1
|
Williamson G, Harris T, Bizior A, Hoskisson PA, Pritchard L, Javelle A. Biological ammonium transporters: evolution and diversification. FEBS J 2024; 291:3786-3810. [PMID: 38265636 DOI: 10.1111/febs.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul Alan Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Zhao XF, Huang J, Li W, Wang SY, Liang LQ, Zhang LM, Liew HJ, Chang YM. Rh proteins and H + transporters involved in ammonia excretion in Amur Ide (Leuciscus waleckii) under high alkali exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116160. [PMID: 38432157 DOI: 10.1016/j.ecoenv.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.
Collapse
Affiliation(s)
- Xue Fei Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jing Huang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wen Li
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 2000, China
| | - Shuang Yi Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Li Qun Liang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Li Min Zhang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Hon Jung Liew
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti of Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yu Mei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
3
|
Jung EH, Smich J, Rubino JG, Wood CM. An in vitro study of urea and ammonia production and transport by the intestinal tract of fed and fasted rainbow trout: responses to luminal glutamine and ammonia loading. J Comp Physiol B 2021; 191:273-287. [PMID: 33415429 DOI: 10.1007/s00360-020-01335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
Digestion of dietary protein in teleosts results in high ammonia levels within the intestinal chyme that may reach concentrations that are many-fold greater than blood plasma levels. We used in vitro gut sac preparations of the ammoniotelic rainbow trout (Oncorhynchus mykiss) to investigate the role of the intestine in producing and transporting ammonia and urea, with specific focus on feeding versus fasting, and on responses to loading of the lumen with 2 mmol L-1 glutamine or 2 mmol L-1 ammonia. Feeding increased not only ammonia production and both mucosal and serosal fluxes, but also increased urea production and serosal fluxes. Elevated urea production was accompanied by an increase in arginase activity but minimal CPS III activity, suggesting that urea may be produced by direct arginolysis. The ammonia production and serosal fluxes increased in fasted preparations with glutamine loading, indicating an ability of the intestinal tissue to deaminate glutamine and perhaps use it as an energy source. However, there was little evidence of urea production or transport resulting from the presence of glutamine. Furthermore, the intestinal tissues did not appear to convert surplus ammonia to urea as a detoxification mechanism, as urea production and serosal flux rates decreased in fed preparations, with minimal changes in fasted preparations. Nevertheless, there was indirect evidence of detoxification by another pathway, as ammonia production rate decreased with ammonia loading in fed preparations. Overall, our study suggests that intestinal tissues of rainbow trout have the ability to produce urea and detoxify ammonia, likely via arginolysis.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | - Joanna Smich
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Julian G Rubino
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.,Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
4
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Is the dendritic organ of the striped eel catfish Plotosus lineatus an ammonia excretory organ? Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110640. [PMID: 31870932 DOI: 10.1016/j.cbpa.2019.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022]
Abstract
The dendritic organ (DO) is a salt secretory organ in the Plotosidae marine catfishes. The potential role of the DO in ammonia excretion was investigated by examining the effects of salinity [brackishwater (BW 3‰), seawater (SW 34‰) and hypersaline water (HSW 60‰)] acclimation and DO ligation on ammonia excretion and ammonia transporter expression by immunohistochemistry (IHC), immunoblotting (IB) and qPCR. Ammonia flux rates (JAmm) were significantly lower in BW compared to SW and HSW. DO ligation resulted in a significantly lower JAmm in SW but not BW fish. IHC demonstrated apical and basolateral localization of Rhesus-associated glycoprotein (Rhag-like) and Rhbg-like proteins, respectively, in parenchymal cells of the DO acini. In the gills, which are the primary site of ammonia excretion in teleost fishes, IHC showed an apical localization of Rhag-like protein in some Na+/K+-ATPase (NKA) immunoreactive (IR) cells limited to a few interlamellar regions of the filament and, in both apical and basolateral membranes of pillar cells irrespective of treatment group. In gills, the distribution of NKA-IR cells showed no salinity and/or ligation dependency. IB of Rhag and Rhbg-like proteins was found only in the gills and expression levels did not change with salinity but ligation in BW decreased Rhbg-like levels. Although Rhcg was not detected with heterologous antibodies, rhcg1 mRNA expression was detected in both gills and DO. HSW was associated with the lowest expression in DO and ligations in SW and BW were without effect on branchial expression levels. Taken together these results indicate the DO potentially has a physiological role in ammonia excretion under SW conditions.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Coldwater Fisheries Research Center (CFRC), Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research, Education and Extension Organization, Tonekabon, Iran.
| | - João Coimbra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| | - Jonathan M Wilson
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Department of Biology, Wilfrid Laurier University, Waterloo, Canada.
