1
|
Ehrhardt B, Angstmann H, Höschler B, Kovacevic D, Hammer B, Roeder T, Rabe KF, Wagner C, Uliczka K, Krauss-Etschmann S. Airway specific deregulation of asthma-related serpins impairs tracheal architecture and oxygenation in D. melanogaster. Sci Rep 2024; 14:16567. [PMID: 39019933 PMCID: PMC11255251 DOI: 10.1038/s41598-024-66752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Hanna Angstmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Beate Höschler
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Hammer
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Kiel, Germany
| | - Christina Wagner
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Karin Uliczka
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany.
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
2
|
Lu S, Qian CS, Grueber WB. Mechanisms of gas sensing by internal sensory neurons in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576342. [PMID: 38293088 PMCID: PMC10827222 DOI: 10.1101/2024.01.20.576342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Internal sensory neurons monitor the chemical and physical state of the body, providing critical information to the central nervous system for maintaining homeostasis and survival. A population of larval Drosophila sensory neurons, tracheal dendrite (td) neurons, elaborate dendrites along respiratory organs and may serve as a model for elucidating the cellular and molecular basis of chemosensation by internal neurons. We find that td neurons respond to decreases in O2 levels and increases in CO2 levels. We assessed the roles of atypical soluble guanylyl cyclases (Gycs) and a gustatory receptor (Gr) in mediating these responses. We found that Gyc88E/Gyc89Db were necessary for responses to hypoxia, and that Gr28b was necessary for responses to CO2. Targeted expression of Gr28b isoform c in td neurons rescued responses to CO2 in mutant larvae and also induced ectopic sensitivity to CO2 in the td network. Gas-sensitive td neurons were activated when larvae burrowed for a prolonged duration, demonstrating a natural-like feeding condition in which td neurons are activated. Together, our work identifies two gaseous stimuli that are detected by partially overlapping subsets of internal sensory neurons, and establishes roles for Gyc88E/Gyc89Db in the detection of hypoxia, and Gr28b in the detection of CO2.
Collapse
Affiliation(s)
- Shan Lu
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Biological Sciences, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Cheng Sam Qian
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Wesley B. Grueber
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Physiology and Cellular Biophysics, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Neuroscience, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| |
Collapse
|
3
|
Rai M, Carter SM, Shefali SA, Chawla G, Tennessen JM. Characterization of genetic and molecular tools for studying the endogenous expression of Lactate dehydrogenase in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545165. [PMID: 37398276 PMCID: PMC10312709 DOI: 10.1101/2023.06.15.545165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Drosophila melanogaster larval development relies on a specialized metabolic state that utilizes carbohydrates and other dietary nutrients to promote rapid growth. One unique feature of the larval metabolic program is that Lactate Dehydrogenase (Ldh) activity is highly elevated during this growth phase when compared to other stages of the fly life cycle, indicating that Ldh serves a key role in promoting juvenile development. Previous studies of larval Ldh activity have largely focused on the function of this enzyme at the whole animal level, however, Ldh expression varies significantly among larval tissues, raising the question of how this enzyme promotes tissue-specific growth programs. Here we characterize two transgene reporters and an antibody that can be used to study Ldh expression in vivo . We find that all three tools produce similar Ldh expression patterns. Moreover, these reagents demonstrate that the larval Ldh expression pattern is complex, suggesting the purpose of this enzyme varies across cell types. Overall, our studies validate a series of genetic and molecular reagents that can be used to study glycolytic metabolism in the fly.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sarah M. Carter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Geetanjali Chawla
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence (SNIoE), Dadri, Uttar Pradesh 201314, India
| | | |
Collapse
|
4
|
Cressman A, Amsalem E. Impacts and mechanisms of CO2 narcosis in bumble bees: narcosis depends on dose, caste and mating status and is not induced by anoxia. J Exp Biol 2023; 226:286149. [PMID: 36541091 DOI: 10.1242/jeb.244746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Carbon dioxide (CO2) is commonly used to immobilize insects and to induce reproduction in bees. However, despite its wide use and potential off-target impacts, its underlying mechanisms are not fully understood. Here, we used Bombus impatiens to examine whether CO2 impacts are mediated by anoxia and whether these mechanisms differ between female castes or following mating in queens. We examined the behavior, physiology and gene expression of workers, mated queens and virgin queens following exposure to anoxia, hypoxia, full and partial hypercapnia, and controls. Hypercapnia and anoxia caused immobilization, but only hypercapnia resulted in behavioral, physiological and molecular impacts in bees. Recovery from hypercapnia resulted in increased abdominal contractions and took longer in queens. Additionally, hypercapnia activated the ovaries of queens, but inhibited those of workers in a dose-dependent manner and caused a depletion of fat-body lipids in both castes. All responses to hypercapnia were weaker following mating in queens. Analysis of gene expression related to hypoxia and hypercapnia supported the physiological findings in queens, demonstrating that the overall impacts of CO2, excluding virgin queen ovaries, were unique and were not induced by anoxia. This study contributes to our understanding of the impacts and the mechanistic basis of CO2 narcosis in insects and its impacts on bee physiology. This article has an associated ECR Spotlight interview with Anna Cressman.
Collapse
Affiliation(s)
- Anna Cressman
- Department of Entomology, Center for Chemical Ecology, Center for Pollination Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollination Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
De Lazzari F, Agostini F, Doni D, Malacrida S, Zordan MA, Costantini P, Bubacco L, Sandrelli F, Bisaglia M. DJ-1 and SOD1 Act Independently in the Protection against Anoxia in Drosophila melanogaster. Antioxidants (Basel) 2022; 11:antiox11081527. [PMID: 36009245 PMCID: PMC9405364 DOI: 10.3390/antiox11081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Redox homeostasis is a vital process the maintenance of which is assured by the presence of numerous antioxidant small molecules and enzymes and the alteration of which is involved in many pathologies, including several neurodegenerative disorders. Among the different enzymes involved in the antioxidant response, SOD1 and DJ-1 have both been associated with the pathogenesis of amyotrophic lateral sclerosis and Parkinson’s disease, suggesting a possible interplay in their mechanism of action. Copper deficiency in the SOD1-active site has been proposed as a central determinant in SOD1-related neurodegeneration. SOD1 maturation mainly relies on the presence of the protein copper chaperone for SOD1 (CCS), but a CCS-independent alternative pathway also exists and functions under anaerobic conditions. To explore the possible involvement of DJ-1 in such a pathway in vivo, we exposed Drosophila melanogaster to anoxia and evaluated the effect of DJ-1 on fly survival and SOD1 levels, in the presence or absence of CCS. Loss of DJ-1 negatively affects the fly response to the anoxic treatment, but our data indicate that the protective activity of DJ-1 is independent of SOD1 in Drosophila, indicating that the two proteins may act in different pathways.
Collapse
Affiliation(s)
- Federica De Lazzari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Medical Research Council, Mitochondria Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Davide Doni
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy
| | - Mauro A. Zordan
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Paola Costantini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
| | - Federica Sandrelli
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (F.S.); (M.B.)
