1
|
Márquez-Borrás F, Sewell MA. Long-term study of the combined effects of ocean acidification and warming on the mottled brittle star, Ophionereis fasciata. J Exp Biol 2024; 227:jeb249426. [PMID: 39318332 DOI: 10.1242/jeb.249426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The global ocean is rapidly changing, posing a substantial threat to the viability of marine populations due to the co-occurrence of multiple drivers, such as ocean warming (OW) and ocean acidification (OA). To persist, marine species must undergo some combination of acclimation and adaptation in response to these changes. Understanding such responses is essential to measure and project the magnitude and direction of current and future vulnerabilities in marine ecosystems. Echinoderms have been recognised as a model in studies of OW-OA effects on marine biota. However, despite their global diversity, vulnerability and ecological importance in most marine habitats, brittle stars (ophiuroids) are poorly studied. A long-term mesocosm experiment was conducted on adult mottled brittle star (Ophionereis fasciata) as a case study to investigate the physiological response and trade-offs of marine organisms to ocean acidification, ocean warming and the combined effect of these two drivers. Long-term exposure of O. fasciata to high temperature and low pH affected survival, respiration and regeneration rates, growth rate, calcification/dissolution and righting response. Higher temperatures increased stress and respiration, and decreased regeneration and growth rates as well as survival. Conversely, changes in pH had more subtle or no effect, affecting only respiration and calcification. Our results indicate that exposure to a combination of high temperature and low pH produces complex responses for respiration, righting response and calcification. We address the knowledge gap of the impact of a changing ocean on ophiuroids in the context of echinoderm studies, proposing this class as an ideal alternative echinoderm for future research.
Collapse
Affiliation(s)
- Francisco Márquez-Borrás
- School of Biological Sciences , University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mary A Sewell
- School of Biological Sciences , University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Christensen AB, Taylor G, Lamare M, Byrne M. The added costs of winter ocean warming for metabolism, arm regeneration and survival in the brittle star Ophionereis schayeri. J Exp Biol 2023; 226:287003. [PMID: 36651231 DOI: 10.1242/jeb.244613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
As the climate continues to change, it is not just the magnitude of these changes that is important - equally critical is the timing of these events. Conditions that may be well tolerated at one time can become detrimental if experienced at another, as a result of seasonal acclimation. Temperature is the most critical variable as it affects most aspects of an organism's physiology. To address this, we quantified arm regeneration and respiration in the Australian brittle star Ophionereis schayeri for 10 weeks in response to a +3°C warming (18.5°C, simulating a winter heatwave) compared with ambient winter temperature (15.5°C). The metabolic scaling rate (b=0.635 at 15.5°C and 0.746 at 18.5°C) with respect to size was similar to that of other echinoderms and was not affected by temperature. Elevated temperature resulted in up to a 3-fold increase in respiration and a doubling of regeneration growth; however, mortality was greater (up to 44.2% at 18.5°C), especially in the regenerating brittle stars. Metabolic rate of the brittle stars held at 18.5°C was much higher than expected (Q10≈23) and similar to that of O. schayeri tested in summer, which was near their estimated thermotolerance limits. The additional costs associated with the elevated metabolism and regeneration rates incurred by the unseasonably warm winter temperatures may lead to increased mortality and predation risk.
