserve oxygen in sea-acclimatized immature penguins (hereafter 'immatures') compared with terrestrial juveniles. Rates of mitochondrial oxidative phosphorylation were measured in permeabilized fibers and mitochondria from the pectoralis muscle. Mitochondrial ATP synthesis and coupling efficiency were measured in isolated muscle mitochondria. The mitochondrial activities of respiratory chain complexes and citrate synthase were also assessed. The results showed that respiration, ATP synthesis and respiratory chain complex activities in pectoralis muscles were increased by sea acclimatization. Furthermore, muscle mitochondria were on average 30-45% more energy efficient in sea-acclimatized immatures than in pre-fledging juveniles, depending on the respiratory substrate used (pyruvate, palmitoylcarnitine). Hence sea acclimatization favors the development of economical management of oxygen, decreasing the oxygen needed to produce a given amount of ATP. This mitochondrial phenotype may improve dive performance during the early marine life of king penguins, by extending their aerobic dive limit.
Collapse
Affiliation(s)
- Damien Roussel
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Vincent Marmillot
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Pierre-Axel Monternier
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Aurore Bourguignon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Gaëlle Toullec
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Caroline Romestaing
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Claude Duchamp
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
14
|
Favilla AB, Costa DP. Thermoregulatory Strategies of Diving Air-Breathing Marine Vertebrates: A Review. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.555509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Abstract
Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (N e ) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased N e between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.
Collapse
|
16
|
|
17
|
Hindle AG. Diving deep: understanding the genetic components of hypoxia tolerance in marine mammals. J Appl Physiol (1985) 2020; 128:1439-1446. [PMID: 32324472 DOI: 10.1152/japplphysiol.00846.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Marine mammals have highly specialized physiology, exhibited in many species by extreme breath-holding capabilities that allow deep dives and extended submergence. Cardiovascular control and cell-level hypoxia tolerance are key features of this phenotype. Identifying genomic signatures tied to physiology will be valuable in understanding these natural model species, which may generate translational opportunities to human diseases arising from hypoxic stress or tissue injury. Genomic analyses have now been conducted in dolphins, river dolphins, minke whales, bowhead whales, and polar bears, with multispecies studies exploring evolutionary signals across marine mammal lineages, encompassing extinct and extant divers. Single-species genome studies for sirenians do not yet exist. Extant marine mammals arose in three lineages from separate aquatic recolonizations. Their physiological specializations, along with these independent origins create an interesting case to examine convergent evolution. Although molecular mechanisms of hypoxia tolerance are not universally apparent across marine mammal genomic studies, altered evolutionary rates have been identified for genes linked to oxygen binding and transport (e.g., MB, HBA, and HBB), blood pressure control (e.g., endothelin pathway genes), and cell protection in multiple species. Despite convergent phenotypes across clades, instances of identical molecular convergence have been uncommon. Given the inherent logistical and regulatory difficulties associated with functional genetic experiments in marine mammals, several avenues of further investigation are suggested to enable validation of candidate genes for hypoxia tolerance: leveraging phylogeny to better understand convergent phenotypes; ontogenic studies to identify regulation of key genes underlying the elite, adult, hypoxia-tolerant physiology; and cell culture manipulations to understand gene function.
Collapse
Affiliation(s)
- Allyson G Hindle
- School of Life Sciences, University of Nevada, Las Vegas, Nevada
| |
Collapse
|
18
|
Enstipp MR, Bost CA, Le Bohec C, Bost C, Laesser R, Le Maho Y, Weimerskirch H, Handrich Y. The dive performance of immature king penguins following their annual molt suggests physiological constraints. J Exp Biol 2019; 222:222/20/jeb208900. [DOI: 10.1242/jeb.208900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Like all birds, penguins undergo periodic molt, during which they replace old feathers. However, unlike other birds, penguins replace their entire plumage within a short period while fasting ashore. During molt, king penguins (Aptenodytes patagonicus) lose half of their initial body mass, most importantly their insulating subcutaneous fat and half of their pectoral muscle mass. The latter might challenge their capacity to generate and sustain a sufficient mechanical power output to swim to distant food sources and propel themselves to great depth for successful prey capture. To investigate the effects of the annual molt fast on their dive/foraging performance, we studied various dive/foraging parameters and peripheral temperature patterns in immature king penguins across two molt cycles, after birds had spent their first and second year at sea, using implanted data-loggers. We found that the dive/foraging performance of immature king penguins was significantly reduced during post-molt foraging trips. Dive and bottom duration for a given depth were shorter during post-molt and post-dive surface interval duration was longer, reducing overall dive efficiency and underwater foraging time. We attribute this decline to the severe physiological changes that birds undergo during their annual molt. Peripheral temperature patterns differed greatly between pre- and post-molt trips, indicating the loss of the insulating subcutaneous fat layer during molt. Peripheral perfusion, as inferred from peripheral temperature, was restricted to short periods at night during pre-molt but occurred throughout extended periods during post-molt, reflecting the need to rapidly deposit an insulating fat layer during the latter period.