| |
Collapse
|
5
|
De Boeck G, Wood CM, Brix KV, Sinha AK, Matey V, Johannsson OE, Bianchini A, Bianchini LF, Maina JN, Kavembe GD, Papah MB, Kisipan ML, Ojoo RO. Fasting in the ureotelic Lake Magadi tilapia, Alcolapia grahami, does not reduce its high metabolic demand, increasing its vulnerability to siltation events. CONSERVATION PHYSIOLOGY 2019; 7:coz060. [PMID: 31687141 PMCID: PMC6822538 DOI: 10.1093/conphys/coz060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Lake Magadi, Kenya, is one of the most extreme aquatic environments on Earth (pH~10, anoxic to hyperoxic, high temperatures). Recently, increased water demand and siltation have threatened the viable hot springs near the margins of the lake where Alcolapia grahami, the only fish surviving in the lake, live. These Lake Magadi tilapia largely depend on nitrogen-rich cyanobacteria for food and are 100% ureotelic. Their exceptionally high aerobic metabolic rate, together with their emaciated appearance, suggests that they are energy-limited. Therefore, we hypothesized that during food deprivation, Magadi tilapia would economize their energy expenditure and reduce metabolic rate, aerobic performance and urea-N excretion. Surprisingly, during a 5-day fasting period, routine metabolic rates increased and swimming performance (critical swimming speed) was not affected. Urea-N excretion remained stable despite the lack of their N-rich food source. Their nitrogen use switched to endogenous sources as liver and muscle protein levels decreased after a 5-day fast, indicating proteolysis. Additionally, fish relied on carbohydrates with lowered muscle glycogen levels, but there were no signs indicating use of lipid stores. Gene expression of gill and gut urea transporters were transiently reduced as were gill rhesus glycoprotein Rhbg and Rhcg-2. The reduction in gill glutamine synthetase expression concomitant with the reduction in Rh glycoprotein gene expression indicates reduced nitrogen/ammonia metabolism, most likely decreased protein synthesis. Additionally, fish showed reduced plasma total CO2, osmolality and Na+ (but not Cl-) levels, possibly related to reduced drinking rates and metabolic acidosis. Our work shows that Lake Magadi tilapia have the capacity to survive short periods of starvation which could occur when siltation linked to flash floods covers their main food source, but their seemingly hardwired high metabolic rates would compromise long-term survival.
Collapse
Affiliation(s)
- Gudrun De Boeck
- SPHERE, Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp B-2020, Belgium
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Chris M Wood
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
- Department of Zoology, University of British Columbia, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Kevin V Brix
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- EcoTox, 3211 19th Terrace, Miami, FL 33145, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Amit K Sinha
- SPHERE, Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp B-2020, Belgium
- Department of Aquaculture and Fisheries, University of Arkansas, 1200 North Univ Dr, Pine Bluff, AR 71601, USA
| | - Victoria Matey
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Ora E Johannsson
- Department of Zoology, University of British Columbia, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Ave Italia Km 8, Rio Grande, RS 96203-900, Brazil
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Lucas F Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Ave Italia Km 8, Rio Grande, RS 96203-900, Brazil
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - John N Maina
- Department of Zoology, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Geraldine D Kavembe
- School of Dryland Agriculture Science and Technology, South Eastern Kenya University, PO Box 170, Kitui 90200, Kenya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Michael B Papah
- Department of Animal and Food Sciences, University of Delaware, 531 S. College Ave., Newark, DE 19716, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Mosiany L Kisipan
- Department of Veterinary Anatomy and Physiology, Egerton University, Njoro Campus PO Box 536, Egerton 20115, Kenya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Rodi O Ojoo
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| |
Collapse
|
6
|
An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: roles of NKCC, K + channels, and Na +, K + ATPase. J Comp Physiol B 2019; 189:549-566. [PMID: 31486919 DOI: 10.1007/s00360-019-01231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/15/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
We examined mechanisms of ammonia handling in the anterior, mid, and posterior intestine of unfed and fed freshwater rainbow trout (Oncorhynchus mykiss), with a focus on the Na+:K+:2Cl- co-transporter (NKCC), Na+:K +-ATPase (NKA), and K+ channels. NKCC was localized by immunohistochemistry to the mucosal (apical) surface of enterocytes, and NKCC mRNA was upregulated after feeding in the anterior and posterior segments. NH4+ was equally potent to K+ in supporting NKA activity in all intestinal sections. In vitro gut sac preparations were employed to examine mucosal ammonia flux rates (Jmamm, disappearance from the mucosal saline), serosal ammonia flux rates (Jsamm, appearance in the serosal saline), and total tissue ammonia production rates (Jtamm = Jsamm - Jmamm). Bumetanide (10-4 mol L-1), a blocker of NKCC, inhibited Jsamm in most preparations, but this was largely due to reduction of Jtamm; Jmamm was significantly inhibited only in the anterior intestine of fed animals. Ouabain (10-4 mol L-1), a blocker of NKA, generally reduced both Jmamm and Jsamm without effects on Jtamm in most preparations, though the anterior intestine was resistant after feeding. Barium (10-2 mol L-1), a blocker of K+ channels, inhibited Jmamm in most preparations, and Jsamm in some, without effects on Jtamm. These pharmacological results, together with responses to manipulations of serosal and mucosal Na+ and K+ concentrations, suggest that NKCC is not as important in ammonia absorption as previously believed. NH4+ appears to be taken up through barium-sensitive K+ channels on the mucosal surface. Mucosal NH4+ uptake via both NKCC and K+ channels is energized by basolateral NKA, which plays an additional role in scavenging NH4+ on the serosal surface to possibly minimize blood toxicity or enhance ion uptake and amino acid synthesis following feeding. Together with recent findings from other studies, we have provided an updated model to describe the current understanding of intestinal ammonia transport in teleost fish.