Collapse
Affiliation(s)
| | - Georgie Taylor
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Zhan Y, Cui D, Xing D, Zhang J, Zhang W, Li Y, Li C, Chang Y. CO 2-driven ocean acidification repressed the growth of adult sea urchin Strongylocentrotus intermedius by impairing intestine function. MARINE POLLUTION BULLETIN 2020; 153:110944. [PMID: 32056852 DOI: 10.1016/j.marpolbul.2020.110944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Strongylocentrotus intermedius cultured in the northern Yellow Sea in China was utilized to evaluate the effects of chronic CO2-driven ocean acidification (OA) on adult sea urchins. Based on the projection of the Intergovernmental Panel on Climate Change (IPCC), present natural seawater conditions (pHNBS = 8.10 ± 0.03) and three laboratory-controlled OA conditions (OA1, ΔpHNBS = - 0.3 units; OA2, ΔpHNBS = - 0.4 units; OA3, ΔpHNBS = - 0.5 units) were employed. After 60-day incubation, our results showed that (1) OA significantly repressed the growth of adult S. intermedius; (2) food consumption tended to be decreased with pH decline; (3) intestinal morphology was changed, and activities of intestinal cellulase and lipase were decreased under acidified conditions; (4) expression levels of two immune-related genes (SiTNF14 and SiTGF-β) were altered; (5) rate-limiting enzyme activities of the glycolytic pathway and tricarboxylic acid cycle (TAC) were changed in all OA treatments compared to those of controls.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Dongfei Xing
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jun Zhang
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Cong Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
4
|
Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zool 2020; 17:7. [PMID: 32095155 PMCID: PMC7027112 DOI: 10.1186/s12983-020-0350-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/06/2020] [Indexed: 01/16/2023] Open
Abstract
For nearly a decade, the metazoan-focused research community has explored the impacts of ocean acidification (OA) on marine animals, noting that changes in ocean chemistry can impact calcification, metabolism, acid-base regulation, stress response and behavior in organisms that hold high ecological and economic value. Because OA interacts with several key physiological processes in marine organisms, transcriptomics has become a widely-used method to characterize whole organism responses on a molecular level as well as inform mechanisms that explain changes in phenotypes observed in response to OA. In the past decade, there has been a notable rise in studies that examine transcriptomic responses to OA in marine metazoans, and here we attempt to summarize key findings across these studies. We find that organisms vary dramatically in their transcriptomic responses to pH although common patterns are often observed, including shifts in acid-base ion regulation, metabolic processes, calcification and stress response mechanisms. We also see a rise in transcriptomic studies examining organismal response to OA in a multi-stressor context, often reporting synergistic effects of OA and temperature. In addition, there is an increase in studies that use transcriptomics to examine the evolutionary potential of organisms to adapt to OA conditions in the future through population and transgenerational experiments. Overall, the literature reveals complex organismal responses to OA, in which some organisms will face more dramatic consequences than others. This will have wide-reaching impacts on ocean communities and ecosystems as a whole.
Collapse
Affiliation(s)
- Marie E Strader
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,2Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| | - Juliet M Wong
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,3Present address: Department of Biological Sciences, Florida International University, North Miami, FL 33181 USA
| | - Gretchen E Hofmann
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
5
|
Li CY, Tseng YC, Chen YJ, Yang Y, Hsu Y. Personality and physiological traits predict contest interactions in Kryptolebias marmoratus. Behav Processes 2020; 173:104079. [PMID: 32007560 DOI: 10.1016/j.beproc.2020.104079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Personality and physiological traits often have close relationships with dominance status, but the significance and/or direction of the relationships vary between studies. This study examines whether two personality traits (aggressiveness and boldness) and three physiological traits (testosterone and cortisol levels and oxygen consumption rates) are associated with contest decisions/performance using a mangrove killifish Kryptolebias marmoratus. The results show that individuals that attacked their own mirror images (an aggressiveness index) at higher rates or had higher levels of testosterone were more likely to attack their opponent and win non-escalated contests, while individuals that had higher levels of cortisol were more likely to lose. After the contests, (1) individuals that had attacked their opponents or won had higher post-contest oxygen consumption rates, and (2) individuals that had attacked their opponents also had higher post-contest levels of cortisol. Although no significant correlations were detected among pre-contest physiological traits, post-contest levels of cortisol were positively correlated with oxygen consumption rates. Overall, personality and physiological traits provide useful predictors for the fish's contest decisions/performance. Contest interactions subsequently modified post-contest physiological traits and potentially also promoted associations between them. Nevertheless, the fish's physiological traits remained rather consistent over the entire study period.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Department of Biology, University of Maryland, 4094 Campus Dr, College Park, MD 20742, USA
| | - Yung-Che Tseng
- Marine Research Station, ICOB, Academia Sinica, No. 23-10, Dawen Rd, Jiaoxi Township, Yilan County 262, Taiwan
| | - Yu-Ju Chen
- Department of Life Science, National Taiwan Normal University, No. 88, Section 4, Tingchou Rd, Taipei 11677, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, No. 128, Section 2, Academia Rd, Taipei 115, Taiwan
| | - Yusan Yang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 105 Clapp Hall, Pittsburgh, PA, 15260, USA
| | - Yuying Hsu
- Department of Life Science, National Taiwan Normal University, No. 88, Section 4, Tingchou Rd, Taipei 11677, Taiwan.
