1
|
Bloskie T, Taiwo OO, Storey KB. Reversible Histone Modifications Contribute to the Frozen and Thawed Recovery States of Wood Frog Brains. Biomolecules 2024; 14:839. [PMID: 39062553 PMCID: PMC11275241 DOI: 10.3390/biom14070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Epigenetic regulation, notably histone post-translational modification (PTM), has emerged as a major transcriptional control of gene expression during cellular stress adaptation. In the present study, we use an acid extraction method to isolate total histone protein and investigate dynamic changes in 23 well-characterized histone methylations/acetylations in the brains of wood frogs subject to 24-h freezing and subsequent 8-h thawed recovery conditions. Our results identify four histone PTMs (H2BK5ac, H3K14ac, H3K4me3, H3K9me2) and three histone proteins (H1.0, H2B, H4) that were significantly (p < 0.05) responsive to freeze-thaw in freeze-tolerant R. sylvatica brains. Two other permissive modifications (H3R8me2a, H3K9ac) also trended downwards following freezing stress. Together, these data are strongly supportive of the proposed global transcriptional states of hypometabolic freeze tolerance and rebounded thawed recovery. Our findings shed light on the intricate interplay between epigenetic regulation, gene transcription and energy metabolism in wood frogs' adaptive response to freezing stress.
Collapse
Affiliation(s)
| | | | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (T.B.); (O.O.T.)
| |
Collapse
|
2
|
Wang Z, He W, Fu L, Cheng H, Lin C, Dong X, Liu C. Detoxification and neurotransmitter clearance drive the recovery of Arma chinensis from β-cypermethrin-triggered knockdown. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135175. [PMID: 39002489 DOI: 10.1016/j.jhazmat.2024.135175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Natural enemies of arthropods contribute considerably to agriculture by suppressing pests, particularly when combined with chemical control. Studies show that insect recovery after insecticide application is rare. Here, we discovered the recovery of the predatory bug Arma chinensis from knockdown following the application of β-cypermethrin but not five other insecticides. A. chinensis individuals were more tolerant to β-cypermethrin than lepidopteran and coleopteran larvae, which did not recover from knockdown. We assessed A. chinensis recovery by monitoring their respiration and tracking locomotion through the entire process. We identified and verified the trans-regulation of detoxifying genes, including those encoding cytochrome P450s and α/β-hydrolase, which confer recovery from β-cypermethrin exposure in A. chinensis, by mitogen-activated protein kinase (MAPK) and cAMP response element binding protein (CREB). Furthermore, we discovered a novel mechanism, the neurotransmitter clearance, in vivo during the recovery process, by which the insect initiated the removal of excessive dopamine with a degrading enzyme ebony. Overall, these results provide mechanistic insights into the detoxification and neurotransmitter clearance that jointly drive insect recovery from insecticide exposure.
Collapse
Affiliation(s)
- Zhen Wang
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenjie He
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolin Dong
- Department of Entomology, Yangtze University, Jingzhou 434023, China
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Schmidt R, Zummach C, Sinai N, Sabino‐Pinto J, Künzel S, Dausmann KH, Ruthsatz K. Physiological responses to a changing winter climate in an early spring-breeding amphibian. Ecol Evol 2024; 14:e70042. [PMID: 39050662 PMCID: PMC11267634 DOI: 10.1002/ece3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Climate change is swiftly altering environmental winter conditions, leading to significant ecological impacts such as phenological shifts in many species. As a result, animals might face physiological mismatches due to longer or earlier activity periods and are at risk of being exposed to late spring freezes. Our study points for the first time to the complex physiological challenges that amphibians face as a result of changing thermal conditions due to winter climate change. We investigated the physiological responses to a period of warmer winter days and sudden spring freeze in the common toad (Bufo bufo) by acclimating them to 4°C or 8°C for 48 h or exposing them to 4°C or -2°C for 6 h, respectively. We assessed the daily energy demands, determined body condition and cold tolerance, explored the molecular responses to freezing through hepatic tissue transcriptome analysis, and measured blood glucose levels. Toads acclimated to higher temperatures showed a higher daily energy expenditure and a reduced cold tolerance suggesting faster depletion of energy stores and the loss of winter acclimation during warmer winters. Blood sugar levels were higher in frozen toads indicating the mobilization of cryoprotective glucose with freezing which was further supported by changed patterns in proteins related to glucose metabolism. Overall, our results emphasize that increased thermal variability incurs physiological costs that may reduce energy reserves and thus affect amphibian health and survival. This might pose a serious threat to breeding adults and may have subsequent effects at the population level.
Collapse
Affiliation(s)
- Robin Schmidt
- Zoological InstituteTechnische Universität BraunschweigBraunschweigGermany
| | - Cecile Zummach
- Institute of Cell and System BiologyUniversität HamburgHamburgGermany
| | - Noa Sinai
- Institute of Cell and System BiologyUniversität HamburgHamburgGermany
| | - Joana Sabino‐Pinto
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - Sven Künzel
- Max Planck Institute for Evolutionary BiologyPloenGermany
| | | | - Katharina Ruthsatz
- Zoological InstituteTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
4
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
5
|
Wang JY, Zhang LH, Hong YH, Cai LN, Storey KB, Zhang JY, Zhang SS, Yu DN. How Does Mitochondrial Protein-Coding Gene Expression in Fejervarya kawamurai (Anura: Dicroglossidae) Respond to Extreme Temperatures? Animals (Basel) 2023; 13:3015. [PMID: 37835622 PMCID: PMC10571990 DOI: 10.3390/ani13193015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Unusual climates can lead to extreme temperatures. Fejervarya kawamurai, one of the most prevalent anurans in the paddy fields of tropical and subtropical regions in Asia, is sensitive to climate change. The present study focuses primarily on a single question: how do the 13 mitochondrial protein-coding genes (PCGs) respond to extreme temperature change compared with 25 °C controls? Thirty-eight genes including an extra tRNA-Met gene were identified and sequenced from the mitochondrial genome of F. kawamurai. Evolutionary relationships were assessed within the Dicroglossidae and showed that Dicroglossinae is monophyletic and F. kawamurai is a sister group to the clade of (F. multistriata + F. limnocharis). Transcript levels of mitochondrial genes in liver were also evaluated to assess responses to 24 h exposure to low (2 °C and 4 °C) or high (40 °C) temperatures. Under 2 °C, seven genes showed significant changes in liver transcript levels, among which transcript levels of ATP8, ND1, ND2, ND3, ND4, and Cytb increased, respectively, and ND5 decreased. However, exposure to 4 °C for 24 h was very different in that the expressions of ten mitochondrial protein-coding genes, except ND1, ND3, and Cytb, were significantly downregulated. Among them, the transcript level of ND5 was most significantly downregulated, decreasing by 0.28-fold. Exposure to a hot environment at 40 °C for 24 h resulted in a marked difference in transcript responses with strong upregulation of eight genes, ranging from a 1.52-fold increase in ND4L to a 2.18-fold rise in Cytb transcript levels, although COI and ND5 were reduced to 0.56 and 0.67, respectively, compared with the controls. Overall, these results suggest that at 4 °C, F. kawamurai appears to have entered a hypometabolic state of hibernation, whereas its mitochondrial oxidative phosphorylation was affected at both 2 °C and 40 °C. The majority of mitochondrial PCGs exhibited substantial changes at all three temperatures, indicating that frogs such as F. kawamurai that inhabit tropical or subtropical regions are susceptible to ambient temperature changes and can quickly employ compensating adjustments to proteins involved in the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Jing-Yan Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Hua Zhang
- Taishun County Forestry Bureau, Wenzhou 325000, China
| | - Yue-Huan Hong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Na Cai
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jia-Yong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Shu-Sheng Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Wuyanling National Nature Reserve, Wenzhou 325500, China
| | - Dan-Na Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
6
|
Wohlgemuth RP, Haro D, Liwanag HEM. Osmotic and metabolic responses to cold acclimation and acute cold challenge in a freeze avoidant lizard, Podarcis siculus. Comp Biochem Physiol A Mol Integr Physiol 2023:111471. [PMID: 37390889 DOI: 10.1016/j.cbpa.2023.111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Ectotherms survive exposure to subzero temperatures through freeze tolerance or freeze avoidance. Among vertebrate ectotherms, glucose is commonly used as a cryoprotectant in freeze tolerant strategies and as an osmolyte in freeze avoidant strategies, while also functioning as a metabolic substrate. Whereas some lizard species are capable of both freeze tolerance and freeze avoidance, Podarcis siculus is limited to freeze avoidance through supercooling. We hypothesized that, even in a freeze-avoidant species such as P. siculus, plasma glucose would accumulate with cold acclimation and would increase in response to acute exposure to subzero temperatures. To investigate this, we tested whether plasma glucose concentration and osmolality would increase in response to a subzero cold challenge before and after cold acclimation. In addition, we examined the relationship between metabolic rate, cold acclimation, and glucose by measuring metabolic rate during the cold challenge trials. We found that plasma glucose increased during the cold challenge trials, and that the increase was more pronounced after cold acclimation. However, baseline plasma glucose decreased throughout cold acclimation. Interestingly, total plasma osmolality did not change, and the increase in glucose only slightly altered freezing point depression. Metabolic rate during the cold challenge decreased after cold acclimation, and changes in respiratory exchange ratio suggest an increased relative use of carbohydrates. Overall, our findings demonstrate an important role for glucose in the response of P. siculus to an acute cold challenge, thus adding evidence for glucose as an important molecule for overwintering ectotherms that use freeze avoidant strategies.