Collapse
Affiliation(s)
- Manfred R. Enstipp
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- Centre Scientifique de Monaco, Département de Biologie Polaire, MC 98000, Monaco
| | - Caroline Bost
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Robin Laesser
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Yvon Le Maho
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- Centre Scientifique de Monaco, Département de Biologie Polaire, MC 98000, Monaco
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Yves Handrich
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
19
|
Allen KN, Vázquez-Medina JP, Lawler JM, Mellish JAE, Horning M, Hindle AG. Muscular apoptosis but not oxidative stress increases with old age in a long-lived diver, the Weddell seal. ACTA ACUST UNITED AC 2019; 222:jeb.200246. [PMID: 31171605 DOI: 10.1242/jeb.200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023]
Abstract
Seals experience repeated bouts of ischemia-reperfusion while diving, potentially exposing their tissues to increased oxidant generation and thus oxidative damage and accelerated aging. We contrasted markers of oxidative damage with antioxidant profiles across age and sex for propulsive (longissismus dorsi) and maneuvering (pectoralis) muscles of Weddell seals to determine whether previously observed morphological senescence is associated with oxidative stress. In longissismus dorsi, old (age 17-26 years) seals exhibited a nearly 2-fold increase in apoptosis over young (age 9-16 years) seals. There was no evidence of age-associated changes in lipid peroxidation or enzymatic antioxidant profiles. In pectoralis, 4-hydroxynonenal-Lys (4-HNE-Lys) levels increased 1.5-fold in old versus young seals, but lipid hydroperoxide levels and apoptotic index did not vary with age. Glutathione peroxidase activity was 1.5-fold higher in pectoralis of old versus young animals, but no other antioxidants changed with age in this muscle. With respect to sex, no differences in lipid hydroperoxides or apoptosis were observed in either muscle. Males had higher HSP70 expression (1.4-fold) and glutathione peroxidase activity (1.3-fold) than females in longissismus dorsi, although glutathione reductase activity was 1.4-fold higher in females. No antioxidants varied with sex in pectoralis. These results show that apoptosis is not associated with oxidative stress in aged Weddell seal muscles. Additionally, the data suggest that adult seals utilize sex-specific antioxidant strategies in longissismus dorsi but not pectoralis to protect skeletal muscles from oxidative damage.
Collapse
Affiliation(s)
- Kaitlin N Allen
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - John M Lawler
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77840, USA
| | - Jo-Ann E Mellish
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Markus Horning
- Alaska SeaLife Center, 301 Railway Avenue, Seward, AK 99664, USA.,Department of Fisheries & Wildlife, Marine Mammal Institute, Oregon State University, 2030 Marine Science Drive, Newport, OR 97365, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
20
|
McKnight JC, Bennett KA, Bronkhorst M, Russell DJF, Balfour S, Milne R, Bivins M, Moss SEW, Colier W, Hall AJ, Thompson D. Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy. PLoS Biol 2019; 17:e3000306. [PMID: 31211787 PMCID: PMC6581238 DOI: 10.1371/journal.pbio.3000306] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/16/2019] [Indexed: 11/18/2022] Open
Abstract
Investigation of marine mammal dive-by-dive blood distribution and oxygenation has been limited by a lack of noninvasive technology for use in freely diving animals. Here, we developed a noninvasive near-infrared spectroscopy (NIRS) device to measure relative changes in blood volume and haemoglobin oxygenation continuously in the blubber and brain of voluntarily diving harbour seals. Our results show that seals routinely exhibit preparatory peripheral vasoconstriction accompanied by increased cerebral blood volume approximately 15 s before submersion. These anticipatory adjustments confirm that blood redistribution in seals is under some degree of cognitive control that precedes the mammalian dive response. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to ambient air. We suggest that this frequent and reproducible reoxygenation pattern, without access to ambient air, is underpinned by previously unrecognised changes in cerebral drainage. The ability to track blood volume and oxygenation in different tissues using NIRS will facilitate a more accurate understanding of physiological plasticity in diving animals in an increasingly disturbed and exploited environment.