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
- Correspondence: (F.S.); (M.B.)
| |
Collapse
|
6
|
Qiu S, Xiao C, Robertson RM. Knockdown of a Cyclic Nucleotide-Gated Ion Channel Impairs Locomotor Activity and Recovery From Hypoxia in Adult Drosophila melanogaster. Front Physiol 2022; 13:852919. [PMID: 35530504 PMCID: PMC9075734 DOI: 10.3389/fphys.2022.852919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP) modulates the speed of recovery from anoxia in adult Drosophila and mediates hypoxia-related behaviors in larvae. Cyclic nucleotide-gated channels (CNG) and cGMP-activated protein kinase (PKG) are two cGMP downstream targets. PKG is involved in behavioral tolerance to hypoxia and anoxia in adults, however little is known about a role for CNG channels. We used a CNGL (CNG-like) mutant with reduced CNGL transcripts to investigate the contribution of CNGL to the hypoxia response. CNGL mutants had reduced locomotor activity under normoxia. A shorter distance travelled in a standard locomotor assay was due to a slower walking speed and more frequent stops. In control flies, hypoxia immediately reduced path length per minute. Flies took 30–40 min in normoxia for >90% recovery of path length per minute from 15 min hypoxia. CNGL mutants had impaired recovery from hypoxia; 40 min for ∼10% recovery of walking speed. The effects of CNGL mutation on locomotor activity and recovery from hypoxia were recapitulated by pan-neuronal CNGL knockdown. Genetic manipulation to increase cGMP in the CNGL mutants increased locomotor activity under normoxia and eliminated the impairment of recovery from hypoxia. We conclude that CNGL channels and cGMP signaling are involved in the control of locomotor activity and the hypoxic response of adult Drosophila.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
7
|
The steroid hormone ecdysone regulates growth rate in response to oxygen availability. Sci Rep 2022; 12:4730. [PMID: 35304878 PMCID: PMC8933497 DOI: 10.1038/s41598-022-08563-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
In almost all animals, physiologically low oxygen (hypoxia) during development slows growth and reduces adult body size. The developmental mechanisms that determine growth under hypoxic conditions are, however, poorly understood. Here we show that the growth and body size response to moderate hypoxia (10% O2) in Drosophila melanogaster is systemically regulated via the steroid hormone ecdysone. Hypoxia increases level of circulating ecdysone and inhibition of ecdysone synthesis ameliorates the negative effect of low oxygen on growth. We also show that the effect of ecdysone on growth under hypoxia is through suppression of the insulin/IGF-signaling pathway, via increased expression of the insulin-binding protein Imp-L2. These data indicate that growth suppression in hypoxic Drosophila larvae is accomplished by a systemic endocrine mechanism that overlaps with the mechanism that slows growth at low nutrition. This suggests the existence of growth-regulatory mechanisms that respond to general environmental perturbation rather than individual environmental factors.
Collapse
|
8
|
Gillette CM, Tennessen JM, Reis T. Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development. Dev Biol 2021; 475:234-244. [DOI: 10.1016/j.ydbio.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
|
9
|
Baleba SBS. Water immersion tolerance by larval instars of stable fly, Stomoxys calcitrans, L1758 (Diptera: Muscidae) impairs the fitness performance of their subsequent stages. BMC Ecol Evol 2021; 21:78. [PMID: 33947327 PMCID: PMC8097882 DOI: 10.1186/s12862-021-01810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/27/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND In holometabolous insects, environmental factors experienced in pre-imaginal life stages affect the life-history traits within that stage and can also influence subsequent life stages. Here, I assessed tolerance to water immersion by the larval instars of the stable fly, Stomoxys calcitrans L. (Diptera: Muscidae) and its impact on the life-history traits of their subsequent life stages. RESULTS After submerging the three larval instars of S. calcitrans in distilled water, I found that the first instar larvae remained active for longer as compared to the second and third instar larvae. Also, the first instar larvae took a longer period to recover from the stress-induced immobility when removed from the water and returned to ambient temperature. When I followed the development of individuals of each larval instar that survived from water immersion, I found that their developmental time, weight, pupation percentage, adult emergence percentage and adult weight were negatively affected by this stressor. However, the weight of S. calcitrans adults developed from immersed first larval instar individuals was not affected by water immersion whereas their counterparts developed from immersed second and third larval instars had lower body weight. This suggests that in S. calcitrans, water immersion stress at the earlier stage is less detrimental than that experienced at late stages. CONCLUSION This study provides a comparative overview of the fitness consequences associated with water immersion stress during S. calcitrans larval ontogeny. The results prove that the fitness shift induced by water immersion in S. calcitrans is stage-specific. My results illustrate the importance of considering each larval instar when assessing the impact of environmental factors on holometabolous insect performance as these may be decoupled by metamorphosis.
Collapse
Affiliation(s)
- Steve B S Baleba
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
10
|
Privalova V, Szlachcic E, Sobczyk Ł, Szabla N, Czarnoleski M. Oxygen Dependence of Flight Performance in Ageing Drosophila melanogaster. BIOLOGY 2021; 10:327. [PMID: 33919761 PMCID: PMC8070683 DOI: 10.3390/biology10040327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Similar to humans, insects lose their physical and physiological capacities with age, which makes them a convenient study system for human ageing. Although insects have an efficient oxygen-transport system, we know little about how their flight capacity changes with age and environmental oxygen conditions. We measured two types of locomotor performance in ageing Drosophila melanogaster flies: the frequency of wing beats and the capacity to climb vertical surfaces. Flight performance was measured under normoxia and hypoxia. As anticipated, ageing flies showed systematic deterioration of climbing performance, and low oxygen impeded flight performance. Against predictions, flight performance did not deteriorate with age, and younger and older flies showed similar levels of tolerance to low oxygen during flight. We suggest that among different insect locomotory activities, flight performance deteriorates slowly with age, which is surprising, given that insect flight is one of the most energy-demanding activities in animals. Apparently, the superior capacity of insects to rapidly deliver oxygen to flight muscles remains little altered by ageing, but we showed that insects can become oxygen limited in habitats with a poor oxygen supply (e.g., those at high elevations) during highly oxygen-demanding activities such as flight.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Czarnoleski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (V.P.); (E.S.); (Ł.S.); (N.S.)
| |
Collapse
|
11
|
Pathak H, Vijaykumar Maya A, Tanari AB, Sarkar S, Varghese J. Lint, a transmembrane serine protease, regulates growth and metabolism in Drosophila. Genetics 2021; 218:6163287. [PMID: 33693655 DOI: 10.1093/genetics/iyab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
Insulin signaling in Drosophila has a significant role in regulating growth, metabolism, fecundity, stress response, and longevity. The molecular mechanism by which insulin signaling regulates these vital processes is dependent on the nutrient status and oxygen availability of the organism. In a genetic screen to identify novel genes that regulate Drosophila insulin signaling, we discovered lumens interrupted (lint), a gene that has previously been shown to act in tracheal development. The knockdown of lint gene expression using a Dilp2Gal4 driver which expresses in the neuronal insulin producing cells (IPCs), led to defects in systemic insulin signaling, metabolic status and growth. However, our analysis of lint knockdown phenotypes revealed that downregulation of lint in the trachea and not IPCs was responsible for the growth phenotypes, as the Gal4 driver is also expressed in the tracheal system. We found various tracheal terminal branch defects, including reduction in the length as well as number of branches in the lint knockdown background. Our study reveals that substantial effects of lint downregulation arose because of tracheal defects, which induced tissue hypoxia, altered systemic insulin/TOR signaling, and resulted in effects on developmental growth regulation.