Collapse
|
7
|
Andrikou C, Thiel D, Ruiz-Santiesteban JA, Hejnol A. Active mode of excretion across digestive tissues predates the origin of excretory organs. PLoS Biol 2019; 17:e3000408. [PMID: 31356592 PMCID: PMC6687202 DOI: 10.1371/journal.pbio.3000408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/08/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
Most bilaterian animals excrete toxic metabolites through specialized organs, such as nephridia and kidneys, which share morphological and functional correspondences. In contrast, excretion in non-nephrozoans is largely unknown, and therefore the reconstruction of ancestral excretory mechanisms is problematic. Here, we investigated the excretory mode of members of the Xenacoelomorpha, the sister group to Nephrozoa, and Cnidaria, the sister group to Bilateria. By combining gene expression, inhibitor experiments, and exposure to varying environmental ammonia conditions, we show that both Xenacoelomorpha and Cnidaria are able to excrete across digestive-associated tissues. However, although the cnidarian Nematostella vectensis seems to use diffusion as its main excretory mode, the two xenacoelomorphs use both active transport and diffusion mechanisms. Based on these results, we propose that digestive-associated tissues functioned as excretory sites before the evolution of specialized organs in nephrozoans. We conclude that the emergence of a compact, multiple-layered bilaterian body plan necessitated the evolution of active transport mechanisms, which were later recruited into the specialized excretory organs.
Collapse
Affiliation(s)
- Carmen Andrikou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Daniel Thiel
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Si L, Pan L, Zhang X, Wang H, Wei C. Evidence that dopamine is involved in neuroendocrine regulation, gill intracellular signaling pathways and ion regulation in Litopenaeus vannamei. J Exp Biol 2019; 222:jeb.204073. [DOI: 10.1242/jeb.204073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023]
Abstract
The transport of ions and ammonia in the gills may be regulated by neuroendocrine factors, in order to explore the regulation mechanism of dopamine (DA), hemolymph neuroendocrine hormones, gill intracellular signaling pathways, ion and ammonia transporters, as well as hemolymph osmolality and ammonia concentration were investigated in Litopenaeus vannamei after 10−7 and 10−6 mol shrimp−1 DA injection. The data displayed a significant increase in crustacean hyperglycemic hormone (CHH) concentration at 1-12 h and a transient significant decrease in corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol concentrations under DA stimulation. The up-regulation of guanylyl cyclase (GC) mRNA, cyclic guanosine monophosphate (cGMP) and protein kinase G (PKG) concentrations, together with down-regulation of DA receptor D4 mRNA and up-regulation of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), diacylglycerol (DAG) and protein kinase C (PKC) concentrations suggested an activation of complicated intracellular signaling pathway. The expression of cyclic AMP response element-binding protein (CREB), FXYD2 and 14-3-3 protein mRNA was significantly increased by PKA regulation. The increase in Na+/K+-ATPase (NKA) activity and the stabilization of V-type H+-ATPase (V-ATPase) activity are accompanied by an up-regulation of K+-channel, Na+/K+/2Cl− cotransporter (NKCC), Rh protein and vesicle associated membrane protein (VAMP) mRNA, resulting in an increase in hemolymph osmolality and a decrease in hemolymph ammonia concentration. These results suggest that DA stimulates the secretion of CHH and inhibits the release of cortisol, which activates intracellular signaling factors to facilitate ion and ammonia transport across the gills, and may not affect intracellular acidification.
Collapse
Affiliation(s)
- Lingjun Si
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Hongdan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Cun Wei
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
9
|
Si L, Pan L, Wang H, Zhang X. Ammonia-N exposure alters neurohormone levels in the hemolymph and mRNA abundance of neurohormone receptors and associated downstream factors in the gills of Litopenaeus vannamei. J Exp Biol 2019; 222:jeb.200204. [DOI: 10.1242/jeb.200204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Effects of ammonia-N (0.05, 2, 10 and 20 mg L−1) on the neuroendocrine regulation of ammonia transport were investigated in Litopenaeus vannamei. The results showed that corticotrophin-releasing hormone, adrenocorticotropic hormone, dopamine, noradrenaline and 5-hydroxytryptamine concentration in all ammonia-N groups increased significantly between 3-12 h. Cortisol increased significantly between 3-24 h. All hormones except crustacean hyperglycemic hormone were reduced to control levels. mRNA abundance of guanylyl cyclase increased significantly during the experiment. Dopamine receptor D4 and α2 adrenergic receptor mRNA abundance in treatments decreased significantly at the beginning, and eventually returned to the control level, whereas mRNA abundance of 5-HT7 receptor increased significantly only within the first 12 h. Changes of protein kinases (PKA, PKG) mRNA abundance were similar to the patterns of biogenic amines and crustacean hyperglycemic hormone, peaking at 6 h and 12 h respectively, while PKC decreased within 24 h. 14-3-3 protein, FXYD2 and cAMP-response element binding protein mRNA abundance of treatments increased significantly and peaked at 6 h. β-catenin and T-cell factor mRNA abundance increased significantly throughout the experiment and peaked at 12 h. The up-regulation of Rh protein, K+-channel, Na+/K+-ATPase, V-type H+-ATPase and vesicle associated membrane protein (VAMP) mRNA, together with down-regulation of Na+/K+/2Cl− cotransporter mRNA indicated an adjustment of general branchial ion-/ammonia-regulatory mechanisms. Meanwhile, hemolymph ammonia concentration was significantly increased in most ammonia-N exposure groups. Histological investigation revealed the hepatopancreatic damage caused by ammonia-N. The results suggest hormones, biogenic amines and Wnt/β-catenin play a principal role in adapting to ammonia-N exposure and facilitating ammonia transport.
