1
|
Patterson BD, Demos TC, Torrent L, Grunwald AL, Montauban C, Kerbis Peterhans JC, McDonough MM, Dick CW, Bartonjo M, Schoeman MC, Ruedas LA, Juste J. Systematics of the Rhinolophus landeri complex, with evidence for 3 additional Afrotropical bat species. J Mammal 2025; 106:187-201. [PMID: 39886215 PMCID: PMC11776429 DOI: 10.1093/jmammal/gyae085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 02/01/2025] Open
Abstract
Roughly a third of all horseshoe bat species (Rhinolophidae: Rhinolophus) are found in Africa, where a recent continent-wide genetic survey suggested the presence of both undescribed and apparently invalid species. Here, we focus on the R. landeri species complex and the recent elevation of R. lobatus Peters, 1852, to species rank. That action created ambiguity in the taxonomy of East African members of the group-are both R. landeri Martin, 1838, and R. lobatus sympatric in East Africa or is another, unnamed species present there? Here, we refine genetic, morphological, and behavioral characterizations of R. landeri and its erstwhile synonyms with samples from the vicinity of their type localities. The distribution of R. landeri appears to be limited to Central and West Africa; existing genetic records attributed to this species from Mali clearly represent another taxon. We marshal genetic evidence for the species-level distinction of R. dobsoni Thomas, 1904, from Sudan, which was previously considered a synonym of R. landeri. We reject R. axillaris J. A. Allen, 1917, as a synonym of the R. landeri complex, provisionally regarding it as a valid member of the landeri species group. Finally, we demonstrate that East Africa is home to a fourth species of the landeri complex that is named herein. Final resolution of the systematics of this species complex awaits expanded characterizations (especially of genetics, vocalizations, and noseleaves) and studies of variation in regions of contact.
Collapse
Affiliation(s)
- Bruce D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL 60605, United States
| | - Terrence C Demos
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL 60605, United States
| | - Laura Torrent
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, 4485-661 Vairão, Portugal
- BiBio, Natural Sciences Museum of Granollers, Francesc Macià 51, 08402 Granollers, Spain
| | - Amanda L Grunwald
- Department of Biology and Museum of Vertebrate Biology, Portland State University, SRTC-247, P.O. Box 751, Portland, OR 97207, United States
| | - Cecilia Montauban
- Department of Life Sciences, Imperial College London, Ascot, Berks SL5 7PY, United Kingdom
- Department of Life Sciences, Natural History Museum London, London SW7 5BD, United Kingdom
| | - Julian C Kerbis Peterhans
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL 60605, United States
- College of Arts & Sciences, Roosevelt University, Chicago, IL 60605, United States
| | - Molly M McDonough
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL 60605, United States
- Department of Biological Sciences, Chicago State University, 9501 S. King Drive, Chicago, IL 60628, United States
| | - Carl W Dick
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL 60605, United States
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, United States
| | - Michael Bartonjo
- Mammalogy Section, National Museums of Kenya, P.O. Box 40658 – 00100, Nairobi, Kenya
| | - M Corrie Schoeman
- School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Luis A Ruedas
- Department of Biology and Museum of Vertebrate Biology, Portland State University, SRTC-247, P.O. Box 751, Portland, OR 97207, United States
| | - Javier Juste
- Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio 26, Seville 41092, Spain
- Epidemiology and Public Health, CIBERESP, 28029 Madrid, Spain
| |
Collapse
|
2
|
Jakobsen L, Wisniewska DM, Häfele FT, Rajaeasparan JT, Nielsen JB, Ratcliffe JM. Velocity as an overlooked driver in the echolocation behavior of aerial hawking vespertilionid bats. Curr Biol 2025:S0960-9822(24)01710-X. [PMID: 39892385 DOI: 10.1016/j.cub.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Moving animals must gather information at sufficient rates, detail, and range relative to their velocity while filtering this information to that essential for a given task.1,2 Echolocators, because of their active sensory system, are exceptional models for investigating how animals filter and adjust information flow to motor patterns.3,4 During airborne prey capture, bats adjust echolocation and, by extension, how they probe for information in distance- and context-dependent ways.5,6,7 We investigated how sensory probing guides movement and how niche specializations shape strategies to integrate information acquisition and motion velocity. Specifically, we recorded three sympatric bats of the same foraging guild (edge-space hawkers), but different niches, as they intercepted airborne prey under identical conditions. When hawking, we find that the trawler, Myotis daubentonii, and the hawker, Pipistrellus pygmaeus, exhibit similar flight and echolocation behavior, whereas the gleaner, M. nattereri, flies slower and produces calls of lower duration and intensity, greater bandwidth and call interval, but similar beam breadth. Strikingly, these differences in echolocation behavior converge when accounting for flight speed. We show that these species move equivalent distances between call emissions and that all bats travel through their respective sonar ranges in the same time interval. Further, each echolocation call's duration is related to the two-way travel time of its sonar range, and thus velocity, the same way across species. The similarity in how these bats sample their environment relative to velocity suggests general mechanisms of information processing and conserved traits underlying auditory attention in vespertilionid bats and, perhaps, other echolocators.
Collapse
Affiliation(s)
- Lasse Jakobsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Danuta M Wisniewska
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Felix T Häfele
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | | | - Julie B Nielsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - John M Ratcliffe
- Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
3
|
Yoshida S, Hase K, Heim O, Kobayasi KI, Hiryu S. Doppler detection triggers instantaneous escape behavior in scanning bats. iScience 2024; 27:109222. [PMID: 38524366 PMCID: PMC10960053 DOI: 10.1016/j.isci.2024.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/26/2024] Open
Abstract
Animals must instantaneously escape from predators for survival, which requires quick detection of approaching threats. Although the neural mechanisms underlying the perception of looming objects have been extensively studied in the visual system, little is known about their auditory counterparts. Echolocating bats use their auditory senses to perceive not only the soundscape, but also the physical environment through active sensing. Although object movement induces both echo delay changes and Doppler shifts, the actual information required to perceive movement has been unclear. Herein, we addressed this question by playing back phantom echoes mimicking an approaching target to horseshoe bats and found that they relied only on Doppler shifts. This suggests that the bats do not perceive object motion in the spatiotemporal dimension (i.e., positional variation), as in vision, but rather take advantage of acoustic sensing by directly detecting velocity, thereby enabling them to respond instantaneously to approaching threats.
Collapse
Affiliation(s)
- Soshi Yoshida
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Kazuma Hase
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Olga Heim
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Kohta I. Kobayasi
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| |
Collapse
|
4
|
Ma N, Xia H, Yu C, Wei T, Yin K, Luo J. Effects of insect pursuit on the Doppler shift compensation in a hipposiderid bat. J Exp Biol 2024; 227:jeb246355. [PMID: 38352987 DOI: 10.1242/jeb.246355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
Doppler shift compensation (DSC) is a unique feature observed in certain species of echolocating bats and is hypothesized to be an adaptation to detecting fluttering insects. However, current research on DSC has primarily focused on bats that are not engaged in foraging activities. In this study, we investigated the DSC performance of Pratt's roundleaf bat, Hipposideros pratti, which was trained to pursue insects in various motion states within a laboratory setting. Our study yielded three main results. First, H. pratti demonstrated highly precise DSC during insect pursuit, aligning with previous findings of other flutter-detecting foragers during orientation or landing tasks. Second, we found that the motion state of the insect prey had little effect on the DSC performance of H. pratti. Third, we observed variations in the DSC performance of H. pratti throughout the course of insect pursuit. The bats exhibited the highest DSC performance during the phase of maximum flight speed but decreased performance during the phase of insect capture. These findings of high precision overall and the time-dependent performance of DSC during insect pursuit support the hypothesis that DSC is an adaptation to detecting fluttering insects.
Collapse
Affiliation(s)
- Nina Ma
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Hangjing Xia
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Chao Yu
- Nanjing Research Institute of Electronics Technology, Nanjing, Jiangsu 210039, China
| | - Tingting Wei
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronics Technology, Nanjing, Jiangsu 210039, China
| | - Jinhong Luo
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Lin A, Li J, Hu Y, Zhong M, Yu M, Ma N, Wei T, Luo J, Feng J. Contrasting laboratory and field outcomes of bat-moth interactions. Mol Ecol 2023; 32:5864-5876. [PMID: 37789799 DOI: 10.1111/mec.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Predator-prey interactions are important but difficult to study in the field. Therefore, laboratory studies are often used to examine the outcomes of predator-prey interactions. Previous laboratory studies have shown that moth hearing and ultrasound production can help prey avoid being eaten by bats. We report here that laboratory behavioural outcomes may not accurately reflect the outcomes of field bat-moth interactions. We tested the success rates of two bat species capturing moths with distinct anti-bat tactics using behavioural experiments. We compared the results with the dietary composition of field bats using next-generation DNA sequencing. Rhinolophus episcopus and Rhinolophus osgoodi had a lower rate of capture success when hunting for moths that produce anti-bat clicks than for silent eared moths and earless moths. Unexpectedly, the success rates of the bats capturing silent eared moths and earless moths did not differ significantly from each other. However, the field bats had a higher proportion of silent eared moths than that of earless moths and that of clicking moths in their diets. The difference between the proportions of silent eared moths and earless moths in the bat diets can be explained by the difference between their abundance in bat foraging habitats. These findings suggest that moth defensive tactics, bat countertactics and moth availability collectively shape the diets of insectivorous bats. This study illustrates the importance of using a combination of behavioural experiments and molecular genetic techniques to reveal the complex interactions between predators and prey in nature.