Collapse
Affiliation(s)
- Himani Pathak
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Maruthamala Post, Vithura, Thiruvananthapuram, Kerala 695551, India
| | | | - Abdul Basith Tanari
- Universite de Côte d'Azur, iBV-Institut de Biologie Valrose, Bat. Sciences Naturalles, Park Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Sohela Sarkar
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Maruthamala Post, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Jishy Varghese
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Maruthamala Post, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
12
|
Mahmoudzadeh NH, Fitt AJ, Schwab DB, Martenis WE, Nease LM, Owings CG, Brinkley GJ, Li H, Karty JA, Sudarshan S, Hardy RW, Moczek AP, Picard CJ, Tennessen JM. The oncometabolite L-2-hydroxyglutarate is a common product of dipteran larval development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103493. [PMID: 33157229 PMCID: PMC7704715 DOI: 10.1016/j.ibmb.2020.103493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The oncometabolite L-2-hydroxyglutarate (L-2HG) is considered an abnormal product of central carbon metabolism that is capable of disrupting chromatin architecture, mitochondrial metabolism, and cellular differentiation. Under most circumstances, mammalian tissues readily dispose of this compound, as aberrant L-2HG accumulation induces neurometabolic disorders and promotes renal cell carcinomas. Intriguingly, Drosophila melanogaster larvae were recently found to accumulate high L-2HG levels under normal growth conditions, raising the possibility that L-2HG plays a unique role in insect metabolism. Here we explore this hypothesis by analyzing L-2HG levels in 18 insect species. While L-2HG was present at low-to-moderate levels in most of these species (<100 pmol/mg; comparable to mouse liver), dipteran larvae exhibited a tendency to accumulate high L-2HG concentrations (>100 pmol/mg), with the mosquito Aedes aegypti, the blow fly Phormia regina, and three representative Drosophila species harboring concentrations that exceed 1 nmol/mg - levels comparable to those measured in mutant mice that are unable to degrade L-2HG. Overall, our findings suggest that one of the largest groups of animals on earth commonly generate high concentrations of an oncometabolite during juvenile growth, hint at a role for L-2HG in the evolution of dipteran development, and raise the possibility that L-2HG metabolism could be targeted to restrict the growth of key disease vectors and agricultural pests.
Collapse
Affiliation(s)
| | - Alexander J Fitt
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Daniel B Schwab
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Lauren M Nease
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Charity G Owings
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Garrett J Brinkley
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard W Hardy
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Christine J Picard
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
13
|
Polan DM, Alansari M, Lee B, Grewal SS. Early-life hypoxia alters adult physiology and reduces stress resistance and lifespan in Drosophila. J Exp Biol 2020; 223:jeb226027. [PMID: 32988998 PMCID: PMC10668336 DOI: 10.1242/jeb.226027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/18/2020] [Indexed: 08/25/2023]
Abstract
In many animals, short-term fluctuations in environmental conditions in early life often exert long-term effects on adult physiology. In Drosophila, one ecologically relevant environmental variable is hypoxia. Drosophila larvae live on rotting, fermenting food rich in microorganisms, an environment characterized by low ambient oxygen. They have therefore evolved to tolerate hypoxia. Although the acute effects of hypoxia in larvae have been well studied, whether early-life hypoxia affects adult physiology and fitness is less clear. Here, we show that Drosophila exposed to hypoxia during their larval period subsequently show reduced starvation stress resistance and shorter lifespan as adults, with these effects being stronger in males. We find that these effects are associated with reduced whole-body insulin signaling but elevated TOR kinase activity, a manipulation known to reduce lifespan. We also identify a sexually dimorphic effect of larval hypoxia on adult nutrient storage and mobilization. Thus, we find that males, but not females, show elevated levels of lipids and glycogen. Moreover, we see that both males and females exposed to hypoxia as larvae show defective lipid mobilization upon starvation stress as adults. These data demonstrate how early-life hypoxia can exert persistent, sexually dimorphic, long-term effects on Drosophila adult physiology and lifespan.
Collapse
Affiliation(s)
- Danielle M Polan
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Mohammed Alansari
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
14
|
Al-Behadili FJ, Agarwal M, Xu W, Ren Y. Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephritidae) Eggs and Larvae Responses to a Low-Oxygen/High-Nitrogen Atmosphere. INSECTS 2020; 11:insects11110802. [PMID: 33203006 PMCID: PMC7696186 DOI: 10.3390/insects11110802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Many chemicals have been removed from registration for the postharvest treatment of insect pests due to consumer/environmental safety and phytotoxicity. There is very limited operation for international trade purposes, particularly for management of Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae) on harvested fruit. Therefore, the non-chemical method is being considered for postharvest treatment of fruit. This study explored and evaluated Medfly response to low-oxygen and high-nitrogen treatment. The results will guide the development of a novel postharvest strategy and the approach to controlling this destructive fruit fly and other pests. Abstract The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is one of the most damaging horticultural insect pests. This study used a low-oxygen/high-nitrogen bioassay to control C. capitata. Two low-oxygen treatments were applied (0.5% O2 + 99.5 N2 and 5% O2 + 95% N2) to C. capitata eggs and 1st, 2nd and 3rd instar larvae from 0 to nine days on a carrot diet at 25 °C; 70—75% RH. The pupariation, adult emergence, and sex ratios of survived flies were examined. The results demonstrate that increased mortality of all tested life stages correlated with increased exposure times at both levels of low-oxygen treatments. Complete control of eggs was achieved after eight days and nine days for larvae using 0.5% O2 at 25 °C; 70–75% RH. The 3rd instar was the most tolerant stage, while the egg was the most susceptible stage to the low-oxygen environment. There were no significant differences in sex ratios between emerged adults after low-oxygen and control treatments. The present work demonstrates and confirms the mortalities of C. capitata caused by low-oxygen treatment, which may help develop new postharvest strategies to control this destructive fruit fly pest.
Collapse
Affiliation(s)
- Farhan J.M. Al-Behadili
- College of Science, Health, Engineering and Education, Murdoch, WA 6150, Australia; (F.J.M.A.-B.); (M.A.)
- College of Agriculture, Misan University, Misan 62001, Iraq
| | - Manjree Agarwal
- College of Science, Health, Engineering and Education, Murdoch, WA 6150, Australia; (F.J.M.A.-B.); (M.A.)
| | - Wei Xu
- College of Science, Health, Engineering and Education, Murdoch, WA 6150, Australia; (F.J.M.A.-B.); (M.A.)
- Correspondence: (W.X.); (Y.R.)
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch, WA 6150, Australia; (F.J.M.A.-B.); (M.A.)
- Correspondence: (W.X.); (Y.R.)
| |
Collapse
|
15
|
Tolerance to Hypoxia Is Promoted by FOXO Regulation of the Innate Immunity Transcription Factor NF-κB/Relish in Drosophila. Genetics 2020; 215:1013-1025. [PMID: 32513813 DOI: 10.1534/genetics.120.303219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of tissues and organs to low oxygen (hypoxia) occurs in both physiological and pathological conditions in animals. Under these conditions, organisms have to adapt their physiology to ensure proper functioning and survival. Here, we define a role for the transcription factor Forkhead Box-O (FOXO) as a mediator of hypoxia tolerance in Drosophila We find that upon hypoxia exposure, FOXO transcriptional activity is rapidly induced in both larvae and adults. Moreover, we see that foxo mutant animals show misregulated glucose metabolism in low oxygen and subsequently exhibit reduced hypoxia survival. We identify the innate immune transcription factor, NF-κB/Relish, as a key FOXO target in the control of hypoxia tolerance. We find that expression of Relish and its target genes is increased in a FOXO-dependent manner in hypoxia, and that relish mutant animals show reduced survival in hypoxia. Together, these data indicate that FOXO is a hypoxia-inducible factor that mediates tolerance to low oxygen by inducing immune-like responses.
Collapse
|
16
|
Chen H, Ma A, Yin T, Chen Z, Liang R, Pan H, Shen X, Zheng M, Cai L. In Situ Photocatalysis of TiO-Porphyrin-Encapsulated Nanosystem for Highly Efficient Oxidative Damage against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12573-12583. [PMID: 32119518 DOI: 10.1021/acsami.0c00921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive oxygen species (ROS)-mediated cell apoptosis has been a significant strategy for tumor oxidative damage, while tumor hypoxia is a major bottleneck for efficiency. Here, a novel TiO-porphyrin nanosystem (FA-TiOPs) is designed by encapsulating TiO-porphyrin (TiOP) in folate-liposome. The nanosysytem can photocatalyze H2O and tumor-overexpressed H2O2, in situ generating sufficient ROS. TiOP can photosplit water to produce ·OH radical, H2O2, and O2. Generated O2 not only conquers the hypoxia of tumor environment but also can be further excited by TiOP to 1O2 for killing tumor cells. Density functional theory calculations indicate that high energy in excited state (S1) of TiOP and narrow gap energy between S1 and the triplet excited state (Tn) might contribute to the efficient photocatalytic action. Moreover, the generated and overexpressed H2O2 in tumors can also be photocatalyzed to generate 1O2 especially in acid condition, helpful to specific anticancer effect while harmless to normal tissues. This research might pave a new way to bypass the hypoxia-triggered problem for cancer therapy.