Collapse
Affiliation(s)
- Lingjun Si
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Hongdan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
10
|
Zimmer AM, Wright PA, Wood CM. Ammonia and urea handling by early life stages of fishes. ACTA ACUST UNITED AC 2018; 220:3843-3855. [PMID: 29093184 DOI: 10.1242/jeb.140210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N57
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
11
|
Si L, Pan L, Wang H, Zhang X. Identification of the role of Rh protein in ammonia excretion of swimming crab Portunus trituberculatus. J Exp Biol 2018; 221:jeb.184655. [DOI: 10.1242/jeb.184655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
In Portunus trituberculatus, a full-length cDNA of Rhesus-like glycoprotein (Rh protein), the whole 478 amino acids, has been identified in gills, which plays an essential role in ammonia (NH3 /NH4+) excretion. Phylogenetic analysis of the Rh-like proteins from crabs was clustered, showing high conservation of the ammonium transporter domain and transmembrane segments essential to the function of Rh protein. Rh protein of P. trituberculatus (PtRh) was detected in all tested tissues, and showed the highest expression in gills. To further characterize the role of PtRh in ammonia metabolism and excretion, a double-stranded RNA-mediated RNA interference of PtRh was employed. The knockdown of PtRh up-regulated mRNA expression of ammonia excretion related genes aquaporin (AQP), K+-channel, vesicle associated membrane protein (VAMP), increased activities of Na+ /K+ -ATPase (NKA) and V-type H+-ATPase (V-ATPase), whereas the Na+/H+-exchanger (NHE) expression reduced firstly and then elevated. dsRNA-mediated reductions in PtRh significantly reduced ammonia excretion rate and increased ammonia and glutamine (Gln) levels in hemolymph, together with increase of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) activites, indicating a central role for PtRh in ammonia excretion and detoxification mechanisms. Taken together, we conclude that the Rh protein is a primary contributor to ammonia excretion of P. trituberculatus, which may be the basis of their ability to inhabit benthic water with high ammonia levels.
Collapse
Affiliation(s)
- Lingjun Si
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Hongdan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
12
|
Gao N, Zhu L, Guo Z, Yi M, Zhang L. Effects of chronic ammonia exposure on ammonia metabolism and excretion in marine medaka Oryzias melastigma. FISH & SHELLFISH IMMUNOLOGY 2017; 65:226-234. [PMID: 28428060 DOI: 10.1016/j.fsi.2017.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/01/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
Ammonia is highly toxic to aquatic organisms, but whether ammonia excretion or ammonia metabolism to less toxic compounds is the major strategy for detoxification in marine fish against chronic ammonia exposure is unclear to date. In this study, we investigated the metabolism and excretion of ammonia in marine medaka Oryzias melastigma during chronic ammonia exposure. The fish were exposed to 0, 0.1, 0.3, 0.6, and 1.1 mmol l-1 NH4Cl spiked seawater for 8 weeks. Exposure of 0.3-1.1 mmol l-1 NH4Cl had deleterious effects on the fish, including significant reductions in growth, feed intake, and total protein content. However, the fish could take strategies to detoxify ammonia. The tissue ammonia (TAmm) in the 0.3-1.1 mmol l-1 NH4Cl treatments was significantly higher than those in the 0 and 0.1 mmol l-1 NH4Cl treatments after 2 weeks of exposure, but it recovered with prolonged exposure time, ultimately reaching the control level after 8 weeks. The amino acid catabolic rate decreased to reduce the gross ammonia production with the increasing ambient ammonia concentration. The concentrations of most metabolites remained constant in the 0-0.6 mmol l-1 NH4Cl treatments, whereas 5 amino acids and 3 energy metabolism-related metabolites decreased in the 1.1 mmol l-1 NH4Cl treatment. JAmm steadily increased in ambient ammonia from 0 to 0.6 mmol l-1 and slightly decreased when the ambient ammonia concentration increased to 1.1 mmol l-1. Overall, marine medaka cope with sublethal ammonia environment by regulating the tissue TAmm via reducing the ammonia production and increasing ammonia excretion.