Collapse
Affiliation(s)
- Ross Paul Wohlgemuth
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA 95616, USA.
| | - Daniel Haro
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Heather E M Liwanag
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
7
|
Storey JM, Li Z, Storey KB. Hypoxia inducible factor-1α responds to freezing, anoxia and dehydration stresses in a freeze-tolerant frog. Cryobiology 2023; 110:79-85. [PMID: 36442660 DOI: 10.1016/j.cryobiol.2022.11.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The wood frog, Rana sylvatica (aka Lithobates sylvaticus) is the main model for studies of natural freeze tolerance among amphibians living in seasonally cold climates. During freezing, ∼65% of total body water can be converted to extracellular ice and this imposes both dehydration and hypoxia/anoxia stresses on cells. The current study analyzed the responses of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1), a crucial oxygen-sensitive regulator of gene expression, to freezing, anoxia or dehydration stresses, examining six tissues of wood frogs (liver, skeletal muscle, brain, heart, kidney, skin). RT-PCR revealed a rapid elevation hif-1α transcript levels within 2 h of freeze initiation in both liver and brain and elevated levels of both mRNA and protein in liver and muscle after 24 h frozen. However, both transcript and protein levels reverted to control values after thawing except for HIF-1 protein in liver that dropped to ∼60% of control. Independent exposures of wood frogs to anoxia or dehydration stresses (two components of freezing) also triggered upregulation of hif-1α transcripts and/or HIF-1α protein in liver and kidney with variable responses in other tissues. The results show active modulation of HIF-1 in response to freezing, anoxia and dehydration stresses and implicate this transcription factor as a contributor to the regulation of metabolic adaptations needed for long term survival of wood frogs in the ischemic frozen state.
Collapse
Affiliation(s)
- Janet M Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Zhenhong Li
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
8
|
Yokum EE, Wascher M, Goldstein DL, Krane CM. Repeated freeze-thaw cycles in freeze-tolerant treefrogs: novel interindividual variation of integrative biochemical, cellular, and organismal responses. Am J Physiol Regul Integr Comp Physiol 2023; 324:R196-R206. [PMID: 36534587 DOI: 10.1152/ajpregu.00211.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The freeze-tolerant anuran Dryophytes chrysoscelis, Cope's gray treefrog, mobilizes a complex cryoprotectant system that includes glycerol, glucose, and urea to minimize damage induced by freezing and thawing of up to 65% of body water. In this species' eastern Northern American temperate habitat, oscillations of temperature above and below freezing are common; however, the effects of repeated freezing and thawing in this species are unstudied. The biochemical and physiological effects of repeated freeze-thaw cycles were therefore evaluated and compared with cold acclimation and single freeze-thaw episodes. Glycerol was elevated in plasma, liver, and skeletal muscle of both singly and repeatedly frozen and thawed animals compared with cold-acclimated frogs. In contrast, urea was unchanged by freezing and thawing, whereas glucose was elevated in singly frozen and thawed animals but was reduced toward cold acclimation levels after repeated bouts of freezing. Overall, the cryoprotectant system was maintained, but not further elevated, in all tissues assayed in repeatedly frozen and thawed animals. For repeated freeze-thaw only, hepatic glycogen was depleted and plasma hemoglobin, indicative of erythrocyte hemolysis, increased. Postfreeze recovery of locomotor function, including limb and whole body movement, was delayed with repeated freeze-thaw and was associated with glycerol accumulation and glycogen depletion. Individuals that resumed locomotor function more quickly also accumulated greater cryoinjury. Integrated analyses of cryoprotectant and cryoinjury accumulation suggest that winter survival of D. chrysoscelis may be vulnerable to climate change, limited by carbohydrate stores, cellular repair mechanisms, and plasticity of the cryoprotectant system.
Collapse
Affiliation(s)
| | - Matthew Wascher
- Department of Mathematics, University of Dayton, Dayton, Ohio
| | - David L Goldstein
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | | |
Collapse
|
9
|
YOLDAS T, ERİŞMİŞ UC. Hayvanlarda Soğuğa Dayanıklılık: Çift Yaşarların Kriyobiyolojisi. COMMAGENE JOURNAL OF BIOLOGY 2022. [DOI: 10.31594/commagene.1176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Organizmalar yaşamlarını devam ettirebilmek için abiyotik çevresel koşullara uyum sağlarlar. Özellikle ortam sıcaklığındaki değişimler; canlıların beslenme, üreme, gelişim ve morfolojileri üzerinde etkilidir. Sıra dışı sıcaklık değişimleri özellikle ektotermik hayvanlar için ölümcül olabilir. Karasal ektotermler. doğada donma noktasının altındaki sıcaklıklarda hayatta kalabilmek için davranışsal, fizyolojik ve biyokimyasal bazı özel stratejiler geliştirmişlerdir. Bazı türler göç ederek su ya da toprak altında kış uykusuna yatmak suretiyle dondurucu sıcaklıklardan kaçınırlar. Bazıları ise donma koşullarına maruz kalarak kışı geçirmek zorundadırlar. Genel olarak dondurucu soğuğa dayanıklılık donmadan kaçınma (süper soğuma) ve donma toleransı stratejilerine bağlıdır. Donmadan kaçınma durumunda vücut sıvılarının donma noktasının altındaki sıcaklıklarda sıvı formu korunurken donma toleransı stratejisini kullanan canlılarda ise vücutlarındaki toplam suyun %50’sinden fazlasının donması tolere edilebilir. Karasal hibernatör hayvanlardan bazı amfibi ve sürüngen gruplarında da tespit edilen donma toleransı stratejisi onların dondurucu kış koşullarında hayatta kalmalarını sağlamaktadır. Bu özel türler kriyoprotektif mekanizmaları ile donmanın ölümcül etkilerinden korunurlar. Donma süresince yaşamsal faaliyetleri tamamen duran bu hayvanlar çözündükten sonra kısa bir süre içerisinde de normal yaşama dönerler. Bu mucizevi mekanizmanın araştırılması yalnızca hayvanların karmaşık adaptasyonunu açıklamakla kalmaz, aynı zamanda doku ve hücre kriyoprezervasyon teknolojisine de kaynak sağlar. Bu derleme amfibilerin donma toleransı stratejilerine dair bilgiler sunarak henüz yeterince çalışılmamış bu konuda araştırma yapmak isteyenlere katkı sağlayacaktır.