Collapse
Affiliation(s)
- J. Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
- * E-mail:
| | - Kimberley A. Bennett
- Division of Science, School of Science Engineering and Technology, Abertay University, Dundee, Scotland
| | | | - Debbie J. F. Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Steve Balfour
- Sea Mammal Research Unit Instrumentation Group, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Ryan Milne
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Matt Bivins
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Simon E. W. Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | | | - Ailsa J. Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Dave Thompson
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| |
Collapse
|
21
|
Williams CL, Sato K, Ponganis PJ. Activity, not submergence, explains diving heart rates of captive loggerhead sea turtles. ACTA ACUST UNITED AC 2019; 222:jeb.200824. [PMID: 30936271 DOI: 10.1242/jeb.200824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
Marine turtles spend their life at sea and can rest on the seafloor for hours. As air-breathers, the breath-hold capacity of marine turtles is a function of oxygen (O2) stores, O2 consumption during dives and hypoxia tolerance. However, some physiological adaptations to diving observed in mammals are absent in marine turtles. This study examined cardiovascular responses in loggerhead sea turtles, which have even fewer adaptations to diving than other marine turtles, but can dive for extended durations. Heart rates (f H) of eight undisturbed loggerhead turtles in shallow tanks were measured using self-contained ECG data loggers under five conditions: spontaneous dives, resting motionless on the tank bottom, resting in shallow water with their head out of water, feeding on squid, and swimming at the surface between dives. There was no significant difference between resting f H while resting on the bottom of the tank, diving or resting in shallow water with their head out of water. f H rose as soon as turtles began to move and was highest between dives when turtles were swimming at the surface. These results suggest cardiovascular responses in captive loggerhead turtles are driven by activity and apneic f H is not reduced by submergence under these conditions.
Collapse
Affiliation(s)
- Cassondra L Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Paul J Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 8655 Kennel Way, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Forin-Wiart MA, Enstipp MR, LE Maho Y, Handrich Y. Why implantation of bio-loggers may improve our understanding of how animals cope within their natural environment. Integr Zool 2019; 14:48-64. [PMID: 30251470 DOI: 10.1111/1749-4877.12364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bio-loggers are miniaturized autonomous devices that record quantitative data on the state of free-ranging animals (e.g. behavior, position and physiology) and their natural environment. This is especially relevant for species where direct visual observation is difficult or impossible. Today, ongoing technical development allows the monitoring of numerous parameters in an increasing range of species over extended periods. However, the external attachment of devices might affect various aspects of animal performance (energetics, thermoregulation, foraging as well as social and reproductive behavior), which ultimately affect fitness. External attachment might also increase entanglement risk and the conspicuousness of animals, leaving them more vulnerable to predation. By contrast, implantation of devices can mitigate many of these undesirable effects and might be preferable, especially for long-term studies, provided that the many challenges associated with surgical procedures can be mastered. Implantation may then allow us to gather data that would be impossible to obtain otherwise and thereby may provide new and ecologically relevant insights into the life of wild animals. Here, we: (i) discuss the pros and cons of attachment methods; (ii) highlight recent field studies that used implanted bio-loggers to address eco-physiological questions in a wide range of species; and (iii) discuss logger implantation in light of ethical considerations.
Collapse
Affiliation(s)
- Marie-Amélie Forin-Wiart
- Université de Strasbourg, CNRS, IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, Strasbourg, France
| | - Manfred R Enstipp
- Université de Strasbourg, CNRS, IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, Strasbourg, France.,Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, Villiers en Bois, France
| | - Yvon LE Maho
- Université de Strasbourg, CNRS, IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, Strasbourg, France.,Centre Scientifique de Monaco, Département de Biologie Polaire, Monaco
| | - Yves Handrich
- Université de Strasbourg, CNRS, IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, Strasbourg, France
| |
Collapse
|
23
|
Lewden A, Enstipp MR, Picard B, van Walsum T, Handrich Y. High peripheral temperatures in king penguins while resting at sea: thermoregulation versus fat deposition. ACTA ACUST UNITED AC 2017. [PMID: 28623225 DOI: 10.1242/jeb.158980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marine endotherms living in cold water face an energetically challenging situation. Unless properly insulated, these animals will lose heat rapidly. The field metabolic rate of king penguins at sea is about twice that on land. However, when at sea, their metabolic rate is higher during extended resting periods at the surface than during foraging, when birds descend to great depth in pursuit of their prey. This is most likely explained by differences in thermal status. During foraging, peripheral vasoconstriction leads to a hypothermic shell, which is rewarmed during extended resting bouts at the surface. Maintaining peripheral perfusion during rest in cold water, however, will greatly increase heat loss and, therefore, thermoregulatory costs. Two hypotheses have been proposed to explain the maintenance of a normothermic shell during surface rest: (1) to help the unloading of N2 accumulated during diving; and (2) to allow the storage of fat in subcutaneous tissue, following the digestion of food. We tested the latter hypothesis by maintaining king penguins within a shallow seawater tank, while we recorded tissue temperature at four distinct sites. When king penguins were released into the tank during the day, their body temperature immediately declined. However, during the night, periodic rewarming of abdominal and peripheral tissues occurred, mimicking temperature patterns observed in the wild. Body temperatures, particularly in the flank, also depended on body condition and were higher in 'lean' birds (after 10 days of fasting) than in 'fat' birds. While not explicitly tested, our observation that nocturnal rewarming persists in the absence of diving activity during the day does not support the N2 unloading hypothesis. Rather, differences in temperature changes throughout the day and night, and the effect of body condition/mass supports the hypothesis that tissue perfusion during rest is required for nutritional needs.