Collapse
Affiliation(s)
- Na Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy Sciences, Beijing, 100049, China
| | - Limei Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhiqiang Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
13
|
Bianchini LF, Wood CM, Bergman HL, Johannsson OE, Laurent P, Chevalier C, Kisipan ML, Kavembe GD, Papah MB, Brix KV, De Boeck G, Maina JN, Ojoo RO, Bianchini A. Metabolism and antioxidant defense in the larval chironomid Tanytarsus minutipalpus: adjustments to diel variations in the extreme conditions of Lake Magadi. Biol Open 2017; 6:83-91. [PMID: 27895051 PMCID: PMC5278425 DOI: 10.1242/bio.021139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insect larvae are reported to be a major component of the simple but highly productive trophic web found in Lake Magadi (Kenya, Africa), which is considered to be one of the most extreme aquatic environments on Earth. Previous studies show that fish must display biochemical and physiological adjustments to thrive under the extreme conditions of the lake. However, information for invertebrates is lacking. In the present study, the occurrence of the larval chironomid Tanytarsus minutipalpus is reported in Lake Magadi for the first time. Additionally, changes in larval metabolism and antioxidant defense correlated with diel variations in the extremely hostile environmental conditions of the lake are described. Wide variations in water temperature (20.2-29.3°C) and dissolved oxygen content (3.2-18.6 mg O2 l−1) were observed at different times of day, without significant change in water pH (10.0±0.03). Temperature and dissolved oxygen were higher at 13:00 h (29.3±0.4°C and 18.6±1.0 mg O2 l−1) and 19:00 h (29.3±0.8°C and 16.2±1.6 mg O2 l−1) and lower at 01:00 h (21.1±0.1°C and 10.7±0.03 mg O2 l−1) and 07:00 h (20.2±0.4°C and 3.2±0.7 mg O2 l−1). Significant and parallel increases in parameters related to metabolism (cholinesterase, glucose, cholesterol, urea, creatinine and hemoglobin) and the antioxidant system (SOD, GPx, GR, GSH and GSSG) were observed in larvae collected at 13:00 h. In contrast, no significant changes were observed in pro-oxidants (ROS and NO), TOSC and oxidative damage parameters (LPO and DNA damage). Therefore, the observed increases in temperature and dissolved O2 content in Lake Magadi were associated with changes in the antioxidant system of T. minutipalpus larvae. Adjustments performed by the chironomid larvae were efficient in maintaining body homeostasis, as well as protecting biomolecules against oxidative damage, so that oxidative stress did not occur. GSH-GSSG and GPx-GR systems appeared to play an essential role in the adjustments displayed by the chironomid larvae during the diel changes in the extreme conditions of Lake Magadi. Summary: Insect larvae display adjustments in metabolism and oxidative status to overcome the diel variations in the extreme and harsh physicochemical conditions of Lake Magadi, a saline and alkaline lake in Kenya.
Collapse
Affiliation(s)
- Lucas F Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Rio Grande, RS 96203-900, Brazil
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Harold L Bergman
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Ora E Johannsson
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Pierre Laurent
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Claudine Chevalier
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Mosiany L Kisipan
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine and Surgery, Egerton University, P.O. Box 536 - 20115, Egerton, Kenya
| | - Geraldine D Kavembe
- Department of Biology, South Eastern Kenya University, Kitui 170-90200, Kenya
| | - Michael B Papah
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | | | - Gudrun De Boeck
- SPHERE, Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - John N Maina
- Department of Zoology, University of Johannesburg, Johannesburg 2006, South Africa
| | - Rodi O Ojoo
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Rio Grande, RS 96203-900, Brazil
| |
Collapse
|
14
|
Matassi G. Horizontal gene transfer drives the evolution of Rh50 permeases in prokaryotes. BMC Evol Biol 2017; 17:2. [PMID: 28049420 PMCID: PMC5209957 DOI: 10.1186/s12862-016-0850-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/09/2016] [Indexed: 01/22/2023] Open
Abstract
Background Rh50 proteins belong to the family of ammonia permeases together with their Amt/MEP homologs. Ammonia permeases increase the permeability of NH3/NH4+ across cell membranes and are believed to be involved in excretion of toxic ammonia and in the maintenance of pH homeostasis. RH50 genes are widespread in eukaryotes but absent in land plants and fungi, and remarkably rare in prokaryotes. The evolutionary history of RH50 genes in prokaryotes is just beginning to be unveiled. Results Here, a molecular phylogenetic approach suggests horizontal gene transfer (HGT) as a primary force driving the evolution and spread of RH50 among prokaryotes. In addition, the taxonomic distribution of the RH50 gene among prokaryotes turned out to be very narrow; a single-copy RH50 is present in the genome of only a small proportion of Bacteria, and, first evidence to date, in only three methanogens among Euryarchaea. The coexistence of RH50 and AMT in prokaryotes seems also a rare event. Finally, phylogenetic analyses were used to reconstruct the HGT network along which prokaryotic RH50 evolution has taken place. Conclusions The eukaryotic or bacterial “origin” of the RH50 gene remains unsolved. The RH50 prokaryotic HGT network suggests a preferential directionality of transfer from aerobic to anaerobic organisms. The observed HGT events between archaeal methanogens, anaerobic and aerobic ammonia-oxidizing bacteria suggest that syntrophic relationships play a major role in the structuring of the network, and point to oxygen minimum zones as an ecological niche that might be of crucial importance for HGT-driven evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0850-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giorgio Matassi
- Dipartimento di Scienze Agro-alimentari, Ambientali e Animali (DI4A), Università di Udine, Via delle Scienze, 206-33100, Udine, Italy.