Collapse
Affiliation(s)
- Huaqing Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Aiqing Ma
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, PR China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xin Shen
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, PR China
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai 519000, PR China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai 519000, PR China
| |
Collapse
|
17
|
Robertson RM, Dawson-Scully KD, Andrew RD. Neural shutdown under stress: an evolutionary perspective on spreading depolarization. J Neurophysiol 2020; 123:885-895. [PMID: 32023142 PMCID: PMC7099469 DOI: 10.1152/jn.00724.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
Abstract
Neural function depends on maintaining cellular membrane potentials as the basis for electrical signaling. Yet, in mammals and insects, neuronal and glial membrane potentials can reversibly depolarize to zero, shutting down neural function by the process of spreading depolarization (SD) that collapses the ion gradients across membranes. SD is not evident in all metazoan taxa with centralized nervous systems. We consider the occurrence and similarities of SD in different animals and suggest that it is an emergent property of nervous systems that have evolved to control complex behaviors requiring energetically expensive, rapid information processing in a tightly regulated extracellular environment. Whether SD is beneficial or not in mammals remains an open question. However, in insects, it is associated with the response to harsh environments and may provide an energetic advantage that improves the chances of survival. The remarkable similarity of SD in diverse taxa supports a model systems approach to understanding the mechanistic underpinning of human neuropathology associated with migraine, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- R Meldrum Robertson
- Department of Biology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ken D Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - R David Andrew
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
18
|
Gándara L, Durrieu L, Behrensen C, Wappner P. A genetic toolkit for the analysis of metabolic changes in Drosophila provides new insights into metabolic responses to stress and malignant transformation. Sci Rep 2019; 9:19945. [PMID: 31882718 PMCID: PMC6934733 DOI: 10.1038/s41598-019-56446-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Regulation of the energetic metabolism occurs fundamentally at the cellular level, so analytical strategies must aim to attain single cell resolution to fully embrace its inherent complexity. We have developed methods to utilize a toolset of metabolic FRET sensors for assessing lactate, pyruvate and 2-oxoglutarate levels of Drosophila tissues in vivo by imaging techniques. We show here how the energetic metabolism is altered by hypoxia: While some larval tissues respond to low oxygen levels by executing a metabolic switch towards lactic fermentation, the fat body and salivary glands do not alter their energetic metabolism. Analysis of tumor metabolism revealed that depending on the genetic background, some tumors undergo a lactogenic switch typical of the Warburg effect, while other tumors do not. This toolset allows for developmental and physiologic studies in genetically manipulated Drosophila individuals in vivo.
Collapse
Affiliation(s)
- L Gándara
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - L Durrieu
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - C Behrensen
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
| | - P Wappner
- Instituto Leloir, Ciudad de Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
19
|
Genome-Wide Association Analysis of Anoxia Tolerance in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:2989-2999. [PMID: 31311780 PMCID: PMC6723132 DOI: 10.1534/g3.119.400421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As the genetic bases to variation in anoxia tolerance are poorly understood, we used the Drosophila Genetics Reference Panel (DGRP) to conduct a genome-wide association study (GWAS) of anoxia tolerance in adult and larval Drosophila melanogaster Survival ranged from 0-100% in adults exposed to 6 h of anoxia and from 20-98% for larvae exposed to 1 h of anoxia. Anoxia tolerance had a broad-sense heritability of 0.552 in adults and 0.433 in larvae. Larval and adult phenotypes were weakly correlated but the anoxia tolerance of adult males and females were strongly correlated. The GWA identified 180 SNPs in adults and 32 SNPs in larvae associated with anoxia tolerance. Gene ontology enrichment analysis indicated that many of the 119 polymorphic genes associated with adult anoxia-tolerance were associated with ionic transport or immune function. In contrast, the 22 polymorphic genes associated with larval anoxia-tolerance were mostly associated with regulation of transcription and DNA replication. RNAi of mapped genes generally supported the hypothesis that disruption of these genes reduces anoxia tolerance. For two ion transport genes, we tested predicted directional and sex-specific effects of SNP alleles on adult anoxia tolerance and found strong support in one case but not the other. Correlating our phenotype to prior DGRP studies suggests that genes affecting anoxia tolerance also influence stress-resistance, immune function and ionic balance. Overall, our results provide evidence for multiple new potential genetic influences on anoxia tolerance and provide additional support for important roles of ion balance and immune processes in determining variation in anoxia tolerance.
Collapse
|
20
|
Campbell JB, Werkhoven S, Harrison JF. Metabolomics of anoxia tolerance in Drosophila melanogaster: evidence against substrate limitation and for roles of protective metabolites and paralytic hypometabolism. Am J Physiol Regul Integr Comp Physiol 2019; 317:R442-R450. [PMID: 31322917 DOI: 10.1152/ajpregu.00389.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Animals vary tremendously in their capacities to survive anoxia, and the mechanisms responsible are poorly understood. Adult Drosophila melanogaster are rapidly paralyzed and survive up to 12 h of anoxia, whereas larvae vigorously attempt escape but then die if anoxia exceeds 2 h. Here we use nuclear magnetic resonance methods to compare the metabolome of larvae and adult D. melanogaster under normoxic conditions and after various anoxic durations up to 1 h. Glucose increased during anoxia in both larvae and adults, so anoxic death by carbohydrate limitation is unlikely for either stage. Lactate and alanine were the primary anaerobic end products in both adults and larvae. During the first 30 min of anoxia, larvae accumulated anaerobic end products (predominately lactate) at a higher rate, suggesting that larvae may experience greater initial acid-base disruption during anoxic exposures. Adult Drosophila did not possess higher levels of putative protective metabolites; however, these increased during anoxia in adults and decreased in larvae. Metabolites that decreased during anoxia in larvae included mannitol, xylitol, glycerol, betaine, serine, and tyrosine, perhaps due to use as fuels, antioxidants, or binding to denatured proteins. Adults showed significant increases in glycine, taurine, and the polyols glycerol, mannitol, and xylitol, suggesting that adults upregulate protective metabolites to prevent damage. Our results suggest that lower initial metabolic demand due to paralytic hypometabolism and capacities to upregulate protective metabolites may assist the better anoxia tolerance of adult Drosophila.