| |
Collapse
|
6
|
McCarthy ID, Whiteley NM, Fernandez WS, Ragagnin MN, Cornwell TO, Suckling CC, Turra A. Elevated pCO 2 does not impair performance in autotomised individuals of the intertidal predatory starfish Asterias rubens (Linnaeus, 1758). MARINE ENVIRONMENTAL RESEARCH 2020; 153:104841. [PMID: 31757479 DOI: 10.1016/j.marenvres.2019.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The impacts of ocean acidification remain less well-studied in starfish compared to other echinoderm groups. This study examined the combined effects of elevated pCO2 and arm regeneration on the performance of the intertidal predatory starfish Asterias rubens, as both are predicted to come at a cost to the individual. A two-way factorial experiment (~400 μatm vs ~1000 μatm; autotomised vs non-automised individuals) was used to examine growth rates, lipid content (pyloric caeca and gonads), and calcium content (body wall) in both intact and regenerating arms, as well as subsequent effects on rate of arm regeneration, righting time (behaviour) and mortality over 120 days. Autotomised individuals tended to show lower (not significant), survival and growth. Elevated pCO2 had no effect on mortality, body growth, arm regeneration, righting time or arm calcium content. Lipid content was higher in the pyloric caeca, but not in the gonads, in response to elevated pCO2 irrespective of autotomisation. The results of the study suggest that adult A. rubens remain unaffected by increased pCO2 and/or arm autotomy for 120 days, although longer term experiments are necessary as the results indicated that survival, growth and calcification may be impaired with longer-term exposure to elevated pCO2.
Collapse
Affiliation(s)
- Ian D McCarthy
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| | - Nia M Whiteley
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | | | - Marilia N Ragagnin
- Oceanographic Institute, São Paulo University, São Paulo, São Paulo, 05508-120, Brazil
| | - Tomas O Cornwell
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| | - Coleen C Suckling
- School of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, 02881, USA
| | - Alexander Turra
- Oceanographic Institute, São Paulo University, São Paulo, São Paulo, 05508-120, Brazil
| |
Collapse
|
7
|
Turra A, Ragagnin MN, McCarthy ID, Fernandez WS. The effect of ocean acidification on the intertidal hermit crab Pagurus criniticornis is not modulated by cheliped amputation and sex. MARINE ENVIRONMENTAL RESEARCH 2020; 153:104794. [PMID: 31582297 DOI: 10.1016/j.marenvres.2019.104794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Impacts of the interactive effects of ocean acidification (OA) with other anthropogenic environmental stressors on marine biodiversity are receiving increasing attention in recent years. However, little is known about how organismal responses to OA may be influenced by common phenomena such as autotomy and sexual dimorphism. This study evaluated the long-term (120 days) combined effects of OA (pH 7.7), experimental cheliped amputation and sex on physiological stress (mortality, growth, number of molts, cheliped regeneration and startle response) and energy budget (lipid and calcium contents) in the intertidal sexually-dimorphic hermit crab Pagurus criniticornis. Crabs exposed to OA reduced survivorship (46%), molting frequency (36%) and lipid content (42%). Autotomised crabs and males molted more frequently (39% and 32%, respectively). Males presented higher regeneration (33%) and lower lipid content (24%). The few synergistic effects recorded did not indicate any clear pattern among treatments however, (1) a stronger reduction in lipid content was recorded in non-autotomised crabs exposed to low pH; (2) calcium content was higher in males than females only for autotomised crabs under control pH; and (3) autotomised females showed a proportionally slower activity recovery than autotomised males. Although our results suggest an effect of long-term exposure to low pH on the physiological stress and energy budget of Pagurus criniticornis, the physiological repertoire and plasticity associated with limb regeneration and the maintenance of dimorphism in secondary sexual characters may provide resilience to long-term exposure to OA.