Collapse
Affiliation(s)
- Agnès Lewden
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Manfred R Enstipp
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France.,Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Baptiste Picard
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Tessa van Walsum
- University of Roehampton, Department of Life Sciences, London SW15 4JD, UK
| | - Yves Handrich
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
24
|
Tift MS, Hückstädt LA, McDonald BI, Thorson PH, Ponganis PJ. Flipper stroke rate and venous oxygen levels in free-ranging California sea lions. ACTA ACUST UNITED AC 2017; 220:1533-1540. [PMID: 28167807 DOI: 10.1242/jeb.152314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022]
Abstract
The depletion rate of the blood oxygen store, development of hypoxemia and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions (Zalophus californianus) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (>100 m). During the descent phase of these deep dives, 55±21% of descent was spent gliding, with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15 to 25 m depth during these deeper dives. Venous hemoglobin saturation (SO2 ) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between SO2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that (1) the depletion of oxygen in the posterior vena cava in deep-diving sea lions is not dependent on stroke effort, and (2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate.
Collapse
Affiliation(s)
- Michael S Tift
- Scripps Institution of Oceanography, University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Luis A Hückstädt
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Long Marine Lab, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| | - Birgitte I McDonald
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA
| | - Philip H Thorson
- Institute of Marine Sciences, University of California Santa Cruz, Long Marine Laboratory, 100 Shaffer Road, CA 95060, USA
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Williams CL, Hagelin JC, Kooyman GL. Hidden keys to survival: the type, density, pattern and functional role of emperor penguin body feathers. Proc Biol Sci 2016; 282:20152033. [PMID: 26490794 DOI: 10.1098/rspb.2015.2033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antarctic penguins survive some of the harshest conditions on the planet. Emperor penguins breed on the sea ice where temperatures drop below -40°C and forage in -1.8°C waters. Their ability to maintain 38°C body temperature in these conditions is due in large part to their feathered coat. Penguins have been reported to have the highest contour feather density of any bird, and both filoplumes and plumules (downy feathers) are reported absent in penguins. In studies modelling the heat transfer properties and the potential biomimetic applications of penguin plumage design, the insulative properties of penguin plumage have been attributed to the single afterfeather attached to contour feathers. This attribution of the afterfeather as the sole insulation component has been repeated in subsequent studies. Our results demonstrate the presence of both plumules and filoplumes in the penguin body plumage. The downy plumules are four times denser than afterfeathers and play a key, previously overlooked role in penguin survival. Our study also does not support the report that emperor penguins have the highest contour feather density.
Collapse
Affiliation(s)
- Cassondra L Williams
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 91697, USA Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - Julie C Hagelin
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA
| | - Gerald L Kooyman
- Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| |
Collapse
|
26
|
Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:38-52. [PMID: 27421239 DOI: 10.1016/j.cbpa.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022]
Abstract
To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright.