Collapse
Affiliation(s)
- Jacob B Campbell
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Simon Werkhoven
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
21
|
Xiao C, Qiu S, Li X, Luo DJ, Liu GP. EDTP/MTMR14: A novel target for improved survivorship to prolonged anoxia and cellular protein aggregates. Neurosci Lett 2019; 705:151-158. [DOI: 10.1016/j.neulet.2019.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022]
|
22
|
Matoo OB, Julick CR, Montooth KL. Genetic Variation for Ontogenetic Shifts in Metabolism Underlies Physiological Homeostasis in Drosophila. Genetics 2019; 212:537-552. [PMID: 30975764 PMCID: PMC6553824 DOI: 10.1534/genetics.119.302052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
Organismal physiology emerges from metabolic pathways and subcellular structures like the mitochondria that can vary across development and among individuals. Here, we tested whether genetic variation at one level of physiology can be buffered at higher levels of biological organization during development by the inherent capacity for homeostasis in physiological systems. We found that the fundamental scaling relationship between mass and metabolic rate, as well as the oxidative capacity per mitochondria, changed significantly across development in the fruit fly Drosophila However, mitochondrial respiration rate was maintained at similar levels across development. Furthermore, larvae clustered into two types-those that switched to aerobic, mitochondrial ATP production before the second instar, and those that relied on anaerobic, glycolytic production of ATP through the second instar. Despite genetic variation for the timing of this metabolic shift, metabolic rate in second-instar larvae was more robust to genetic variation than was the metabolic rate of other instars. We found that larvae with a mitochondrial-nuclear incompatibility that disrupts mitochondrial function had increased aerobic capacity and relied more on anaerobic ATP production throughout development relative to larvae from wild-type strains. By taking advantage of both ways of making ATP, larvae with this mitochondrial-nuclear incompatibility maintained mitochondrial respiratory capacity, but also had higher levels of whole-body reactive oxygen species and decreased mitochondrial membrane potential, potentially as a physiological defense mechanism. Thus, genetic defects in core physiology can be buffered at the organismal level via physiological plasticity, and natural populations may harbor genetic variation for distinct metabolic strategies in development that generate similar organismal outcomes.
Collapse
Affiliation(s)
- Omera B Matoo
- School of Biological Sciences, University of Nebraska-Lincoln, Nebraska 68502
| | - Cole R Julick
- School of Biological Sciences, University of Nebraska-Lincoln, Nebraska 68502
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Nebraska 68502
| |
Collapse
|
23
|
Fabre B, Korona D, Lees JG, Lazar I, Livneh I, Brunet M, Orengo CA, Russell S, Lilley KS. Comparison of Drosophila melanogaster Embryo and Adult Proteome by SWATH-MS Reveals Differential Regulation of Protein Synthesis, Degradation Machinery, and Metabolism Modules. J Proteome Res 2019; 18:2525-2534. [DOI: 10.1021/acs.jproteome.9b00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bertrand Fabre
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, U.K
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge CB2 1GA, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
- Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, University of Cambridge, Cambridge CB2 3EH, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Jonathan G. Lees
- Institute of Structural and Molecular Biology, University College London, London WC1E 7HX, United Kingdom
| | - Ikrame Lazar
- Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel
| | - Ido Livneh
- Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel
| | - Manon Brunet
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, U.K
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge CB2 1GA, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Christine A. Orengo
- Institute of Structural and Molecular Biology, University College London, London WC1E 7HX, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, University of Cambridge, Cambridge CB2 3EH, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, U.K
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge CB2 1GA, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
| |
Collapse
|
24
|
TORC1 modulation in adipose tissue is required for organismal adaptation to hypoxia in Drosophila. Nat Commun 2019; 10:1878. [PMID: 31015407 PMCID: PMC6478872 DOI: 10.1038/s41467-019-09643-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/19/2019] [Indexed: 12/27/2022] Open
Abstract
Animals often develop in environments where conditions such as food, oxygen and temperature fluctuate. The ability to adapt their metabolism to these fluctuations is important for normal development and viability. In most animals, low oxygen (hypoxia) is deleterious. However some animals can alter their physiology to tolerate hypoxia. Here we show that TORC1 modulation in adipose tissue is required for organismal adaptation to hypoxia in Drosophila. We find that hypoxia rapidly suppresses TORC1 signaling in Drosophila larvae via TSC-mediated inhibition of Rheb. We show that this hypoxia-mediated inhibition of TORC1 specifically in the larval fat body is essential for viability. Moreover, we find that these effects of TORC1 inhibition on hypoxia tolerance are mediated through remodeling of fat body lipid storage. These studies identify the larval adipose tissue as a key hypoxia-sensing tissue that coordinates whole-body development and survival to changes in environmental oxygen by modulating TORC1 and lipid metabolism.
Collapse
|
25
|
Ravn MV, Campbell JB, Gerber L, Harrison JF, Overgaard J. Effects of anoxia on ATP, water, ion and pH balance in an insect ( Locusta migratoria). ACTA ACUST UNITED AC 2019; 222:jeb.190850. [PMID: 30630963 DOI: 10.1242/jeb.190850] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/20/2018] [Indexed: 01/05/2023]
Abstract
When exposed to anoxia, insects rapidly go into a hypometabolic coma from which they can recover when exposed to normoxia again. However, prolonged anoxic bouts eventually lead to death in most insects, although some species are surprisingly tolerant. Anoxia challenges ATP, ion, pH and water homeostasis, but it is not clear how fast and to what degree each of these parameters is disrupted during anoxia, nor how quickly they recover. Further, it has not been investigated which disruptions are the primary source of the tissue damage that ultimately causes death. Here, we show, in the migratory locust (Locusta migratoria), that prolonged anoxic exposures are associated with increased recovery time, decreased survival, rapidly disrupted ATP and pH homeostasis and a slower disruption of ion ([K+] and [Na+]) and water balance. Locusts could not fully recover after 4 h of anoxia at 30°C, and at this point hemolymph [K+] was elevated 5-fold and [Na+] was decreased 2-fold, muscle [ATP] was decreased to ≤3% of normoxic values, hemolymph pH had dropped 0.8 units from 7.3 to 6.5, and hemolymph water content was halved. These physiological changes are associated with marked tissue damage in vivo and we show that the isolated and combined effects of hyperkalemia, acidosis and anoxia can all cause muscle tissue damage in vitro to equally large degrees. When locusts were returned to normoxia after a moderate (2 h) exposure of anoxia, ATP recovered rapidly (15 min) and this was quickly followed by recovery of ion balance (30 min), while pH recovery took 2-24 h. Recovery of [K+] and [Na+] coincided with the animals exiting the comatose state, but recovery to an upright position took ∼90 min and was not related to any of the physiological parameters examined.
Collapse
Affiliation(s)
- Mathias V Ravn
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Jacob B Campbell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lucie Gerber
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.,Department of Ocean Sciences, Memorial University of Newfoundland, St John's A1C 5S7, Canada
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Robertson RM, Cease AJ, Simpson SJ. Anoxia tolerance of the adult Australian Plague Locust (Chortoicetes terminifera). Comp Biochem Physiol A Mol Integr Physiol 2019; 229:81-92. [DOI: 10.1016/j.cbpa.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/17/2022]
|
27
|
Rao Z, Cao L, Qiu X, Han R. Comparative transcriptome analysis reveals molecular strategies of ghost moth Thitarodes armoricanus in response to hypoxia and anoxia. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:23-34. [PMID: 30399366 DOI: 10.1016/j.jinsphys.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia or anoxia greatly impact the survival of many animal species. The ghost moth Thitarodes armoricanus is distributed in the Tibetan Plateau at an average elevation of approximate 4 km above sea level and has probably evolved a superior capacity to tolerate low oxygen levels. In this study, transcriptome analysis using high-throughput RNA-seq revealed common and different adaptation strategies of T. armoricanus in response to hypoxia (11% O2) or anoxia. T. armoricanus adopted three common strategies for adaptation to hypoxia or anoxia: Up-regulated signal transduction pathways essential for cellular survival, strengthened cell and organelle structure and activity, and activated immune system. Under hypoxia, T. armoricanus might develop a strategy to adapt to hypoxia by suppressing TCA, oxidative phosphorylation pathways, and hypoxanthine catabolism. T. armoricanus larvae kept active under hypoxia but became coma under anoxia, probably relating to up-regulated or suppressed dopamine synthesis pathway. Furthermore, the HIF system seemed not to be essential for regulating the hypoxic and anoxic responses of this insect in Tibetan Plateau. This study provides a global view of gene expression profiles and suggests common and different adaptation strategies of T. armoricanus under hypoxic and anoxic conditions. The results are helpful for understanding the mechanism responsible for the low oxygen level tolerance of this insect species.