Collapse
Affiliation(s)
- Taner YOLDAS
- DÜZCE ÜNİVERSİTESİ, BİLİMSEL VE TEKNOLOJİK ARAŞTIRMALAR UYGULAMA VE ARAŞTIRMA MERKEZİ
| | | |
Collapse
|
10
|
Bulakhova N, Shishikina K. Pre-hibernation energy reserves and their consumption during freezing in the moor frog Rana arvalis in Siberia. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2060357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- N. Bulakhova
- Department of Biocenology, Institute of Biological Problems of the North FEB RAS, Magadan, Russia
| | - K. Shishikina
- Department of Biocenology, Institute of Biological Problems of the North FEB RAS, Magadan, Russia
| |
Collapse
|
11
|
Rowland FE, Schyling ES, Freidenburg LK, Urban MC, Richardson JL, Arietta AZA, Rodrigues SB, Rubinstein AD, Benard MF, Skelly DK. Asynchrony, density dependence, and persistence in an amphibian. Ecology 2022; 103:e3696. [PMID: 35352342 DOI: 10.1002/ecy.3696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/08/2022]
Abstract
Understanding drivers of metapopulation dynamics remains a critical challenge for ecology and conservation. In particular, the degree of synchrony in metapopulation dynamics determines how resilient a metapopulation is to a widespread disturbance. In this study, we used 21 years of egg mass count data across 64 nonpermanent freshwater ponds in Connecticut, USA to evaluate patterns of abundance and growth and to assess regional as well as local factors in shaping the population dynamics of wood frogs (Rana sylvatica = Lithobates sylvaticus). In particular, we asked whether a species known to undergo metapopulation dynamics exhibited spatial synchrony in abundances. With the exception of a single year when breeding took place during severe drought conditions, our analyses revealed no evidence of synchrony despite close proximity (mean minimum distance <300 m) of breeding ponds across the 3213 ha study area. Instead, local, pond-scale conditions best predicted patterns of abundance and population growth rate. We found negative density dependence on population growth rate within ponds as well as evidence that larger neighboring pond populations had a negative effect on focal ponds. Beyond density, pond depth was a critical predictor; deeper ponds supported larger populations. Drought conditions and warm winters negatively affected populations. Overall, breeding ponds vary in critical ways that either support larger, more persistent populations or smaller populations that are not represented by breeding pairs in some years. The infrequency of spatial synchrony in this system is surprising and suggests greater resilience to stressors than would have been expected if dynamics were strongly synchronized. More generally, understanding the characteristics of systems that determine synchronous population dynamics will be critical to predicting which species are more or less resilient to widespread disturbances like land conversion or climate change.
Collapse
Affiliation(s)
- Freya E Rowland
- School of the Environment, Yale University 370 Prospect St, New Haven, CT, USA
| | | | | | - Mark C Urban
- Department of Ecology and Evolutionary Biology and Center of Biological Risk, University of Connecticut, Storrs, CT, USA
| | | | - A Z Andis Arietta
- School of the Environment, Yale University 370 Prospect St, New Haven, CT, USA
| | - Susan B Rodrigues
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | | | - Michael F Benard
- Department of Biology, Case Western Reserve University 10900 Euclid Ave, Cleveland, OH, USA
| | - David K Skelly
- School of the Environment, Yale University 370 Prospect St, New Haven, CT, USA.,Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Ste-Marie E, Watanabe YY, Semmens JM, Marcoux M, Hussey NE. Life in the slow lane: Field Metabolic Rate and Prey Consumption Rate of the Greenland Shark (Somniosus microcephalus) modeled using Archival Biologgers. J Exp Biol 2022; 225:274642. [PMID: 35258589 DOI: 10.1242/jeb.242994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/24/2022] [Indexed: 11/20/2022]
Abstract
Field metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals which cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here we modeled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity. We estimated that Greenland sharks had an overall mean FMR of 21.67±2.30 mgO2h-1kg-0.84 (n=30; 1-4 day accelerometer package deployments) while residing inside these cold-water fjord systems in the late summer, and 25.48±0.47 mgO2h-1kg-0.84 (n=6; PSATs) over an entire year. When considering prey consumption rate, an average shark in these systems (224kg) requires a maintenance ration of 61-193g of fish or marine mammal prey daily. As a lethargic polar species, these low FMR estimates, and corresponding prey consumption estimates suggest Greenland sharks require very little energy to sustain themselves under natural conditions. These data provide the first characterization of the energetics and consumer role of this vulnerable and understudied species in the wild, essential given growing pressures from climate change and expanding commercial fisheries in the Arctic.
Collapse
Affiliation(s)
- Eric Ste-Marie
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Yuuki Y Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo, 190-8518, Japan.,Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo, 190-8518, Japan
| | - Jayson M Semmens
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, 7053, Australia
| | - Marianne Marcoux
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
13
|
Remotely Sensed Winter Habitat Indices Improve the Explanation of Broad-Scale Patterns of Mammal and Bird Species Richness in China. REMOTE SENSING 2022. [DOI: 10.3390/rs14030794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Climate change is transforming winter environmental conditions rapidly. Shifts in snow regimes and freeze/thaw cycles that are unique to the harsh winter season can strongly influence ecological processes and biodiversity patterns of mammals and birds. However, the role of the winter environment in structuring a species richness pattern is generally downplayed, especially in temperate regions. Here we developed a suite of winter habitat indices at 500 m spatial resolution by fusing MODIS snow products and NASA MEaSUREs daily freeze/thaw records from passive microwave sensors and tested how these indices could improve the explanation of species richness patterns across China. We found that the winter habitat indices provided unique and mutually complementary environmental information compared to the commonly used Dynamic Habitat Indices (DHIs). Winter habitat indices significantly increased the explanatory power for species richness of all mammal and bird groups. Particularly, winter habitat indices contributed more to the explanation of bird species than mammals. Regarding the independent contribution, winter season length made the largest contributions to the explained variance of winter birds (30%), resident birds (27%), and mammals (18%), while the frequency of snow-free frozen ground contributed the most to the explanation of species richness for summer birds (23%). Our research provides new insights into the interpretation of broad-scale species diversity, which has great implications for biodiversity assessment and conservation.
Collapse
|
14
|
CECCHETTO NICOLÁSR, MEDINA SUSANAM, BAUDINO FLORENCIA, IBARGÜENGOYTÍA NORAR. Wintertime tales: How the lizard Liolaemus lineomaculatus endures the temperate cold climate of Patagonia, Argentina. AN ACAD BRAS CIENC 2022; 94:e20210758. [DOI: 10.1590/0001-3765202220210758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - SUSANA M. MEDINA
- Consejo Nacional de Investigaciones Científicas y Técnicas (CIEMEP-CONICET), Argentina
| | - FLORENCIA BAUDINO
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Argentina
| | | |
Collapse
|
15
|
Roberts KT, Rank NE, Dahlhoff EP, Stillman JH, Williams CM. Snow modulates winter energy use and cold exposure across an elevation gradient in a montane ectotherm. GLOBAL CHANGE BIOLOGY 2021; 27:6103-6116. [PMID: 34601792 DOI: 10.1111/gcb.15912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Snow insulates the soil from air temperature, decreasing winter cold stress and altering energy use for organisms that overwinter in the soil. As climate change alters snowpack and air temperatures, it is critical to account for the role of snow in modulating vulnerability to winter climate change. Along elevational gradients in snowy mountains, snow cover increases but air temperature decreases, and it is unknown how these opposing gradients impact performance and fitness of organisms overwintering in the soil. We developed experimentally validated ecophysiological models of cold and energy stress over the past decade for the montane leaf beetle Chrysomela aeneicollis, along five replicated elevational transects in the Sierra Nevada mountains in California. Cold stress peaks at mid-elevations, while high elevations are buffered by persistent snow cover, even in dry years. While protective against cold, snow increases energy stress for overwintering beetles, particularly at low elevations, potentially leading to mortality or energetic tradeoffs. Declining snowpack will predominantly impact mid-elevation populations by increasing cold exposure, while high elevation habitats may provide refugia as drier winters become more common.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | | | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
16
|
Freeze tolerance in neotropical frogs: an intrageneric comparison using Pristimantis species of high elevation and medium elevation. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s026646742100016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractParamos are high-elevation tropical Andean ecosystems above the tree line that display variable temperature and frequent freezing spells. Because a significant anuran community lives in this environment, physiological protection against freezing must characterise individuals in this community. Antifreeze protection has been studied in amphibians from other communities, and it is likely that Paramo anurans rely on the same underlying molecules that convey such protection to Nearctic species. However, given the pervasive presence of freezing spells in the Paramos year-round, the processes of activating protection mechanisms may differ from that of seasonal counterparts. Accordingly, this study investigated cryoprotection strategies in high-elevation tropical frogs, using as a model the terrestrial and nocturnal genus Pristimantis, specifically P. bogotensis, P. elegans and P. nervicus from Paramos, and the warm ecosystem counterparts P. insignitus, P. megalops and P. sanctaemartae. We focused on freeze tolerance and its relationship with glucose accumulation and ice formation. Under field conditions, the highest elevation P. nervicus exhibited higher glucose concentration at dawn compared to noon (1.7 ± 0.6 mmol/L versus 3.5 ± 1.32 mmol/L). Under experimental thermal freeze exposure for 2 hours between −2 and −4 ºC, the glucose concentration of the three Paramo species increased but physiological diversity was evident (P. nervicus 126%; P. bogotensis 100%; and P. elegans 55%). During this test, body ice formation was assessed calorimetrically. The species with the highest body ice formation was P. bogotensis (17% ± 5.37; maximum value: 63%; n = 8), followed by P. nervicus (5% ± 3.27; maximum value: 11%; n = 5) and P. elegans (0.34% ± 0.09; maximum value: 1%; n = 4). The study shows physiological diversity both within a genus and across the amphibian community around the freezing contour. Overall, Paramo species differ in freezing physiology from their low-elevation counterparts. Thus, climate shifts increasing freezing spells may affect the structure of communities in this zone.