Collapse
|
27
|
Shero MR, Costa DP, Burns JM. Scaling matters: incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities. J Comp Physiol B 2015; 185:811-24. [PMID: 26164426 DOI: 10.1007/s00360-015-0922-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/24/2015] [Accepted: 07/02/2015] [Indexed: 12/24/2022]
Abstract
Adult Weddell seals (Leptonychotes weddellii) haul-out on the ice in October/November (austral spring) for the breeding season and reduce foraging activities for ~4 months until their molt in the austral fall (January/February). After these periods, animals are at their leanest and resume actively foraging for the austral winter. In mammals, decreased exercise and hypoxia exposure typically lead to decreased production of O2-carrying proteins and muscle wasting, while endurance training increases aerobic potential. To test whether similar effects were present in marine mammals, this study compared the physiology of 53 post-molt female Weddell seals in the austral fall to 47 pre-breeding females during the spring in McMurdo Sound, Antarctica. Once body mass and condition (lipid) were controlled for, there were no seasonal changes in total body oxygen (TBO2) stores. Within each season, hematocrit and hemoglobin values were negatively correlated with animal size, and larger animals had lower mass-specific TBO2 stores. But because larger seals had lower mass-specific metabolic rates, their calculated aerobic dive limit was similar to smaller seals. Indicators of muscular efficiency, myosin heavy chain composition, myoglobin concentrations, and aerobic enzyme activities (citrate synthase and β-hydroxyacyl CoA dehydrogenase) were likewise maintained across the year. The preservation of aerobic capacity is likely critical to foraging capabilities, so that following the molt Weddell seals can rapidly regain body mass at the start of winter foraging. In contrast, muscle lactate dehydrogenase activity, a marker of anaerobic metabolism, exhibited seasonal plasticity in this diving top predator and was lowest after the summer period of reduced activity.
Collapse
Affiliation(s)
- Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, 99508, USA. .,School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, 99508, USA
| |
Collapse
|
28
|
Kooyman G. Marine mammals and Emperor penguins: a few applications of the Krogh principle. Am J Physiol Regul Integr Comp Physiol 2014; 308:R96-104. [PMID: 25411360 DOI: 10.1152/ajpregu.00264.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diving physiology of aquatic animals at sea began 50 years ago with studies of the Weddell seal. Even today with the advancements in marine recording and tracking technology, only a few species are suitable for investigation. The first experiments were in McMurdo Sound, Antarctica. In this paper are examples of what was learned in Antarctica and elsewhere. Some methods employed relied on willingness of Weddell seals and emperor penguins to dive under sea ice. Diving depth and duration were obtained with a time depth recorder. Some dives were longer than an hour and as deep as 600 m. From arterial blood samples, lactate and nitrogen concentrations were obtained. These results showed how Weddell seals manage their oxygen stores, that they become reliant on a positive contribution of anaerobic metabolism during a dive duration of more than 20 min, and that nitrogen blood gases remain so low that lung collapse must occur at about 25 to 50 m. This nitrogen level was similar to that determined in elephant seals during forcible submersion with compression to depths greater than 100 m. These results led to further questions about diving mammal's terminal airway structure in the lungs. Much of the strengthening of the airways is not for avoiding the "bends," by enhancing lung collapse at depth, but for reducing the resistance to high flow rates during expiration. The most exceptional examples are the small whales that maintain high expiratory flow rates throughout the entire vital capacity, which represents about 90% of their total lung capacity.
Collapse
Affiliation(s)
- Gerald Kooyman
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
| |
Collapse
|
29
|
McDonald BI, Ponganis PJ. Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. ACTA ACUST UNITED AC 2014; 216:3332-41. [PMID: 23926312 DOI: 10.1242/jeb.085985] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The management and depletion of O2 stores underlie the aerobic dive capacities of marine mammals. The California sea lion (Zalophus californianus) presumably optimizes O2 store management during all dives, but approaches its physiological limits during deep dives to greater than 300 m depth. Blood O2 comprises the largest component of total body O2 stores in adult sea lions. Therefore, we investigated venous blood O2 depletion during dives of California sea lions during maternal foraging trips to sea by: (1) recording venous partial pressure of O2 (P(O2)) profiles during dives, (2) characterizing the O2-hemoglobin (Hb) dissociation curve of sea lion Hb and (3) converting the P(O2) profiles into percent Hb saturation (S(O2)) profiles using the dissociation curve. The O2-Hb dissociation curve was typical of other pinnipeds (P50=28±2 mmHg at pH 7.4). In 43% of dives, initial venous S(O2) values were greater than 78% (estimated resting venous S(O2)), indicative of arterialization of venous blood. Blood O2 was far from depleted during routine shallow dives, with minimum venous S(O2) values routinely greater than 50%. However, in deep dives greater than 4 min in duration, venous S(O2) reached minimum values below 5% prior to the end of the dive, but then increased during the last 30-60 s of ascent. These deep dive profiles were consistent with transient venous blood O2 depletion followed by partial restoration of venous O2 through pulmonary gas exchange and peripheral blood flow during ascent. These differences in venous O2 profiles between shallow and deep dives of sea lions reflect distinct strategies of O2 store management and suggest that underlying cardiovascular responses will also differ.
Collapse
Affiliation(s)
- Birgitte I McDonald
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093-0204, USA.
| | | |
Collapse
|
30
|
López-Cruz RI, Pérez-Milicua MB, Crocker DE, Gaxiola-Robles R, Bernal-Vertiz JA, de la Rosa A, Vázquez-Medina JP, Zenteno-Savín T. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:31-5. [PMID: 24530799 DOI: 10.1016/j.cbpa.2014.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 01/23/2023]
Abstract
Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.