| |
Collapse
|
15
|
Adlimoghaddam A, O'Donnell MJ, Kormish J, Banh S, Treberg JR, Merz D, Weihrauch D. Ammonia excretion in Caenorhabditis elegans: Physiological and molecular characterization of the rhr-2 knock-out mutant. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:46-54. [DOI: 10.1016/j.cbpa.2016.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 12/16/2022]
|
16
|
Adlimoghaddam A, Boeckstaens M, Marini AM, Treberg JR, Brassinga AKC, Weihrauch D. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1. ACTA ACUST UNITED AC 2015; 218:675-83. [PMID: 25740900 DOI: 10.1242/jeb.111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW(-1) day(-1)) and very little urea (0.21±0.004 µmol gFW(-1) day(-1)). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H(+)-ATPase (subunit A) and Na(+)/K(+)-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H(+)-ATPase, carbonic anhydrase, Na(+)/K(+)-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l(-1) NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na(+)/K(+)-ATPase also increased significantly in response to 1 mmol l(-1) NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | - Mélanie Boeckstaens
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Anna-Maria Marini
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Jason R Treberg
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2 Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | | | - Dirk Weihrauch
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| |
Collapse
|
17
|
Nawata CM, Walsh PJ, Wood CM. Physiological and molecular responses of the spiny dogfish shark (Squalus acanthias) to high environmental ammonia: scavenging for nitrogen. ACTA ACUST UNITED AC 2015; 218:238-48. [PMID: 25609784 DOI: 10.1242/jeb.114967] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In teleosts, a branchial metabolon links ammonia excretion to Na(+) uptake via Rh glycoproteins and other transporters. Ureotelic elasmobranchs are thought to have low branchial ammonia permeability, and little is known about Rh function in this ancient group. We cloned Rh cDNAs (Rhag, Rhbg and Rhp2) and evaluated gill ammonia handling in Squalus acanthias. Control ammonia excretion was <5% of urea-N excretion. Sharks exposed to high environmental ammonia (HEA; 1 mmol(-1) NH4HCO3) for 48 h exhibited active ammonia uptake against partial pressure and electrochemical gradients for 36 h before net excretion was re-established. Plasma total ammonia rose to seawater levels by 2 h, but dropped significantly below them by 24-48 h. Control ΔP(NH3) (the partial pressure gradient of NH3) across the gills became even more negative (outwardly directed) during HEA. Transepithelial potential increased by 30 mV, negating a parallel rise in the Nernst potential, such that the outwardly directed NH4(+) electrochemical gradient remained unchanged. Urea-N excretion was enhanced by 90% from 12 to 48 h, more than compensating for ammonia-N uptake. Expression of Rhp2 (gills, kidney) and Rhbg (kidney) did not change, but branchial Rhbg and erythrocytic Rhag declined during HEA. mRNA expression of branchial Na(+)/K(+)-ATPase (NKA) increased at 24 h and that of H(+)-ATPase decreased at 48 h, while expression of the potential metabolon components Na(+)/H(+) exchanger2 (NHE2) and carbonic anhydrase IV (CA-IV) remained unchanged. We propose that the gill of this nitrogen-limited predator is poised not only to minimize nitrogen loss by low efflux permeability to urea and ammonia but also to scavenge ammonia-N from the environment during HEA to enhance urea-N synthesis.
Collapse
Affiliation(s)
- C Michele Nawata
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0 Department of Biology, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1 Department of Physiology, University of Arizona, 1501 N. Campbell Avenue Tucson, AZ 85724, USA
| | - Patrick J Walsh
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0 Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0 Department of Biology, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1 Department of Zoology, University of British Columbia, #4321-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
18
|
Nawata CM, Walsh PJ, Wood CM. Nitrogen metabolism, acid-base regulation, and molecular responses to ammonia and acid infusions in the spiny dogfish shark (Squalus acanthias). J Comp Physiol B 2015; 185:511-25. [PMID: 25794843 DOI: 10.1007/s00360-015-0898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/18/2015] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
Abstract
Although they are ureotelic, marine elasmobranchs express Rh glycoproteins, putative ammonia channels. To address questions raised by a recent study on high environmental ammonia (HEA) exposure, dogfish were intravascularly infused for 24 h at 3 ml kg(-1) h(-1) with isosmotic NaCl (500 mmol l(-1), control), NH4HCO3 (500 mmol l(-1)), NH4Cl (500 mmol l(-1)), or HCl (as 125 mmol l(-1) HCl + 375 mmol l(-1) NaCl). While NaCl had no effect on arterial acid-base status, NH4HCO3 caused mild alkalosis, NH4Cl caused strong acidosis, and HCl caused lesser acidosis, all predominantly metabolic in nature. Total plasma ammonia (T(Amm)) and excretion rates of ammonia (J(Amm)) and urea-N (J(Urea-N)) were unaffected by NaCl or HCl. However, despite equal loading rates, plasma T(Amm) increased to a greater extent with NH4Cl, while J(Amm) increased to a greater extent with NH4HCO3 due to much greater increases in blood-to-water PNH3 gradients. As with HEA, both treatments caused large (90%) elevations of J(Urea-N), indicating that urea-N synthesis by the ornithine-urea cycle (OUC) is driven primarily by ammonia rather than HCO3(-). Branchial mRNA expressions of Rhbg and Rhp2 were unaffected by NH4HCO3 or NH4Cl, but v-type H(+)-ATPase was down-regulated by both treatments, and Rhbg and Na(+)/H(+) exchanger NHE2 were up-regulated by HCl. In the kidney, Rhbg was unresponsive to all treatments, but Rhp2 was up-regulated by HCl, and the urea transporter UT was up-regulated by HCl and NH4Cl. These responses are discussed in the context of current ideas about branchial, renal, and OUC function in this nitrogen-limited predator.