Collapse
|
17
|
Siddons SR, Searle CL. Exposure to a fungal pathogen increases the critical thermal minimum of two frog species. Ecol Evol 2021; 11:9589-9598. [PMID: 34306645 PMCID: PMC8293773 DOI: 10.1002/ece3.7779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
The ability of an organism to tolerate seasonal temperature changes, such as extremely cold temperatures during the winter, can be influenced by their pathogens. We tested how exposure to a virulent fungal pathogen, Batrachochytrium dendrobatidis (Bd), affected the critical thermal minimum (CTmin) of two frog species, Hyla versicolor (gray treefrog) and Lithobates palustris (pickerel frog). The CTmin is the minimum thermal performance point of an organism, which we estimated via righting response trials. For both frog species, we compared the righting response of Bd-exposed and Bd-unexposed individuals in either a constant (15ºC) environment or with decreasing temperatures (-1°C/2.5 min) starting from 15°C. The CTmin for both species was higher for Bd-exposed frogs than unexposed frogs, and the CTmin of H. versicolor was higher than L. palustris. We also found that Bd-exposed frogs of both species righted themselves significantly fewer times in both decreasing and constant temperature trials. Our findings show that pathogen exposure can reduce cold tolerance and limit the thermal performance range of hosts, which may lead to increased overwintering mortality.
Collapse
|
18
|
Mitochondria and the Frozen Frog. Antioxidants (Basel) 2021; 10:antiox10040543. [PMID: 33915853 PMCID: PMC8067143 DOI: 10.3390/antiox10040543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
The wood frog, Rana sylvatica, is the best-studied of a small group of amphibian species that survive whole body freezing during the winter months. These frogs endure the freezing of 65-70% of their total body water in extracellular ice masses. They have implemented multiple adaptations that manage ice formation, deal with freeze-induced ischemia/reperfusion stress, limit cell volume reduction with the production of small molecule cryoprotectants (glucose, urea) and adjust a wide variety of metabolic pathways for prolonged life in a frozen state. All organs, tissues, cells and intracellular organelles are affected by freeze/thaw and its consequences. This article explores mitochondria in the frozen frog with a focus on both the consequences of freezing (e.g., anoxia/ischemia, cell volume reduction) and mitigating defenses (e.g., antioxidants, chaperone proteins, upregulation of mitochondria-encoded genes, enzyme regulation, etc.) in order to identify adaptive strategies that defend and adapt mitochondria in animals that can be frozen for six months or more every year. A particular focus is placed on freeze-responsive genes in wood frogs that are encoded on the mitochondrial genome including ATP6/8, ND4 and 16S RNA. These were strongly up-regulated during whole body freezing (24 h at -2.5 °C) in the liver and brain but showed opposing responses to two component stresses: strong upregulation in response to anoxia but no response to dehydration stress. This indicates that freeze-responsive upregulation of mitochondria-encoded genes is triggered by declining oxygen and likely has an adaptive function in supporting cellular energetics under indeterminate lengths of whole body freezing.
Collapse
|
19
|
Johnston AN, Christophersen RG, Beever EA, Ransom JI. Freezing in a warming climate: Marked declines of a subnivean hibernator after a snow drought. Ecol Evol 2021; 11:1264-1279. [PMID: 33598129 PMCID: PMC7863385 DOI: 10.1002/ece3.7126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
Recent snow droughts associated with unusually warm winters are predicted to increase in frequency and affect species dependent upon snowpack for winter survival. Changes in populations of some cold-adapted species have been attributed to heat stress or indirect effects on habitat from unusually warm summers, but little is known about the importance of winter weather to population dynamics and how responses to snow drought vary among sympatric species. We evaluated changes in abundance of hoary marmots (Marmota caligata) over a period that included a year of record-low snowpack to identify mechanisms associated with weather and snowpack. To consider interspecies comparisons, our analysis used the same a priori model set as a concurrent study that evaluated responses of American pikas (Ochotona princeps) to weather and snowpack in the same study area of North Cascades National Park, Washington, USA. We hypothesized that marmot abundance reflected mechanisms related to heat stress, cold stress, cold exposure without an insulating snowpack, snowpack duration, atmospheric moisture, growing-season precipitation, or select combinations of these mechanisms. Changes in marmot abundances included a 74% decline from 2007 to 2016 and were best explained by an interaction of chronic dryness with exposure to acute cold without snowpack in winter. Physiological stress during hibernation from exposure to cold, dry air appeared to be the most likely mechanism of change in marmot abundance. Alternative mechanisms associated with changes to winter weather, including early emergence from hibernation or altered vegetation dynamics, had less support. A post hoc assessment of vegetative phenology and productivity did not support vegetation dynamics as a primary driver of marmot abundance across years. Although marmot and pika abundances were explained by strikingly similar models over periods of many years, details of the mechanisms involved likely differ between species because pika abundances increased in areas where marmots declined. Such differences may lead to diverging geographic distributions of these species as global change continues.
Collapse
Affiliation(s)
- Aaron N. Johnston
- U. S. Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
- School of Environmental and Forest SciencesUniversity of WashingtonSeattleWAUSA
| | | | - Erik A. Beever
- U. S. Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
- Department of EcologyMontana State UniversityBozemanMTUSA
| | | |
Collapse
|
20
|
Smith A, Turnbull KF, Moulton JH, Sinclair BJ. Metabolic cost of freeze-thaw and source of CO 2 production in the freeze-tolerant cricket Gryllus veletis. J Exp Biol 2021; 224:jeb234419. [PMID: 33144372 DOI: 10.1242/jeb.234419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022]
Abstract
Freeze-tolerant insects can survive the conversion of a substantial portion of their body water to ice. While the process of freezing induces active responses from some organisms, these responses appear absent from freeze-tolerant insects. Recovery from freezing likely requires energy expenditure to repair tissues and re-establish homeostasis, which should be evident as elevations in metabolic rate after thaw. We measured carbon dioxide (CO2) production in the spring field cricket (Gryllus veletis) as a proxy for metabolic rate during cooling, freezing and thawing and compared the metabolic costs associated with recovery from freezing and chilling. We hypothesized that freezing does not induce active responses, but that recovery from freeze-thaw is metabolically costly. We observed a burst of CO2 release at the onset of freezing in all crickets that froze, including those killed by either cyanide or an insecticide (thiacloprid), implying that the source of this CO2 was neither aerobic metabolism nor a coordinated nervous system response. These results suggest that freezing does not induce active responses from G. veletis, but may liberate buffered CO2 from hemolymph. There was a transient 'overshoot' in CO2 release during the first hour of recovery, and elevated metabolic rate at 24, 48 and 72 h, in crickets that had been frozen compared with crickets that had been chilled (but not frozen). Thus, recovery from freeze-thaw and the repair of freeze-induced damage appears metabolically costly in G. veletis, and this cost persists for several days after thawing.
Collapse
Affiliation(s)
- Adam Smith
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Kurtis F Turnbull
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Julian H Moulton
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, CO 80903, USA
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| |
Collapse
|
21
|
Ginal P, Mokhatla M, Kruger N, Secondi J, Herrel A, Measey J, Rödder D. Ecophysiological models for global invaders: Is Europe a big playground for the African clawed frog? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:158-172. [PMID: 33264517 DOI: 10.1002/jez.2432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 11/06/2022]
Abstract
One principle threat prompting the worldwide decline of amphibians is the introduction of nonindigenous amphibians. The African Clawed Frog, Xenopus laevis, is now one of the widest distributed amphibians occurring on four continents with ongoing range expansion including large parts of Europe. Species distribution models (SDMs) are essential tools to predict the invasive risk of these species. Previous efforts have focused on correlative approaches but these can be vulnerable to extrapolation errors when projecting species' distributions in nonnative ranges. Recent developments emphasise more robust process-based models, which use physiological data like critical thermal limits and performance, or hybrid models using both approaches. Previous correlative SDMs predict different patterns in the potential future distribution of X. laevis in Europe, but it is likely that these models do not assess its full invasive potential. Based on physiological performance trials, we calculate size and temperature-dependent response surfaces, which are scaled to geographic performance layers matching the critical thermal limits. We then use these ecophysiological performance layers in a standard correlative SDM framework to predict the potential distribution in southern Africa and Europe. Physiological performance traits (standard metabolic rate and endurance time of adult frogs) are the main drivers for the predicted distribution, while the locomotor performance (maximum velocity and distance moved in 200 ms) of adults and tadpoles have low contributions.