Collapse
Affiliation(s)
- Roberto I López-Cruz
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico.
| | - Myrna Barjau Pérez-Milicua
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico.
| | - Daniel E Crocker
- Sonoma State University, Department of Biology, 1801 E. Cotati Ave., Rohnert Park, CA 94928, USA.
| | - Ramón Gaxiola-Robles
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico; Hospital General de Zona No.1. Instituto Mexicano del Seguro Social, La Paz, Baja California Sur, Mexico.
| | - Jaime A Bernal-Vertiz
- Cabo Dolphins, Paseo de la Marina 7A, Cabo San Lucas, Baja California Sur, C.P. 23410, Mexico.
| | - Alejandro de la Rosa
- Acuario de Veracruz A.C., Departamento de Mamíferos Acuáticos, Aves y Reptiles, Veracruz, Veracruz, Mexico.
| | - José P Vázquez-Medina
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico.
| |
Collapse
|
31
|
Meir JU, Robinson PW, Vilchis LI, Kooyman GL, Costa DP, Ponganis PJ. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal. PLoS One 2013; 8:e83248. [PMID: 24376671 PMCID: PMC3871621 DOI: 10.1371/journal.pone.0083248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/31/2013] [Indexed: 12/03/2022] Open
Abstract
Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most "natural" state.
Collapse
Affiliation(s)
- Jessica U. Meir
- Dept. of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Patrick W. Robinson
- Dept. of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - L. Ignacio Vilchis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Gerald L. Kooyman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Daniel P. Costa
- Dept. of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Paul J. Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
32
|
Castellini M. Life under water: physiological adaptations to diving and living at sea. Compr Physiol 2013; 2:1889-919. [PMID: 23723028 DOI: 10.1002/cphy.c110013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review covers the field of diving physiology by following a chronological approach and focusing heavily on marine mammals. Because the study of modern diving physiology can be traced almost entirely to the work of Laurence Irving in the 1930s, this particular field of physiology is different than most in that it did not derive from multiple laboratories working at many locations or on different aspects of a similar problem. Because most of the physiology principles still used today were first formulated by Irving, it is important to the study of this field that the sequence of thought is examined as a progression of theory. The review covers the field in roughly decadal blocks and traces ideas as they were first suggested, tested, modified and in some cases, abandoned. Because diving physiology has also been extremely dependent on new technologies used in the development of diving recorders, a chronological approach fits well with advances in electronics and mechanical innovation. There are many species that dive underwater as part of their natural behavior, but it is mainly the marine mammals (seals, sea lions, and whales) that demonstrate both long duration and dives to great depth. There have been many studies on other diving species including birds, snakes, small aquatic mammals, and humans. This work examines these other diving species as appropriate and a listing of reviews and relevant literature on these groups is included at the end.
Collapse
Affiliation(s)
- Michael Castellini
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska.
| |
Collapse
|
33
|
Aerobic dive limits of seals with mutant myoglobin using combined thermochemical and physiological data. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:119-28. [DOI: 10.1016/j.cbpa.2012.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/12/2012] [Accepted: 10/14/2012] [Indexed: 11/19/2022]
|
34
|
Trumble SJ, Kanatous SB. Fatty Acid use in Diving Mammals: More than Merely Fuel. Front Physiol 2012; 3:184. [PMID: 22707938 PMCID: PMC3374346 DOI: 10.3389/fphys.2012.00184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023] Open
Abstract
Diving mammals, are under extreme pressure to conserve oxygen as well as produce adequate energy through aerobic pathways during breath-hold diving. Typically a major source of energy, lipids participate in structural and regulatory roles and have an important influence on the physiological functions of an organism. At the stoichiometric level, the metabolism of polyunsaturated fatty acids (PUFAs) utilizes less oxygen than metabolizing either monounsaturated fatty acids or saturated fatty acids (SFAs) and yields fewer ATP per same length fatty acid. However, there is evidence that indicates the cellular metabolic rate is directly correlated to the lipid composition of the membranes such that the greater the PUFA concentration in the membranes the greater the metabolic rate. These findings appear to be incompatible with diving mammals that ingest and metabolize high levels of unsaturated fatty acids while relying on stored oxygen. Growing evidence from birds to mammals including recent evidence in Weddell seals also indicates that at the whole animal level the utilization of PUFAs to fuel their metabolism actually conserves oxygen. In this paper, we make an initial attempt to ascertain the beneficial adaptations or limitations of lipids constituents and potential trade-offs in diving mammals. We discuss how changes in Antarctic climate are predicted to have numerous different environmental effects; such potential shifts in the availability of certain prey species or even changes in the lipid composition (increased SFA) of numerous fish species with increasing water temperatures and how this may impact the diving ability of Weddell seals.