Collapse
Affiliation(s)
- Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiqian Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yinli Hu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Maojun Zhong
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Minglun Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Nina Ma
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Tingting Wei
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jinhong Luo
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
6
|
Falcão F, Pavan AC. Mormoopid bats from Brazil: updates on the geographic distribution of three species and their echolocation calls. MAMMALIA 2023. [DOI: 10.1515/mammalia-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Abstract
Mormoopids are a small group of insectivorous bats largely distributed from the southwestern United States throughout Central and South America. They occupy a wide variety of habitats, and in Brazil have usually been associated with habitats in the Amazon, Cerrado, or Caatinga biomes. Nevertheless, most of the information compiled so far to infer their distributional limits is based on roosting colonies occasionally found in caves or on inventories using bat mist netting, which is known to be an ineffective method for capturing aerial insectivorous bats. In this contribution, we present new occurrence records of mormoopid bats based on acoustic surveys in the Caatinga and Cerrado biomes and make an extensive literature review to provide an up-to-date distribution of these bats in Brazil. We additionally describe important parameters of the echolocation calls of mormoopids across the geographical scope of our study, contrasting our data with published information to provide a better overview of the intraspecific acoustic variation of these bat species. Our acoustic data reveal a larger area of occurrence of mormoopids in Brazil than previously known, confirming new records for two states.
Collapse
Affiliation(s)
- Fábio Falcão
- Tetrapoda Consultoria Ambiental Ltda : Ilhéus , Bahia , Brazil
| | - Ana Carolina Pavan
- Universidade de São Paulo, Museu de Zoologia: São Paulo , São Paulo , Brazil
| |
Collapse
|
7
|
Brualla NLM, Wilson LAB, Doube M, Carter RT, McElligott AG, Koyabu D. The vocal apparatus: An understudied tool to reconstruct the evolutionary history of echolocation in bats? J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Transmitter and receiver of the low frequency horseshoe bat Rhinolophus paradoxolophus are functionally matched for fluttering target detection. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:191-202. [PMID: 36136120 PMCID: PMC9898408 DOI: 10.1007/s00359-022-01571-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Flutter-detecting foragers require specific adaptations of the transmitter and the receiver of their echolocation systems to detect and evaluate flutter information in the echoes of potential prey. These adaptations include Doppler shift compensation (DSC), which keeps the echo frequency from targets ahead constant at a reference frequency (fref), and an auditory fovea in the cochlea, which results in foveal areas in the hearing system with many sharply tuned neurons with best frequencies near fref. So far, this functional match has been verified only for a very few key species, but is postulated for all flutter-detecting foragers. In this study we determined both, the transmitter and receiver properties within individuals of the Bourret's horseshoe bat (Rhinolophus paradoxolophus), an allometric outlier in the rhinolophid family. Here we show that the transmitter and receiver are functionally matched in a similar way as postulated for all flutter-detecting foragers. The performance of DSC, measured as the ability to keep the echo frequency constant at fref, had a precision similar to that found in other flutter-detecting foragers, and the audiogram showed the characteristic course with a minimum at fref. Furthermore, we show for a rhinolophid bat a variation over time of the coupled resting frequency and fref. Finally, we discuss the tight match between transmitter and receiver properties, which is guaranteed by the link between the foveal areas of the receiver and the audio-vocal control system for DSC.
Collapse
|
9
|
Zou W, Liang H, Wu P, Luo B, Zhou D, Liu W, Wu J, Fang L, Lei Y, Feng J. Correlated evolution of wing morphology and echolocation calls in bats. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1031548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IntroductionFlight and echolocation are two crucial behaviors associated with niche expansion in bats. Previous researches have attempted to explain the interspecific divergence in flight morphology and echolocation vocalizations in some bat groups from the perspective of foraging ecology. However, the relationship between wing morphology and echolocation vocalizations of bats remains obscure, especially in a phylogenetic context.ObjectivesHere, we aimed to assess the correlated evolution of wing morphology and echolocation calls in bats within a phylogenetic comparative framework.MethodsWe integrated the information on search-phrase echolocation call duration, peak frequency, relative wing loading, aspect ratio, and foraging guilds for 152 bat species belonging to 15 families. We quantified the association among wing morphology, echolocation call parameters, and foraging guilds using phylogeny-based comparative analyses.ResultsOur analyses revealed that wing morphology and echolocation call parameters depended on families and exhibited a marked phylogenetic signal. Peak frequency of the call was negatively correlated with relative wing loading and aspect ratio. Call duration was positively correlated with relative wing loading and aspect ratio among open-space aerial foragers, edge-space aerial foragers, edge-space trawling foragers, and narrow-space gleaning foragers. Wing morphology, call duration, and peak frequency were predicted by foraging guilds.ConclusionThese results demonstrate that adaptive response to foraging ecology has shaped the correlated evolution between flight morphology and echolocation calls in bats. Our findings expand the current knowledge regarding the link between morphology and vocalizations within the order Chiroptera.
Collapse
|
10
|
Wang R, Liu Y, Müller R. Detection of passageways in natural foliage using biomimetic sonar. BIOINSPIRATION & BIOMIMETICS 2022; 17:056009. [PMID: 35728778 DOI: 10.1088/1748-3190/ac7aff] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The ability of certain bat species to navigate in dense vegetation based on trains of short biosonar echoes could provide for an alternative parsimonious approach to obtaining the sensory information that is needed to achieve autonomy in complex natural environments. Although bat biosonar has much lower data rates and spatial (angular) resolution than commonly used human-made sensing systems such as LiDAR or stereo cameras, bat species that live in dense habitats have the ability to reliably detect narrow passageways in foliage. To study the sensory information that the animals may have available to accomplish this, we have used a biomimetic sonar system that was combined with a camera to record echoes and synchronized images from 10 different field sites that featured narrow passageways in foliage. The synchronized camera and sonar data allowed us to create a large data set (130 000 samples) of labeled echoes using a teacher-student approach that used class labels derived from the images to provide training data for echo-based classifiers. The performance achieved in detecting passageways based on the field data closely matched previous results obtained for gaps in an artificial foliage setup in the laboratory. With a deep feature extraction neural network (VGG16) a foliage-versus-passageway classification accuracy of 96.64% was obtained. A transparent artificial intelligence approach (class-activation mapping) indicated that the classifier network relied heavily on the initial rising flank of the echoes. This finding could be exploited with a neuromorphic echo representation that consisted of times where the echo envelope crossed a certain amplitude threshold in a given frequency channel. Whereas a single amplitude threshold was sufficient for this in the previous laboratory study, multiple thresholds were needed to achieve an accuracy of 92.23%. These findings indicate that despite many sources of variability that shape clutter echoes from natural environments, these signals contain sufficient sensory information to enable the detection of passageways in foliage.
Collapse
Affiliation(s)
- Ruihao Wang
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Yimeng Liu
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Rolf Müller
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
11
|
Snipes CCG, Carter RT. The hyoid as a sound conducting apparatus in laryngeally echolocating bats. J Anat 2022; 240:1020-1033. [PMID: 34927244 PMCID: PMC9119617 DOI: 10.1111/joa.13615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Abstract
The morphology of the stylohyal-tympanic bone articulation found in laryngeally echolocating bats is highly indicative of a function associated with signal production. One untested hypothesis is that this morphology allows the transfer of a sound signal from the larynx to the tympanic bones (auditory bulla) via the hyoid apparatus during signal production by the larynx. We used µCT data and finite element analysis to model the propagation of sound through the hyoid chain into the tympanic bones to test this hypothesis. We modeled sound pressure (dB) wave propagation from the basihyal to the tympanic bones, vibratory behavior (m) of the stylohyal-tympanic bone unit, and the stylohyal and tympanic bones when the stylohyal bone is allowed to pivot on the tympanic bone. Sound pressure wave propagation was modeled using the harmonic acoustics solver in ANSYS and vibratory behavior was modeled using coupled modal and harmonic response analyses in ANSYS. For both analyses (harmonic acoustics and harmonic response), the input excitation on the basihyal and thyrohyals was modeled as the estimated pressure (Pa) imposed by the collision of the vibrating thyroid cartilage of the larynx against these bones during signal production. Our models support the hypothesis that this stereotypical hyoid morphology found in laryngeally echolocating bats can transfer sound to the auditory bullae at an amplitude that is likely heard for the species Artibeus jamaicensis and Rhinolophus pusillus.
Collapse
|
12
|
Finger NM, Holderied M, Jacobs DS. Detection distances in desert dwelling, high duty cycle echolocators: A test of the foraging habitat hypothesis. PLoS One 2022; 17:e0268138. [PMID: 35588425 PMCID: PMC9119505 DOI: 10.1371/journal.pone.0268138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
High Duty Cycle (HDC) echolocating bats use high frequency echolocation pulses that are clutter resistant, but their high frequencies give them limited range. Despite their unique ability to reject background clutter while simultaneously detecting fluttering prey, the frequency of their echolocation pulses has a strong correlation with level of environmental clutter, lower frequency pulses of HDC bats being associated with more open environments. The Foraging Habitat Hypothesis (FHH) proposes that the ecological significance of these lower frequency pulses in HDC bats in open environments is that they allow longer prey detection distances. To test the FHH, we compared the frequencies, Source Levels (SLs) and detection distances of Rhinolophus capensis, a HDC bat that has been shown to vary its call frequency in relation to habitat structure. As a further test of the FHH we investigated the SLs and detection distances of Rhinolophus damarensis (a heterospecific species that occurs in the same open desert environment as R. capensis but echolocates at a higher dominant pulse frequency). In the open desert, R. capensis emitted both lower frequency and higher SL pulses giving them longer detection distances than R. capensis in the cluttered fynbos. SL contributed more to differences in detection distances in both R. capensis and R. damarensis than frequency. In a few instances, R. damarensis achieved similar detection distances to desert–inhabiting R. capensis by emitting much higher SLs despite their average SLs being lower. These results suggest that lower frequency echolocation pulses are not a prerequisite for open desert living but may increase detection distance while avoiding energetic costs required for high SLs.