Collapse
Affiliation(s)
- Alexander Turra
- Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, SP, Brazil.
| | - Marilia N Ragagnin
- Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, SP, Brazil
| | - Ian D McCarthy
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| | | |
Collapse
|
8
|
Havenhand JN, Filipsson HL, Niiranen S, Troell M, Crépin AS, Jagers S, Langlet D, Matti S, Turner D, Winder M, de Wit P, Anderson LG. Ecological and functional consequences of coastal ocean acidification: Perspectives from the Baltic-Skagerrak System. AMBIO 2019; 48:831-854. [PMID: 30506502 PMCID: PMC6541583 DOI: 10.1007/s13280-018-1110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/21/2018] [Accepted: 10/03/2018] [Indexed: 05/03/2023]
Abstract
Ocean temperatures are rising; species are shifting poleward, and pH is falling (ocean acidification, OA). We summarise current understanding of OA in the brackish Baltic-Skagerrak System, focussing on the direct, indirect and interactive effects of OA with other anthropogenic drivers on marine biogeochemistry, organisms and ecosystems. Substantial recent advances reveal a pattern of stronger responses (positive or negative) of species than ecosystems, more positive responses at lower trophic levels and strong indirect interactions in food-webs. Common emergent themes were as follows: OA drives planktonic systems toward the microbial loop, reducing energy transfer to zooplankton and fish; and nutrient/food availability ameliorates negative impacts of OA. We identify several key areas for further research, notably the need for OA-relevant biogeochemical and ecosystem models, and understanding the ecological and evolutionary capacity of Baltic-Skagerrak ecosystems to respond to OA and other anthropogenic drivers.
Collapse
Affiliation(s)
- Jonathan N. Havenhand
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296 Gothenburg, Sweden
| | | | - Susa Niiranen
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
| | - Max Troell
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Science, Lilla Frescativägen 4, 10405 Stockholm, Sweden
| | - Anne-Sophie Crépin
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Science, Lilla Frescativägen 4, 10405 Stockholm, Sweden
| | - Sverker Jagers
- Department of Political Sciences, University of Gothenburg, Box 711, Sprängkullsgatan 19, 40530 Gothenburg, Sweden
| | - David Langlet
- Department of Law, University of Gothenburg, Box 650, 40530 Gothenburg, Sweden
| | - Simon Matti
- Department of Political Sciences, Luleå University of Technology, 97187 Luleå, Sweden
| | - David Turner
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Pierre de Wit
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296 Gothenburg, Sweden
| | - Leif G. Anderson
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| |
Collapse
|
9
|
Hu MY, Lein E, Bleich M, Melzner F, Stumpp M. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens. Acta Physiol (Oxf) 2018; 224:e13075. [PMID: 29660255 DOI: 10.1111/apha.13075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
AIM Experimental simulation of near-future ocean acidification (OA) has been demonstrated to affect growth and development of echinoderm larval stages through energy allocation towards ion and pH compensatory processes. To date, it remains largely unknown how major pH regulatory systems and their energetics are affected by trans-generational exposure to near-future acidification levels. METHODS Here, we used the common sea star Asterias rubens in a reciprocal transplant experiment comprising different combinations of OA scenarios, to study trans-generational plasticity using morphological and physiological endpoints. RESULTS Acclimation of adults to pHT 7.2 (pCO2 3500 μatm) led to reductions in feeding rates, gonad weight and fecundity. No effects were evident at moderate acidification levels (pHT 7.4; pCO2 2000 μatm). Parental pre-acclimation to pHT 7.2 for 85 days reduced developmental rates even when larvae were raised under moderate and high pH conditions, whereas pre-acclimation to pHT 7.4 did not alter offspring performance. Microelectrode measurements and pharmacological inhibitor studies carried out on larval stages demonstrated that maintenance of alkaline gastric pH represents a substantial energy sink under acidified conditions that may contribute up to 30% to the total energy budget. CONCLUSION Parental pre-acclimation to acidification levels that are beyond the pH that is encountered by this population in its natural habitat (eg, pHT 7.2) negatively affected larval size and development, potentially through reduced energy transfer. Maintenance of alkaline gastric pH and reductions in maternal energy reserves probably constitute the main factors for a reduced juvenile recruitment of this marine keystone species under simulated OA.