Collapse
|
35
|
Shiomi K, Sato K, Ponganis PJ. Point of no return in diving emperor penguins: is the timing of the decision to return limited by the number of strokes? ACTA ACUST UNITED AC 2012; 215:135-40. [PMID: 22162861 DOI: 10.1242/jeb.064568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At some point in a dive, breath-hold divers must decide to return to the surface to breathe. The issue of when to end a dive has been discussed intensively in terms of foraging ecology and behavioral physiology, using dive duration as a temporal parameter. Inevitably, however, a time lag exists between the decision of animals to start returning to the surface and the end of the dive, especially in deep dives. In the present study, we examined the decision time in emperor penguins under two different conditions: during foraging trips at sea and during dives at an artificial isolated dive hole. It was found that there was an upper limit for the decision-to-return time irrespective of dive depth in birds diving at sea. However, in a large proportion of dives at the isolated dive hole, the decision-to-return time exceeded the upper limit at sea. This difference between the decision times in dives at sea versus the isolated dive hole was accounted for by a difference in stroke rate. The stroke rates were much lower in dives at the isolated hole and were inversely correlated with the upper limit of decision times in individual birds. Unlike the decision time to start returning, the cumulative number of strokes at the decision time fell within a similar range in the two experiments. This finding suggests that the number of strokes, but not elapsed time, constrained the decision of emperor penguins to return to the surface. While the decision to return and to end a dive may be determined by a variety of ecological, behavioral and physiological factors, the upper limit to that decision time may be related to cumulative muscle workload.
Collapse
Affiliation(s)
- Kozue Shiomi
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 2-106-1 Akahama, Otsuchi, Iwate 028-1102, Japan.
| | | | | |
Collapse
|
36
|
Williams CL, Sato K, Shiomi K, Ponganis PJ. Muscle energy stores and stroke rates of emperor penguins: implications for muscle metabolism and dive performance. Physiol Biochem Zool 2012; 85:120-33. [PMID: 22418705 DOI: 10.1086/664698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In diving birds and mammals, bradycardia and peripheral vasoconstriction potentially isolate muscle from the circulation. During complete ischemia, ATP production is dependent on the size of the myoglobin oxygen (O(2)) store and the concentrations of phosphocreatine (PCr) and glycogen (Gly). Therefore, we measured PCr and Gly concentrations in the primary underwater locomotory muscle of emperor penguin and modeled the depletion of muscle O(2) and those energy stores under conditions of complete ischemia and a previously determined muscle metabolic rate. We also analyzed stroke rate to assess muscle workload variation during dives and evaluate potential limitations on the model. Measured PCr and Gly concentrations, 20.8 and 54.6 mmol kg(-1), respectively, were similar to published values for nondiving animals. The model demonstrated that PCr and Gly provide a large anaerobic energy store, even for dives longer than 20 min. Stroke rate varied throughout the dive profile, indicating muscle workload was not constant during dives as was assumed in the model. The stroke rate during the first 30 s of dives increased with increased dive depth. In extremely long dives, lower overall stroke rates were observed. Although O(2) consumption and energy store depletion may vary during dives, the model demonstrated that PCr and Gly, even at concentrations typical of terrestrial birds and mammals, are a significant anaerobic energy store and can play an important role in the emperor penguin's ability to perform long dives.
Collapse
Affiliation(s)
- Cassondra L Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093-0204, USA.
| | | | | | | |
Collapse
|
37
|
Teulier L, Dégletagne C, Rey B, Tornos J, Keime C, de Dinechin M, Raccurt M, Rouanet JL, Roussel D, Duchamp C. Selective upregulation of lipid metabolism in skeletal muscle of foraging juvenile king penguins: an integrative study. Proc Biol Sci 2012; 279:2464-72. [PMID: 22357259 DOI: 10.1098/rspb.2011.2664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The passage from shore to marine life of juvenile penguins represents a major energetic challenge to fuel intense and prolonged demands for thermoregulation and locomotion. Some functional changes developed at this crucial step were investigated by comparing pre-fledging king penguins with sea-acclimatized (SA) juveniles (Aptenodytes patagonicus). Transcriptomic analysis of pectoralis muscle biopsies revealed that most genes encoding proteins involved in lipid transport or catabolism were upregulated, while genes involved in carbohydrate metabolism were mostly downregulated in SA birds. Determination of muscle enzymatic activities showed no changes in enzymes involved in the glycolytic pathway, but increased 3-hydroxyacyl-CoA dehydrogenase, an enzyme of the β-oxidation pathway. The respiratory rates of isolated muscle mitochondria were much higher with a substrate arising from lipid metabolism (palmitoyl-L-carnitine) in SA juveniles than in terrestrial controls, while no difference emerged with a substrate arising from carbohydrate metabolism (pyruvate). In vivo, perfusion of a lipid emulsion induced a fourfold larger thermogenic effect in SA than in control juveniles. The present integrative study shows that fuel selection towards lipid oxidation characterizes penguin acclimatization to marine life. Such acclimatization may involve thyroid hormones through their nuclear beta receptor and nuclear coactivators.