Collapse
Affiliation(s)
- Nikita M. Finger
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Marc Holderied
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - David S. Jacobs
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
13
|
Kohyt J, Pierzchała E, Koza A, Piksa K. Resting Frequency of Echolocation Calls within a Lesser Horseshoe Bat Population (Southern Poland) and its Relation to Body Size, Condition and Mass. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The echolocation calls emitted by stationary bats are characterised by their resting frequency (RF). The ecological role of RF has been widely discussed across the literature concerning the Rhinolophidae family, where it has been found that the RF may vary depending on many factors,
although its role in shaping the variability of different populations remains unclear, and the data for many species – including Rhinolophus hipposideros – is scarce. In this study, we aimed to determine how sex, age and biometric parameters (body mass, forearm length and
the body condition index) affected the RF in a R. hipposideros population and to investigate the individual variability in this parameter. Bats were captured in front of two Carpathian caves in Southern Poland during the mating season. The echolocation calls of the hand-held bats were
recorded, and later their peak frequency was measured with computer software. The analyses showed higher RF values for females than for males, but (in contrast to previous reports) no differences between the age classes were identified. RF did not correlate with any biometric parameters in
the studied population, which rules out the possibility of quality characteristic signalling through this parameter. However, we observed significant individual differences in RF within the sex-age groups, which might reflect some communication potential. The discrepancies among the research
results available for this topic indicate the need for further studies aimed at investigating the variability of RF and its role across species distribution ranges and their phenology.
Collapse
Affiliation(s)
- Joanna Kohyt
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Ewa Pierzchała
- Doctoral School of Exact and Natural Sciences, Engineering and Technology, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland
| | - Aleksandra Koza
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Students' Scientific Association of Zoologists 'Faunatycy', Bankowa 9, 40-007 Katowice, Poland
| | - Krzysztof Piksa
- Department of Zoology, Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
14
|
A bibliometric analysis of research trends in bat echolocation studies between 1970 and 2021. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Ding J, Zhang Y, Han F, Jiang T, Feng J, Lin A, Liu Y. Adaptive temporal patterns of echolocation and flight behaviors used to fly through varied-sized windows by two species of high duty cycle bats. Curr Zool 2022; 69:32-40. [PMID: 36974145 PMCID: PMC10039174 DOI: 10.1093/cz/zoac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
As actively sensing animals guided by acoustic information, echolocating bats must adapt their vocal-motor behavior to various environments and behavioral tasks. Here, we investigated how the temporal patterns of echolocation and flight behavior were adjusted in two species of bats with a high duty cycle (HDC) call structure, Rhinolophus ferrumequinum and Hipposideros armiger, when they flew along a straight corridor and then passed through windows of three different sizes. We also tested whether divergence existed in the adaptations of the two species. Both H. armiger and R. ferrumequinum increased their call rates by shortening the pulse duration and inter-pulse interval for more rapid spatial sampling of the environment when flying through smaller windows. Bats produced more sonar sound groups (SSGs) while maintaining a stable proportion of calls that made up SSGs during approaches to smaller windows. The two species showed divergent adjustment in flight behavior across three different window sizes. Hipposideros armiger reduced its flight speed to pass through smaller windows while R. ferrumequinum increased its flight speed. Our results suggest that these two species of HDC bats adopt similar acoustic timing patterns for different tasks although they performed different flight behaviors.
Collapse
Affiliation(s)
- Jianan Ding
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yu Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Fujie Han
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Tingting Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China
| |
Collapse
|
16
|
Teshima Y, Hasegawa Y, Tsuchiya T, Moriyama R, Genda S, Kawamura T, Hiryu S. Reconstruction of echoes reaching bats in flight from arbitrary targets by acoustic simulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2127. [PMID: 35364898 DOI: 10.1121/10.0009916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Echolocating bats perceive their environment by emitting ultrasonic pulses and listening to echoes that are reflected back from their surroundings. Behavioral decisions of bats are mainly dependent on echo information, and acoustical analysis of echoes is useful for understanding their behavioral decisions. To date, echoes have been measured using a telemetry microphone mounted on the bat's head; however, due to technical difficulties, it was not enough to measure all the echoes reaching the bats in flight. In this paper, we propose an approach to reconstruct the echoes of bats in flight using finite-difference time-domain (FDTD) method simulations based on the measured flight path, speed, and sound information from behavioral experiments. As a result, echoes from any target in flight can be correctly reconstructed, including the Doppler effect. We also analyzed the spatiotemporal transition among attended walls for Doppler shift compensation (DSC) during circling flight in the context of DSC behavior and found that the bats switch their attention to different walls and focus on the wall ahead of them in the direction of flight.
Collapse
Affiliation(s)
- Yu Teshima
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuta Hasegawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Takao Tsuchiya
- Faculty of Sciences and Engineering, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Ryota Moriyama
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Shoko Genda
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Taku Kawamura
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| |
Collapse
|
17
|
Schoeppler D, Denzinger A, Schnitzler HU. The resting frequency of echolocation signals changes with body temperature in the hipposiderid bat Hipposideros armiger. J Exp Biol 2022; 225:jeb243569. [PMID: 34989397 PMCID: PMC8918815 DOI: 10.1242/jeb.243569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022]
Abstract
Doppler shift (DS) compensating bats adjust in flight the second harmonic of the constant-frequency component (CF2) of their echolocation signals so that the frequency of the Doppler-shifted echoes returning from ahead is kept constant with high precision (0.1-0.2%) at the so-called reference frequency (fref). This feedback adjustment is mediated by an audio-vocal control system that correlates with a maximal activation of the foveal resonance area in the cochlea. Stationary bats adjust the average CF2 with similar precision at the resting frequency (frest), which is slightly below the fref. Over a range of time periods (from minutes up to years), variations of the coupled fref and frest have been observed, and were attributed to age, social influences and behavioural situations in rhinolophids and hipposiderids, and to body temperature effects and flight activity in Pteronotus parnellii. We assume that, for all DS-compensating bats, a change in body temperature has a strong effect on the activation state of the foveal resonance area in the cochlea, which leads to a concomitant change in emission frequency. We tested our hypothesis in a hipposiderid bat, Hipposideros armiger, and measured how the circadian variation of body temperature at activation phases affected frest. With a miniature temperature logger, we recorded the skin temperature on the back of the bats simultaneously with echolocation signals produced. During warm-up from torpor, strong temperature increases were accompanied by an increase in frest, of up to 1.44 kHz. We discuss the implications of our results for the organization and function of the audio-vocal control systems of all DS-compensating bats.
Collapse
Affiliation(s)
- Diana Schoeppler
- Animal Physiology, Institute for Neurobiology, Faculty of Science, University of Tübingen, 72076 Tübingen, Germany
| | | | | |
Collapse
|
18
|
Evolution of inner ear neuroanatomy of bats and implications for echolocation. Nature 2022; 602:449-454. [PMID: 35082447 DOI: 10.1038/s41586-021-04335-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022]
Abstract
Phylogenomics of bats suggests that their echolocation either evolved separately in the bat suborders Yinpterochiroptera and Yangochiroptera, or had a single origin in bat ancestors and was later lost in some yinpterochiropterans1-6. Hearing for echolocation behaviour depends on the inner ear, of which the spiral ganglion is an essential structure. Here we report the observation of highly derived structures of the spiral ganglion in yangochiropteran bats: a trans-otic ganglion with a wall-less Rosenthal's canal. This neuroanatomical arrangement permits a larger ganglion with more neurons, higher innervation density of neurons and denser clustering of cochlear nerve fascicles7-13. This differs from the plesiomorphic neuroanatomy of Yinpterochiroptera and non-chiropteran mammals. The osteological correlates of these derived ganglion features can now be traced into bat phylogeny, providing direct evidence of how Yangochiroptera differentiated from Yinpterochiroptera in spiral ganglion neuroanatomy. These features are highly variable across major clades and between species of Yangochiroptera, and in morphospace, exhibit much greater disparity in Yangochiroptera than Yinpterochiroptera. These highly variable ganglion features may be a neuroanatomical evolutionary driver for their diverse echolocating strategies4,14-17 and are associated with the explosive diversification of yangochiropterans, which include most bat families, genera and species.
Collapse
|
19
|
Page RA, ter Hofstede HM. Sensory and Cognitive Ecology of Bats. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012921-052635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution.