Collapse
Affiliation(s)
- M. Y. Hu
- Institute of Physiology; Christian-Albrechts-University Kiel; Kiel Germany
| | - E. Lein
- Department of Collective Behaviour; Max Planck Institute for Ornithology; Radolfzell Germany
- Helmholtz Centre for Ocean Research Kiel (GEOMAR); Kiel Germany
| | - M. Bleich
- Institute of Physiology; Christian-Albrechts-University Kiel; Kiel Germany
| | - F. Melzner
- Helmholtz Centre for Ocean Research Kiel (GEOMAR); Kiel Germany
| | - M. Stumpp
- Institute of Zoology; Comparative Immunobiology; Christian-Albrechts-University Kiel; Kiel Germany
| |
Collapse
|
10
|
Dorey N. Starfish larvae lose substantial energy to maintain digestion under ocean acidification conditions. Acta Physiol (Oxf) 2018; 224:e13169. [PMID: 30091200 DOI: 10.1111/apha.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Narimane Dorey
- Havforskningsinstituttet-Institute of Marine Research; Bergen Norway
| |
Collapse
|
11
|
Emerson CE, Reinardy HC, Bates NR, Bodnar AG. Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170140. [PMID: 28573022 PMCID: PMC5451823 DOI: 10.1098/rsos.170140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/19/2017] [Indexed: 05/15/2023]
Abstract
Increasing atmospheric carbon dioxide (CO2) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO2 (pCO2) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated pCO2. Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high pCO2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing pCO2, but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms.
Collapse
Affiliation(s)
- Chloe E. Emerson
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St George's GE 01, Bermuda
| | - Helena C. Reinardy
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St George's GE 01, Bermuda
| | - Nicholas R. Bates
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St George's GE 01, Bermuda
- Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, UK
| | - Andrea G. Bodnar
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St George's GE 01, Bermuda
| |
Collapse
|
12
|
Zhao X, Shi W, Han Y, Liu S, Guo C, Fu W, Chai X, Liu G. Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa. MARINE ENVIRONMENTAL RESEARCH 2017; 125:82-89. [PMID: 28188988 DOI: 10.1016/j.marenvres.2017.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Oceanic uptake of CO2 from the atmosphere has significantly reduced surface seawater pH and altered the carbonate chemistry within, leading to global Ocean Acidification (OA). The blood clam, Tegillarca granosa, is an economically and ecologically significant marine bivalve that is widely distributed along the coastal and estuarine areas of Asia. To investigate the physiological responses to OA, blood clams were exposed to ambient and three reduced seawater pH levels (8.1, 7.8, 7.6 and 7.4) for 40 days, respectively. Results obtained suggest that OA suppresses the feeding activity and aerobic metabolism, but elevates proteins catabolism of blood clams. OA also causes extracellular acidosis and decreases haemolymph Ca2+ concentration. In addition, our data also suggest that OA impairs the calcification process and inner shell surface integrity. Overall, OA adversely influences metabolism, acid-base status and calcification of blood clams, subsequently leading to a decrease in the fitness of this marine bivalve species.