Collapse
Affiliation(s)
- Philipp Ginal
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany
| | - Mohlamatsane Mokhatla
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Rondevlei Scientific Services, Garden Route National Park, South African National Parks, Sedgefield, South Africa
| | - Natasha Kruger
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Jean Secondi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France.,Faculté des Sciences, Université d'Angers, Angers, France
| | - Anthony Herrel
- Département Adaptations du Vivant, MECADEV UMR7179 CNRS/MNHN, Paris, France
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Dennis Rödder
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany
| |
Collapse
|
22
|
Fitzpatrick MJ, Porter WP, Pauli JN, Kearney MR, Notaro M, Zuckerberg B. Future winters present a complex energetic landscape of decreased costs and reduced risk for a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus). GLOBAL CHANGE BIOLOGY 2020; 26:6350-6362. [PMID: 32871618 DOI: 10.1111/gcb.15321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Winter climate warming is rapidly leading to changes in snow depth and soil temperatures across mid- and high-latitude ecosystems, with important implications for survival and distribution of species that overwinter beneath the snow. Amphibians are a particularly vulnerable group to winter climate change because of the tight coupling between their body temperature and metabolic rate. Here, we used a mechanistic microclimate model coupled to an animal biophysics model to predict the spatially explicit effects of future climate change on the wintering energetics of a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus), across its distributional range in the eastern United States. Our below-the-snow microclimate simulations were driven by dynamically downscaled climate projections from a regional climate model coupled to a one-dimensional model of the Laurentian Great Lakes. We found that warming soil temperatures and decreasing winter length have opposing effects on Wood Frog winter energy requirements, leading to geographically heterogeneous implications for Wood Frogs. While energy expenditures and peak body ice content were predicted to decline in Wood Frogs across most of our study region, we identified an area of heightened energetic risk in the northwestern part of the Great Lakes region where energy requirements were predicted to increase. Because Wood Frogs rely on body stores acquired in fall to fuel winter survival and spring breeding, increased winter energy requirements have the potential to impact local survival and reproduction. Given the geographically variable and intertwined drivers of future under-snow conditions (e.g., declining snow depths, rising air temperatures, shortening winters), spatially explicit assessments of species energetics and risk will be important to understanding the vulnerability of subnivium-adapted species.
Collapse
Affiliation(s)
- Megan J Fitzpatrick
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Warren P Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| | - Michael Notaro
- Nelson Institute Center for Climatic Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Shipley AA, Cruz J, Zuckerberg B. Personality differences in the selection of dynamic refugia have demographic consequences for a winter-adapted bird. Proc Biol Sci 2020; 287:20200609. [PMID: 32900309 PMCID: PMC7542783 DOI: 10.1098/rspb.2020.0609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/17/2020] [Indexed: 01/29/2023] Open
Abstract
For overwintering species, individuals' ability to find refugia from inclement weather and predators probably confers strong fitness benefits. How animals use their environment can be mediated by their personality (e.g. risk-taking), but does personality mediate how overwintering species select refugia? Snow cover is a dynamic winter characteristic that can influence crypsis or provide below-the-snow refugia. We explored how wintering ruffed grouse (Bonasa umbellus) selected snow roosting sites, a behaviour that reduces stress and cold exposure. We linked selection for approximately 700 roosts with survival of 42 grouse, and showed that grouse generally selected deeper snow and warmer areas. Grouse found in shallow snow were less likely to survive winter. However, individuals that selected deep snow improved their survival, suggesting that demographic consequences of selecting winter refugia are mediated by differences in personality. Our study provides a crucial, and seldom addressed, link between personality in resource selection and resulting demographic consequences.
Collapse
Affiliation(s)
- Amy A. Shipley
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
24
|
Comparison of natural and pharmacological hypothermia in animals: Determination of activation energy of metabolism. J Therm Biol 2020; 92:102658. [DOI: 10.1016/j.jtherbio.2020.102658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
|
25
|
Niu Y, Cao W, Storey KB, He J, Wang J, Zhang T, Tang X, Chen Q. Metabolic characteristics of overwintering by the high-altitude dwelling Xizang plateau frog, Nanorana parkeri. J Comp Physiol B 2020; 190:433-444. [PMID: 32274534 DOI: 10.1007/s00360-020-01275-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The Xizang plateau frog, Nanorana parkeri, has the highest altitudinal distribution of all frogs in the world and survives the cold of winter without feeding by entering into a hibernating state. However, little attention has been paid to its physiological and biochemical characteristics that support overwintering underwater in small ponds. Here, we measured metabolic rate and heart rate, and collected liver and muscle samples from N. parkeri in summer and winter for analysis of mitochondrial respiration rate, and activities and relative mRNA transcript expression of metabolic enzymes. Compared with summer-collected frogs, both resting metabolic rate and heart rate were significantly reduced in winter-collected frogs. Both state 3 and state 4 respiration of liver mitochondria were also significantly reduced in winter but muscle mitochondria showed a decline only in state 3 respiration in winter. The activities and corresponding mRNA expression of cytochrome c oxidase showed a marked decline in winter, whereas the activities and corresponding mRNA expression of lactate dehydrogenase increased in winter-collected frogs, compared to summer. The thermal sensitivity (Q10 values) for state 3 respiration rate by liver mitochondria, and activities of lactate dehydrogenase, and cytochrome c oxidase all increased in winter-collected frogs, compared with summer frogs, suggesting that overwintering frogs were more sensitive to changes in external temperature. Enzyme changes mainly result from lower overall quantities of these enzymes as well as post-translational modifications. We conclude that overwintering N. parkeri exhibit a seasonal, temperature-independent suppression of metabolism that is mediated at multiple levels: physiological, mitochondrial, gene expression and enzyme activity levels.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, China.,Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wangjie Cao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Jie He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinzhou Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China. .,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.
| |
Collapse
|
26
|
Mokhatla M, Measey J, Smit B. The role of ambient temperature and body mass on body temperature, standard metabolic rate and evaporative water loss in southern African anurans of different habitat specialisation. PeerJ 2019; 7:e7885. [PMID: 31660269 PMCID: PMC6814148 DOI: 10.7717/peerj.7885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Temperature and water availability are two of the most important variables affecting all aspects of an anuran’s key physiological processes such as body temperature (Tb), evaporative water loss (EWL) and standard metabolic rate (SMR). Since anurans display pronounced sexual dimorphism, evidence suggests that these processes are further influenced by other factors such as vapour pressure deficit (VPD), sex and body mass (Mb). However, a limited number of studies have tested the generality of these results across a wide range of ecologically relevant ambient temperatures (Ta), while taking habitat use into account. Thus, the aim of this study was to investigate the role of Ta on Tb, whole-animal EWL and whole-animal SMR in three wild caught African anuran species with different ecological specialisations: the principally aquatic African clawed frog (Xenopus laevis), stream-breeding common river frog (Amietia delalandii), and the largely terrestrial raucous toad (Sclerophrys capensis). Experiments were conducted at a range of test temperatures (5–35 °C, at 5 °C increments). We found that VPD better predicted rates of EWL than Ta in two of the three species considered. Moreover, we found that Tb, whole-animal EWL and whole-animal SMR increased with increasing Ta, while Tb increased with increasing Mb in A. delalandii and S. capensis but not in X. laevis. Whole-animal SMR increased with increasing Mb in S. capensis only. We did not find any significant effect of VPD, Mb or sex on whole-animal EWL within species. Lastly, Mb did not influence Tb, whole-animal SMR and EWL in the principally aquatic X. laevis. These results suggest that Mb may not have the same effect on key physiological variables, and that the influence of Mb may also depend on the species ecological specialisation. Thus, the generality of Mb as an important factor should be taken in the context of both physiology and species habitat specialisation.