Collapse
Affiliation(s)
- Rachel A. Page
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, República de Panamá
| | - Hannah M. ter Hofstede
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, República de Panamá
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
20
|
Ketten DR, Simmons JA, Riquimaroux H, Simmons AM. Functional Analyses of Peripheral Auditory System Adaptations for Echolocation in Air vs. Water. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.661216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The similarity of acoustic tasks performed by odontocete (toothed whale) and microchiropteran (insectivorous bat) biosonar suggests they may have common ultrasonic signal reception and processing mechanisms. However, there are also significant media and prey dependent differences, notably speed of sound and wavelengths in air vs. water, that may be reflected in adaptations in their auditory systems and peak spectra of out-going signals for similarly sized prey. We examined the anatomy of the peripheral auditory system of two species of FM bat (big brown bat Eptesicus fuscus; Japanese house bat Pipistrellus abramus) and two toothed whales (harbor porpoise Phocoena phocoena; bottlenose dolphin Tursiops truncatus) using ultra high resolution (11–100 micron) isotropic voxel computed tomography (helical and microCT). Significant differences were found for oval and round window location, cochlear length, basilar membrane gradients, neural distributions, cochlear spiral morphometry and curvature, and basilar membrane suspension distributions. Length correlates with body mass, not hearing ranges. High and low frequency hearing range cut-offs correlate with basilar membrane thickness/width ratios and the cochlear radius of curvature. These features are predictive of high and low frequency hearing limits in all ears examined. The ears of the harbor porpoise, the highest frequency echolocator in the study, had significantly greater stiffness, higher basal basilar membrane ratios, and bilateral bony support for 60% of the basilar membrane length. The porpoise’s basilar membrane includes a “foveal” region with “stretched” frequency representation and relatively constant membrane thickness/width ratio values similar to those reported for some bat species. Both species of bats and the harbor porpoise displayed unusual stapedial input locations and low ratios of cochlear radii, specializations that may enhance higher ultrasonic frequency signal resolution and deter low frequency cochlear propagation.
Collapse
|
21
|
He K, Liu Q, Xu DM, Qi FY, Bai J, He SW, Chen P, Zhou X, Cai WZ, Chen ZZ, Liu Z, Jiang XL, Shi P. Echolocation in soft-furred tree mice. Science 2021; 372:372/6548/eaay1513. [PMID: 34140356 DOI: 10.1126/science.aay1513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/05/2020] [Accepted: 05/05/2021] [Indexed: 12/30/2022]
Abstract
Echolocation is the use of reflected sound to sense features of the environment. Here, we show that soft-furred tree mice (Typhlomys) echolocate based on multiple independent lines of evidence. Behavioral experiments show that these mice can locate and avoid obstacles in darkness using hearing and ultrasonic pulses. The proximal portion of their stylohyal bone fuses with the tympanic bone, a form previously only seen in laryngeally echolocating bats. Further, we found convergence of hearing-related genes across the genome and of the echolocation-related gene prestin between soft-furred tree mice and echolocating mammals. Together, our findings suggest that soft-furred tree mice are capable of echolocation, and thus are a new lineage of echolocating mammals.
Collapse
Affiliation(s)
- Kai He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Qi Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Dong-Ming Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Fei-Yan Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Bai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shui-Wang He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Peng Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Wan-Zhi Cai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Zhong-Zheng Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
22
|
Nojiri T, Wilson LAB, López-Aguirre C, Tu VT, Kuratani S, Ito K, Higashiyama H, Son NT, Fukui D, Sadier A, Sears KE, Endo H, Kamihori S, Koyabu D. Embryonic evidence uncovers convergent origins of laryngeal echolocation in bats. Curr Biol 2021; 31:1353-1365.e3. [PMID: 33675700 DOI: 10.1016/j.cub.2020.12.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022]
Abstract
Bats are the second-most speciose group of mammals, comprising 20% of species diversity today. Their global explosion, representing one of the greatest adaptive radiations in mammalian history, is largely attributed to their ability of laryngeal echolocation and powered flight, which enabled them to conquer the night sky, a vast and hitherto unoccupied ecological niche. While there is consensus that powered flight evolved only once in the lineage, whether laryngeal echolocation has a single origin in bats or evolved multiple times independently remains disputed. Here, we present developmental evidence in support of laryngeal echolocation having multiple origins in bats. This is consistent with a non-echolocating bat ancestor and independent gain of echolocation in Yinpterochiroptera and Yangochiroptera, as well as the gain of primitive echolocation in the bat ancestor, followed by convergent evolution of laryngeal echolocation in Yinpterochiroptera and Yangochiroptera, with loss of primitive echolocation in pteropodids. Our comparative embryological investigations found that there is no developmental difference in the hearing apparatus between non-laryngeal echolocating bats (pteropodids) and terrestrial non-bat mammals. In contrast, the echolocation system is developed heterotopically and heterochronically in the two phylogenetically distant laryngeal echolocating bats (rhinolophoids and yangochiropterans), providing the first embryological evidence that the echolocation system evolved independently in these bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Laura A B Wilson
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Archaeology and Anthropology, The Australian National University, 44 Linnaeus Way, Acton, ACT 2601, Australia
| | - Camilo López-Aguirre
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kai Ito
- Department of Anatomy, Tissue and Cell Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nguyen Truong Son
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam
| | - Dai Fukui
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 9-61, Yamabe-Higashimachi, Furano, Hokkaido 079-1563, Japan
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 957246, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 957246, USA
| | - Hideki Endo
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Satoshi Kamihori
- Aioi City Board of Education, 3-18-7 Asahi, Aioi 679-0031, Japan
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-shi, Ibaraki 305-8550, Japan; Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
23
|
Lee YF, Kuo YM, Chu WC, Lin YH. Perch use by flycatching Rhinolophus formosae in relation to vegetation structure. J Mammal 2020. [DOI: 10.1093/jmammal/gyz213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractFlycatching is relatively uncommon in insectivorous bats, yet members of the family Rhinolophidae constitute over one-half of the documented flycatching species. The Formosan woolly horseshoe bat, Rhinolophus formosae, is among the largest in size and relies primarily on flycatching for foraging. We assessed perch use of flycatching R. formosae in relation to vegetation structure in tropical monsoon forests in southern Taiwan. We located bats using acoustic detectors in forest interior and edge-open forest sites, and measured perch features, dispersion of the nearest trees, and vegetation structure within a 5-m radius of each perch. The same measurements were applied to randomly selected perches in both habitats where bats were not detected. We found no seasonal effects or differences between used and random perches in perch features, dispersion of neighboring trees, or vegetation structure surrounding the perches. Perches used at edge-open forest sites were farther from the perch tree trunk and neighboring trees, and surrounded by larger trees than in forest interiors. In contrast, perches in forest interiors were surrounded by higher shrub and reef layers and greater canopy, shrub, and reef layer cover, than those at edge-open forests. Overall, perches in forest interiors were in more cluttered settings, containing higher vegetation obstacles than edge-open habitats. In both habitats, vegetation obstacles generally increased in a curvilinear manner when moving horizontally and downward from the perch. However, in forest interiors perches used by bats had significantly lower vegetation obstacles horizontally and downwardly and were less cluttered than randomly selected perches. Overall, our results indicate that R. formosae in forest interiors selectively used perches associated with more open space that allows for more maneuverable sally flights and a longer detection range suitable for its exceptionally low constant frequency calls to explore less cluttered environments.
Collapse
Affiliation(s)
- Ya-Fu Lee
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Min Kuo
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chen Chu
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Taiwan Endemic Species Research Institute, Nantou, Taiwan
| | - Yu-Hsiu Lin
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Taiwan Endemic Species Research Institute, Nantou, Taiwan
| |
Collapse
|
24
|
Carter RT. Reinforcement of the larynx and trachea in echolocating and non-echolocating bats. J Anat 2020; 237:495-503. [PMID: 32319086 DOI: 10.1111/joa.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/29/2022] Open
Abstract
The synchronization of flight mechanics with respiration and echolocation call emission by bats, while economizing these behaviors, presumably puts compressive loads on the cartilaginous rings that hold open the respiratory tract. Previous work has shown that during postnatal development of Artibeus jamaicensis (Phyllostomidae), the onset of adult echolocation call emission rate coincides with calcification of the larynx, and the development of flight coincides with tracheal ring calcification. In the present study, I assessed the level of reinforcement of the respiratory system in 13 bat species representing six families that use stereotypical modes of echolocation (i.e. duty cycle % and intensity). Using computed tomography, the degree of mineralization or ossification of the tracheal rings, cricoid, thyroid and arytenoid cartilages were determined for non-echolocators, tongue clicking, low-duty cycle low-intensity, low-duty cycle high-intensity, and high-duty cycle high-intensity echolocating bats. While all bats had evidence of cervical tracheal ring mineralization, about half the species had evidence of thoracic tracheal ring calcification. Larger bats (Phyllostomus hastatus and Pterpodidae sp.) exhibited more extensive tracheal ring mineralization, suggesting an underlying cause independent of laryngeal echolocation. Within most of the laryngeally echolocating species, the degree of mineralization or ossification of the larynx was dependent on the mode of echolocation system used. Low-duty cycle low-intensity bats had extensively mineralized cricoids, and zero to very minor mineralization of the thyroids and arytenoids. Low-duty cycle high-intensity bats had extensively mineralized cricoids, and patches of thyroid and arytenoid mineralization. The high-duty cycle high-intensity rhinolophids and hipposiderid had extensively ossified cricoids, large patches of ossification on the thyroids, and heavily ossified arytenoids. The high-duty cycle high-intensity echolocator, Pteronotus parnellii, had mineralization patterns and laryngeal morphology very similar to the other low-duty cycle high-intensity mormoopid species, perhaps suggesting relatively recent evolution of high-duty cycle echolocation in P. parnellii compared with the Old World high-duty cycle echolocators (Rhinolophidae and Hipposideridae). All laryngeal echolocators exhibited mineralized or ossified lateral expansions of the cricoid for articulation with the inferior horn of the thyroid, these were most prominent in the high-duty cycle high-intensity rhinolophids and hipposiderid, and least prominent in the low-duty cycle low-intensity echolocators. The non-laryngeal echolocators had extensively ossified cricoid and thyroid cartilages, and no evidence of mineralization/ossification of the arytenoids or lateral expansions of the cricoid. While the non-echolocators had extensive ossification of the larynx, it was inconsistent with that seen in the laryngeal echolocators.