Collapse
Affiliation(s)
- Zhongchen Rao
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Xuehong Qiu
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.
| | - Richou Han
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.
| |
Collapse
|
28
|
Wang L, Cui S, Liu Z, Ping Y, Qiu J, Geng X. Inhibition of mitochondrial respiration under hypoxia and increased antioxidant activity after reoxygenation of Tribolium castaneum. PLoS One 2018; 13:e0199056. [PMID: 29902250 PMCID: PMC6002095 DOI: 10.1371/journal.pone.0199056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
Regulating the air in low-oxygen environments protects hermetically stored grains from storage pests damage. However, pests that can tolerate hypoxic stress pose a huge challenge in terms of grain storage. We used various biological approaches to determine the fundamental mechanisms of Tribolium castaneum to cope with hypoxia. Our results indicated that limiting the available oxygen to T. castaneum increased glycolysis and inhibited the Krebs cycle, and that accumulated pyruvic acid was preferentially converted to lactic acid via anaerobic metabolism. Mitochondrial aerobic respiration was markedly suppressed for beetles under hypoxia, which also might have led to mitochondrial autophagy. The enzymatic activity of citrate synthase decreased in insects under hypoxia but recovered within 12 h, which suggested that the beetles recovered from the hypoxia. Moreover, hypoxia-reperfusion resulted in severe oxidative damage to insects, and antioxidant levels increased to defend against the high level of reactive oxygen species. In conclusion, our findings show that mitochondria were the main target in T. castaneum in response to low oxygen. The beetles under hypoxia inhibited mitochondrial respiration and increased antioxidant activity after reoxygenation. Our research advances the field of pest control and makes it possible to develop more efficient strategies for hermetic storage.
Collapse
Affiliation(s)
- Lei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Sufen Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhicheng Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yong Ping
- Bio-X institutes, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- * E-mail:
| |
Collapse
|
29
|
Campbell JB, Andersen MK, Overgaard J, Harrison JF. Paralytic hypo-energetic state facilitates anoxia tolerance despite ionic imbalance in adult Drosophila melanogaster. ACTA ACUST UNITED AC 2018; 221:jeb.177147. [PMID: 29615525 DOI: 10.1242/jeb.177147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022]
Abstract
Oxygen limitation plays a key role in many pathologies; yet, we still lack a fundamental understanding of the mechanisms responsible for variation in anoxia tolerance. Most vertebrate studies suggest that anoxia tolerance involves the ability to maintain cellular ATP despite the loss of aerobic metabolism. However, insects such as adult Drosophila melanogaster are able to survive long periods of anoxia (LT50: ∼8 h) in a hypo-energetic state characterized by low [ATP]. In this study, we tested for possible mechanisms that allow D. melanogaster adults to survive long periods of anoxia. Adults are paralyzed within 30 s, and after 2 h of anoxia, ATP was 3% of normal, extracellular potassium concentration ([K+]o) increased threefold, pH dropped 1 unit, yet survival was 100%. With 0.5-6 h of anoxia, adults maintained low but constant ATP levels while [K+]o and pHo continued to change. When returned to normoxia, adults restored [K+]o and activity. With longer durations of anoxia, ATP levels decreased and [K+]o rose further, and both correlated tightly with decreased survival. This response contrasts with the anoxia-sensitive larval stage (LT50: ∼1 h). During anoxia, larvae attempted escape for up to 30 min and after 2 h of anoxia, ATP was <1% of resting, [K+]o increased by 50%, hemolymph pH fell by 1 unit, and survival was zero. The superior anoxia tolerance of adult D. melanogaster appears to be due to the capacity to maintain a paralytic hypometabolic state with low but non-zero ATP levels, and to be able to tolerate extreme extracellular ionic variability.
Collapse
Affiliation(s)
- Jacob B Campbell
- School of Life Sciences, Arizona State University, Tempe, AZ, USA 85287
| | | | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ, USA 85287
| |
Collapse
|
30
|
Deng Y, Hu F, Ren L, Gao X, Wang Y. Effects of anoxia on survival and gene expression in Bactrocera dorsalis. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:186-196. [PMID: 29630918 DOI: 10.1016/j.jinsphys.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The oriental fruit fly (Bactrocera dorsalis) larvae may commonly experience a hypoxia microenvironment and have evolved the ability to survive in the low oxygen condition with some physiological and biochemical mechanisms. However, little is known about the response of B. dorsalis to hypoxia or anoxia. In this study, the effect of anoxia on the survival of B. dorsalis was investigated. The results showed that the B. dorsalis larvae were quite tolerant to anoxia conditions and can tolerate up to 24 h of anoxia exposure without a significant reduction in survival, 100% mortality was reached after 84 h of anoxia exposure. The cDNA of hypoxia inducible factor (HIF) 1α and HIF-1β is 2912 and 3618 bp in length, encoding 766 and 648 amino acid residues, respectively. Both HIF-1α and HIF-1β contain conserved basic helix-loop-helix (bHLH) domain and Per-Arnt-Sim (PAS) domain. HIF-1α can be induced by hypoxia, whereas HIF-1β expression was not significantly changed with the oxygen concentration. Three major heat shock proteins (Hsps) expression increased significantly during anoxia and recovery and Hsp70 was the most responsive to anoxia. Four superoxide dismutase (SOD) genes expression were also up-regulated during anoxia exposure. These data suggest that B. dorsalis has a strategy to induce HIF-1α and HIF-1-responsive genes to survive in the low oxygen condition.
Collapse
Affiliation(s)
- Yufang Deng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Hu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lili Ren
- Chinese Academy of Inspection and Quarantine, Beijing 100029, China
| | - Xiwu Gao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuejin Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Chinese Academy of Inspection and Quarantine, Beijing 100029, China.
| |
Collapse
|
31
|
Harrison JF, Waters JS, Biddulph TA, Kovacevic A, Klok CJ, Socha JJ. Developmental plasticity and stability in the tracheal networks supplying Drosophila flight muscle in response to rearing oxygen level. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:189-198. [PMID: 28927826 DOI: 10.1016/j.jinsphys.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/16/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
While it is clear that the insect tracheal system can respond in a compensatory manner to both hypoxia and hyperoxia, there is substantial variation in how different parts of the system respond. However, the response of tracheal structures, from the tracheoles to the largest tracheal trunks, have not been studied within one species. In this study, we examined the effect of larval/pupal rearing in hypoxia, normoxia, and hyperoxia (10, 21 or 40kPa oxygen) on body size and the tracheal supply to the flight muscles of Drosophila melanogaster, using synchrotron radiation micro-computed tomography (SR-µCT) to assess flight muscle volumes and the major tracheal trunks, and confocal microscopy to assess the tracheoles. Hypoxic rearing decreased thorax length whereas hyperoxic-rearing decreased flight muscle volumes, suggestive of negative effects of both extremes. Tomography at the broad organismal scale revealed no evidence for enlargement of the major tracheae in response to lower rearing oxygen levels, although tracheal size scaled with muscle volume. However, using confocal imaging, we found a strong inverse relationship between tracheole density within the flight muscles and rearing oxygen level, and shorter tracheolar branch lengths in hypoxic-reared animals. Although prior studies of larger tracheae in other insects indicate that axial diffusing capacity should be constant with sequential generations of branching, this pattern was not found in the fine tracheolar networks, perhaps due to the increasing importance of radial diffusion in this regime. Overall, D. melanogaster responded to rearing oxygen level with compensatory morphological changes in the small tracheae and tracheoles, but retained stability in most of the other structural components of the tracheal supply to the flight muscles.