Collapse
Affiliation(s)
- Mohlamatsane Mokhatla
- Centre for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa.,Scientific Services, South African National Parks, Sedgefield, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Ben Smit
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa.,Department Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
27
|
Cecchetto N, Medina S, Taussig S, Ibargüengoytía N. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In environments where the temperature periodically drops below zero, it is remarkable that some lizards can survive. Behaviorally, lizards can find microsites for overwintering where temperatures do not drop as much as the air temperature. Physiologically, they can alter their biochemical balance to tolerate freezing or avoid it by supercooling. We evaluated the cold hardiness of a population of Liolaemus pictus argentinus Müller and Hellmich, 1939 in the mountains of Esquel (Patagonia, Argentina) during autumn. Additionally, we assessed the thermal quality (in degree-days) of potential refuges in a mid-elevation forest (1100 m above sea level (asl)) and in the high Andean steppe (1400 m asl). We analyzed the role of urea, glucose, total proteins, and albumin as possible cryoprotectants, comparing a group of lizards gradually exposed to temperatures lower than 0 °C with a control group maintained at room temperature. However, we found no evidence to support the presence of freeze tolerance or supercooling mechanisms in this species as related to the analyzed metabolites. Instead, the low frequency of degree-days below 0 °C and temperatures never lower than −3 °C in potential refuges suggest that L. p. argentinus might avoid physiological investments (such as supercooling and freeze tolerance) by behaviorally selecting appropriate refuges to overcome cold environmental temperatures.
Collapse
Affiliation(s)
- N.R. Cecchetto
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quintral 1250, San Carlos de Bariloche, 8400, Argentina
| | - S.M. Medina
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esquel, Chubut, 9200, Argentina
| | - S. Taussig
- Laboratorios DiBio, Morales 645, San Carlos de Bariloche, 8400, Argentina
| | - N.R. Ibargüengoytía
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quintral 1250, San Carlos de Bariloche, 8400, Argentina
| |
Collapse
|
28
|
Fitzpatrick MJ, Zuckerberg B, Pauli JN, Kearney MR, Thompson KL, Werner LC, Porter WP. Modeling the distribution of niche space and risk for a freeze‐tolerant ectotherm,
Lithobates sylvaticus. Ecosphere 2019. [DOI: 10.1002/ecs2.2788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Megan J. Fitzpatrick
- Department of Forest and Wildlife Ecology 1630 Linden Drive Madison Wisconsin 53706 USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology 1630 Linden Drive Madison Wisconsin 53706 USA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology 1630 Linden Drive Madison Wisconsin 53706 USA
| | - Michael R. Kearney
- School of BioSciences The University of Melbourne Parkville Victoria 3010 Australia
| | - Kimberly L. Thompson
- Department of Forest and Wildlife Ecology 1630 Linden Drive Madison Wisconsin 53706 USA
| | - Lawrence C. Werner
- Department of Integrative Biology University of Wisconsin‐Madison 250 North Mills Street Madison Wisconsin 53706 USA
| | - Warren P. Porter
- Department of Integrative Biology University of Wisconsin‐Madison 250 North Mills Street Madison Wisconsin 53706 USA
| |
Collapse
|
29
|
Snow roosting reduces temperature-associated stress in a wintering bird. Oecologia 2019; 190:309-321. [DOI: 10.1007/s00442-019-04389-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
|
30
|
Hawkins LJ, Wang M, Zhang B, Xiao Q, Wang H, Storey KB. Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:1-13. [PMID: 30710892 DOI: 10.1016/j.cbd.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
Vertebrate freeze tolerance requires multiple adaptations underpinned by specialized biochemistry. Freezing of extracellular water leads to intracellular dehydration as pure water is incorporated into growing ice crystals and also results in the cessation of blood supply to tissues, creating an anoxic cellular environment. Hence, the freeze tolerant wood frog, Rana sylvatica, must endure both dehydration and anoxia stresses in addition to freezing. The metabolic responses to freezing, dehydration and anoxia involve both protein/enzyme adaptations and the production of metabolites with metabolic or osmotic functions, particularly glucose and urea. The present study uses a phosphoproteome analysis to examine the differential phosphorylation of metabolic enzymes involved in the production of these two metabolites in liver in response to freezing, anoxia, or dehydration exposures. Our results show stress-specific responses in the abundance of phosphopeptides retrieved from nine glycolytic enzymes and three urea cycle enzymes in liver of wood frogs exposed to 24 h freezing, 24 h anoxia, or dehydration to 40% of total body water loss, as compared with 5 °C acclimated controls. Data show changes in the abundance of phosphopeptides belonging to glycogen phosphorylase (GP) and phosphofructokinase 2 (PFK2) that were consistent with differential phosphorylation control of glycogenolysis and a metabolic block at PFK1 that can facilitate glucose synthesis as the cryoprotectant during freezing. Anoxia-exposed animals showed similar changes in GP phosphorylation but no changes to PFK2; changes that would facilitate mobilization of glycogen as a fermentative fuel for anaerobic glycolysis. Urea is commonly produced as a compatible osmolyte in response to amphibian dehydration. Selected urea cycle enzymes showed small changes in phosphopeptide abundance in response to dehydration, but during freezing differential phosphorylation occurred that may facilitate this ATP expensive process when energy resources are sparse. These results add to the growing body of literature demonstrating the importance and efficiency of reversible protein phosphorylation as a regulatory mechanism allowing animals to rapidly respond to environmental stress.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Minjing Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Baowen Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Qi Xiao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
31
|
Al-Attar R, Wijenayake S, Storey KB. Metabolic reorganization in winter: Regulation of pyruvate dehydrogenase (PDH) during long-term freezing and anoxia. Cryobiology 2019; 86:10-18. [PMID: 30639451 DOI: 10.1016/j.cryobiol.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
Abstract
Wood frogs, Rana sylvatica, can undergo prolonged periods of whole body freezing during winter, locking as much as 65-70% of total body water into extracellular ice and imposing both anoxia and dehydration on their cells. Metabolic rate depression (MRD) is an adaptation used by R. sylvatica to survive these environmental stresses, where a finite amount of ATP generated through anaerobic metabolism is directed towards maintaining pro-survival functions, while most ATP-expensive cellular processes are temporarily reduced in function. Pyruvate dehydrogenase (PDH) is a vital metabolic enzyme that links anaerobic glycolysis to the aerobic TCA cycle and is an important regulatory site in MRD. PDH enzymatic activity is regulated via reversible protein phosphorylation in response to energetic demands of cells. This study explored the posttranslational regulation of PDH at three serine sites (S232, S293, S300) on the catalytic E1α subunit along with protein expression of four pyruvate dehydrogenase kinases (PDHK1-4) in response to 24 h Freezing, 8 h Thaw, 24 h Anoxia, and 4 h Recovery in the liver and skeletal muscle of R. sylvatica using Luminex multiplex technology and western immunoblotting. Overall, inhibitory regulation of PDH was evident during 24 h Freezing and 24 h Anoxia, which could indicate a notable reduction in glycoytic flux and carbon entry into the tricarboxylic acid cycle as part of MRD. Furthermore, the expression of PDHK1-4 and phosphorylation of PDH at S232, S293, and S300 were highly tissue and stress-specific, indicative of how different tissues respond differently to stress within the same organism.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sanoji Wijenayake
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Center for Environmental Epigenetics and Development, Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
32
|
Caruso NM, Rissler LJ. Demographic consequences of climate variation along an elevational gradient for a montane terrestrial salamander. POPUL ECOL 2018. [DOI: 10.1002/1438-390x.1005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas M. Caruso
- Department of Biological Sciences University of Alabama Tuscaloosa Alabama
| | - Leslie J. Rissler
- Department of Biological Sciences University of Alabama Tuscaloosa Alabama
| |
Collapse
|
33
|
Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1544446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Q. Sun
- EBEAM, Yangtze Normal University, Chongqing, People's Republic of China
- NOVITAS, EEE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
34
|
Wu CW, Tessier SN, Storey KB. Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica. Cell Stress Chaperones 2018; 23:1205-1217. [PMID: 29951989 PMCID: PMC6237678 DOI: 10.1007/s12192-018-0926-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Freeze tolerance is an adaptive response utilized by the wood frog Rana sylvatica to endure the sub-zero temperatures of winter. Survival of whole body freezing requires wood frogs to trigger cryoprotective mechanisms to deal with potential injuries associated with conversion of 65-70% of total body water into ice, including multiple consequences of ice formation such as cessation of blood flow and cell dehydration caused by water loss into ice masses. To understand how wood frogs defend against these stressors, we measured the expression of proteins known to be involved in the antioxidant defense and protein chaperone stress responses in brain and heart of wood frogs comparing freezing, anoxia, and dehydration stress. Our results showed that most stress proteins were regulated in a tissue- and stress-specific manner. Notably, protein levels of the cytosolic superoxide dismutase (SOD1) were upregulated by 1.37 ± 0.11-fold in frozen brain, whereas the mitochondrial SOD2 isoform rose by 1.38 ± 0.37-fold in the heart during freezing. Catalase protein levels were upregulated by 3.01 ± 0.47-fold in the brain under anoxia stress, but remained unchanged in the heart. Similar context-specific regulatory patterns were also observed for the heat shock protein (Hsp) molecular chaperones. Hsp27 protein was down-regulated in the brain across the three stress conditions, whereas the mitochondrial Hsp60 was upregulated in anoxic brain by 1.73 ± 0.38-fold and by 2.13 ± 0.57-fold in the frozen heart. Overall, our study provides a snapshot of the regulatory expression of stress proteins in wood frogs under harsh environment conditions and shows that they are controlled in a tissue- and stress-specific manner.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- BioMEMS Resource Center and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
35
|
Santos-Santos JH, Culbert BM, Standen EM. Kinematic performance and muscle activation patterns during post-freeze locomotion in the Wood Frog ( Rana sylvatica). CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wood Frogs (Rana sylvatica LeConte, 1825 = Lithobates sylvaticus (LeConte, 1825)) exhibit one of the most extreme freeze tolerance responses found in vertebrates. While extensive work is continuing to resolve the physiological mechanisms involved, few have studied the effects of freezing on locomotor performance. The ability to mount an appropriate locomotor response is vital, as locomotion can affect both survivorship and reproductive success. To investigate how the biomechanical processes during locomotion are altered following freezing, stroke cycle timings and kinematic performance were measured prior to and immediately following a freeze–thaw cycle. Additionally, the effects of cooling rate (0.3 versus 0.8 °C/h) were also assessed. While jumping and swimming performance were both reduced post-freeze, the effects were more pronounced during swimming, with observed reductions in velocity and distance travelled. Interestingly, these changes occurred largely independent of cooling rate. Altered stroke cycle timings and highly variable muscle activation/deactivation patterns suggest an impairment in muscle function as frogs continued to recover from the effects of freezing. This was supported by the physiology of frogs post-freeze, specifically, the persistence of elevated glucose levels in muscles important during locomotion. Collectively, these findings suggest that reductions in locomotor performance observed immediately following a freeze–thaw cycle are driven by alterations in muscle function.