Collapse
|
25
|
Neil TR, Shen Z, Robert D, Drinkwater BW, Holderied MW. Thoracic scales of moths as a stealth coating against bat biosonar. J R Soc Interface 2020; 17:20190692. [PMID: 32093539 DOI: 10.1098/rsif.2019.0692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many moths are endowed with ultrasound-sensitive ears that serve the detection and evasion of echolocating bats. Moths lacking such ears could still gain protection from bat biosonar by using stealth acoustic camouflage, absorbing sound waves rather than reflecting them back as echoes. The thorax of a moth is bulky and hence acoustically highly reflective. This renders it an obvious target for any bat. Much of the thorax of moths is covered in hair-like scales, the layout of which is remarkably similar in structure and arrangement to natural fibrous materials commonly used in sound insulation. Despite this structural similarity, the effect of thorax scales on moth echoes has never been characterized. Here, we test whether and how moth thorax scales function as an acoustic absorber. From tomographic echo images, we find that the thin layer of thoracic scales of diurnal butterflies affects the strength of ultrasound echoes from the thorax very little, while the thorax scales of earless moths absorbs an average of 67 ± 9% of impinging ultrasonic sound energy. We show that the thorax scales of moths provide acoustic camouflage by acting as broadband (20-160 kHz) stealth coating. Modelling results suggest the scales are acting as a porous sound absorber; however, the thorax scales of moths achieve a considerably higher absorption than technical fibrous porous absorbers with the same structural parameters. Such scales, despite being thin and lightweight, constitute a broadband, multidirectional and efficient ultrasound absorber that reduces the moths' detectability to hunting bats and gives them a survival advantage.
Collapse
Affiliation(s)
- Thomas R Neil
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Zhiyuan Shen
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Bruce W Drinkwater
- Department of Mechanical Engineering, University of Bristol, Bristol, UK
| | - Marc W Holderied
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
26
|
Goerlitz HR, Hofstede HMT, Holderied MW. Neural representation of bat predation risk and evasive flight in moths: A modelling approach. J Theor Biol 2020; 486:110082. [PMID: 31734242 DOI: 10.1016/j.jtbi.2019.110082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
Most animals are at risk from multiple predators and can vary anti-predator behaviour based on the level of threat posed by each predator. Animals use sensory systems to detect predator cues, but the relationship between the tuning of sensory systems and the sensory cues related to predator threat are not well-studied at the community level. Noctuid moths have ultrasound-sensitive ears to detect the echolocation calls of predatory bats. Here, combining empirical data and mathematical modelling, we show that moth hearing is adapted to provide information about the threat posed by different sympatric bat species. First, we found that multiple characteristics related to the threat posed by bats to moths correlate with bat echolocation call frequency. Second, the frequency tuning of the most sensitive auditory receptor in noctuid moth ears provides information allowing moths to escape detection by all sympatric bats with similar safety margin distances. Third, the least sensitive auditory receptor usually responds to bat echolocation calls at a similar distance across all moth species for a given bat species. If this neuron triggers last-ditch evasive flight, it suggests that there is an ideal reaction distance for each bat species, regardless of moth size. This study shows that even a very simple sensory system can adapt to deliver information suitable for triggering appropriate defensive reactions to each predator in a multiple predator community.
Collapse
Affiliation(s)
- Holger R Goerlitz
- Max Planck Institute for Ornithology, Acoustic and Functional Ecology Group, 82319 Seewiesen, Germany; University of Bristol, School of Biological Sciences, Bristol, BS8 1UG, UK.
| | - Hannah M Ter Hofstede
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA; University of Bristol, School of Biological Sciences, Bristol, BS8 1UG, UK
| | - Marc W Holderied
- University of Bristol, School of Biological Sciences, Bristol, BS8 1UG, UK
| |
Collapse
|
27
|
Pavey CR. Comparative echolocation and foraging ecology of horseshoe bats (Rhinolophidae) and Old World leaf-nosed bats (Hipposideridae). AUST J ZOOL 2020. [DOI: 10.1071/zo20047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Horseshoe (Rhinolphidae) and Old World leaf-nosed (Hipposideridae) bats are high duty cycle (HDC) echolocators sharing a suite of adaptations including long duration signals relative to their signal periods, peak energy concentrated in a narrow spectral band dominated by a constant frequency (CF) component, ‘auditory fovea’ (over-representation and sharp tuning of neurons responsible for frequencies at or around the CF) and ability to compensate for Doppler shifts in echoes. HDC bats separate signals from returning echoes in the frequency domain. Rhinolophids are more specialised neurobiologically than hipposiderids, producing longer duration signals at higher duty cycles, and have narrowly tuned auditory fovea and almost full Doppler shift compensation. Here, I examine whether these differences have produced ecological divergence between the families by testing predictions of differences in prey perception, prey capture behaviour, foraging habitat and diet. I found no discernible differences in these variables between the two families. Rhinolophids and hipposiderids both forage close to vegetation, capture prey by aerial hawking and gleaning from surfaces, and consume mostly flying insects with spiders and terrestrial, flightless arthropods taken occasionally. The data presented here show that the two families are similar in foraging ecology despite differences in echolocation and audition.
Collapse
|
28
|
Zhang K, Liu T, Liu M, Li A, Xiao Y, Metzner W, Liu Y. Comparing context-dependent call sequences employing machine learning methods: an indication of syntactic structure of greater horseshoe bats. ACTA ACUST UNITED AC 2019; 222:jeb.214072. [PMID: 31753908 DOI: 10.1242/jeb.214072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
For analysis of vocal syntax, accurate classification of call sequence structures in different behavioural contexts is essential. However, an effective, intelligent program for classifying call sequences from numerous recorded sound files is still lacking. Here, we employed three machine learning algorithms (logistic regression, support vector machine and decision trees) to classify call sequences of social vocalizations of greater horseshoe bats (Rhinolophus ferrumequinum) in aggressive and distress contexts. The three machine learning algorithms obtained highly accurate classification rates (logistic regression 98%, support vector machine 97% and decision trees 96%). The algorithms also extracted three of the most important features for the classification: the transition between two adjacent syllables, the probability of occurrences of syllables in each position of a sequence, and the characteristics of a sequence. The results of statistical analysis also supported the classification of the algorithms. The study provides the first efficient method for data mining of call sequences and the possibility of linguistic parameters in animal communication. It suggests the presence of song-like syntax in the social vocalizations emitted within a non-breeding context in a bat species.
Collapse
Affiliation(s)
- Kangkang Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, No. 2555, Street Jingyue, Northeast Normal University, Changchun 130117, China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, No. 2555, Street Jingyue, Northeast Normal University, Changchun 130117, China
| | - Muxun Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, No. 2555, Street Jingyue, Northeast Normal University, Changchun 130117, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, No. 2555, Street Jingyue, Northeast Normal University, Changchun 130117, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, No. 2555, Street Jingyue, Northeast Normal University, Changchun 130117, China
| | - Walter Metzner
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, No. 2555, Street Jingyue, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
29
|
Zhang Y, Lin A, Ding J, Yang X, Jiang T, Liu Y, Feng J. Performance of Doppler shift compensation in bats varies with species rather than with environmental clutter. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Hintze F, Arias-Aguilar A, Dias-Silva L, Delgado-Jaramillo M, Silva CR, Jucá T, Mischiatti FL, Almeida M, Bezerra B, Aguiar LMS, Ramos Pereira MJ, Bernard E. Molossid unlimited: extraordinary extension of range and unusual vocalization patterns of the bat, Promops centralis. J Mammal 2019. [DOI: 10.1093/jmammal/gyz167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The big crested mastiff bat, Promops centralis, occurs in Central and South America, but knowledge of its ecology is limited due to its open space hunting strategy, making captures extremely challenging. Notwithstanding, members of the species produce echolocation calls that are easy to identify. After recording calls of P. centralis 1,500 km away from its known range in Brazil, we hypothesized that the distribution range of this species was probably greatly underestimated. To improve the accuracy of P. centralis’ real distribution, we employed acoustic surveys throughout parts of Brazil, conducted after a bibliographic review to gather additional records, and used MaxEnt to model the species’ potential distribution. We have found that P. centralis has a much wider distribution in South America than previously thought, adding more than 3.8 million km2 to its former known area. We also describe an unusual vocalization pattern of P. centralis, with individuals emitting at least three very distinct but highly variable calls. This study shows that bioacoustic surveys and species distribution models can complement traditional methodologies in studying species that are difficult to capture, such as P. centralis, potentially contributing to more effective conservation and management plans.