Collapse
Affiliation(s)
- Jon F Harrison
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| | - James S Waters
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; Department of Biology, Providence College, Providence, RI 02918, USA
| | - Taylor A Biddulph
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
| | - Aleksandra Kovacevic
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - C Jaco Klok
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; Sable Systems International, 3840 N. Commerce St., North Las Vegas, NV 89032, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 332 Norris Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
32
|
Visser B, Williams CM, Hahn DA, Short CA, López-Martínez G. Hormetic benefits of prior anoxia exposure in buffering anoxia stress in a soil-pupating insect. ACTA ACUST UNITED AC 2018; 221:jeb.167825. [PMID: 29367272 DOI: 10.1242/jeb.167825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Oxygen is essential for most animals, and exposure to a complete lack of oxygen, i.e. anoxia, can result in irreparable damage to cells that can extend up to the organismal level to negatively affect performance. Although it is known that brief anoxia exposure may confer cross-tolerance to other stressors, few data exist on the biochemical and organismal consequences of repeated intermittent bouts of anoxia exposure. In nature, the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae), is frequently exposed to heavy tropical rainfall while pupating in the soil, equating to multiple exposures to hypoxia or anoxia during development. Here, we tested whether prior anoxia exposures during pupal development can induce a beneficial acclimation response, and we explored the consequences of prior exposure for both whole-organism performance and correlated biochemical metrics. Pharate adults (the last developmental stage in the pupal case) were most sensitive to anoxia exposure, showing decreased survival and fertility compared with controls. These negative impacts were ameliorated by exposure to anoxia in earlier pupal developmental stages, indicating a hormetic effect of prior anoxia exposure. Anoxia exposure early in pupal development reduced the oxygen debt repaid after anoxia exposure relative to pharate adults experiencing anoxia for the first time. Lipid levels were highest in all pupal stages when exposed to prior anoxia. Prior anoxia thus benefits organismal performance and relocates resources towards lipid storage throughout pupal-adult development.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium.,Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Caroline M Williams
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Clancy A Short
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Giancarlo López-Martínez
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA .,Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
33
|
Griko Y, Regan MD. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:101-107. [PMID: 29475515 DOI: 10.1016/j.lssr.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may enable this to be done as practically and inexpensively as possible.
Collapse
Affiliation(s)
- Yuri Griko
- NASA Ames Research Center, Moffett Field, CA 94035, United States.
| | - Matthew D Regan
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI 53706, United States
| |
Collapse
|
34
|
AMP-activated protein kinase protects against anoxia in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:30-39. [DOI: 10.1016/j.cbpa.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/18/2023]
|
35
|
Amsalem E, Grozinger CM. Evaluating the molecular, physiological and behavioral impacts of CO 2 narcosis in bumble bees (Bombus impatiens). JOURNAL OF INSECT PHYSIOLOGY 2017; 101:57-65. [PMID: 28666863 DOI: 10.1016/j.jinsphys.2017.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Exposure to carbon dioxide (CO2) has pleiotropic effects in many insect species, ranging from eliciting rapid behavioral responses such as attraction, to dramatic physiological changes, including ovary activation. In bumble bees, CO2 narcosis causes queens to bypass diapause and initiate egg laying, but its mode of action is not well-understood. Here, we evaluated the effects of CO2 narcosis on the behavior, physiology and immune function of virgin bumble bee queens (Bombus impatiens). We tested the hypothesis that CO2 induces these changes by stimulating oxidative stress response pathways. We found that CO2 stimulates ovarian activation and egg production and suppresses lipid (but not glycogen) accumulation in virgin queens. Additionally, CO2 treated queens were more active (particularly in terms of flight) and performed, but did not receive, more aggressive behaviors compared to controls. Moreover, CO2 positively affected immune function in queens, reduced transcript levels of 5/6 antioxidant enzyme genes and had no effect on longevity. Thus, although CO2 treatment stimulated reproduction, we did not observe any evidence of a trade-off in queen health parameters, aside from a reduction in lipids. Overall CO2 narcosis does not appear to stimulate a typical stress response in virgin bumble bee queens. On the contrary, CO2 narcosis appears to stimulate changes that prepare queens to cope with the nutritional, metabolic and behavioral challenges associated with reproduction and colony-founding.
Collapse
Affiliation(s)
- Etya Amsalem
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Mossman JA, Tross JG, Jourjine NA, Li N, Wu Z, Rand DM. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila. Mol Biol Evol 2017; 34:447-466. [PMID: 28110272 PMCID: PMC6095086 DOI: 10.1093/molbev/msw246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among the major challenges in quantitative genetics and personalized medicine is to understand how gene × gene interactions (G × G: epistasis) and gene × environment interactions (G × E) underlie phenotypic variation. Here, we use the intimate relationship between mitochondria and oxygen availability to dissect the roles of nuclear DNA (nDNA) variation, mitochondrial DNA (mtDNA) variation, hypoxia, and their interactions on gene expression in Drosophila melanogaster. Mitochondria provide an important evolutionary and medical context for understanding G × G and G × E given their central role in integrating cellular signals. We hypothesized that hypoxia would alter mitonuclear communication and gene expression patterns. We show that first order nDNA, mtDNA, and hypoxia effects vary between the sexes, along with mitonuclear epistasis and G × G × E effects. Females were generally more sensitive to genetic and environmental perturbation. While dozens to hundreds of genes are altered by hypoxia in individual genotypes, we found very little overlap among mitonuclear genotypes for genes that were significantly differentially expressed as a consequence of hypoxia; excluding the gene hairy. Oxidative phosphorylation genes were among the most influenced by hypoxia and mtDNA, and exposure to hypoxia increased the signature of mtDNA effects, suggesting retrograde signaling between mtDNA and nDNA. We identified nDNA-encoded genes in the electron transport chain (succinate dehydrogenase) that exhibit female-specific mtDNA effects. Our findings have important implications for personalized medicine, the sex-specific nature of mitonuclear communication, and gene × gene coevolution under variable or changing environments.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Jennifer G Tross
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Nick A Jourjine
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Nan Li
- Department of Biostatistics, Brown University, Providence, RI
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| |
Collapse
|
37
|
Shiehzadegan S, Le Vinh Thuy J, Szabla N, Angilletta MJ, VandenBrooks JM. More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster. PLoS One 2017; 12:e0177827. [PMID: 28542380 PMCID: PMC5441596 DOI: 10.1371/journal.pone.0177827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 11/18/2022] Open
Abstract
High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals during energetically demanding activities. We evaluated this model by studying the flight performance and heat tolerance of flies (Drosophila melanogaster) acclimated and tested at different concentrations of oxygen (12%, 21%, and 31%). We expected that flies raised at hypoxia would develop into adults that were more likely to fly under hypoxia than would flies raised at normoxia or hyperoxia. We also expected flies to benefit from greater oxygen supply during testing. These effects should have been most pronounced at high temperatures, which impair locomotor performance. Contrary to our expectations, we found little evidence that flies raised at hypoxia flew better when tested at hypoxia or tolerated extreme heat better than did flies raised at normoxia or hyperoxia. Instead, flies raised at higher oxygen levels performed better at all body temperatures and oxygen concentrations. Moreover, oxygen supply during testing had the greatest effect on flight performance at low temperature, rather than high temperature. Our results poorly support the hypothesis that oxygen supply limits performance at high temperatures, but do support the idea that hyperoxia during development improves performance of flies later in life.
Collapse
Affiliation(s)
- Shayan Shiehzadegan
- School of Life Science, Arizona State University, Tempe, Arizona, United States of America
| | | | - Natalia Szabla
- Institute of Environmental Studies, Jagiellonian University, Kraków, Poland
| | - Michael J. Angilletta
- School of Life Science, Arizona State University, Tempe, Arizona, United States of America
| | - John M. VandenBrooks
- Department of Physiology, Midwestern University, Glendale, Arizona, United States of America
- * E-mail:
| |
Collapse
|
38
|
Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth. Proc Natl Acad Sci U S A 2017; 114:1353-1358. [PMID: 28115720 DOI: 10.1073/pnas.1614102114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.