Collapse
Affiliation(s)
- Xinguo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Saixi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Cheng Guo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wandong Fu
- Zhejiang Marine Development Research Institute, Zhoushan 316021, PR China
| | - Xueliang Chai
- Zhejiang Mariculture Research Institute, Wenzhou 325000, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
13
|
Hu MY, Sung PH, Guh YJ, Lee JR, Hwang PP, Weihrauch D, Tseng YC. Perfused Gills Reveal Fundamental Principles of pH Regulation and Ammonia Homeostasis in the Cephalopod Octopus vulgaris. Front Physiol 2017; 8:162. [PMID: 28373845 PMCID: PMC5357659 DOI: 10.3389/fphys.2017.00162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/02/2017] [Indexed: 12/25/2022] Open
Abstract
In contrast to terrestrial animals most aquatic species can be characterized by relatively higher blood [Formula: see text] concentrations despite its potential toxicity to the central nervous system. Although many aquatic species excrete [Formula: see text] via specialized epithelia little information is available regarding the mechanistic basis for NH3/[Formula: see text] homeostasis in molluscs. Using perfused gills of Octopus vulgaris we studied acid-base regulation and ammonia excretion pathways in this cephalopod species. The octopus gill is capable of regulating ammonia (NH3/[Formula: see text]) homeostasis by the accumulation of ammonia at low blood levels (<260 μM) and secretion at blood ammonia concentrations exceeding in vivo levels of 300 μM. [Formula: see text] transport is sensitive to the adenylyl cyclase inhibitor KH7 indicating that this process is mediated through cAMP-dependent pathways. The perfused octopus gill has substantial pH regulatory abilities during an acidosis, accompanied by an increased secretion of [Formula: see text]. Immunohistochemical and qPCR analyses revealed tissue specific expression and localization of Na+/K+-ATPase, V-type H+-ATPase, Na+/H+-exchanger 3, and Rhesus protein in the gill. Using the octopus gill as a molluscan model, our results highlight the coupling of acid-base regulation and nitrogen excretion, which may represent a conserved pH regulatory mechanism across many marine taxa.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Physiology, University of KielKiel, Germany; Institute of Cellular and Organismic Biology, Academia SinicaTaipei, Taiwan
| | - Po-Hsuan Sung
- Department of Life Science, National Taiwan University Taipei, Taiwan
| | - Ying-Jey Guh
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba Winnipeg, MB, Canada
| | - Yung-Che Tseng
- Lab of Marine Organismic Physiology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| |
Collapse
|
14
|
Sui Y, Liu Y, Zhao X, Dupont S, Hu M, Wu F, Huang X, Li J, Lu W, Wang Y. Defense Responses to Short-term Hypoxia and Seawater Acidification in the Thick Shell Mussel Mytilus coruscus. Front Physiol 2017; 8:145. [PMID: 28337153 PMCID: PMC5343010 DOI: 10.3389/fphys.2017.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022] Open
Abstract
The rising anthropogenic atmospheric CO2 results in the reduction of seawater pH, namely ocean acidification (OA). In East China Sea, the largest coastal hypoxic zone was observed in the world. This region is also strongly impacted by ocean acidification as receiving much nutrient from Changjiang and Qiantangjiang, and organisms can experience great short-term natural variability of DO and pH in this area. In order to evaluate the defense responses of marine mussels under this scenario, the thick shell mussel Mytilus coruscus were exposed to three pH/pCO2 levels (7.3/2800 μatm, 7.7/1020 μatm, 8.1/376 μatm) at two dissolved oxygen concentrations (DO, 2.0, 6.0 mg L−1) for 72 h. Results showed that byssus thread parameters, such as the number, diameter, attachment strength and plaque area were reduced by low DO, and shell-closing strength was significantly weaker under both hypoxia and low pH conditions. Expression patterns of genes related to mussel byssus protein (MBP) were affected by hypoxia. Generally, hypoxia reduced MBP1 and MBP7 expressions, but increased MBP13 expression. In conclusion, both hypoxia and low pH induced negative effects on mussel defense responses, with hypoxia being the main driver of change. In addition, significant interactive effects between pH and DO were observed on shell-closing strength. Therefore, the adverse effects induced by hypoxia on the defense of mussels may be aggravated by low pH in the natural environments.