Collapse
Affiliation(s)
- Frederico Hintze
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Professor Nelson Chaves s/n, Cidade Universitária, Recife, PE 50670-420, Brasil
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
| | - Adriana Arias-Aguilar
- Laboratório de Evolução, Sistemática e Ecologia de Aves e Mamíferos, Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Prédio 43435, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS 91540-000, Brasil
| | - Leonardo Dias-Silva
- Laboratório de Ecologia & Conservação, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6.627, Campus UFMG, Pampulha, Belo Horizonte, MG 31270-901, Brasil
| | - Mariana Delgado-Jaramillo
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Professor Nelson Chaves s/n, Cidade Universitária, Recife, PE 50670-420, Brasil
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
| | - Carina Rodrigues Silva
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Professor Nelson Chaves s/n, Cidade Universitária, Recife, PE 50670-420, Brasil
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
| | - Thays Jucá
- Laboratório de Etologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310, Santo Amaro, Recife, PE 50100-130, Brasil
| | - Francyne Lyrio Mischiatti
- Laboratório de Estudos em Quirópteros, Departamento de Ciências Biológicas, Edifício Lydia Behar, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brasil
| | - Márcio Almeida
- Laboratório de Estudos em Quirópteros, Departamento de Ciências Biológicas, Edifício Lydia Behar, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brasil
| | - Bruna Bezerra
- Laboratório de Etologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
| | - Ludmilla M S Aguiar
- Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brasil
| | - Maria João Ramos Pereira
- Laboratório de Evolução, Sistemática e Ecologia de Aves e Mamíferos, Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Prédio 43435, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS 91540-000, Brasil
- Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Enrico Bernard
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Professor Nelson Chaves s/n, Cidade Universitária, Recife, PE 50670-420, Brasil
| |
Collapse
|
31
|
|
32
|
Hernández-Jerez A, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Gimsing AL, Marina M, Millet M, Pelkonen O, Pieper S, Tiktak A, Tzoulaki I, Widenfalk A, Wolterink G, Russo D, Streissl F, Topping C. Scientific statement on the coverage of bats by the current pesticide risk assessment for birds and mammals. EFSA J 2019; 17:e05758. [PMID: 32626374 PMCID: PMC7009170 DOI: 10.2903/j.efsa.2019.5758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bats are an important group of mammals, frequently foraging in farmland and potentially exposed to pesticides. This statement considers whether the current risk assessment performed for birds and ground dwelling mammals exposed to pesticides is also protective of bats. Three main issues were addressed. Firstly, whether bats are toxicologically more or less sensitive than the most sensitive birds and mammals. Secondly, whether oral exposure of bats to pesticides is greater or lower than in ground dwelling mammals and birds. Thirdly, whether there are other important exposure routes relevant to bats. A large variation in toxicological sensitivity and no relationship between sensitivity of bats and bird or mammal test-species to pesticides could be found. In addition, bats have unique traits, such as echolocation and torpor which can be adversely affected by exposure to pesticides and which are not covered by the endpoints currently selected for wild mammal risk assessment. The current exposure assessment methodology was used for oral exposure and adapted to bats using bat-specific parameters. For oral exposure, it was concluded that for most standard risk assessment scenarios the current approach did not cover exposure of bats to pesticide residues in food. Calculations of potential dermal exposure for bats foraging during spraying operations suggest that this may be a very important exposure route. Dermal routes of exposure should be combined with inhalation and oral exposure. Based on the evidence compiled, the Panel concludes that bats are not adequately covered by the current risk assessment approach, and that there is a need to develop a bat-specific risk assessment scheme. In general, there was scarcity of data to assess the risks for bat exposed to pesticides. Recommendations for research are made, including identification of alternatives to laboratory testing of bats to assess toxicological effects.
Collapse
|
33
|
Gutierrez EDA, Castiglione GM, Morrow JM, Schott RK, Loureiro LO, Lim BK, Chang BSW. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Mol Biol Evol 2019; 35:2422-2434. [PMID: 30010964 DOI: 10.1093/molbev/msy140] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bats are excellent models for studying the molecular basis of sensory adaptation. In Chiroptera, a sensory trade-off has been proposed between the visual and auditory systems, though the extent of this association has yet to be fully examined. To investigate whether variation in visual performance is associated with echolocation, we experimentally assayed the dim-light visual pigment rhodopsin from bat species with differing echolocation abilities. While spectral tuning properties were similar among bats, we found that the rate of decay of their light-activated state was significantly slower in a nonecholocating bat relative to species that use distinct echolocation strategies, consistent with a sensory trade-off hypothesis. We also found that these rates of decay were remarkably slower compared with those of other mammals, likely indicating an adaptation to dim light. To examine whether functional changes in rhodopsin are associated with shifts in selection intensity upon bat Rh1 sequences, we implemented selection analyses using codon-based likelihood clade models. While no shifts in selection were identified in response to diverse echolocation abilities of bats, we detected a significant increase in the intensity of evolutionary constraint accompanying the diversification of Chiroptera. Taken together, this suggests that substitutions that modulate the stability of the light-activated rhodopsin state were likely maintained through intensified constraint after bats diversified, being finely tuned in response to novel sensory specializations. Our study demonstrates the power of combining experimental and computational approaches for investigating functional mechanisms underlying the evolution of complex sensory adaptations.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre of Forensic Sciences, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Livia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Gutierrez EDA, Schott RK, Preston MW, Loureiro LO, Lim BK, Chang BSW. The role of ecological factors in shaping bat cone opsin evolution. Proc Biol Sci 2019; 285:rspb.2017.2835. [PMID: 29618549 DOI: 10.1098/rspb.2017.2835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength (Lws) and short-wavelength (Sws1) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Matthew W Preston
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Lívia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2 .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
35
|
Abstract
Many animals have evolved adept sensory systems that enable dexterous mobility in complex environments. Echolocating bats hunting in dense vegetation represent an extreme case of this, where all necessary information about the environment must pass through a parsimonious channel of pulsed, 1D echo signals. We have investigated whether certain bats (rhinolophids and hipposiderids) actively create Doppler shifts with their pinnae to encode additional sensory information. Our results show that the bats' active pinna motions are a source of Doppler shifts that have all attributes required for a functional relevance: (i) the Doppler shifts produced were several times larger than the reported perception threshold; (ii) the motions of the fastest moving pinna portions were oriented to maximize the Doppler shifts for echoes returning from the emission direction, indicating a possible evolutionary optimization; (iii) pinna motions coincided with echo reception; (iv) Doppler-shifted signals from the fast-moving pinna portion entered the ear canal of a biomimetic pinna model; and (v) the time-frequency Doppler shift signatures were found to encode target direction in an orderly fashion. These results indicate that instead of avoiding or suppressing all self-produced Doppler shifts, rhinolophid and hipposiderid bats actively create Doppler shifts with their own pinnae. These bats could hence make use of a previously unknown nonlinear mechanism for the encoding of sensory information, based on Doppler signatures. Such a mechanism could be a source for the discovery of sensing principles not only in sensory physiology but also in the engineering of sensory systems.
Collapse
|
36
|
Simões BF, Foley NM, Hughes GM, Zhao H, Zhang S, Rossiter SJ, Teeling EC. As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats. Mol Biol Evol 2019; 36:54-68. [PMID: 30476197 PMCID: PMC6340466 DOI: 10.1093/molbev/msy192] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n = 115; MWS/LWS n = 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555-560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
Collapse
Affiliation(s)
- Bruno F Simões
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
- School of Earth Science, University of Bristol, Bristol, United Kingdom
- School of Biological Science, The University of Adelaide, South Australia, Australia
| | - Nicole M Foley
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Graham M Hughes
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Huabin Zhao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Emma C Teeling
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
37
|
Curtis AA, Smith TD, Bhatnagar KP, Brown AM, Simmons NB. Maxilloturbinal Aids in Nasophonation in Horseshoe Bats (Chiroptera: Rhinolophidae). Anat Rec (Hoboken) 2018; 303:110-128. [PMID: 30365875 DOI: 10.1002/ar.23999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Horseshoe bats (Family Rhinolophidae) show an impressive array of morphological traits associated with use of high duty cycle echolocation calls that they emit via their nostrils (nasophonation). Delicate maxilloturbinal bones inside the nasal fossa of horseshoe bats have a unique elongated strand-like shape unknown in other mammals. Maxilloturbinal strands also vary considerably in length and cross-sectional shape. In other mammals, maxilloturbinals help direct respired air and prevent respiratory heat and water loss. We investigated whether strand-shaped maxilloturbinals in horseshoe bats perform a similar function to those of other mammals, or whether they were shaped for a role in nasophonation. Using histology, we studied the mucosa of the nasal fossa in Rhinolophus lepidus, which we compared with Hipposideros lankadiva (Hipposideridae) and Megaderma lyra (Megadermatidae). Using micro-CT scans of 30 horseshoe bat species, we quantified maxilloturbinal surface area and skull shape within a phylogenetic context. Histological results showed horseshoe bat maxilloturbinals are covered in a thin, poorly vascularized, sparsely ciliated mucosa poorly suited for preventing respiratory heat and water loss. Maxilloturbinal surface area was correlated with basicranial width, but exceptionally long and dorsoventrally flat maxilloturbinals did not show enhanced surface area for heat and moisture exchange. Skull shape variation appears to be driven by structures linked to nasophonation, including maxilloturbinals. Resting echolocation call frequency better predicted skull shape than did skull size, and was specifically correlated with dimensions of the rostral inflations, palate, and maxilloturbinals. These traits appear to form a morphological complex, indicating a nasophonatory role for the strand-shaped rhinolophid maxilloturbinals. Anat Rec, 2018. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Abigail A Curtis
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington.,Department of Mammalogy, American Museum of Natural History, New York, New York
| | - Timothy D Smith
- Department of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Kunwar P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Alexis M Brown
- Department of Mammalogy, American Museum of Natural History, New York, New York
| | - Nancy B Simmons
- Department of Mammalogy, American Museum of Natural History, New York, New York
| |
Collapse
|
38
|
Flutter sensitivity in FM bats. Part II: amplitude modulation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:941-951. [PMID: 30242470 PMCID: PMC6208682 DOI: 10.1007/s00359-018-1292-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 11/05/2022]
Abstract
Bats use echolocation to detect targets such as insect prey. The echolocation call of frequency-modulating bats (FM bats) typically sweeps through a broad range of frequencies within a few milliseconds. The large bandwidth grants the bat high spatial acuity in depicting the target. However, the extremely short call duration and the overall low duty cycle of call emission impair the bat’s capability to detect e.g. target movement. Nonetheless, FM bats constitute more than 80% of all echolocating species and are able to navigate and forage in an environment full of moving targets. We used an auditory virtual reality approach to generate changes in echo amplitude reflective of fluttering insect wings independently from other confounding parameters. We show that the FM bat Phyllostomus discolor successfully detected these modulations in echo amplitude and that their performance increased with the rate of the modulation, mimicking faster insect wing-beats. The ability of FM bats to detect amplitude modulations of echoes suggests a release from the trade-off between spatial and temporal acuity and highlights the diversity of selective pressures working on the echolocation system of bats.