Collapse
Affiliation(s)
- C Michele Nawata
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada,
| | | | | |
Collapse
|
19
|
Clifford AM, Goss GG, Wilkie MP. Adaptations of a deep sea scavenger: high ammonia tolerance and active NH₄⁺ excretion by the Pacific hagfish (Eptatretus stoutii). Comp Biochem Physiol A Mol Integr Physiol 2014; 182:64-74. [PMID: 25499242 DOI: 10.1016/j.cbpa.2014.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
The Pacific hagfish (Eptatretus stoutii) has an exceptional ability to both withstand and recover from exposure to high external ammonia (HEA). This tolerance is likely due to the feeding behavior of this scavenger, which feeds on intermittent food falls of carrion (e.g. fish, large marine mammals) during which time it may be exposed to high concentrations of total ammonia (T(Amm)=NH3+NH4(+)) while burrowed inside the decomposing carcass. Here we exposed hagfish to 20 mmol L(-1) T(Amm) for periods of up to 48 h and then let animals recover in ammonia-free seawater. During the 48 h HEA exposure period, plasma T(Amm) increased 100-fold to over 5000 μmol L(-1) while ammonia excretion (J(amm)) was transiently inhibited. This increase in plasma T(Amm) resulted from NH3 influx down massive inwardly directed ΔP(NH3) gradients, which also led to a short-lived metabolic alkalosis. Plasma [T(Amm)] stabilized after 24-48 h, possibly through a reduction in NH3 permeability across the body surface, which lowered NH3 influx. Ammonia balance was subsequently maintained through the re-establishment of J(amm) against an inwardly directed ΔP(NH3). Calculations of the Nernst potential for ammonia strongly indicated that J(amm) was also taking place against a large inwardly directed NH4(+) electrochemical gradient. Recovery from HEA in ammonia-free water was characterized by a large ammonia washout, and the restoration of plasma TAmm concentrations to near control concentrations. Ammonia clearance was also accompanied by a residual metabolic acidosis, which likely offset the ammonia-induced metabolic alkalosis seen in the early stages of HEA exposure. We conclude that restoration of J(amm) by the Pacific hagfish during ammonia exposure likely involves secondary active transport of NH4(+), possibly mediated by Na(+)/NH4(+) (H(+)) exchange.
Collapse
Affiliation(s)
- Alexander M Clifford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada
| | - Michael P Wilkie
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada; Biology Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| |
Collapse
|
20
|
Zhang L, Michele Nawata C, De Boeck G, Wood CM. Rh protein expression in branchial neuroepithelial cells, and the role of ammonia in ventilatory control in fish. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:39-51. [PMID: 25465530 DOI: 10.1016/j.cbpa.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/02/2023]
Abstract
Bill Milsom has made seminal contributions to our understanding of ventilatory control in a wide range of vertebrates. Teleosts are particularly interesting, because they produce a 3rd, potentially toxic respiratory gas (ammonia) in large amounts. Fish are well known to hyperventilate under high environmental ammonia (HEA), but only recently has the potential role of ammonia in normal ventilatory control been investigated. It is now clear that ammonia can act directly as a ventilatory stimulant in trout, independent of its effects on acid-base balance. Even in ureotelic dogfish sharks, acute elevations in ammonia cause increases in ventilation. Peripherally, the detection of elevated ammonia resides in gill arches I and II in trout, and in vitro, neuroepithelial cells (NECs) from these arches are sensitive to ammonia, responding with elevations in intracellular Ca(2+) ([Ca(2+)]i). Centrally, hyperventilatory responses to ammonia correlate more closely with concentrations of ammonia in the brain than in plasma or CSF. After chronic HEA exposure, ventilatory responsiveness to ammonia is lost, associated with both an attenuation of the [Ca(2+)]i response in NECs, and the absence of elevation in brain ammonia concentration. Chronic exposure to HEA also causes increases in the mRNA expression of several Rh proteins (ammonia-conductive channels) in both brain and gills. "Single cell" PCR techniques have been used to isolate the individual responses of NECs versus other gill cell types. We suggest several circumstances (post-feeding, post-exercise) where the role of ammonia as a ventilatory stimulant may have adaptive benefits for O2 uptake in fish.