Collapse
Affiliation(s)
- Yanming Sui
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries SciencesShanghai, China
| | - Yimeng Liu
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| | - Xin Zhao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences Shanghai, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg Fiskebäckskil, Sweden
| | - Menghong Hu
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| | - Fangli Wu
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean University Shanghai, China
| | - Xizhi Huang
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean University Shanghai, China
| | - Jiale Li
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| | - Weiqun Lu
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| | - Youji Wang
- Department of Biology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai, China
| |
Collapse
|
15
|
Czarkwiani A, Ferrario C, Dylus DV, Sugni M, Oliveri P. Skeletal regeneration in the brittle star Amphiura filiformis. Front Zool 2016; 13:18. [PMID: 27110269 PMCID: PMC4841056 DOI: 10.1186/s12983-016-0149-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Brittle stars regenerate their whole arms post-amputation. Amphiura filiformis can now be used for molecular characterization of arm regeneration due to the availability of transcriptomic data. Previous work showed that specific developmental transcription factors known to take part in echinoderm skeletogenesis are expressed during adult arm regeneration in A. filiformis; however, the process of skeleton formation remained poorly understood. Here, we present the results of an in-depth microscopic analysis of skeletal morphogenesis during regeneration, using calcein staining, EdU labeling and in situ hybridization. Results To better compare different samples, we propose a staging system for the early A. filiformis arm regeneration stages based on morphological landmarks identifiable in living animals and supported by histological analysis. We show that the calcified spicules forming the endoskeleton first appear very early during regeneration in the dermal layer of regenerates. These spicules then mature into complex skeletal elements of the differentiated arm during late regeneration. The mesenchymal cells in the dermal area express the skeletal marker genes Afi-c-lectin, Afi-p58b and Afi-p19; however, EdU labeling shows that these dermal cells do not proliferate. Conclusions A. filiformis arms regenerate through a consistent set of developmental stages using a distalization-intercalation mode, despite variability in regeneration rate. Skeletal elements form in a mesenchymal cell layer that does not proliferate and thus must be supplied from a different source. Our work provides the basis for future cellular and molecular studies of skeleton regeneration in brittle stars. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Cinzia Ferrario
- Department of Biosciences, University of Milan, Milan, Italy
| | - David Viktor Dylus
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London, UK ; Present address: Department of Ecology and Evolution & Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Michela Sugni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
16
|
Lefevre S. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. CONSERVATION PHYSIOLOGY 2016; 4:cow009. [PMID: 27382472 PMCID: PMC4922249 DOI: 10.1093/conphys/cow009] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 05/22/2023]
Abstract
With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase-optimum-decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences,
University of Oslo, Oslo NO-0316,
Norway
| |
Collapse
|
17
|
Hu MY, Hwang PP, Tseng YC. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods. Tissue Barriers 2015; 3:e1064196. [PMID: 26716070 DOI: 10.1080/21688370.2015.1064196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4 (+)) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Physiology; Christian-Albrechts University Kiel ; Kiel, Germany ; Institute of Cellular and Organismic Biology; Academia Sinica ; Taipei City, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology; Academia Sinica ; Taipei City, Taiwan
| | - Yung-Che Tseng
- Department of Life Science; National Taiwan Normal University ; Taipei City, Taiwan
| |
Collapse
|
18
|
Reinardy HC, Emerson CE, Manley JM, Bodnar AG. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers. PLoS One 2015; 10:e0133860. [PMID: 26267358 PMCID: PMC4534296 DOI: 10.1371/journal.pone.0133860] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.
Collapse
Affiliation(s)
- Helena C. Reinardy
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Chloe E. Emerson
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Jason M. Manley
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Andrea G. Bodnar
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
- * E-mail:
| |
Collapse
|
19
|
Hu MY, Guh YJ, Stumpp M, Lee JR, Chen RD, Sung PH, Chen YC, Hwang PP, Tseng YC. Branchial NH4+-dependent acid–base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Front Zool 2014. [DOI: 10.1186/s12983-014-0055-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|