Collapse
Affiliation(s)
- Javier H. Santos-Santos
- Department of Animal Biology, University of Barcelona, Avenida Diagonal 645, 08028, Barcelona, Spain
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales - CSIC, Calle Jose Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Brett M. Culbert
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emily M. Standen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
36
|
Toxopeus J, Sinclair BJ. Mechanisms underlying insect freeze tolerance. Biol Rev Camb Philos Soc 2018; 93:1891-1914. [DOI: 10.1111/brv.12425] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jantina Toxopeus
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| | - Brent J. Sinclair
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| |
Collapse
|
37
|
Abstract
ABSTRACT
Temperate, polar and alpine insects generally do not feed over winter and hence must manage their energy stores to fuel their metabolism over winter and to meet the energetic demands of development and reproduction in the spring. In this Review, we give an overview of the accumulation, use and conservation of fat reserves in overwintering insects and discuss the ways insects modify fats to facilitate their selective consumption or conservation. Many insects are in diapause and have depressed metabolic rates over winter; together with low temperatures, this means that lipid stores are likely to be consumed predominantly in the autumn and spring, when temperatures are higher but insects remain dormant. Although there is ample evidence for a shift towards less-saturated lipids in overwintering insects, switches between the use of carbohydrate and lipid stores during winter have not been well-explored. Insects usually accumulate cryoprotectants over winter, and the resulting increase in haemolymph viscosity is likely to reduce lipid transport. For freeze-tolerant insects (which withstand internal ice), we speculate that impaired oxygen delivery limits lipid oxidation when frozen. Acetylated triacylglycerols remain liquid at low temperatures and interact with water molecules, providing intriguing possibilities for a role in cryoprotection. Similarly, antifreeze glycolipids may play an important role in structuring water and ice during overwintering. We also touch on the uncertain role of non-esterified fatty acids in insect overwintering. In conclusion, lipids are an important component of insect overwintering energetics, but there remain many uncertainties ripe for detailed exploration.
Collapse
Affiliation(s)
- Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Katie E. Marshall
- Department of Biology, University of Oklahoma, Norman, OK 73609, USA
| |
Collapse
|
38
|
Liu ZP, Gu WB, Tu DD, Zhu QH, Zhou YL, Wang C, Wang LZ, Shu MA. Effects of both cold and heat stresses on the liver of giant spiny frog Quasipaa spinosa: stress response and histological changes. J Exp Biol 2018; 221:jeb.186379. [DOI: 10.1242/jeb.186379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 01/24/2023]
Abstract
Ambient temperature associated stress can affect the normal physiological functions in ectotherms. To assess the effects of cold or heat stress on amphibians, the giant spiny frogs, Quasipaa spinosa, were acclimated at 22 °C followed by being treated at 5 °C or 30 °C for 0, 3, 6, 12, 24 and 48 h, respectively. Histological alterations, apoptotic index, mitochondrial reactive oxygen species (ROS) generation, antioxidant activity indices and stress-response gene expressions in frog livers were subsequently determined. Results showed that many fat droplets appeared after 12 h of heat stress. Percentage of melanomacrophages centres significantly changed during 48 h at both stress conditions. Furthermore, the mitochondrial ROS levels were elevated in a time-dependent manner up to 6 h and 12 h in the cold and heat stress groups, respectively. The activities of superoxide dismutase, glutathione peroxidase and catalase were successively increased along the cold or heat exposure, and most of their gene expression levels showed similar changes at both stress conditions. Most tested HSP genes were sensitive to temperature exposure, and the expression profiles of most apoptosis-related genes was significantly up-regulated at 3 and 48 h under cold and heat stress, respectively. Apoptotic index at 48 h under cold stress was significantly higher than that under heat stress. Notably, lipid droplets, HSP30, HSP70 and HSP110 might be suitable bioindicators of heat stress. The results of these alterations at physiological, biochemical and molecular levels might contribute to a better understanding of the stress response of Q. spinosa and even amphibians under thermal stresses.
Collapse
Affiliation(s)
- Ze-Peng Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dan-Dan Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qi-Hui Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Cong Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
39
|
Marshall KE, Sinclair BJ. Repeated freezing induces a trade-off between cryoprotection and egg production in the goldenrod gall fly, Eurosta solidaginis. J Exp Biol 2018; 221:jeb.177956. [DOI: 10.1242/jeb.177956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/07/2018] [Indexed: 12/30/2022]
Abstract
Internal ice formation leads to wholesale changes in ionic, osmotic and pH homeostasis, energy metabolism, and mechanical damage, across a small range of temperatures, and is thus an abiotic stressor that acts at a distinct, physiologically-relevant, threshold. Insects that experience repeated freeze-thaw cycles over winter will cross this stressor threshold many times over their lifespan. Here we examine the effect of repeatedly crossing the freezing threshold on short-term physiological parameters (metabolic reserves and cryoprotectant concentration) as well as long-term fitness-related performance (survival and egg production) in the freeze-tolerant goldenrod gall fly Eurosta solidaginis. We exposed overwintering prepupae to a series of low temperatures (-10, -15, or -20 °C) with increasing numbers of freezing events (3, 6, or 10) with differing recovery periods between events (1, 5, or 10 days). Repeated freezing increased sorbitol concentration by about 50% relative to a single freezing episode, and prompted prepupae to modify long chain triacylglycerols to acetylated triacylglycerols. Long-term, repeated freezing did not significantly reduce survival, but did reduce egg production by 9.8% relative to a single freezing event. Exposure temperature did not affect any of these measures, suggesting that threshold crossing events may be more important to fitness than the intensity of stress in E. solidaginis overwintering.