Collapse
Affiliation(s)
- Loic Teulier
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Knight K. Cassondra Williams wins 2011 JEB Outstanding Paper Prize. J Exp Biol 2011; 214:4069-70. [PMID: 22116748 DOI: 10.1242/jeb.067926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Sato K, Shiomi K, Marshall G, Kooyman GL, Ponganis PJ. Stroke rates and diving air volumes of emperor penguins: implications for dive performance. ACTA ACUST UNITED AC 2011; 214:2854-63. [PMID: 21832128 DOI: 10.1242/jeb.055723] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Emperor penguins (Aptenodytes forsteri), both at sea and at an experimental dive hole, often have minimal surface periods even after performance of dives far beyond their measured 5.6 min aerobic dive limit (ADL: dive duration associated with the onset of post-dive blood lactate accumulation). Accelerometer-based data loggers were attached to emperor penguins diving in these two different situations to further evaluate the capacity of these birds to perform such dives without any apparent prolonged recovery periods. Minimum surface intervals for dives as long as 10 min were less than 1 min at both sites. Stroke rates for dives at sea were significantly greater than those for dives at the isolated dive hole. Calculated diving air volumes at sea were variable, increased with maximum depth of dive to a depth of 250 m, and decreased for deeper dives. It is hypothesized that lower air volumes for the deepest dives are the result of exhalation of air underwater. Mean maximal air volumes for deep dives at sea were approximately 83% greater than those during shallow (<50 m) dives. We conclude that (a) dives beyond the 5.6 min ADL do not always require prolongation of surface intervals in emperor penguins, (b) stroke rate at sea is greater than at the isolated dive hole and, therefore, a reduction in muscle stroke rate does not extend the duration of aerobic metabolism during dives at sea, and (c) a larger diving air volume facilitates performance of deep dives by increasing the total body O(2) store to 68 ml O(2) kg(-1). Although increased O(2) storage and cardiovascular adjustments presumably optimize aerobic metabolism during dives, enhanced anaerobic capacity and hypoxemic tolerance are also essential for longer dives. This was exemplified by a 27.6 min dive, after which the bird required 6 min before it stood up from a prone position, another 20 min before it began to walk, and 8.4 h before it dived again.
Collapse
Affiliation(s)
- Katsufumi Sato
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 2-106-1, Akahama, Otsuchi, Iwate, 028-1102, Japan
| | | | | | | | | |
Collapse
|
40
|
Ponganis PJ, Meir JU, Williams CL. In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins. J Exp Biol 2011; 214:3325-39. [DOI: 10.1242/jeb.031252] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Since the introduction of the aerobic dive limit (ADL) 30 years ago, the concept that most dives of marine mammals and sea birds are aerobic in nature has dominated the interpretation of their diving behavior and foraging ecology. Although there have been many measurements of body oxygen stores, there have been few investigations of the actual depletion of those stores during dives. Yet, it is the pattern, rate and magnitude of depletion of O2 stores that underlie the ADL. Therefore, in order to assess strategies of O2 store management, we review (a) the magnitude of O2 stores, (b) past studies of O2 store depletion and (c) our recent investigations of O2 store utilization during sleep apnea and dives of elephant seals (Mirounga angustirostris) and during dives of emperor penguins (Aptenodytes forsteri). We conclude with the implications of these findings for (a) the physiological responses underlying O2 store utilization, (b) the physiological basis of the ADL and (c) the value of extreme hypoxemic tolerance and the significance of the avoidance of re-perfusion injury in these animals.
Collapse
Affiliation(s)
- Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Jessica U. Meir
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cassondra L. Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
41
|
Knight K. MUSCLE TRIGGERS AEROBIC DIVE LIMIT. J Exp Biol 2011. [DOI: 10.1242/jeb.059428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|