Collapse
|
39
|
Boardman L, Sørensen JG, Koštál V, Šimek P, Terblanche JS. Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism. Sci Rep 2016; 6:32856. [PMID: 27619175 PMCID: PMC5020647 DOI: 10.1038/srep32856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Jesper G Sørensen
- Section for Genetics, Ecology &Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
40
|
Spong KE, Andrew RD, Robertson RM. Mechanisms of spreading depolarization in vertebrate and insect central nervous systems. J Neurophysiol 2016; 116:1117-27. [PMID: 27334953 PMCID: PMC5013167 DOI: 10.1152/jn.00352.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022] Open
Abstract
Spreading depolarization (SD) is generated in the central nervous systems of both vertebrates and invertebrates. SD manifests as a propagating wave of electrical depression caused by a massive redistribution of ions. Mammalian SD underlies a continuum of human pathologies from migraine to stroke damage, whereas insect SD is associated with environmental stress-induced neural shutdown. The general cellular mechanisms underlying SD seem to be evolutionarily conserved throughout the animal kingdom. In particular, SD in the central nervous system of Locusta migratoria and Drosophila melanogaster has all the hallmarks of mammalian SD. Locust SD is easily induced and monitored within the metathoracic ganglion (MTG) and can be modulated both pharmacologically and by preconditioning treatments. The finding that the fly brain supports repetitive waves of SD is relatively recent but noteworthy, since it provides a genetically tractable model system. Due to the human suffering caused by SD manifestations, elucidating control mechanisms that could ultimately attenuate brain susceptibility is essential. Here we review mechanisms of SD focusing on the similarities between mammalian and insect systems. Additionally we discuss advantages of using invertebrate model systems and propose insect SD as a valuable model for providing new insights to mammalian SD.
Collapse
Affiliation(s)
- Kristin E Spong
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - R David Andrew
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
41
|
Santos DE, Alberici LC, Hartfelder K. Mitochondrial structure and dynamics as critical factors in honey bee (Apis mellifera L.) caste development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 73:1-11. [PMID: 27058771 DOI: 10.1016/j.ibmb.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
The relationship between nutrition and phenotype is an especially challenging question in cases of facultative polyphenism, like the castes of social insects. In the honey bee, Apis mellifera, unexpected modifications in conserved signaling pathways revealed the hypoxia response as a possible mechanism underlying the regulation of body size and organ growth. Hence, the current study was designed to investigate possible causes of why the three hypoxia core genes are overexpressed in worker larvae. Parting from the hypothesis that this has an endogenous cause and is not due to differences in external oxygen levels we investigated mitochondrial numbers and distribution, as well as mitochondrial oxygen consumption rates in fat body cells of queen and worker larvae during the caste fate-critical larval stages. By immunofluorescence and electron microscopy we found higher densities of mitochondria in queen larval fat body, a finding further confirmed by a citrate synthase assay quantifying mitochondrial functional units. Oxygen consumption measurements by high-resolution respirometry revealed that queen larvae have higher maximum capacities of ATP production at lower physiological demand. Finally, the expression analysis of mitogenesis-related factors showed that the honey bee TFB1 and TFB2 homologs, and a nutritional regulator, ERR, are overexpressed in queen larvae. These results are strong evidence that the differential nutrition of queen and worker larvae by nurse bees affects mitochondrial dynamics and functionality in the fat body of these larvae, hence explaining their differential hypoxia response.
Collapse
Affiliation(s)
- Douglas Elias Santos
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Luciane Carla Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
42
|
Regan MD, Gill I, Richards JG. Calorespirometry reveals that goldfish prioritize aerobic metabolism over metabolic rate depression in all but near-anoxic environments. J Exp Biol 2016; 220:564-572. [DOI: 10.1242/jeb.145169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
Metabolic rate depression (MRD) has long been proposed as the key metabolic strategy of hypoxic survival, but surprisingly the effects of changes in hypoxic O2 tensions (PwO2) on MRD are largely unexplored. We simultaneously measured the O2 consumption rate (ṀO2) and metabolic heat of goldfish using calorespirometry to test the hypothesis that MRD is employed at hypoxic PwO2s and initiated just below Pcrit, the PwO2 below which ṀO2 is forced to progressively decline as the fish oxyconforms to decreasing PwO2. Specifically, we used closed-chamber and flow-through calorespirometry together with terminal sampling experiments to examine the effects of PwO2 and time on ṀO2, metabolic heat and anaerobic metabolism (lactate and ethanol production). The closed-chamber and flow-through experiments yielded slightly different results. Under closed-chamber conditions with a continually decreasing PwO2, goldfish showed a Pcrit of 3.0±0.3 kPa and metabolic heat production was only depressed at PwO2 between 0 and 0.67 kPa. Under flow-through conditions with PwO2 held at a variety of oxygen tensions for 1 and 4 h, goldfish also initiated MRD between 0 and 0.67 kPa but maintained ṀO2 to 0.67 kPa, indicating that Pcrit is at or below this PwO2. Anaerobic metabolism was strongly activated at PwO2 ≤1.3 kPa, but only used within the first hour at 1.3 and 0.67 kPa as anaerobic end-products did not accumulate between 1 and 4 h exposure. Taken together, it appears that goldfish reserve MRD for near-anoxia, supporting routine metabolic rate at sub-Pcrit PwO2s with the help of anaerobic glycolysis in the closed-chamber experiments, and aerobically after an initial (<1 h) activation of anaerobic metabolism in the flow-through experiments, even at 0.67 kPa PwO2.
Collapse
Affiliation(s)
- Matthew D. Regan
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Ivan Gill
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey G. Richards
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
43
|
Verberk WCEP, Overgaard J, Ern R, Bayley M, Wang T, Boardman L, Terblanche JS. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp Biochem Physiol A Mol Integr Physiol 2015; 192:64-78. [PMID: 26506130 PMCID: PMC4717866 DOI: 10.1016/j.cbpa.2015.10.020] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 11/26/2022]
Abstract
Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope decreases near critical temperatures, a key feature of the OCLTT hypothesis. In air-breathers, only severe hypoxia (< 2 kPa) affected heat tolerance. The discrepancies for heat tolerance between aquatic and terrestrial organisms can to some extent be reconciled by differences in the capacity to increase oxygen transport. As air-breathing arthropods are unlikely to become oxygen limited under normoxia (especially at rest), the oxygen limitation component in OCLTT does not seem to provide sufficient information to explain lethal temperatures. Nevertheless, many animals may simultaneously face hypoxia and thermal extremes and the combination of these potential stressors is particularly relevant for aquatic organisms where hypoxia (and hyperoxia) is more prevalent. In conclusion, whether taxa show oxygen limitation at thermal extremes may be contingent on their capacity to regulate oxygen uptake, which in turn is linked to their respiratory medium (air vs. water). Fruitful directions for future research include testing multiple predictions of OCLTT in the same species. Additionally, we call for greater research efforts towards studying the role of oxygen in thermal limitation of animal performance at less extreme, sub-lethal temperatures, necessitating studies over longer timescales and evaluating whether oxygen becomes limiting for animals to meet energetic demands associated with feeding, digestion and locomotion.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, Building 1131, DK-8000 Aarhus, Denmark
| | - Rasmus Ern
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, Building 1131, DK-8000 Aarhus, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, Building 1131, DK-8000 Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, Building 1131, DK-8000 Aarhus, Denmark
| | - Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, South Africa
| |
Collapse
|