Collapse
Affiliation(s)
- Katie E. Marshall
- Department of Biology, University of Western Ontario, London, Canada
- Present address: Department of Biology, University of Oklahoma, Norman, USA
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
40
|
Muths E, Chambert T, Schmidt BR, Miller DAW, Hossack BR, Joly P, Grolet O, Green DM, Pilliod DS, Cheylan M, Fisher RN, McCaffery RM, Adams MJ, Palen WJ, Arntzen JW, Garwood J, Fellers G, Thirion JM, Besnard A, Grant EHC. Heterogeneous responses of temperate-zone amphibian populations to climate change complicates conservation planning. Sci Rep 2017; 7:17102. [PMID: 29213103 PMCID: PMC5719039 DOI: 10.1038/s41598-017-17105-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
The pervasive and unabated nature of global amphibian declines suggests common demographic responses to a given driver, and quantification of major drivers and responses could inform broad-scale conservation actions. We explored the influence of climate on demographic parameters (i.e., changes in the probabilities of survival and recruitment) using 31 datasets from temperate zone amphibian populations (North America and Europe) with more than a decade of observations each. There was evidence for an influence of climate on population demographic rates, but the direction and magnitude of responses to climate drivers was highly variable among taxa and among populations within taxa. These results reveal that climate drivers interact with variation in life-history traits and population-specific attributes resulting in a diversity of responses. This heterogeneity complicates the identification of conservation 'rules of thumb' for these taxa, and supports the notion of local focus as the most effective approach to overcome global-scale conservation challenges.
Collapse
Affiliation(s)
- E Muths
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave., Bldg C, Fort Collins, CO, 80526, USA.
| | - T Chambert
- Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA, 16802, USA
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, 20708, USA
| | - B R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Info Fauna KARCH, 2000, Neuchâtel, Switzerland
| | - D A W Miller
- Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA, 16802, USA
| | - B R Hossack
- U.S. Geological Survey, Aldo Leopold Wilderness Research Institute, 790 E. Beckwith, Missoula, MT, 59801, USA
| | - P Joly
- Université Lyon 1, UMR 5023 - LEHNA, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, 69100, Villeurbanne, France
| | - O Grolet
- Université Lyon 1, UMR 5023 - LEHNA, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, 69100, Villeurbanne, France
| | - D M Green
- Redpath Museum, McGill University, 859 Sherbrooke St. W. Montreal, Quebec, H3A 2K6, Canada
| | - D S Pilliod
- U.S. Geological, Survey Forest and Rangeland Ecosystem Science Center, 970 Lusk St, Boise, ID, 83706, USA
| | - M Cheylan
- CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-34293, Montpellier, France
| | - R N Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road, San Diego, CA, 92101, USA
| | - R M McCaffery
- University of Montana, Division of Biological Sciences, 32 Campus Dr., Missoula, MT, USA
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 600 E. Park Ave, Port Angeles, WA, 98362, USA
| | - M J Adams
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - W J Palen
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive Burnaby, British Columbia, CANADA V5A 1S6, Canada
| | - J W Arntzen
- Naturalis Biodiversity Center, 6.4.16 Sylvius Bldg, 2333 CR, Leiden, The Netherlands
| | - J Garwood
- California Department of Fish and Wildlife, 5341 Ericson Way, Arcata, CA, 95521, USA
| | - G Fellers
- U.S. Geological Survey, Western Ecological Research Center, Point Reyes National Seashore, Point Reyes, CA, 94956, USA
| | - J-M Thirion
- Association Objectifs Biodiversités (OBIOS), 12 rue du docteur Gilbert, 17250, Pont l'Abbé d'Arnoult, France
| | - A Besnard
- CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-34293, Montpellier, France
| | - E H Campbell Grant
- U.S. Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
41
|
|
42
|
Penczykowski RM, Connolly BM, Barton BT. Winter is changing: Trophic interactions under altered snow regimes. FOOD WEBS 2017. [DOI: 10.1016/j.fooweb.2017.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
44
|
Hibernal Habitat Selection by Wood Frogs (Lithobates sylvaticus) in a Northern New England Montane Landscape. J HERPETOL 2016. [DOI: 10.1670/15-131r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Aguilar OA, Hadj-Moussa H, Storey KB. Regulation of SMAD transcription factors during freezing in the freeze tolerant wood frog, Rana sylvatica. Comp Biochem Physiol B Biochem Mol Biol 2016; 201:64-71. [DOI: 10.1016/j.cbpb.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/14/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
|
46
|
Lambert BA, Schorr RA, Schneider SC, Muths E. Influence of demography and environment on persistence in toad populations. J Wildl Manage 2016. [DOI: 10.1002/jwmg.21118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Brad A. Lambert
- Colorado Natural Heritage Program; Colorado State University; Fort Collins CO 80523-1475 USA
| | - Robert A. Schorr
- Colorado Natural Heritage Program; Colorado State University; Fort Collins CO 80523-1475 USA
| | - Scott C. Schneider
- Colorado Natural Heritage Program; Colorado State University; Fort Collins CO 80523-1475 USA
| | - Erin Muths
- U.S. Geological Survey; Fort Collins Science Center; 2150 Center Ave., Bldg C Fort Collins CO 80526 USA
| |
Collapse
|
47
|
Larson DJ, Barnes BM. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles. Physiol Biochem Zool 2016; 89:340-6. [DOI: 10.1086/687305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Williams CM, Buckley LB, Sheldon KS, Vickers M, Pörtner HO, Dowd WW, Gunderson AR, Marshall KE, Stillman JH. Biological Impacts of Thermal Extremes: Mechanisms and Costs of Functional Responses Matter. Integr Comp Biol 2016; 56:73-84. [PMID: 27252194 DOI: 10.1093/icb/icw013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thermal performance curves enable physiological constraints to be incorporated in predictions of biological responses to shifts in mean temperature. But do thermal performance curves adequately capture the biological impacts of thermal extremes? Organisms incur physiological damage during exposure to extremes, and also mount active compensatory responses leading to acclimatization, both of which alter thermal performance curves and determine the impact that current and future extremes have on organismal performance and fitness. Thus, these sub-lethal responses to extreme temperatures potentially shape evolution of thermal performance curves. We applied a quantitative genetic model and found that beneficial acclimatization and cumulative damage alter the extent to which thermal performance curves evolve in response to thermal extremes. The impacts of extremes on the evolution of thermal performance curves are reduced if extremes cause substantial mortality or otherwise reduce fitness differences among individuals. Further empirical research will be required to understand how responses to extremes aggregate through time and vary across life stages and processes. Such research will enable incorporating passive and active responses to sub-lethal stress when predicting the impacts of thermal extremes.
Collapse
Affiliation(s)
| | | | | | - Mathew Vickers
- Station d'Ecologie Théorique et Expérimentale, Moulis, 09200, UMR 5321, CNRS 2 route du CNRS, France
| | - Hans-Otto Pörtner
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremerhaven, Germany
| | - W Wesley Dowd
- Loyola Marymount University, Los Angeles, CA, USA 90045
| | - Alex R Gunderson
- *University of California, Berkeley, CA, USA 94720 San Francisco State University, Tiburon, CA, USA 94132
| | | | | |
Collapse
|
49
|
Davenport JM, Hossack BR. Reevaluating geographic variation in life‐history traits of a widespread Nearctic amphibian. J Zool (1987) 2016. [DOI: 10.1111/jzo.12352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. M. Davenport
- Department of Biology Southeast Missouri State University Cape Girardeau MO USA
| | - B. R. Hossack
- U.S. Geological Survey Northern Rocky Mountain Science Center Aldo Leopold Wilderness Research Institute Missoula MT USA
| |
Collapse
|
50
|
Abstract
Many environmental conditions can constrain the ability of animals to obtain sufficient food energy, or transform that food energy into useful chemical forms. To survive extended periods under such conditions animals must suppress metabolic rate to conserve energy, water, or oxygen. Amongst small endotherms, this metabolic suppression is accompanied by and, in some cases, facilitated by a decrease in core body temperature-hibernation or daily torpor-though significant metabolic suppression can be achieved even with only modest cooling. Within some ectotherms, winter metabolic suppression exceeds the passive effects of cooling. During dry seasons, estivating ectotherms can reduce metabolism without changes in body temperature, conserving energy reserves, and reducing gas exchange and its inevitable loss of water vapor. This overview explores the similarities and differences of metabolic suppression among these states within adult animals (excluding developmental diapause), and integrates levels of organization from the whole animal to the genome, where possible. Several similarities among these states are highlighted, including patterns and regulation of metabolic balance, fuel use, and mitochondrial metabolism. Differences among models are also apparent, particularly in whether the metabolic suppression is intrinsic to the tissue or depends on the whole-animal response. While in these hypometabolic states, tissues from many animals are tolerant of hypoxia/anoxia, ischemia/reperfusion, and disuse. These natural models may, therefore, serve as valuable and instructive models for biomedical research.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|