Collapse
Affiliation(s)
- Li Zhang
- Dept. of Biology, McMaster University, Hamilton, Canada; Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Guangzhou, China
| | - C Michele Nawata
- Dept. of Biology, McMaster University, Hamilton, Canada; Dept. of Physiology, University of Arizona, Tucson, USA; Bamfield Marine Sciences Centre, Bamfield, Canada
| | - Gudrun De Boeck
- Bamfield Marine Sciences Centre, Bamfield, Canada; SPHERE, Dept. of Biology, University of Antwerp, Antwerp, Belgium
| | - Chris M Wood
- Dept. of Biology, McMaster University, Hamilton, Canada; Bamfield Marine Sciences Centre, Bamfield, Canada; Dept. of Zoology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
21
|
Wood CM, Robertson LM, Johannsson OE, Val AL. Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota). J Comp Physiol B 2014; 184:877-90. [PMID: 25106686 DOI: 10.1007/s00360-014-0847-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/10/2014] [Accepted: 07/19/2014] [Indexed: 12/13/2022]
Abstract
Mechanisms of Na(+) uptake, ammonia excretion, and their potential linkage were investigated in three characids (cardinal, hemigrammus, moenkhausia tetras), using radiotracer flux techniques to study the unidirectional influx (J in), efflux (J out), and net flux rates (J net) of Na(+) and Cl(-), and the net excretion rate of ammonia (J Amm). The fish were collected directly from the Rio Negro, and studied in their native "blackwater" which is acidic (pH 4.5), ion-poor (Na(+), Cl(-) ~20 µM), and rich in dissolved organic matter (DOM 11.5 mg C l(-1)). J in (Na) , J in (Cl) , and J Amm were higher than in previous reports on tetras obtained from the North America aquarium trade and/or studied in low DOM water. In all three species, J in (Na) was unaffected by amiloride (10(-4) M, NHE and Na(+) channel blocker), but both J in (Na) and J in (Cl) were virtually eliminated (85-99 % blockade) by AgNO3 (10(-7) M). A time course study on cardinal tetras demonstrated that J in (Na) blockade by AgNO3 was very rapid (<5 min), suggesting inhibition of branchial carbonic anhydrase (CA), and exposure to the CA-blocker acetazolamide (10(-4) M) caused a 50 % reduction in J in (Na) .. Additionally, J in (Na) was unaffected by phenamil (10(-5) M, Na(+) channel blocker), bumetanide (10(-4) M, NKCC blocker), hydrochlorothiazide (5 × 10(-3) M, NCC blocker), and exposure to an acute 3 unit increase in water pH. None of these treatments, including partial or complete elimination of J in (Na) (by acetazolamide and AgNO3 respectively), had any inhibitory effect on J Amm. Therefore, Na(+) uptake in Rio Negro tetras depends on an internal supply of H(+) from CA, but does not fit any of the currently accepted H(+)-dependent models (NHE, Na(+) channel/V-type H(+)-ATPase), or co-transport schemes (NCC, NKCC), and ammonia excretion does not fit the current "Na(+)/NH4 (+) exchange metabolon" paradigm. Na(+), K(+)-ATPase and V-type H(+)-ATPase activities were present at similar levels in gill homogenates, Acute exposure to high environmental ammonia (NH4Cl, 10(-3) M) significantly increased J in (Na) , and NH4 (+) was equally or more effective than K(+) in activating branchial Na(+),(K(+)) ATPase activity in vitro. We propose that ammonia excretion does not depend on Na(+) uptake, but that Na(+) uptake (by an as yet unknown H(+)-dependent apical mechanism) depends on ammonia excretion, driven by active NH4 (+) entry via basolateral Na(+),(K(+))-ATPase.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada,
| | | | | | | |
Collapse
|
22
|
Chang YM, Tang R, Dou XJ, Tao R, Sun XW, Liang LQ. Transcriptome and expression profiling analysis of Leuciscus waleckii: an exploration of the alkali-adapted mechanisms of a freshwater teleost. MOLECULAR BIOSYSTEMS 2014; 10:491-504. [PMID: 24382597 DOI: 10.1039/c3mb70318e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strategies by which freshwater teleosts maintain acid-base homeostasis under alkaline stress are attractive and have been explored for a long time. In this study, a cyprinid fish that tolerates extremely alkaline environments (pH 9.6), Leuciscus waleckii, was used as a model to explore the molecular mechanisms of acid-base regulation. Using a lab-controlled alkaline challenge test and 454 sequencing, the transcriptomes of their gills and kidney were profiled and compared. mRNA profiling produced 1 826 022 reads, generated 30 606 contigs with an average length of 1022 bp, of which 19 196 were annotated successfully. Comparative analysis of the expression profiles between alkaline and freshwater L. waleckii habitats revealed approximately 4647 and 7184 genes that were differentially expressed (p < 0.05) in gills and kidney, respectively, of which 2398 and 5127 had more than twofold changes in expression. Gene ontology analysis and KEGG enrichment analysis were conducted. Comprehensive analysis found that genes involved in ion transportation, ammonia transportation, and arachidonic acid metabolism pathways changed dramatically and played important roles in acid-base homeostasis in fish under alkaline stress. These results support the existing hypotheses about candidate genes involved in acid-base regulation under alkaline stress and prompt several new hypotheses. The large transcriptome dataset collected in this study is a useful resource for the exploration of homeostasis modulation in other fish species.
Collapse
Affiliation(s)
- Yu-Mei Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China.
| | | | | | | | | | | |
Collapse
|
23
|
Stead N. LIFE AT HIGH pH: MANAGING AMMONIA. J Exp Biol 2013. [DOI: 10.1242/jeb.091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|