Collapse
|
39
|
Kries K, Barros MAS, Duytschaever G, Orkin JD, Janiak MC, Pessoa DMA, Melin AD. Colour vision variation in leaf-nosed bats (Phyllostomidae): Links to cave roosting and dietary specialization. Mol Ecol 2018; 27:3627-3640. [PMID: 30059176 DOI: 10.1111/mec.14818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
Abstract
Bats are a diverse radiation of mammals of enduring interest for understanding the evolution of sensory specialization. Colour vision variation among species has previously been linked to roosting preferences and echolocation form in the suborder Yinpterochiroptera, yet questions remain about the roles of diet and habitat in shaping bat visual ecology. We sequenced OPN1SW and OPN1LW opsin genes for 20 species of leaf-nosed bats (family Phyllostomidae; suborder Yangochiroptera) with diverse roosting and dietary ecologies, along with one vespertilionid species (Myotis lavali). OPN1LW genes appear intact for all species, and predicted spectral tuning of long-wavelength opsins varied among lineages. OPN1SW genes appear intact and under purifying selection for Myotis lavali and most phyllostomid bats, with two exceptions: (a) We found evidence of ancient OPN1SW pseudogenization in the vampire bat lineage, and loss-of-function mutations in all three species of extant vampire bats; (b) we additionally found a recent, independently derived OPN1SW pseudogene in Lonchophylla mordax, a cave-roosting species. These mutations in leaf-nosed bats are independent of the OPN1SW pseudogenization events previously reported in Yinpterochiropterans. Therefore, the evolution of monochromacy (complete colour blindness) has occurred in both suborders of bats and under various evolutionary drivers; we find independent support for the hypothesis that obligate cave roosting drives colour vision loss. We additionally suggest that haematophagous dietary specialization and corresponding selection on nonvisual senses led to loss of colour vision through evolutionary sensory trade-off. Our results underscore the evolutionary plasticity of opsins among nocturnal mammals.
Collapse
Affiliation(s)
- Kelly Kries
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri
| | - Marília A S Barros
- Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gwen Duytschaever
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Joseph D Orkin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Mareike C Janiak
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey
| | - Daniel M A Pessoa
- Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Retention and losses of ultraviolet-sensitive visual pigments in bats. Sci Rep 2018; 8:11933. [PMID: 30093712 PMCID: PMC6085362 DOI: 10.1038/s41598-018-29646-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/16/2018] [Indexed: 12/01/2022] Open
Abstract
Ultraviolet (UV)-sensitive visual pigment and its corresponding ability for UV vision was retained in early mammals from their common ancestry with sauropsids. Subsequently, UV-sensitive pigments, encoded by the short wavelength-sensitive 1 (SWS1) opsin gene, were converted to violet sensitivity or have lost function in multiple lineages during the diversification of mammals. However, many mammalian species, including most bats, are suggested to retain a UV-sensitive pigment. Notably, some cave-dwelling fruit bats and high duty cycle echolocating bats have lost their SWS1 genes, which are proposed to be due to their roosting ecology and as a sensory trade-off between vision and echolocation, respectively. Here, we sequenced SWS1 genes from ecologically diverse bats and found that this gene is also non-functional in both common vampire bat (Desmodus rotundus) and white-winged vampire bat (Diaemus youngi). Apart from species with pesudogenes, our evolutionary and functional studies demonstrate that the SWS1 pigment of bats are UV-sensitive and well-conserved since their common ancestor, suggesting an important role across major ecological types. Given the constrained function of SWS1 pigments in these bats, why some other species, such as vampire bats, have lost this gene is even more interesting and needs further investigation.
Collapse
|
41
|
Abstract
Why do humpback whales sing? This paper considers the hypothesis that humpback whales may use song for long range sonar. Given the vocal and social behavior of humpback whales, in several cases it is not apparent how they monitor the movements of distant whales or prey concentrations. Unless distant animals produce sounds, humpback whales are unlikely to be aware of their presence or actions. Some field observations are strongly suggestive of the use of song as sonar. Humpback whales sometimes stop singing and then rapidly approach distant whales in cases where sound production by those whales is not apparent, and singers sometimes alternately sing and swim while attempting to intercept another whale that is swimming evasively. In the evolutionary development of modern cetaceans, perceptual mechanisms have shifted from reliance on visual scanning to the active generation and monitoring of echoes. It is hypothesized that as the size and distance of relevant events increased, humpback whales developed adaptive specializations for long-distance echolocation. Differences between use of songs by humpback whales and use of sonar by other echolocating species are discussed, as are similarities between bat echolocation and singing by humpback whales. Singing humpback whales are known to emit sounds intense enough to generate echoes at long ranges, and to flexibly control the timing and qualities of produced sounds. The major problem for the hypothesis is the lack of recordings of echoes from other whales arriving at singers immediately before they initiate actions related to those whales. An earlier model of echoic processing by singing humpback whales is here revised to incorporate recent discoveries. According to the revised model, both direct echoes from targets and modulations in song-generated reverberation can provide singers with information that can help them make decisions about future actions related to mating, traveling, and foraging. The model identifies acoustic and structural features produced by singing humpback whales that may facilitate a singer's ability to interpret changes in echoic scenes and suggests that interactive signal coordination by singing whales may help them to avoid mutual interference. Specific, testable predictions of the model are presented.
Collapse
Affiliation(s)
- Eduardo Mercado III
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Evolution, Ecology, and Behavior Program, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
42
|
A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecol 2018; 18:18. [PMID: 29890975 PMCID: PMC5996565 DOI: 10.1186/s12898-018-0174-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 06/04/2018] [Indexed: 11/25/2022] Open
Abstract
Background Diversity patterns result from ecological to evolutionary processes operating at different spatial and temporal scales. Species trait variation determine the spatial scales at which organisms perceive the environment. Despite this knowledge, the coupling of all these factors to understand how diversity is structured is still deficient. Here, we review the role of ecological and evolutionary processes operating across different hierarchically spatial scales to shape diversity patterns of bats—the second largest mammal order and the only mammals with real flight capability. Main body We observed that flight development and its provision of increased dispersal ability influenced the diversification, life history, geographic distribution, and local interspecific interactions of bats, differently across multiple spatial scales. Niche packing combined with different flight, foraging and echolocation strategies and differential use of air space allowed the coexistence among bats as well as for an increased diversity supported by the environment. Considering distinct bat species distributions across space due to their functional characteristics, we assert that understanding such characteristics in Chiroptera improves the knowledge on ecological processes at different scales. We also point two main knowledge gaps that limit progress on the knowledge on scale-dependence of ecological and evolutionary processes in bats: a geographical bias, showing that research on bats is mainly done in the New World; and the lack of studies addressing the mesoscale (i.e. landscape and metacommunity scales). Conclusions We propose that it is essential to couple spatial scales and different zoogeographical regions along with their functional traits, to address bat diversity patterns and understand how they are distributed across the environment. Understanding how bats perceive space is a complex task: all bats can fly, but their perception of space varies with their biological traits. Electronic supplementary material The online version of this article (10.1186/s12898-018-0174-z) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Amplitude- and duration-sensitivity of single-on and double-on neurons to CF-FM stimuli in inferior colliculus of Pratt’s roundleaf bat (Hipposideros pratti). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:653-665. [DOI: 10.1007/s00359-018-1268-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
|
44
|
Lattenkamp EZ, Kaiser S, Kaučič R, Großmann M, Koselj K, Goerlitz HR. Environmental acoustic cues guide the biosonar attention of a highly specialised echolocator. ACTA ACUST UNITED AC 2018. [PMID: 29540459 DOI: 10.1242/jeb.165696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensory systems experience a trade-off between maximizing the detail and amount of sampled information. This trade-off is particularly pronounced in sensory systems that are highly specialised for a single task and thus experience limitations in other tasks. We hypothesised that combining sensory input from multiple streams of information may resolve this trade-off and improve detection and sensing reliability. Specifically, we predicted that perceptive limitations experienced by animals reliant on specialised active echolocation can be compensated for by the phylogenetically older and less specialised process of passive hearing. We tested this hypothesis in greater horseshoe bats, which possess morphological and neural specialisations allowing them to identify fluttering prey in dense vegetation using echolocation only. At the same time, their echolocation system is both spatially and temporally severely limited. Here, we show that greater horseshoe bats employ passive hearing to initially detect and localise prey-generated and other environmental sounds, and then raise vocalisation level and concentrate the scanning movements of their sonar beam on the sound source for further investigation with echolocation. These specialised echolocators thus supplement echo-acoustic information with environmental acoustic cues, enlarging perceived space beyond their biosonar range. Contrary to our predictions, we did not find consistent preferences for prey-related acoustic stimuli, indicating the use of passive acoustic cues also for detection of non-prey objects. Our findings suggest that even specialised echolocators exploit a wide range of environmental information, and that phylogenetically older sensory systems can support the evolution of sensory specialisations by compensating for their limitations.
Collapse
Affiliation(s)
- Ella Z Lattenkamp
- Acoustic and Functional Ecology Group, Max Planck Institute for Ornithology, Seewiesen 83219, Germany
| | - Samuel Kaiser
- Acoustic and Functional Ecology Group, Max Planck Institute for Ornithology, Seewiesen 83219, Germany
| | - Rožle Kaučič
- Acoustic and Functional Ecology Group, Max Planck Institute for Ornithology, Seewiesen 83219, Germany
| | - Martina Großmann
- Acoustic and Functional Ecology Group, Max Planck Institute for Ornithology, Seewiesen 83219, Germany
| | - Klemen Koselj
- Acoustic and Functional Ecology Group, Max Planck Institute for Ornithology, Seewiesen 83219, Germany
| | - Holger R Goerlitz
- Acoustic and Functional Ecology Group, Max Planck Institute for Ornithology, Seewiesen 83219, Germany
| |
Collapse
|
45
|
Ratcliffe J, Jakobsen L. Don’t believe the mike: behavioural, directional, and environmental impacts on recorded bat echolocation call measures. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Echolocation calls produced by bats in their larynges allow these flying, nocturnal mammals to orient and find food at night. The acoustic signals are not like bird song, and even individual bats exhibit great flexibility in call design and between-species overlap is common. As a result, identifying bats to species by their echolocation calls even in communities with few bat species can be difficult. Unfortunately, the situation is worse still. As a result of several factors — some to do with microphones, some with environment, some with bats, and the calls themselves — acoustic information transmitted to and transduced by microphones can be dramatically different from the actual signal produced by the bat and as would be recorded on axis, close to its mouth using ideal microphones under ideal conditions. We outline some of these pitfalls and discuss ways to make the best of a bad situation. Overall, however, we stress that many of these factors cannot be ignored and do impact our recordings.
Collapse
Affiliation(s)
- J.M. Ratcliffe
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, ON L5L 1C6, Canada
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - L. Jakobsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
46
|
Schoeppler D, Schnitzler HU, Denzinger A. Precise Doppler shift compensation in the hipposiderid bat, Hipposideros armiger. Sci Rep 2018; 8:4598. [PMID: 29545520 PMCID: PMC5854618 DOI: 10.1038/s41598-018-22880-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/28/2018] [Indexed: 11/26/2022] Open
Abstract
Bats of the Rhinolophidae and Hipposideridae families, and Pteronotus parnellii, compensate for Doppler shifts generated by their own flight movement. They adjust their call frequency such that the frequency of echoes coming from ahead fall in a specialized frequency range of the hearing system, the auditory fovea, to evaluate amplitude and frequency modulations in echoes from fluttering prey. Some studies in hipposiderids have suggested a less sophisticated or incomplete Doppler shift compensation. To investigate the precision of Doppler shift compensation in Hipposideros armiger, we recorded the echolocation and flight behaviour of bats flying to a grid, reconstructed the flight path, measured the flight speed, calculated the echo frequency, and compared it with the resting frequency prior to each flight. Within each flight, the average echo frequency was kept constant with a standard deviation of 110 Hz, independent of the flight speed. The resting and reference frequency were coupled with an offset of 80 Hz; however, they varied slightly from flight to flight. The precision of Doppler shift compensation and the offset were similar to that seen in Rhinolophidae and P. parnellii. The described frequency variations may explain why it has been assumed that Doppler shift compensation in hipposiderids is incomplete.
Collapse
Affiliation(s)
- Diana Schoeppler
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Hans-Ulrich Schnitzler
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | - Annette Denzinger
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Russo D, Ancillotto L, Jones G. Bats are still not birds in the digital era: echolocation call variation and why it matters for bat species identification. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0089] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recording and analysis of echolocation calls are fundamental methods used to study bat distribution, ecology, and behavior. However, the goal of identifying bats in flight from their echolocation calls is not always possible. Unlike bird songs, bat calls show large variation that often makes identification challenging. The problem has not been fully overcome by modern digital-based hardware and software for bat call recording and analysis. Besides providing fundamental insights into bat physiology, ecology, and behavior, a better understanding of call variation is therefore crucial to best recognize limits and perspectives of call classification. We provide a comprehensive overview of sources of interspecific and intraspecific echolocation call variations, illustrating its adaptive significance and highlighting gaps in knowledge. We remark that further research is needed to better comprehend call variation and control for it more effectively in sound analysis. Despite the state-of-art technology in this field, combining acoustic surveys with capture and roost search, as well as limiting identification to species with distinctive calls, still represent the safest way of conducting bat surveys.
Collapse
Affiliation(s)
- Danilo Russo
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Italy
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Leonardo Ancillotto
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Italy
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
48
|
Fu Y, Kloepper LN. A systematic method for isolating, tracking and discriminating time-frequency components of bat echolocation calls. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:716. [PMID: 29495687 DOI: 10.1121/1.5023205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Echolocating bats can rapidly modify frequency modulation (FM) curvatures of their calls when facing challenging echolocation tasks. Frequency parameters, such as start/end/peak frequency, have often been extracted from the time-frequency domain to study the call variation. Even though this kind of signal investigation method reveals important findings, these approaches to analyze bat echolocation calls use bulk parameters, which hide subtleties in the call structure that may be important to the bat. In some cases, calls can have the same start and end frequencies but have different FM curvatures, and subsequently may influence the sensory task performance. In the present study, the authors demonstrate an algorithm using a combination of digital filters, power limited time-frequency information, derivative dynamic time warping, and agglomerative hierarchical clustering to extract and categorize the time-frequency components (TFCs) of 21 calls from Brazilian free-tailed bat (Tadarida brasiliensis) to quantitatively compare FM curvatures. The detailed curvature analysis shows an alternative perspective to look into the TFCs and hence serves as the preliminary step to understand the adaptive call design of bats.
Collapse
Affiliation(s)
- Yanqing Fu
- Department of Biology, Saint Mary's College, 149 Le Mans Hall, Notre Dame, Indiana 46556, USA
| | - Laura N Kloepper
- Department of Biology, Saint Mary's College, 149 Le Mans Hall, Notre Dame, Indiana 46556, USA
| |
Collapse
|
49
|
Thiagavel J, Cechetto C, Santana SE, Jakobsen L, Warrant EJ, Ratcliffe JM. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats. Nat Commun 2018; 9:98. [PMID: 29311648 PMCID: PMC5758785 DOI: 10.1038/s41467-017-02532-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/07/2017] [Indexed: 11/09/2022] Open
Abstract
Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar and flight. Here we consider anatomical constraints and opportunities that led to a sonar rather than vision-based solution. We show that bats' common ancestor had eyes too small to allow for successful aerial hawking of flying insects at night, but an auditory brain design sufficient to afford echolocation. Further, we find that among extant predatory bats (all of which use laryngeal echolocation), those with putatively less sophisticated biosonar have relatively larger eyes than do more sophisticated echolocators. We contend that signs of ancient trade-offs between vision and echolocation persist today, and that non-echolocating, phytophagous pteropodid bats may retain some of the necessary foundations for biosonar.
Collapse
Affiliation(s)
- Jeneni Thiagavel
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Clément Cechetto
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense C, Denmark
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, 98195, USA
| | - Lasse Jakobsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense C, Denmark
| | - Eric J Warrant
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - John M Ratcliffe
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada. .,Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense C, Denmark. .,Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada. .,Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON, M5S 2C6, Canada.
| |
Collapse
|
50
|
Corcoran AJ, Moss CF. Sensing in a noisy world: lessons from auditory specialists, echolocating bats. J Exp Biol 2017; 220:4554-4566. [DOI: 10.1242/jeb.163063] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
All animals face the essential task of extracting biologically meaningful sensory information from the ‘noisy’ backdrop of their environments. Here, we examine mechanisms used by echolocating bats to localize objects, track small prey and communicate in complex and noisy acoustic environments. Bats actively control and coordinate both the emission and reception of sound stimuli through integrated sensory and motor mechanisms that have evolved together over tens of millions of years. We discuss how bats behave in different ecological scenarios, including detecting and discriminating target echoes from background objects, minimizing acoustic interference from competing conspecifics and overcoming insect noise. Bats tackle these problems by deploying a remarkable array of auditory behaviors, sometimes in combination with the use of other senses. Behavioral strategies such as ceasing sonar call production and active jamming of the signals of competitors provide further insight into the capabilities and limitations of echolocation. We relate these findings to the broader topic of how animals extract relevant sensory information in noisy environments. While bats have highly refined abilities for operating under noisy conditions, they face the same challenges encountered by many other species. We propose that the specialized sensory mechanisms identified in bats are likely to occur in analogous systems across the animal kingdom.
Collapse
Affiliation(s)
- Aaron J. Corcoran
- Department of Biology, Wake Forest University, Box 7325 Reynolda Station, Winston-Salem, NC 27109, USA
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|